
A Novel Integrated Architecture for Ambient Assisted Living Systems

Ashalatha Kunnappilly
Mälardalen University, Sweden
ashalatha.kunnappilly@mdh.se

Alexandru Sorici
Politehnica University, Romania

alex.sorici@gmail.com

Imad Alex Awada
Politehnica University, Romania

awadaalex@hotmail.com

Irina Mocanu
Politehnica University, Romania

irinag.mocanu@gmail.com

Cristina Seceleanu
Mälardalen University, Sweden

cristina.seceleanu@mdh.se

Adina Madga Florea
Politehnica University, Romania
adinamagdaflorea@yahoo.com

Abstract—The increase in life expectancy and the slumping
birth rates across the world result in lengthening the average age
of the society. Therefore, we are in need of techniques that will
assist the elderly in their daily life, while preventing their social
isolation. The recent developments in Ambient Intelligence and
Information and Communication Technologies have facilitated
a technological revolution in the field of Ambient Assisted
Living. At present, there are many technologies on the market
that support the independent life of older adults, requiring
less assistance from family and caregivers, yet most of them
offer isolated services, such as health monitoring, reminders etc;
moreover none of current solutions incorporates the integration
of various functionalities and user preferences or are formally
analyzed for their functionality and quality-of-service attributes,
a much needed endeavor in order to ensure safe mitigations of
potential critical scenarios. In this paper, we propose a novel
architectural solution that integrates necessary functions of an
AAL system seamlessly, based on user preferences. To enable
the first level of the architecture’s analysis, we model our system
in Architecture Analysis and Design Language, and carry out
its simulation for analyzing the end-to-end data-flow latency,
resource budgets and system safety.

Index Terms—Ambient Intelligence, Ambient Assisted Living,
Architecture Analysis and Design Language.

I. INTRODUCTION

According to the statistics of the World Population Ageing
Report 2015, the world’s elderly population is predicted to
reach 2.1 billion by 2050, which is more than double of the
population of elderly adults in 2015 [1]. The ageing society
entails coping with an increased number of diseases, increased
health-care costs, shortage of caregivers [2], etc. Assisted
living systems can help in supporting elderly persons in their
daily activities and their independent living, with limited risks.

Nowadays, there are numerous Ambient Assisted Living
(AAL) solutions available, ranging from a large variety of
health monitoring and fall detection sensors, smart homes and
assisted robots [3]. However, most current systems are not
very effective in critical situations due to not sufficient support
of integration of functionalities, difficulty of usage and low
acceptance rates [4][5]. One such scenario that supports this
claim and that we also analyze in this paper is the occurrence
of ”fire” and ”fall” events simultaneously. When both these
events occur together, a safe mitigation of the scenario is
achieved only when both these events are communicated

to caregivers and firefighters; which is not guaranteed by
independent systems working side by side. Assuming that
the fire alarm communicated to the firefighters is verified for
confirmation by a phone call to the user’s home, it follows
that the elderly who has fallen that has been communicated
to the caregivers only cannot answer in due time, so the
fire alarm may be deemed false and discarded, triggering a
potential catastrophe. The fact that the existing AAL products
do not integrate the modules targeted towards the particular
needs of a user, namely health monitoring, home appliances
control, report and communication with health professionals,
telepresence module etc., offering a solution that could safely
resolve potential combined critical situations, also confirmed
by model-based behavioral analysis of the system, serves as
the motivation for the research presented in this paper. We
propose a novel modular architecture for AAL that can be
seen as a fully integrated solution, with functionalities selected
based on user choices. Our proposed architecture is designed
by taking into account the pros and cons of existing prominent
AAL architectures in the literature. Since our solution should
operate appropriately in critical situations also, it is impor-
tant that its quality-of-service (QoS) is analyzed. To achieve
this, we model the proposed architecture in the Architecture
Analysis and Design Language (AADL) [6], and carry out
simulations in AADL to estimate the end-to-end flow latency,
resource budgets and system safety.

