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ABSTRACT
Streaming analysis is widely used in a variety of environments, from
cloud computing infrastructures up to the network’s edge. In these
contexts, accurate modeling of streaming operators’ performance
enables fine-grained prediction of applications’ behavior without
the need of costly monitoring. This is of utmost importance for
computationally-expensive operators like stream joins, that observe
throughput and latency very sensitive to rate-varying data streams,
especially when deterministic processing is required.

In this paper, we present a modeling framework for estimating
the throughput and the latency of stream join processing. The model
is presented in an incremental step-wise manner, starting from a
centralized non-deterministic stream join and expanding up to a
deterministic parallel stream join. The model describes how the
dynamics of throughput and latency are influenced by the number
of physical input streams, as well as by the amount of parallelism
in the actual processing and the requirement for determinism. We
present an experimental validation of the model with respect to the
actual implementation. The proposed model can provide insights
that are catalytic for understanding the behavior of stream joins
against different system deployments, with special emphasis on the
influences of determinism and parallelization.
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1 INTRODUCTION
Data streaming is one of the main processing paradigms that can
generate information useful for upcoming systems’ contexts, such
as production environments or financial applications, that require
adaptiveness for resource-efficiency and need information that is
generated continuously. Practitioners and scientists in the stream
processing domain strive to improve these systems’ functionality
and efficiency, usually measured in terms of the throughput and
latency with which streams’ tuples are processed.

Stream joins, comparing tuples fed by two streams, are key op-
erators in this form of data processing [5]. Due to the unbounded
nature of data streams, it is often the case that stream joins are per-
formed on subsets of recent tuples, referred to as windows. Due to
their computation-intensive nature [1], it is all the more important
to understand their behavior and expected performance, especially
under a variety of deployment parameters (e.g., processing capacity
and level of parallelism) and time-varying input parameters (e.g.,
varying sources and rates of tuples). Knowing their expected per-
formance and processing capacity needs is very useful both for the
corresponding applications’ set-up and for continuous tuning for
provisioning of the appropriate amount of resources they need.

In order to have such information, a rather intuitive approach is to
collect it through monitoring of the system’s performance and load.
However, as also summarized in [4], such monitoring can (a) be in-
trusive and cause bottlenecks, thus deteriorating the performance of
the system or (b) provide the information too late for timely reaction,
thus potentially causing oscillations in the system’s performance. An
alternative approach is through proper mathematical modeling of the
system behavior, taking into account important parameters of the in-
put, the application and the system deployment. Such a model would
provide statistics about the performance of stream join deployments
without executing the code, which would in turn help fine-tuning
the deployment parameters. It is challenging, however, to capture
the actual behavior of a stream join in a comprehensive and precise
way due to complex dependencies between its configuration and the
properties of its deployment. Aspects of a stream join configuration
that influence the latter’s throughput and latency include its win-
dows’ configuration, whether the stream join should process tuples
deterministically (i.e., resulting in a processing outcome that is not
dependent on the incoming tuples’ interleaving, which may vary
significantly in asynchronous systems) and its parallelism degree.
Deployment aspects affecting the throughput and latency of a stream
join include the varying rates with which the incoming tuples are
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fed, the number of distributed sources feeding such tuples, the un-
derlying data distribution of the tuples (which affects the probability
with which two such tuples are successfully matched and result in
an output tuple) and, finally, the processing capacity available to the
stream join itself.

Here we present a comprehensive and dynamic model of stream
joins’ throughput and latency behavior that embraces all these as-
pects. We describe the model in detail in steps, identifying the impact
of each of the above aspects and building up the performance mod-
els for complex settings from those for simpler settings. Further,
we provide a detailed experimental study comparing the outcome
of the model in connection to an actual running implementation.
The results show agreement between the model and the exact sys-
tem behavior, showing the reliability of the model in predicting the
throughput and the latency with a fairly high accuracy. Our main
contribution is a precise modeling of the throughput and latency of
stream joins that allows for:

(1) The evaluation of benefits and cost of features such as
parallelism and determinism, thus providing a gnomon on
which to base decisions.

(2) The possibility to have statistics about the performance of
stream join deployments without the need of instrumenting
the code, as the latter often requires the intervention of the
operating system, which induces costly overhead.

(3) Information useful in taking decisions about how to adjust
parameters (load, processing capacity) in order to tune the
performance of stream joins in a static or in a run-time
fashion (e.g., to know how throughput and latency will be
affected depending on decisions to shed load) based on the
underlying dependencies of features such as determinism
and parallel execution.

The paper is structured as follows. We discuss related work in
Section 2 and introduce preliminary concepts in Section 3. The
modeling is developed throughout Section 4 and evaluated in Section
5. We conclude in Section 6.

2 RELATED WORK
Throughput and latency have been studied in many related papers
[1, 6, 8, 9], but mainly from an empirical point of view. In this work
we provide a detailed model for a stream join that shows what con-
tributes to the throughput and latency and studies the dependencies
between aspects such as window semantics, possible exceeding of
the processing quota, non-deterministic versus deterministic process-
ing, existence of multiple distributed data sources and centralized
versus parallel processing.

Analytical study of stream joins’ throughput can be found in
[7, 9, 17]. Differently from us, [7] focuses on a centralized execu-
tion only (with the goal of tuning a load shedding scheme); [17]
models throughput for a concrete ad-hoc parallelization approach
(time-slicing); finally, [9] provides equations for the throughput of
stream joins but does not account for its time-varying state size
and its evolution over time (the equations have the sole purpose of
estimating the scalability of the proposed parallelization approach).

Regarding latency, the closest in spirit work is in [15]. Neverthe-
less, the modeling focuses on a specific stream join (the original
handshake join of [16]) and is intended to show the considerable

latency the original method incurs and thus motivate the improve-
ment discussed in [15]. Furthermore, the model does not consider
distributed data sources, the latency overhead introduced when en-
forcing deterministic processing nor the possibility for a stream join
to exceed its processing quota. A model for the latency cost is also
presented in [14] for the SplitJoin stream join, as well as for the
average latency for 2 consecutive tuples to be compared. However,
the cost for determinism (or respectively a strong order with dense
punctuation) is not taken into account.

