
 
 
 

 
 

Design and Benchmarking of Real-Time 
Multiprocessor Operating System Kernels 

 
Mikael Åkerholm and Tobias Samuelsson, 

Masters’ thesis 
 
 

 
 
 
 
 

 
 
 
 
 
 

The Department of Computer Science and Engineering, 
Mälardalen University, June 2002. 

 
 
 



 
 
 
 
 
 
 
Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels 

 2

Foreword 
We are cheerful to present our work to candidate for the degree of Master of 
Science in Computer Engineering. The work has been divided into two parts of 
equal weight and therefore this examination paper contains two papers that can be 
studied independently. The first paper is a survey and evaluation of existing real-
time multiprocessor kernels. In the opening sections of the second paper we 
introduce an own implemenatation of such a kernel. The main part of the second 
paper presents a benchmark series, wich purpose is to compare our 
implemenatation with an existing hardware implementation.  
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ABSTRACT 
Multiprocessor architectures, operating systems and real-time technologies are 
all interesting and highly advanced topics. Real-time demands inject an 
additional correctness criterion into computer systems. It is not just the result that 
is important, timing issues also have to be considered. A multiprocessor system is 
able to provide more performance than today’s fastest single processor solution, 
and it is often in multiprocessor systems the latest technology is introduced. The 
operating system is without hesitation the most important software of all system 
programs in a real-time multiprocessor system. 
 
The main limitations and concerns reported so far from the rather young research 
area of real-time issues in multiprocessor systems, mainly consists of 
schedulability problems and anomalies with old single processor scheduling 
algorithms. The possibilities with moving real-time applications onto 
multiprocessor platforms on the other hand weight more; scalability, robustness, 
more and cheaper computing power are the general advantages. That real-time 
operating systems with multiprocessor support will become a desired product in 
the near future is a highly realistic prediction, since the requirements and 
complexity of real-time applications increases rapidly. 
 
In this survey we review and evaluate both commercial and research solutions 
that addresses all three attention-grabbing areas in a homogeneous manner. The 
paper first identifies the major design goals and key issues in multiprocessor real-
time operating systems, to follow up with a set of case studies where the identified 
issues are unveiled. 
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Introduction 
The purpose of this survey is to review some of the major concepts concerning 
Real-Time Operating Systems (RTOS) aimed for parallel or distributed hardware 
platforms, roughly reflecting the state of the art in the early beginning of the 21st 
century. The work was carried out as a preparatory study to a masters’ thesis 
project at the department of computer science and engineering at Mälardalen 
University.  
 
Real-time systems are computing systems that have a time critical nature. When a 
certain event occurs in the environment, the real-time system must react with the 
correct response within a certain time interval. In ordinary systems it is typically 
the value of the output that determines the correctness, in real-time systems we 
also have the timing issues to consider. A correct output produced to late or to 
early could often be useless, or even dangerous. In [STA00], it is concluded that 
98% of the microprocessors produced in 1998 where for real-time or embedded 
systems use, and towards the end of 2000 it is predicted to be up against 100%. 
Examples of applications that require real-time computing include: 

• Vehicle control systems 
• Industrial automation systems 
• Telecommunication systems 
• Military systems 
• Railway switching systems 
• Forestry automation systems 

 
The purpose with an RTOS is to simplify the development process of real-time 
systems, by providing an interface with a higher abstraction level than the bare 
hardware architecture offers. The most distinguishing features with a RTOS 
compared to an ordinary Operating System (OS) are the deterministic and 
predictive time management. An ordinary OS often tries to perform all actions 
with average throughput in mind, this methods minimizes the average case at the 
cost of the worst-case. An RTOS must try to handle all system calls and task 
switches in a predictive and analysable manner, i.e. often by providing a known 
worst-case behaviour. 
 
The demand for distributed or parallel hardware architectures in real-time systems 
as other systems is mainly due to the fact that the applications requires more than 
a single processor can offer. Complexity in real-time systems increases more 
rapidly than the performance of the microprocessors increases. A special demand 
exists in some real-time systems; since many real-time applications are distributed 
by its nature it is motivated to use a distributed control system. Consider 
industrial manufacturing pipelines with several robots, the robots is performing 
independent work but it is easy to understand that the robotics must be 
synchronized in some way. Many slightly different interpretations of the 
difference between a parallel and a distributed hardware platform exist. In this 
survey the difference is defined by the tightness of the connections in the 
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machine, if a processor in the machine requires at least one common and shared 
resource or device to be working properly it is a parallel machine. In a distributed 
architecture it is assumed that a processor can be taken out together with its own 
private devices and resources, without ruin the possibility to use the rest of the 
system and the detached processor as two independent computers. The term 
multiprocessor is sometimes used to address only parallel computers, but in some 
cases both distributed and parallel architectures, it should be no problem to 
distinguish between the cases when that is necessary. Finally the term multi 
computer is a true distributed architecture.  
 
The authors are not aware of any surveys with the same objectives as this, but it 
exists many papers and articles specialized towards a narrower subject covered by 
this survey and surveys with slightly different objectives. In [YAN97], the authors 
presents a survey directed towards RTOS, but no RTOS is described in detail it is 
rather a design issue survey. A chapter in [BUT97] presents some RTOS, 
described as a survey, but the selection criteria differs from ours. The survey is 
not directed through multiprocessor or distributed hardware platforms, although 
some RTOS with support for such target platforms are mentioned. A operating 
system survey that is directed towards multiprocessor platforms but not real-time 
kernels is [GOP93]. 
 