The remainder of the paper is organized as follows. In
Section 2, we discuss some of the prominent architectural
frameworks developed for AAL and underline their advantages
and disadvantages by simulating these architectures in AADL.
Section 3 describes our integrated architecture, whereas in Sec-
tion 4 we present the run-time architecture model in AADL.
The simulation results depicting the end-to-end flow latency,
resource budgets and safety analysis in AADL are presented
and discussed in Section 5. In Section 6, we conclude the
paper and outline future lines of research.

II. LITERATURE REVIEW

Ambient Assisted Living and Ambient Intelligence (AmI)
techniques are some of the most researched areas in the past
few years due to an increasing amount of elderly population
across the world [2]. At present, there are no market solutions



Fig. 1. ESS-H architecture.

that offer a complete integrated solution for AAL. Conse-
quently, in the following, we survey the existing literature
on AAL architectural solutions, and identify advantages and
shortcomings through AADL simulations in OSATE 2.2.1.
AADL has been chosen for architecture analysis due to its
architecture-centric and model-based engineering approach,
sound specifications and large acceptance in the industry for
modeling embedded systems.

This section is organized as follows: in subsection A, we
give a brief introduction to AADL and in subsection B, we
describe in detail the existing architectures in literature and
the results of their AADL simulation.

A. Architecture Analysis and Design Language

AADL [6] models a system’s architecture in terms of
hierarchies of components at various levels of abstractions,
whose interaction is represented by connections via ports (data,
event and event data ports). There are three categories of
component abstractions in AADL - Software, Execution Plat-
form and System. Application software comprises the process,
data, subprogram, thread, and thread group components. The
execution platform is made up of computation and commu-
nication resources, consisting of processor, memory, bus, and
device components. System components are composites that
can consist of other systems as well as software or hardware
components. The major components are: 1) Process - a unit of
protected address space, 2) Data represents a type, local data
subcomponent, or parameter of a subprogram 3) Thread - unit
of concurrent execution based on various protocols (periodic,
aperiodic, sporadic, server and background), 4) Processor -
a virtual machine that schedules and executes threads, 5)
Memory - a storage abstraction that can hold data or code,
6) Bus - a connector abstraction between execution platform
components, and 7) Device - an abstraction of an active
component that an application system can interact with, and
a processor executing software that requires access to, via a
bus.

B. Prominent AAL architectures in literature

By examining the AAL literature, we identify some archi-
tecture types that address the construction of integrative AAL
applications (that is, those that focus on creating a holistic user
experience, not just the development of a specific functionality
such as health data management or social interaction). In what
follows, we investigate two commonly-used architecture types:
Cloud based and Multi-Agent System (MAS), showing an
example for each.

1) Cloud-based AAL architectures.
In this category, we describe the ESS-H (Embedded
Sensor Systems for Health) [7], shown in Fig.1. Al-
though the architecture supports multiple functionalities
like health monitoring, fall detection, communication to
caregiver etc., there is no support for home monitoring
(with fire detection systems), robots etc. Hence, inorder
to analyze the scenario of simultaneous fire and fall
events, the only choice would be to use an independent
fire detection system along with the ESS-H. In a related
work [5] , the authors argue, based on sequence diagram
simulations, that the timing constraint of taking a correct
decision could not be met by two independent systems
working side by side. However, sequence diagram sim-
ulations cannot analyze flows through the components,
while considering the sensor sampling times, component
execution times and communication bus latencies. Hence,
we describe the architecture, systems requirements and
flow latency analysis in AADL, for both the ESS-H fall
detection system, and the separate fire detection system,
respectively.
a) ESS-H Fall Detection: Architecture Description in
AADL: The major components of ESS-H architecture are
sensor unit, collector and user-interface unit, the gateway
and switch server, and the intelligent health server (IHS),
with the servers being cloud based as shown in Fig. 1.
The data flow during the occurrence of a fall event is
described as three end-to-end flows in AADL as shown
in Fig. 2. Flow 1 describes the data flow from issuing
the fall event, until its sending to the caregiver through
the data collector (modeled as a process with a thread for
analyzing data), gateway (modeled as a device) and cloud
(modeled as a process with a thread for communication);
Flow 2 is models the caregiver’s confirmation of the fall
event through the gateway and data collector (which in
this case is a tablet); Flow 3 describes the caregiver’s
action on the elderly in case of a genuine alarm. As
we cannot model human behaviors accurately, we model
them as devices with maximum allowed response times.
b) ESS-H Fall Detection: System Requirements: The
system’s latency requirements are described in Table I,
in accordance with values based on previous work [5],
except the split of the human response times into the time
needed to register the information and the time needed
to take the action. For instance, the maximum allowed
response time of the caregiver from the time of being