Further modeling, which does not cover the throughput and la-
tency of stream joins under the configuration and deployment char-
acteristics we consider can be found in [2, 3, 6, 11, 13]. In [3] the
memory cost, as in the size of the join state, is considered for a join
model combining window-based and punctuation-based semantics.
A model focusing on the memory cost can be also found in [13] for
the join-biclique method. The modeling in [6] is leveraged to find the
optimal size of the window but is very specific to the coupled hard-
ware architecture (Cell processor) and parallelization approach. In
[2] the SECRET model analyzes the execution semantics of stream
processing systems. The paper presents technology-independent def-
initions of stream, batch, window, time-based window, and window
size, relating these quantities to the semantics of the data streaming
process. In [11], Kang et al. proposed a unit-time-basis cost model
for estimating the time needed for a query to be run to completion
for different join algorithms. The cost model focuses on the handling
of single individual tuples from each input stream separately.

3 PRELIMINARIES
We introduce here stream joins’ semantics along with the formal no-
tation used in the remainder, we discuss determinism and parallelism
aspects of their implementations and state our modeling goal.

Stream join. Data streaming operators (e.g. filters, aggregates,
joins) continuously process streams of data. Each stream is an un-
bounded sequence of tuples t0,t1, . . . sharing schema 〈ts,A1, . . . ,An〉.
Given a tuple t , attribute t .ts represents its creation timestamp while
the rest of the attributes are application-related. Stream processing
continuous queries are modeled as directed acyclic graphs of opera-
tors that continuously consume incoming tuples and produce output
tuples. Streams can be distinguished between physical and logi-
cal [8, 9]. A physical stream consists of tuples from a single source
of data (e.g., from another operator), while a logical stream is a col-
lection of physical streams delivering the same type of information
from multiple sources (e.g., from multiple operators).

In a stream join (or simply join in the remainder) tuples are
received from two input streams, R and S , and are compared by
evaluating a given predicate. An output tuple joining the schema of
R and S tuples is produced for each pair of tuples from R and S for
which the predicate holds. Since the input streams are unbounded,
tuples from each stream are compared only with a finite portion
(window WR from stream R and window WS for stream S) of the
opposite stream. Time-based windows are defined to cover a fixed
period of time with respect to the timestamp attribute of the tuples
(e.g., the last 5 minutes). Since R’s and S’ rates can vary over time,
time-based windows do not specify the actual number of tuples to
be contained in the window. If this is preferred over a window that
spans a fixed time period, tuple-based windows can be employed
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WR (ΩTime = 30 minutes)

<07:54,3> <08:10,5> <08:22,4> <08:25,3>

<08:02,3> <08:15,1> <08:24,4>

R

S

Output stream
<08:24,4,08:25,3>

WS (ΩTime = 30 minutes)

Figure 1: Example of a time-based join with ΩT ime set to
30 minutes. Tuples from R and S are composed by attributes
〈ts,value〉. A tuple tR from R and a tuple tS from S are success-
fully matched if tR .value < tS .value. In the example, an incom-
ing tuple from R is matched with the tuples in WS and one out-
put tuple (joining the schema of R’s and S’ tuples) is produced.

(e.g., to contain the last 100 tuples). In the remainder we refer to a
join relying on time-based and tuple-based windows as time-based
join and tuple-based join, respectively.

The semantics of joins initially evolved in a tight connection with
the underlying implementation. In the seminal work [11] Kang et al
describe the problem of joins over unbounded streams as a nested-
loop join (aka in the literature as the 3-step procedure). Based on
that, Teubner and Mueller [16] define their semantics as follows1:

Window-Based Stream Join Semantics. For tR ∈ R and tS ∈ S ,
the tuple 〈tR ,tS 〉 appears in the join result R Z S iff

a) tR arrives after tS (tR .ts > tS .ts ) and s ∈ WS the moment
that tS arrives, or

b) tR arrives earlier than tS (tR .ts < tS .ts ) and r ∈ WR the
moment that tS arrives,

and tR and tS pass the join predicate.

Time-based join A time-based window of ΩT ime time units contains
all tuples {t |t ′.ts − t .ts ≤ ΩT ime }, where t ′ is the latest received
tuple from stream R or S . As discussed in [9] the way the window
is updated can give different variants of the 3-step procedure. The
Procedure TimeBasedSelfPurgingJoin presents the common 3-step
procedure, implementing the semantics of a time-window join. Each
incoming tuple is compared with the ones currently existing in the
window of the opposite stream, possibly allowing the distance of the
new tuple from the older ones to be more than ΩT ime time units.

Procedure TimeBasedSelfPurgingJoin(tR )

1 Compare tR with all tS ∈WS ;
2 Add tR toWR ;
3 Remove all ti ∈WR : ti .ts < tR .ts − ΩT ime ;

Alternatively, one can update the window the moment a new tu-
ple arrives (cf. Procedure TimeBasedCrossPurgingJoin), comparing
each incoming tuple with the ones received from the opposite stream
that are not farther than ΩT ime time units. In the rest of this paper,

1We modify the semantics definition to capture both tuple-based and time-based win-
dows, instead of only the latter as in [16].

Procedure TimeBasedCrossPurgingJoin(tR )

1 Remove all ti ∈WS : ti .ts < tR .ts − ΩT ime ;
2 Compare tR with all tS ∈WS ;
3 Add tR toWR ;

we focus on the variant TimeBasedSelfPurgingJoin. Nevertheless,
our model covers both variants.

Figure 1 presents a sample execution for a time-based join. In
the example, ΩT ime is set to 30 minutes and it is presented how the
incoming tuple 〈08:25,3〉 is compared with the tuples stored inWS .
In the example, one matching output is produced.

Tuple-based join. The 3-step procedure can be leveraged for tuple-
based joins too. A tuple-based window of size ΩTuple contains
the last ΩTuple tuples received. The Procedure TupleBasedJoin
implements the semantics of a tuple-based join.

Procedure TupleBasedJoin(tR )

1 Compare tR with all tS ∈WS .;
2 Add tR toWR .;
3 Remove the earliest ti ∈WR if |WR | > ΩTuple .;

Deterministic and parallel stream joins. Our model aims at
covering features of joins such as deterministic and parallel execu-
tion. In the following, we report useful definitions and propositions
originally presented in [9].

Definition 3.1. A join implementation is deterministic if, given
the same sequences of input tuples, the same sequence of output
tuples is produced, independently of the inter-arrival times of tuples
delivered by different physical streams.

The inter-arrival time of tuples plays an important role in the
deterministic execution of a join. Building on the example in Figure
1, we observe that tuple 〈08:24,4〉 is received from S before tuple
〈08:25,3〉. When received, tuple 〈08:24,4〉 is matched against tuple
〈07:54,3〉 (inWR ) and an output tuple is produced. If, nevertheless,
tuple 〈08:24,4〉 is received after 〈08:25,3〉 because of a delay, tuple
〈07:54,3〉 is prematurely purged and one matching comparison is
missed. The following proposition states how this can be prevented.

PROPOSITION 3.2. The processing of a sequential join, by means
of the TimeBasedSelfPurgingJoin (resp. TupleBasedJoin) procedure,
is deterministic if tuples from R and S are processed after they are
ready and in timestamp order,

where a ready tuple is defined as follows:

Definition 3.3. Let t ji be the i-th tuple from timestamp-sorted
stream j. t ji is ready to be processed if t ji .ts ≤ merдets , where
merдets =mink {tkx .ts} is the minimum timestamp among the times-
tamps in the set of tuples that includes the latest received tuple tkx
from each timestamp-sorted stream k.

Definition 3.3 assumes the tuples delivered by each physical
stream to be timestamp-sorted. This happens when data sources
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Variable Description
Model

∆t [sec] Length of the time interval.
Ki [sec] Time required for the join to carry out the work

of time i.
Θ Quota of ∆t Available for the join to carry out

the work at any time i.
wi+h,i [sec] Work that should be carried out at time i but is

postponed to time i + h.
ρi+h,i [sec] Residual of work that should be carried out at

time i but is still to be done at the end of time
i + h.

Join
WR ,WS Windows storing R and S tuples, respectively.
ΩT ime [sec] Size of a time-based window.
ΩTuples [tup] Size of a tuple-based window.
ωRi , ωSi [tup] Tuples inWR andWS at time i, respectively.
α [sec/comp] Time to perform a comparison.
σ [tup/comp] Selectivity (# tuples produced per comparison).
β [sec/tup] Time to output a tuple.
oi [tup/sec] Output tuples’ rate at time i.
n Number of processing units.

Variable Description
Input

R, S Logical input streams.
|R |, |S | Number of physical R and S streams, respec-

tively.
ri , si [tup/sec] Arrival rates of logical streams R and S at time i,

respectively.
r
j
i , s ji [tup/sec] Arrival rate of the j-th physical stream R or S at

time i, respectively.
Output

ci [comp] Number of comparisons that needs to be per-
formed due to tuples that arrived at time i.

yi [comp] Throughput, number of comparisons performed
at time i.

`ini [sec] Latency incurred to process input tuples deter-
ministically at time i.

`
join
i [sec] Latency incurred to match input tuples and pro-

duce output tuples at time i.
`out
i [sec] Latency incurred to produce output tuples deter-

ministically at time i.
`i [sec] Overall latency, given by the sum of `ini , `join

i
and `out

i .
Table 1: List of main variables used to model the throughput and latency behavior of time-based and tuple-based joins.

or other upstream streaming operators produce timestamp-sorted
streams of tuples [9] or when sorting mechanisms (preceding the
join itself) such as [10, 12, 15, 16] are used.

Similarly as in [8], we see that a parallel join implementation
remains deterministic if its processing is equivalent to that of a
sequential one (as in Proposition 3.2).

PROPOSITION 3.4. Let JS be a deterministic sequential join
and JP a parallel join sharing the same predicate and window size
ΩT ime or ΩTuple . If JP , given the same input R and S tuples, (1)
runs the same set of comparisons run by JS and (2) produces the
same timestamp-sorted stream of output tuples, then JP ’s processing
is equivalent (and thus deterministic) to that of JS .

In the following, we consider the common parallelization ap-
proach used for time-based and tuple-based joins [9, 15, 16], in
which multiple processing units execute the 3-step procedure run-
ning an approximately equal share of the overall comparisons and
seeing a certain portion (possibly all) of the tuples delivered by R
and S . As discussed in [8, 9, 15], deterministic execution for such
a parallelization approach does not only require each processing
unit to process ready tuples in timestamp order, but also to merge
the output tuples produced by each processing unit into a single
timestamp-sorted stream of ready tuples.

Modeling goal. Our goal is to define a dynamic model to esti-
mate the time-evolving throughput and latency of a time-based or
tuple-based join.

Definition 3.5. The throughput y represents the number of com-
parisons run by the join.

R

S

WS

Output stream

WR

|R|

|S|

ri

sisisj

rjri

ωR (depending on ΩTime 

or ΩTuple)

ωi

ωSωi

Time interval i

Δt

Comparison 

(α time units)

Output (every 

σ comparisons, 

β time units)

ci: comparisons 

to be run during 

time interval i

li: average latency 

during time interval i

Figure 2: Visual representation of the variables of a time-based
or tuple-based join used in our model.

Definition 3.6. The latency ` represents the average time elapsed
between the arrival of an input tuple and, for each matching compar-
ison, the output of the resulting tuple.

Based on the dynamic behavior of a join, both the throughput and
the latency are to be modeled for a given time period i of duration ∆t
time units. We thus refer to yi and `i as the throughput and latency
during the i-th time period, respectively. In the following all the
quantities that are functions of time are indicated with subscript i.