Fig. 2. ESS-H architecture in AADL describing data flow during fall event.

Fig. 3. Fire detection system architecture in AADL describing data flow during fire event.

informed of a fall event is 2,96 min [8]; we have divided
the response time arbitrarily as 1 min for registering the
data (Flow 1) and 1.96 min for the response (Flow 2).
The maximum latency values for the end-to-end flows are
shown in Table I. For the analysis, we assume periodic
sampling of the fall sensor, every 30 sec. All other
components are also activated at 30 sec to effectively
handle the sensor data. The communication, except that
of caregiver’s action occurs via two buses - Bluetooth
(Latency: 150 to 200 ms) and Internet (Latency: 50 to
100 ms).

c) ESS-H Fall Detection: Analysis Results: The AADL
flow latency analysis results are generated based on con-
sidering the processing time of the tasks, processing delay
due to queueing, transfer time of information between
connections etc. The end-to-end latency analysis results
are shown in Table I. All of the three flows meet their
maximum end-to-end latencies.
Next, we analyze the independent fire detection system
that detects the fire event and communicates it to the
firefighters.

d) Fire Detection: Architecture Description in AADL:
The fire detection system has a fire detection sensor,

TABLE I
SYSTEM REQUIREMENTS AND FLOW LATENCY ANALYSIS RESULTS OF

ESS-H.

Name System latency Max Latency (AADL)
Fall detection system 1233600 ms 928755 ms

Flow1 156255 ms 97755 ms
Flow2 177600 ms 30800 ms
Flow3 900000 ms 800200 ms

TABLE II
SYSTEM REQUIREMENTS AND FLOW LATENCY ANALYSIS RESULTS OF

FIRE DETECTION SYSTEM.

Name System latency Max Latency (AADL)
Fire detection system 741600 ms 811400 ms

Flow1 91000 ms 69300 ms
Flow2 28000 ms 12000 ms
Flow3 25000 ms 30100 ms
Flow4 600000 ms 700000 ms

a data analyzer module to process the sensor data, a
gateway device and a mobile phone to communicate with
the firefighters. The fire sensor, gateway, mobile phone
and firefighters are modeled as devices, however the data
collector is modeled as a process with an associated



TABLE III
FLOW LATENCY ANALYSIS RESULTS OF AGENT BASED SYSTEM.