Table 1 and Figure 2 present the main variables used in our model.
We introduce also the processing quota Θ ∈ (0,1], that describes
the fraction of the time interval ∆t that is dedicated to the join pro-
cessing. It will be used for modeling the overutilization conditions,
as described in the next section. For simplicity, and without loss of
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generality, we assume that ∆t equals 1 second (sec) and ΩT ime is
the same for R and S when time-based windows are used (similarly
ΩTuple is the same for R and S). This can be easily extended if dif-
ferent window sizes are allowed forWR andWS for a time-based or
tuple-based join. We also assume that ΩT ime is an integer multiple
of ∆t . In Section 4.5, regarding the case of parallel executions with
n processing units, we use the superscript k to refer to a quantity
related to the k-th processing unit.

4 THE MODEL
In this section, we build the model for time-based and tuple-based
joins. In a modular fashion, we analyse how the throughput and
latency behaviors described by the model depend on whether the
join is exceeding or not its processing quota, enforcing deterministic
execution or not, fed by one physical R stream and one physical
S stream or multiple physical streams and run in a centralized or
parallel fashion. In the proposed model the overall latency is given
by three different contributions as:

`i = `
in
i + `

join
i + `out

i (1)

where `join is the latency introduced by the actual execution of the
join, as described in Sections 4.1, 4.2 and 4.5, `ini is the contribution
related to the deterministic execution of the join as described in
Section 4.3 and 4.4, and `out

i is the contribution related to the parallel
execution as described in Section 4.5. Table 2 presents the different
setups taken into account in the remainder of the section.

Sec 4.1 Sec 4.2 Sec 4.3 Sec 4.4 Sec 4.5
Possibly exceed-
ing the processing
quota

7 3 3 3 3

Determinism 7 7 3 3 3

Multiple physical
streams

7 7 7 3 3

Parallel execution 7 7 7 7 3

Table 2: Setup of the join modeling in Sections 4.1-4.5.

4.1 Centralized, non-deterministic join fed by
single physical streams, not exceeding the
processing quota

In this first section, we model a centralized non-deterministic join
that is fed by exactly one physical R and one physical S stream.
In order to compute its throughput (Definition 3.5), we begin by
modeling the number of tuples contained in windowsWR andWS at
time interval i, namely ωRi and ωSi . As we mentioned in Section 3,
time-based windows define a concrete period of time but do not
specify how many tuples they contain. The latter can be computed
as the sum of the rates in the last ΩT ime time units:

ωRi =
i∑

h=i−ΩT ime

rh∆t , ωSi =
i∑

h=i−ΩT ime

sh∆t . (2)

On the other hand, tuple-based windows define a concrete number
of tuples, but can span an arbitrarily long period of time. They can

be modeled as:

ωRi =

∑i
h=0 rh∆t , if

∑i
h=0 rh∆t < ΩTuple .

ΩTuple , otherwise.

ωSi =

∑i
h=0 sh∆t , if

∑i
h=0 sh∆t < ΩTuple .

ΩTuple , otherwise.

(3)

Notice that their size is fixed to ΩTuple as soon as ΩTuple tuples
have been received from each logical stream.

Given ωRi and ωSi (both measured in tup), we can compute the
total number of comparisons ci to be run by the join during time
interval i (measured in comp). Each incoming tuple from R is com-
pared with all the tuples in windowWS . Similarly, each incoming
tuple from S is compared with all the tuples in windowWR . Hence,
we can calculate the new comparisons that are introduced in the
workload of the join at time interval i as:

ci =
(
ωSi ri + ω

R
i si

)
∆t (4)

Notice that the same equation applies both for time-based and tuple-
based joins. The time Ki (measured in sec) needed to run all the
comparisons introduced at time interval i, is then

Ki = ci (α + σβ ) (5)

and the assumption that the join does not exceed its processing quota
translates to

Ki ≤ Θ∆t . (6)

If Ki ≤ Θ∆t , the total number of comparisons yi that are per-
formed in the time interval i coincides with ci . That is, yi = ci .

4α+β

8α+2β

12α+3β

16α+4β

R

S
WS

Output 

stream

WR

output

(takes β) 

comparison 

(takes α) 

tuple

Legend

Figure 3: Sample execution showing how an incoming tuple
from R is compared against the tuples in WS and the resulting
latency for the output tuples. In the example, σ is equal to 0.25
(i.e., one out of four comparisons results in an output tuple).

The latency (Definition 3.6), is computed based on the output
tuples produced during the time interval. As exemplified in Figure 3
for an incoming tuple from R (the discussion holds for tuples from
S too), on average σ of the ωSi comparisons will result in an output
tuple. Before being produced, each output tuple’s latency grows
proportionally to the number of comparisons run for the preceding
tuples stored in the window and the production of output tuples. In
the example, the first output tuple incurs a latency of 4α + β , the
second output tuple incurs a latency 8α + 2β , and so on.

The sum of all the latency values can be computed as:

σωS
i∑

m=1
m

(α
σ
+ β

)
=

(α
σ
+ β

) σωSi (σωSi + 1)
2

(7)
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Given that we are interested in modeling the average of (7) with
respect to the produced σωSi output tuples, then:

`
join
σωS

i
=

1
σωSi

*,
(α
σ
+ β

) σωSi (σωSi + 1)
2

+-
=

(
σωSi + 1

)
· (α + σβ )

2σ

(8)

Equation 8 defines the average latency experienced by tuples pro-
duced upon reception of a tuple from stream R. Similarly, `join

σωR
i

,

represents the average latency experienced by tuples produced upon
reception of a tuple from stream S . The overall latency can be then
estimated as the weighted average for the tuples received during the
time interval, which leads to:

̂̀join
i =

ri

ri + si
`

join
σωS

i
+

si

ri + si
`

join
σωR

i
. (9)

The latency is computed as per (1), with `join
i = ̂̀joini and the

other two terms equal to zero, since we are here considering no
determinism, and no parallelism. The `join

i term will be slightly
different in the case of a join exceeding its processing quota (as
described in the next section) and this justifies the “hat” notation.