Flows System Latency Requirements Max Latency (AADL)
Flow1 91000 ms 170100 ms

thread that deals with processing fire sensor data. The
AADL model of the fire detection system contains 4
flows: Flow 1 for communicating the fire event to the fire
fighter, Flow 2 for confirmation of the fall event, Flow
3 for modeling the response to the confirmation call and
Flow 4 for capturing the firefighter’s action. The AADL
model and associated flows are illustrated in Fig. 3.
e) Fire Detection: System Requirements: The system’s
latency requirements are tabulated and described in Table
II [5]. For the flow analysis, we model two different
device implementations for mobile phone and firefighter
- one showing the normal behavior (in case of Flow 1
and Flow 2) and the other showing the delayed behavior
(in case of Flow 3 and Flow 4). Moreover, the Flow
2 is dependent on data from Flow 1, we divide 10 sec
response time as 7 sec for registering the fire data and 3
sec for the response. The maximum end-to-end latencies
of the flows are thus 1.5, 0.46, 0.4 and 10 min respectively
(Table II). We assume that the confirmation call is not
answered by the elderly within 5 min. For the analysis,
we assume periodic sampling for the fire sensors every 20
sec and all the communication, except firefighter’s action
occurs via two buses - Bluetooth and Internet with the
same prescribed latencies as before.
f) Fire Detection: Analysis Results: The end-to-end flow
latency results show that Flow 3 and 4 miss their dead-
lines. The simulation results are also shown in Table II.
Our analysis shows that the ESS-H solution that consists
of fall detection capabilities working side by side with
an independent fire detection system might not cover
our critical scenario safely, that is, the response actions
are not completed by their deadlines. However, later in
the paper, we show that if the fire and fall detection
capabilities are integrated into the same system, such
critical scenarios can be handled in due time. Moreover,
the ESS-H solution also runs the risk of single point of
failure due to the centralized IHS. The dependency of the
architecture on Internet connectivity is high, and there
is no local processing of the data, and so the system
is exposed to a complete failure in the absence of a
working Internet connection, or when the IHS is not able
to respond in real-time.

2) Distributed agent-based AAL architectures. Next,
we investigate whether a distributed solution serves the
purpose effectively. Thus, we hereby analyze a distributed
multi-agent system architecture proposed to support peo-
ple suffering from the Alzheimer disease [9].
g) Agent architecture: Architecture Description in AADL:
The architecture uses a Flexible User and a Service-
Oriented multi-ageNt Architecture (FUSION@) [10] and
is depicted in Fig. 4. Though this architecture does not

Fig. 4. A service oriented MAS architecture for Alzheimer health care.

Fig. 5. Fire agent behavior as AADL threads.

offer a fully integrated functionality, it can be easily
extended to support the intended functionalities owing to
its distributed nature. Let us assume that the agent-based
architecture contains a fire-agent and a fall-agent to deal
with fire and fall events respectively. The actions for a fire
agent include detecting the fire event, updating its event
list, synchronizing this event with fall agent, updating the
event list again and finally taking the decision. We map all
these sequences as separate threads in AADL as shown in
Fig. 5. In this system model, we analyze whether fire and
fall events are effectively communicated to the firefighter
in due time taking into account the agent synchronization
and communication delays.
h) Agent architecture: System Requirements: We assume
the system’s requirements similar to those of the fire
detection system described earlier and we assume com-
munication latency of 50 ms to 100 ms for sending
synchronization messages.
i) Agent architecture: Analysis Results: The results are
tabulated in Table III. As shown, Flow 1 clearly misses
its deadline. Hence, even though distributed systems offer
higher performance due to resource sharing and has
higher reliability and fault tolerance when compared to
centralized counterparts, data synchronization becomes a
new problem and so does the unpredictable nature of the



system (the response times are dependent on the system
organization and network load), as shown also by the
flow latency analysis. Moreover, if we consider the above
system, the solely local deployment of agents makes
the system’s maintainability difficult. In addition, as the
system becomes more distributed, security challenges
are higher, and the system’s maintainability becomes
difficult. As a result of the carried analysis, we opt for
a centralized solution, with necessary fault tolerance to
deal effectively in real-time, especially in scenarios where
multiple events occur together.

Based on the above, we conclude that none of these archi-
tectures can be directly used as a framework for building
fully integrated AAL systems. Moreover, we have not found
any evidence ensuring various QoS attributes. To alleviate
such inconveniences, we propose a new architectural solu-
tion, named CAMI (Companion with Autonomously Mobile
Interface), which is a nominal mix of the studied solutions.
The CAMI architecture is described in detail in the following
sections.