4.2 Centralized, non-deterministic join fed by
single physical streams, possibly
exceeding the processing quota

In this section we investigate how the model presented in the pre-
vious section can be extended in the case of a join exceeding its
processing quota. That is, when for some time interval i, the time
needed to run the comparisons ci exceeds the available one:

Ki > Θ∆t . (10)

In order to compute the actual amount of work that is performed in
a time interval ∆t , we shall introduce some quantities. Let us denote
with ρi+h,i , the residual work that is still to be done at the end of
time i + h, due to the comparisons of time i. We can define the work
performed at time i + h, due to the comparisons of time i as:

wi+h,i =


Ki − ρi,i , h = 0
ρi+h−1,i − ρi+h,i , h > 0
0, h < 0

(11)

Assuming that the tuples are processed in FIFO order, at a generic
time i + h, the residual work ρi+h,i that is left to perform due to
the comparisons of time i can be computed as the residual work
ρi+h−1,i that was left at time instant i + h − 1, minus the budget of
time that can be used at time i+h to perform the comparisons of time
i. The budget of time can be computed as the whole time interval ∆t
multiplied by the quota Θ minus the time that is needed to perform
the comparisons of timem < i, that are still pending. Formally:

ρi+h,i =



(
Ki −

(
Θ∆t −∑i−1

m=0wi+h,m
))+

h = 0(
ρi+h−1,i −

(
Θ∆t −∑i−1

m=0wi+h,m
))+

h > 0
0 h < 0

(12)

where (x )+ = max(x ,0).

Defining the total work performed at the end of time i as:

wi =

i∑

m=0
wi,m (13)

we can compute the latency as:

`
join
i =

i∑

m=0

wi,m

wi

(̂̀join
m + (i −m)∆t

)
(14)

where
̂̀join
m is the latency computed as (9). Notice also that when the

processing quota is not exceeded, (14) and (9) coincide.
Finally, the number of comparisons performed at time i can be

computed as:

yi =
i∑

m=0

wi,m

α + σβ
=

wi
α + σβ

(15)

As shown by the sample execution presented in Figure 4, the
effect of exceeding the processing quota is disruptive for the latency
observed by the join.
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Figure 4: Sample execution showing the values Ki , ρi+h,i ,wi+h,i
and `ini . The processing quota 1 is exceeded during the time in-

tervals 2, 3 and 4. In the example, `̂join
m is equal to 0.001 sec ∀m.
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4.3 Centralized, deterministic join fed by single
physical streams, not exceeding the
processing quota

Let us now consider that the centralized join processes tuples deter-
ministically. As we discussed in Section 3, incoming tuples from
streams R and S cannot be processed in an arbitrary order (i.e., as
soon as they are fed to the join) but need to be processed in times-
tamp order once ready (Definition 3.3).

When enforcing a deterministic execution, we do not alter the
number of comparisons yi run by the join during time interval i,
but we expect to observe a higher latency, because of the time each
input tuple waits to become ready. As we can observe with the
help of Figure 5, the time needed for a tuple from R to become
ready depends on the rate rs with which tuples are received at S and
vice-versa.

S

R

Δt

εR

εS

εS-εR

pR+εR-εS

pR+εR-(pS+εS)

2pS+εS-(pR+εR)

2pR+εR-(2pS+εS)
...

The behavior repeats periodically 

for each hyper-period...

pR

pS

HiHin

Figure 5: Example showing the dependencies and latency for
R and S tuples to become ready. An arrow between two tuples
implies the first becomes ready once the second is received.

In the example, 6 tuples are fed from stream R and 10 tuples are
fed from stream S . Being pR and pS the periods with which R and
S tuples are received and εR and εS (with εR < εS , without loss of
generality) introduced since R and S streams are not perfectly aligned
in a real system, we can observe that the first tuple received from
R at εR becomes ready as soon as the first tuple from S is received,
thus incurring a latency of εS − εR time units. The first and second
tuples from S , on the other hand, become ready as soon as the second
tuple from R is received, thus observing a latency of pR + εR − εS
and pR + εR − (pS + εS ), respectively. Generalizing this behavior,
after a certain time interval, the latency pattern becomes periodical,
as we discuss in the following. Considering the current arrival rates
ri and si , and pRi =

1/ri and pSi =
1/si , one can compute the current

hyper-period Hi of the arrivals as the least common multiple of the
two periods:

H in
i = LCM

(
pRi ,p

S
i

)
(16)

Over a hyper-period, the cumulative latency for stream R’s tuples
due to the misalignment of arrival time of the tuples is then:

`R,ini =

H in
i ri−1∑

m=0

*,p
S
i


mpRi + εR

pSi

 + εS −
(
mpRi + εR

)+- (17)

where dxe is the ceiling operator for a real number x . Analogously
one can define `S,ini , for stream S .

The contribution of the latency `ini given `R,ini and `S,ini , can
be then computed as the average latency experienced by all the
considered tuples in the hyper-period:

`ini =
`R,ini + `S,ini

H in
i (ri + si )

. (18)

4.4 Centralized, deterministic join fed by multiple
physical streams, not exceeding the processing
quota

Expanding on Section 4.3, we now assume tuples can be delivered
by multiple physical R and S streams. That is, we show how the
model can account for multiple physical streams with rates r (1)i , r (2)i ,

...,r ( |R |)i , and s (1)i , s (2)i , ...,s ( |S |)i . As for before, we expect this to have
a repercussion on the latency term `ini .