III. PROPOSED ARCHITECTURE

In this section, we describe our novel integrated architecture
for AAL, named CAMI1. CAMI offers a fully integrated
AAL solution by providing services for health monitoring, fall
detection, supervised physical exercises, home management
and wellbeing as well as telepresence support. CAMI builds
an artificially intelligent ecosystem that allows the seamless
integration of any number of ambient and wearable sensors,
with a mobile robotic platform endowed with multimodal
interaction (touch, voice, person detection), including a telep-
resence robot with manipulation capabilities. As compared to
existing solutions, the functionalities that we have chosen to
integrate in CAMI are based on user preferences recorded via
a multi-national survey with 108 primary and 58 secondary
users from Denmark, Romania and Poland.

The architecture is based on the following underlying as-
sumptions: 1) Biometric data must be handled with extreme
caution due to privacy laws, 2) The end result of the project
has to be feasible from a commercial point of view, 3) Due to
the need of a business model, the CAMI system as a whole
needs a cloud-based infrastructure.

The CAMI architecture is based on microservices, and
has a clean and robust skeleton, onto which several plug-
in modules can be coupled ensuring modularity and reuse.
Two distinct features of CAMI, as compared to other AAL
architectures, are: (i) the presence of both local and cloud-
based processing schemes, and (ii) the continuity of services
even in the absence of Internet. The CAMI architecture is
depicted in Fig. 6. The major components of the architecture
are: Sensor unit, Data collector unit, CAMI Gateway, Mobile
phone unit, Telepresence, and the CAMI Cloud, which are
discussed below.

1http://www.aal-europe.eu/projects/cami/

(i) Sensor unit: The CAMI system includes various health
monitoring sensors, environmental sensors, physical exercise
monitoring sensors and fall sensors.

(ii) Data collector unit: The interfacing of a wide range of
specific sensors/devices with the CAMI ecosystem is achieved
by the Data collector unit. The unit acts as an intermediate
layer aiming at clearly separating the devices from the rest
of the CAMI ecosystem, thus increasing its modularity and
loose-coupling character.

(iii) CAMI Gateway: The CAMI Gateway is a collection of
software modules that implement the core infrastructure of the
CAMI system. Its purpose is to enable the easy interconnection
of the micro services that provide the main functionality of
CAMI, like the sensor data collection, intelligent short-term
event processing, forwarding of shareable data to CAMI cloud
services, etc. At the OS level, there is a switch that can
shift the box’s operation from Internet to GSM, if needed, in
order to ensure that the CAMI system carries out its critical
functionalities even in the absence of the Internet connection.

A typical CAMI gateway deployment hosts the following
micro services:

1) Event Stream Manager: It is a part of the core infras-
tructure solution enabling message-based interconnection
between all the other micro services.

2) Local Data Storage: Local data storage offers short-
term storage for data collected from sensors, and user
information inferred by the decision support algorithms.

3) Decision Support System (DSS): The DSS provides a col-
lection of symbolic and data-driven reasoning algorithms
that continuously monitor the short-term state of the user
(current health status and mood, current and planned daily
activities, required reminders, etc).

4) Voice command manager: It is offered as a service imple-
menting voice-based interaction with the CAMI system.

5) Communication with 3rd party health platforms: This
service allows the sharing of selected health measure-
ments and physical exercise sessions with primary and
secondary caregivers.

6) Connection with the CAMI cloud: Ensures the replication
of locally-collected data to the CAMI cloud platform
for longer term and higher level processing, as well
as the communication with the CAMI cloud to retrieve
the results of performed analyses or suggested actions
(e.g., context-aware rescheduling of planned activities,
and physical exercise recommendations).

(iv) Robotic telepresence unit: The CAMI architecture is
equipped with an integrated robotic support that is missing
from many of the existing AAL frameworks [3]. The robotic
teleprsence unit in CAMI can be used for both input and output
interactions, and is furthermore capable of actuation.