We denote with ri and si the sums of the incoming tuples for each
logical stream, that can be computed as:

ri =

|R |∑

j=1
r
(j )
i , si =

|S |∑

j=1
s
(j )
i (19)

The number of tuples that fall in the considered window can be
just computed as per (2) (for time-based joins), or as per (3) (for
tuple-based joins), and the number of comparisons yi as per (4).
The contribution to the latency `join

i is not affected, and can then
be computed as per (14). However, the contribution to the latency
introduced by determinism must be generalized as follows. Let the
set of all the rates of the physical streams be Φi = {r (1)i , r (2)i , . . .,

r
( |R |)
i ,s

(1)
i , s (2)i , . . ., s ( |S |)i }. The latency of the j-th physical stream

in Φ with rate ϕ (j )i and period p
j
i , can be computed as:

`
j,in
i =

H in
i ϕ

(j )
i −1∑

m=0
max
x,j

*.,p
x
i


mp

j
i + εj

pxi

 + εx −
(
mp

j
i + εj

)+/- (20)

Intuitively, the equation chooses for each tuplem from stream j in
the hyper-period the stream x whose first tuple coming after m is
farther fromm than any other physical stream.

The overall contribution is then the average with respect to the
total amount of tuples in the hyper-period:

`ini =
1

H in
i (ri + si )

|Φi |∑

j=1
`
j,in
i . (21)

Figure 6 shows the dependencies and latency observed for the
incoming tuples given the R and S rates in Figure 5 but assuming
R tuples are delivered by one physical stream while S tuples are
delivered by two.

4.5 Parallel, deterministic join fed by multiple
physical streams, not exceeding the
processing quota

We now consider the case in which there are n ≥ 1 processing units.
We assume each processing unit runs a fair share of the overall
comparisons by comparing each incoming tuple with approximately
1/n of the previous tuples stored in WR or WS . At the same time,
we assume all processing units observe all the tuples delivered by
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1+ε1)

ε2
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HinHi
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Φ3

Figure 6: Dependencies and latency observed for the incoming
tuples given the R and S rates in Figure 5 but now assuming
one physical R stream and two physical S streams. An arrow be-
tween two tuples implies the first becomes ready once the second
is received.

streams R and S (the model can be easily adapted if a portion different
from 1/n or only a portion of streams R and S is observed by each
processing units, as in the case of [8]).

The total number of comparisons cki for the processing unit k at
time i can be computed as:

cki =
*,
ωRi
n

si +
ωSi
n
ri+-∆t . (22)

The total number of comparisons to be processed by n processing
units is:

ci =
n∑

k=1
cki =

(
ωRi si + ω

S
i ri

)
∆t ,

and does not change with respect to the non parallel case.
As for Equation 1, the terms contributing to the latency are:

(1) The latency introduced by the determinism, as per (18), that
is not affected by the number of processing units.

(2) The latency introduced by the join, that can be computed as

per (14), with
̂̀join
i computed as the average latency among

the processing units, as:

̂̀join
i =

1
n

n∑

k=1

ri

ri + si

`
k,join
σωS

i

n
+

si

ri + si

`
k,join
σωR

i

n
(23)

where `k,join
σωS

i
and `j,join

σωR
i

are computed based on (8).

(3) The latency introduced by the synchronization of the output
tuples `out

i .

This last term, can be computed similarly to (20), considering
that each output tuple should be forwarded by the join in timestamp
order once ready to enforce deterministic processing. We must ob-
serve, nevertheless, that the output tuples produced by a processing
unit over a certain time interval, yki σ/∆t , when being more than the
received input tuples ri + si , are not forwarded with a steady period
1/yki σ , but rather in bursts upon the reception of each incoming ready
tuple.

Based on this observation, we define the output rate of each pro-
cessing unit as oki = min(yki σ/∆t ,ri + si ), which let us approximate a
constant rate for the output stream produced by each processing unit.

The hyper-period of the output tuple is then Hout
i = LCM(1/oki ) = 1/oi

(i.e., the period itself). A processing unit k introduces a latency of:

`k,out
i =

H out
i oi−1∑

m=0
max
x,k

*,px

mpk + εk

px

 + εx − (mpk + εk )+-
= max

x,k

(
px

⌈
εk
px

⌉
+ εx − εk

) (24)

The average latency can thus be computed as:

`out
i =

1
n

n∑

k=1
`k,out
i (25)

5 EVALUATION
We study in this section how the proposed model reflects the be-
havior of a join comparing it with the throughput and latency of a
running implementation. We first present the evaluation setup and
then compare the model and the running implementation under the
different assumptions discussed in Section 4.

Evaluation setup. We run experiments on a server equipped
with a 2.0 GHz Intel Xeon E5-2650 (16 cores over 2 sockets) and
64 GB of memory. The 3-step procedure introduced in Section 3 is
implemented in Java and run with Java version 1.7.0_95 (IcedTea
2.6.4). Each processing unit runs the 3-step procedure with a dedi-
cated thread. Extra dedicated threads are instantiated to inject input
tuples into the input queues shared by the processing units, to collect
the output tuples produced by the processing units (once ready) and
to maintain the statistics later matched against the model. As in [9],
when multiple processing units are run in parallel, each stores approx-
imately 1/n of the previous tuples inWR andWS and thus runs 1/n of
the overall comparisons. The model simulator has been implemented
in Python. The code for the Java implementation and the Python sim-
ulator can be found at https://github.com/dcs-chalmers/Join_Model.
The presented results are averaged over 10 runs for each experiment.
In the following graphs, besides the throughput and latency evolu-
tion, we quantify the absolute percentage error between the model
and the implementation with a box plot (reporting the value of the
median and the lower and upper whiskers).

Evaluation benchmark. We evaluate our model using the com-
mon benchmark also used by CellJoin [6], Handshake joins [15, 16]
and ScaleJoin [9]. In the benchmark we run, R tuples are composed
by attributes 〈ts,x ,y〉, where x ,y are of types int, float. S tuples
are composed by attributes 〈ts,a,b,c,d〉, where a,b,c,d are of types
int, float, double and bool. A tuple 〈ts,x ,y,a,b,c,d〉 is out-
putted for each pair of tuples tR ,tS such that:

tR .x ≥ tS .a − 10 AND tR .x ≤ tS .a + 10 AND

tR .y ≥ tS .b − 10 AND tR .y ≤ tS .b + 10
We draw values for attributes x ,y,a,b from a uniform distribution in
the interval [1− 200]. Approximately 1 out of each 100 comparisons
results in an output tuple, on average (i.e., σ = 0.01). The values for
α and β used by the simulator are measured and averaged during the
implementation run for each experiment.