(v) Mobile phone unit: The mobile phone carried by the
user acts as an intelligent, friendly collaborator that provides
suggestions, advice or reminders. It is also equipped with
automatic facilities of sending SMS to third party users like
doctors or firefighters in case of emergency situations.



Fig. 6. CAMI - An integrated architecture for AAL.

(vi) Cloud Services: The CAMI cloud services enable the
communication to secondary caregivers (family and friends),
healthcare professionals, firefighters, and other CAMI in-
stances. The unit also enables intelligent analysis of user data,
collected over a prescribed period of time. Further, it supports
the modeling of user data using Semantic Web Technologies
(e.g., ontologies for Activities of Daily Living). Finally, cloud
services enable the clear/easy administration of each CAMI
user account.

IV. AADL MODEL OF CAMI ARCHITECTURE

By their nature, AAL systems are safety-critical real-time
systems that need to mitigate possible real-time scenarios of
high criticality, which could endanger the life of the elderly.
Examples of such situations include scenarios when a person
is having a cardiac arrest, or a fire at home etc. Usually, most
errors are introduced at design stage of embedded systems, but
they are discovered very late, leading to increased rework costs
and re-engineering efforts. Therefore, modeling and analyzing
AAL architectures at early stages of development can be used
to ensure their real-time performance, schedulability, reliability
and safety [6]. Consequently, we model the CAMI architecture
in the architecture description language, AADL [6] using
OSATE 2.2.1, and analyze the end-to-end data flow latency of
sensor event flows. We also analyze the the system’s resource
feasibility, its safety and reliability.

The AADL model is shown in Fig. 7 and we use this
model further to analyze the above attributes. The AADL
model of CAMI specifies the communication and data flow
between components, through data and event ports. We model
all the sensors, the CAMI cloud (caregiver and firefighter),
the telepresence, the mobile phone, the smart home and the
elderly person as devices, and the data collector and the CAMI
Gateway as processes (Fig. 7). The data collector process
contains one thread called the “Data analyzer module”, and
the CAMI Gateway contains two threads, “Event stream” and
“DSS”. The process components with their threads and port
connections for communication are shown in Fig. 8 and 9.

TABLE IV
FLOW LATENCY ANALYSIS RESULTS OF CAMI SYSTEM.

Flows Specified Max Latency Max Latency (AADL)
Flow1(Fall) 156255 ms 48055.6 ms
Flow2(Fall) 177600 ms 40851.3 ms
Flow3(Fall) 900000 ms 800200 ms
Flow4(Fire) 91000 ms 90400.6 ms
Flow5(Fire) 28000 ms 22501.3 ms
Flow6(Fire) 25000 ms 19001 ms
Flow7(Fire) 600000 ms 402000 ms

The “Data analyzer module” thread in the data collector pre-
processes and analyzes the sensor data before it is passed to the
CAMI Gateway. All the normal data is passed to the database
through the data port of the data collector; however, if any de-
viations from normal values occur, the data is passed through
the output event port, which is then fed to the input event port
of the CAMI Gateway. The “Event stream” thread in the
CAMI Gateway records all the generated events, and passes
them to the “DSS” thread for determining the actions in case of
events. All the threads except the “Event stream” are assumed
to be periodic, to ensure the continuous monitoring of active
events generation, given that the environment is highly dy-
namic. In comparison, the “Event stream” is aperiodic and is
invoked each time an event occurs. The execution of the mod-
ules is controlled by 3 processors - “CAMI Data processor”,
“CAMI Main processor” and “CAMI Cloud processor” with
access to various buses - “Bluetooth”, “Internet” and “GSM”.

V. CAMI ARCHITECTURE ANALYSIS IN AADL

In the subsections below, we outline the details of various
AADL analyses of the CAMI architecture.