The time-based join defines a window size ΩT ime of 60 seconds
while the tuple-based join defines a window size ΩTuple of 8400
tuples. The sizes have been chosen so that during the initial phase of
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Figure 7: Behavior of the logical streams R’s and S’ rates during each experiment.

each experiment the time-based join and the tuple-based join observe
the same number of tuples in their windowsWR andWS and allow
for their behaviors to be compared.

Behavior of the logical streams R and S. Figure 7 presents the
rates for streams R and S and their sum. Each experiment is 25 min-
utes long and composed of 5 parts of 5 minutes each. The different
behaviors observed in each part have been chosen to stress the model
under different circumstances. Part A: both streams observe the same
constant rate of 140 tup/sec. Part B: both streams observe a constant
but distinct rate (150 tup/sec for R and 160 tup/sec for S) with both
aligned and non-aligned peaks appearing at different positions. Each
peak lasts 30 seconds and increases R’s rate by 100 tup/sec and S’
rate by 80 tup/sec. Part C: streams R and S follow triangle shapes
with opposite phases that sum up to a constant rate. Part D: R and
S rates follow a sinusoidal pattern with different periodicities. Part
E: streams R and S observe again constant rates with peaks (both
non-aligned and aligned) but now negative for stream R.

Centralized non-deterministic join fed by single
physical streams not exceeding the processing quota
As in Section 4.1, we assume here that deterministic processing is
not enforced, only one R and S physical stream deliver tuples and
that the execution never exceeds the quota. The expected throughput
is given by Equation 4 while the latency by the term in Equation 9.

Figure 8 presents the throughput in millions of comp/sec for
the time-based and tuple-based join, respectively. The throughputs
observed for the implementation and the model match perfectly and
their behavior resembles that of the overall incoming rate (Figure 7).
While the throughput is the same for the time-based join and the
tuple-based join during part A, it can be observed that the throughput
for the time-based join is then more fluctuating than the one for the
time-based join. That is expected, given that a varying rate, for a time-
based window, does not only result in a varying number of incoming
tuples to compare (Equation 4) but also in a varying number of tuples
in windowsWR andWS to be compared with (Equation 2).

Figure 9 presents the evolution of the latency over time. In this
case too, the values reported by the model and the implementation
match, despite some minor fluctuations and a slightly higher latency
(up to approximately 0.03 ms) caused by other tasks in the running
environment of the prototype (e.g., the operating system) which are
not captured by the model and result in a median percentage error
between 6% and 7%. For both the time-based and tuple-based joins
the latency increases in the first 60 seconds since windowsWR and
WS are being filled. Once the windows are full for the tuple-based
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Figure 8: Throughput for centralized, non-deterministic time-
based and tuple-based joins fed by one physical R stream and
one physical S stream and not exceeding the processing quota.

0 300 600 900 1200 1500

Time (sec)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

` 
(1

0
−

3
 s

e
c)

Part A Part B Part C Part D Part E

implementation model
3.74

6.87

10.3

%
 E

rr
o
r

Time-based join

0 300 600 900 1200 1500

Time (sec)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

` 
(1

0−
3
 s

e
c)

Part A Part B Part C Part D Part E

implementation model
2.06

6.16

11.51

%
 E

rr
o
r

Tuple-based join

Figure 9: Latency for centralized, non-deterministic time-based
and tuple-based joins fed by one physical R stream and one
physical S stream and not exceeding the processing quota.
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join, the observed latency remains overall constant. This does not
happen for the time-based join, since the varying rates result in a
varying number of tuples contained in WR and WS . As it can be
observed for the time-based join, the latency behavior resembles
the one of the overall ri + si rate, which is expected, given that the
number of comparisons performed upon reception of a tuple depends
on the rates observed so far (Equation 4).

Centralized non-deterministic join fed by single
physical streams exceeding the processing quota
In this section, we evaluate the join modeled in Section 4.2 by
choosing a quota Θ that is exceeded by the execution of the time-
based and tuple-based joins. As we show in the following, exceeding
the processing threshold has a disruptive effect on the latency. For
this reason, we set the quota to approximately 0.04 since such value
is only exceeded during the peaks appearing in part B on R’s and S’
rates (between second 300 and 600).
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Figure 10: Throughput for centralized, non-deterministic time-
based and tuple-based joins fed by one physical R stream and
one physical S stream that exceed the processing quota.

Figure 10 shows the behavior of the throughput during part B
(when the processing quota is exceeded). Also in this case the imple-
mentation and the model behaviors match. As expected, for both the
time-based and the tuple-based join, the throughput is truncated in
correspondence of the highest peaks. The latency behavior (modeled
by Equation 14) is presented in Figure 11 (in logarithmic scale to
better appreciate it). As shown by the matching curves of the model
and the implementation (which also in this case show a median
percentage error of 6%, approximately), the latency changes from a
fraction of millisecond to whole seconds, thus incurring an increase
of 4 orders of magnitude, in correspondence with the truncated peaks.
This gives evidence of the disruptive effect observed for the latency
when the join load exceeds its available quota. In the remainder of
the evaluation, we chose a quota that is not exceeded so that the
order of magnitude of the different latency terms contributing to the
overall latency (Equation 1) is closer and can be thus compared.
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Figure 11: Latency for centralized, non-deterministic time-
based and tuple-based joins fed by one physical R stream and
one physical S stream that exceed the processing quota.