A. Flow latency analysis

In this subsection, we model the end-to-end flows to de-
termine if the CAMI architecture can successfully mitigate
critical scenarios involving simultaneous fall and fire events
within the respective deadlines. In an integrated system, the
occurrences and associated data of concurrent fire and fall



Fig. 7. CAMI system architecture in AADL showing component inter-connections.

Fig. 8. Data collector process and its thread.

events are communicated to both caregivers and firefighters,
rendering an immediate rescue action from the firefighters who
do not need a phone-based confirmation anymore. The fall
event data flow has the same 3 end-to-end flows as for the
ESS-H architecture detailed in Section II. Similarly, the fire
event data flow is as for ESS-H, adapted to CAMI. The end-to-
end latency analysis results are summarized in Table IV, and
the analysis concludes that all the flows meet their respective
deadlines.

B. Resource analysis
AADL has resource analysis plugins also, to analyze re-

source budgets and allocation during the earlier stages of
system development. Resource budgeting can be done for
processors, memory, and network bandwidth and can be ana-
lyzed to determine whether budgets exceed the allocated sizes
(feasibility analysis). We can allocate application components
to the execution platform and reconsider the resource budgets
in terms of those allocations.

Since our model is designed to illustrate that it could
effectively handle the situation with simultaneous occurrence

Fig. 9. CAMI Gateway process and its threads.

of fire and fall events, only the application components
belong to this data flow. Therefore, we associate existing
threads to “CAMI Main Processor” assigned with a capac-
ity of 200 MIPS and memory capacity of 100 Kbyte, to
analyze the respective resource usage. The analysis results
shown in Table V illustrate that the tasks’ resource usage
exceeds the processor capacity and memory capacity, hence we
add, more processor to our system “CAMI Data processor”
with capacity 50 MIPS and increase the memory capacity to
150 Kbyte. The process “Data collector” is associated with
“CAMI Data Processor”, the process “box” is associated with
the “CAMI Main Processor” and a memory of 150 Kbyte is
associated with the processors. In this case, all the resource
budgets are met as shown in Table VI.

C. Safety analysis
In the following, we outline the safety analysis of CAMI

architecture using the Error Annex (EA) V2 [11]. AADL
facilitates different types of safety analysis like the fault hazard
analysis (FHA), fault tree analysis (FTA), fault impact analysis
etc.



Fig. 10. Error Annex specification of fall sensor.

TABLE V
RESOURCE ALLOCATION ANALYSIS RESULTS OF CAMI SYSTEM WITH

SINGLE PROCESSOR.

Components Resource Capacity Resource Usage
“CAMI Main processor” 200 MIPS 203.5 MIPS

“Mem1” 100 Kbyte 140 Kbyte

a) Error Modeling: As a first step towards analyzing
the safety of CAMI system, we define the error model of
the individual components. The CAMI sensor devices are
associated with two types of failure: 1) Value Error: When they
have no value (“No Value” error) or when they have wrong
value (“Invalid Value” error), or 2) Other failure events: E.g.,
internal failure due to system malfunction (“Fault”). We also
define two states of operation of the devices, “Operational”
and “Failed”. Initially the system is in operational mode, i.e.,
it performs its required functionality without any errors. If any
value error or other fault events occur, the system moves to
the failed mode. To return from a failed mode, we defne a
system self recovery event called “reset”. Upon “reset”, the
system moves back to operational from the failed mode.

b) Safety Analysis: The FHA analysis of the architecture
generates an excel report of all potential faults in the system.
Fault impact analysis is used show how faults propagate in the
system. For this, we assign all the sensor devices as the error
flow sources. An example of EA of fall sensor is depicted in
Fig. 10. Any of the errors in sensors propagate through the
data collector and CAMI gateway to the cloud (error sink).
FTA also helps us to analyze the failure effects by combining
various failure events.

VI. CONCLUSIONS

In this paper, we have proposed an innovative integrated
architecture with local and cloud-based processing for AAL
systems. In order to validate the performance of our proposed

TABLE VI
RESOURCE ALLOCATION ANALYSIS RESULTS OF CAMI SYSTEM WITH

TWO PROCESSORS.

Components Resource Capacity Resource Usage
“CAMI Main processor” 200 MIPS 200.0 MIPS
“CAMI Data processor” 50 MIPS 3.5 MIPS

“Mem1” 150 Kbyte 140 Kbyte

architecture, we have modeled it in AADL, and analyzed the
data-flow latency, resource feasibility and system safety. The
end-to-end latency analysis has helped in deciding on the com-
bined local and cloud-based centralized architectural solution.
The resource analysis in AADL has effectively determined
the processor and memory capacities required for executing
the application components, facilitating the design decision
of resource increase to remove the potential resource usage
overflow. Safety analysis in AADL is vital to identify the
potential system faults, and analyze their propagation within
the system, such that one can recognize what components need
back-up and devise error mitigation strategies later.

As future work, we intend to formally verify the CAMI
architecture, including the internal behavior of components,
especially the DSS behavior under critical scenarios. We
envision to produce a full working prototype that will be
deployed in the market in the near future.

REFERENCES

[1] D. of Economic and S. A. P. Division, “World Population Ageing 2015,”
United Nations, NewYork, Tech. Rep., 11 2015.

[2] P. Rashidi and A. Mihailidis, “A survey on ambient-assisted living tools
for older adults,” IEEE journal of biomedical and health informatics,
vol. 17, no. 3, pp. 579–590, 2013.

[3] R. Li, B. Lu, and K. D. McDonald-Maier, “Cognitive assisted living
ambient system: A survey,” Digital Communications and Networks,
vol. 1, no. 4, pp. 229–252, 2015.

[4] H. Sun, V. De Florio, N. Gui, and C. Blondia, “The missing ones: Key
ingredients towards effective ambient assisted living systems,” Journal
of ambient intelligence and smart environments, vol. 2, no. 2, pp. 109–
120, 2010.

[5] A. Kunnappilly, C. Seceleanu, and M. Lindén, “Do we need an integrated
framework for ambient assisted living?” in Ubiquitous Computing and
Ambient Intelligence: 10th International Conference, UCAmI 2016, San
Bartolomé de Tirajana, Gran Canaria, Spain, November 29–December
2, 2016, Part II 10. Springer, 2016, pp. 52–63.

[6] P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An overview of the
sae architecture analysis & design language (aadl) standard: a basis
for model-based architecture-driven embedded systems engineering,” in
Architecture Description Languages. Springer, 2005, pp. 3–15.

[7] M. U. Ahmed, M. Björkman, and M. Lindén, “A generic system-level
framework for self-serve health monitoring system through internet of
things (iot),” Studies in health technology and informatics, vol. 211, pp.
305–307, 2015.

[8] H.-M. Tzeng and C.-Y. Yin, “Nurses’ response time to call lights and
fall occurrences,” Medsurg Nursing, vol. 19, no. 5, p. 266, 2010.

[9] D. I. Tapia, S. Rodrıguez, and J. M. Corchado, “A distributed ambient
intelligence based multi-agent system for alzheimer health care,” in
Pervasive Computing. Springer, 2009, pp. 181–199.

[10] D. I. Tapia, S. Rodrı́guez, J. Bajo, and J. M. Corchado, “Fusion@,
a soa-based multi-agent architecture,” in International Symposium on
Distributed Computing and Artificial Intelligence 2008 (DCAI 2008).
Springer, 2009, pp. 99–107.

[11] J. Delange and P. Feiler, “Architecture fault modeling with the aadl
error-model annex,” in Software Engineering and Advanced Applications
(SEAA), 2014 40th EUROMICRO Conference on. IEEE, 2014, pp. 361–
368.