Centralized deterministic join fed by single physical
streams not exceeding the processing quota
In this section, we follow the model described in Section 4.3, which
enforces determinism for the centralized join. Since in this model
the throughput is not modified (Equation 4), we only discuss the
joins’ latency. With respect to the latter, we expect to observe an
increase due to the introduction of the term `ini (Equation 18). Fig-
ure 12 presents the latency behavior. Given Equation 1, the latency
is composed by terms `ini and `join

i . As it can be observed, term

`ini dominates over term `join
i and makes the behavior of both the

time-based and the tuple-based joins practically equivalent, also
resulting in a median percentage error lower than 1%. The increase
due to determinism is of one order of magnitude, from 0.15 ms to
4 ms, approximately. Notice that the latency behavior of term `ini
is opposite to that of the overall incoming rate ri + si . This is as
expected, since an increasing rate (resp. decreasing rate) results in a
lower time (resp. longer time) for each incoming tuple to become
ready (Definition 3.3), as modeled by Equation 18.

Centralized deterministic join fed by multiple
physical streams not exceeding the processing quota
We relax in this section the assumption that exactly one physical R
and S streams are delivering tuples to the time-based and tuple-based
joins. In the experiment, we define 3 physical streams for logical
stream R, each delivering 1/3 of ri , and 2 physical streams for logical
stream S , each delivering 1/2 of si , for a total of 5 physical input
streams. As discussed in Section 4.4, the latency term `ini is now
modeled as in Equation 21. Figure 13 presents the evolution of the
latency for the time-based and tuple-based join. As it can be seen,
the behavior resembles the one in Figure 12 but is shifted up to ap-
proximately 15 ms. In these experiments, the mis-alignment between
the various physical input streams (modeled by the ϵ variables in
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Figure 12: Latency for centralized, deterministic time-based
and tuple-based joins fed by one physical R stream and one
physical S stream and not exceeding the processing quota.

Equation 20) can result in the model correctly estimating the join be-
havior but slightly overestimating its absolute value. The mismatch
results in a median percentage error of 5%, approximately.
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Figure 13: Latency for centralized, deterministic time-based
and tuple-based joins fed by multiple physical R and S streams
and not exceeding the processing quota.

This section’s results highlight an important aspect: the need for
properly provisioned operators feeding a join. While resorting to
over-provisioning for an operator to avoid it from exceeding its pro-
cessing quota might seem an intuitive way of coping with the load
and observing low latency, the model can quantify the non-negligible
price this strategy incurs, especially for an over-provisioned applica-
tion in which load peaks are observed sporadically.

Parallel deterministic join fed by multiple physical
streams not exceeding the processing quota
In this last section, we consider a parallel execution of the join
(i.e., with n > 1). As modeled in Section 4.5, the execution of the
3-step procedure by multiple processing units in parallel has 2 conse-
quences on the overall latency. On one hand, the term `join

i decreases
because each processing unit maintains less tuples and consequently
observes a lower latency in scanning them (Equation 23). On the
other hand, the term `out

i is introduced because of determinism, since
tuples produced by each processing unit are forwarded only when
ready. How the total latency `i behaves for a parallel execution
depends on which of the two terms dominates the other.
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Figure 14: Latency for parallel, deterministic time-based and
tuple-based joins fed by multiple physical R and S streams and
not exceeding the processing quota.

Figure 14 shows the result for n set to 3 processing units. As it can
be observed, we experience a further increase in the overall latency
of approximately 2.5 ms. This is because the term `out

i dominates

over the term `join
i , as shown in Figure 14, where the behavior of the

3 components `ini , `join
i and `out

i is presented (in logarithmic scale)

for the time-based and tuple-based join. As it can be seen, term `join
i

is approximately six times smaller than the one previously observed
in Figure 9. At the same time, the latency introduced by `out

i is two

orders of magnitude greater than the one of `join
i . As a result, the

overall latency grows. Also in this case, the mis-alignment between
the multiple physical input streams and, in this case, the one between
the physical output streams of each processing unit can result in
the model correctly estimating the latency’s behavior but slightly
overestimating or underestimating its absolute value. The median
percentage error is measured between 3% and 5%, approximately.

The results in Figures 14 and 15 highlight a second important
aspect: the need for properly provisioned joins. As for the upstream
operator feeding a join, resorting to over-provisioning to avoid a join
from exceeding its processing quota might seem an intuitive way of
coping with the load and observe low latency, but this holds only as
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Figure 15: Detail for the different latency terms for parallel,
deterministic time-based and tuple-based joins fed by multiple
physical streams and not exceeding the processing quota.

long as the higher number of processing units and the improvement
over `join

i is higher than the price introduced by `out
i .

6 CONCLUSIONS
In this paper, we presented a model that describes how the through-
put and latency of stream joins evolve over time based both on
the operator’s configuration and its deployment characteristics. Our
model covers a wide spectrum of configuration options and deploy-
ment characteristics: the possibility for the stream join to exceed
its processing quota, its non-deterministic versus its deterministic
execution, the existence of multiple physical streams delivering its
input tuples and its centralized versus parallel execution. The model
identifies the impact of each of the above aspects and discusses
its contribution to the overall throughput and latency in a modular
fashion. The accuracy of the model is also checked against an ex-
tensive empirical evaluation. Interesting future directions include
extending the model towards covering worst-case scenarios and
tail-latency effects, as well as extending the validation against join
implementations in major stream processing engines. While the used
join implementation is a parallelization of the 3-step procedure [11]
(which is also the case for [6, 9, 15, 16]), extending and validat-
ing the model against alternative stream joins is another interesting
direction, especially with respect to hardware-aware designs. Never-
theless, we expect factors like determinism to be the dominant costs
with respect to latency.

We believe this model can be useful to tune applications lever-
aging stream joins and study their performance analytically before
they are deployed (rather than just empirically once deployed). The
model can be also leveraged to replace the empirical measurements
and heuristics (which can fail in capturing challenging dependencies
such as the ones described in this work between determinism and
parallelism) in online adaptive schemes. Finally, analytical models
for more operators may provide a framework for a priori studying
different deployments of real-world streaming applications.
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