The outline of the survey is as follows. In the design issues section we will try to 
discover and explain the most important issues in multiprocessor RTOS and how 
they can be compared to each other. The next section is a case study of a set of 
selected RTOS with multiprocessor support, each RTOS central concepts will be 
presented and an evaluation will follow every RTOS description. The final 
section concludes the survey and discusses future work. 
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Design issues 
In this section a framework for description and evaluation of real-time 
multiprocessor operating systems are presented. We are aware of that many 
important aspects of an operating system have been left out, mainly due to the 
need of limit the survey. The issues we have left out include areas such as 
structure and I/O. The structure of operating systems is typically referred to as 
monolithic, layered or client-server based. Areas sorting under I/O are disks, user 
interactions and environment sampling. I/O, structure and most of the other issues 
we are not addressing are described in [TAN92]. The three central issues, which 
describe almost all essential constructs in a real-time operating system, are: 

• Scheduling 
• Memory management 
• Interprocess communication 

 
In the first part of this section an explanatory presentation of the three mentioned 
issues is given, together with an introduction to some of the presented algorithms 
and ideas designed for usage within the three specific areas. In the end of the 
section benchmarks as method for practical comparison of RTOS:es are reviewed. 
Although this survey only evaluates different RTOS:es theoretically, a well and 
fair performed benchmark is often the most reliable basis for a comparison.  

Scheduling 
The first issue to address when talking about scheduling algorithms for real-time 
systems is the task management. With task management, we basically mean 
attributes associated to tasks. This is an important issue since different scheduling 
algorithms require different task attributes, and different real-world problems are 
often easiest to express with different task attributes. 

Task management 
The basic terms concerning tasks and their attributes are easiest explained by an 
example. A real-time system is a system that interacts with the environment by 
performing pre-defined actions on events within a certain time. The action of a 
special event is typically defined in a task and within a certain time forms the 
deadline for a task. A real-time task can be classified as periodic or aperiodic 
depending on its arrival pattern and as soft or hard based on its deadline. Tasks 
with regular arrival times are called periodic and tasks with irregular arrival times 
are aperiodic tasks. Each of the hard tasks must complete execution before some 
fixed time has elapsed since its request, i.e. finish before its deadline. Soft tasks 
do not have any demands in time, which means that soft tasks do not have any 
deadlines. Other attributes associated with a real-time task that usually are 
mentioned in scheduling and task management contexts are for instance:  

• Worst Case Execution Time (WCET) – is the maximum time necessary 
for the processor to execute the task without interruption. 

• Release time – is the time at which a task becomes ready for execution.  
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• Sporadic task – is an aperiodic task with a known minimum interarrival 
time (MINT), that is the minimum time between two activations. 

• Precedence constraints – are constraints about the order of task 
execution, some tasks must execute in a defined order. 

 
In almost all real-time operating systems, the information about a task is stored in 
a data structure, called the task control block (TCB). The TCB typically contains 
the task state, the desired or required set of attributes from those defined above, a 
pointer to the procedure that represents the task and a stack pointer. If the 
scheduling algorithm is preemptive the TCB must contain everything that is 
needed to store and reload the state for the task (registers etc). The rest of the 
content in the TCB varies from one RTOS to another; many of the special features 
of an RTOS will affect the TCB. 
 
In almost all operating systems, a task can at any point in time be in one of the 
following states: Running, Ready or Waiting. The states may have different 
names in different operating systems, but the semantic meaning is always the 
same. Additional states exist in most operating systems, but these three states are 
the most important and basic states. Only one task per processor can be in the 
Running state at any instance in time, it is this task that currently uses the 
processor. A task that has all that is needed to execute, but for any reason waits 
for another task is said to be in the Ready state. Finally a task that misses 
something, a shared resource, waiting for an external event or waiting for its 
release time etc is said to be in the Waiting state. 

Scheduling algorithms 
Scheduling real-time systems are all about guaranteeing the temporal constraints 
(deadlines, release times and so on). Two main approaches for real-time 
scheduling exist. On one side we have off-line scheduling, where all scheduling 
decisions is calculated by the system designer before runtime and stored in a 
runtime dispatch table. The other approach is on-line scheduling, where all 
scheduling decisions is calculated by the scheduling algorithm at run-time. 
Throughout this text both the terms on-line and off-line scheduling as well as 
runtime and pre-runtime scheduling are used.  
 
Which algorithm that is best suited depends on the scheduling problem to solve. 
For instance algorithms based on the off-line scheduling approach are more 
deterministic, and it is easy to prove and show that a task will meet its deadline 
since the methods in some sense applies the “proof-by-construction” approach. 
Off-line scheduling methods can also solve tough scheduling problems with high 
CPU utilisation and complicated precedence constraints. An off-line scheduler 
can spend long time in finding a suitable schedule, since the system is not up and 
running and no deadlines will be missed during the search, but at run-time the 
only scheduling mechanism we need is a simple dispatcher that performs a table 
lookup. On the other hand, we need to know almost everything about the systems 
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timing constraints to be able to create a suitable schedule before run-time. 
Algorithms based on the on-line scheduling approach in general offer higher 
flexibility and are better to adopt changes in the environment, at a higher cost for 
calculating on-line scheduling decisions and they cannot offer the same degree of 
provable determinism. The higher flexibility offered by on-line scheduling 
approaches cause that most existing algorithms that schedule aperiodic tasks use 
the on-line scheduling approach. 
 
Most off-line scheduling algorithms that have been implemented are based on 
some kind of search technique with applied heuristics. Examples of such 
scheduling algorithms are A* and IDA*, they are analysed and described in 
[FOH94] (chapter 3). Other examples are branch-and-bound [RAM90] and meta 
[FOH97]. According to [JXU93] most practitioners working on safety-critical 
hard real-time systems, that uses the off-line scheduling approach have been 
observed doing the schedules by hand instead of letting a computer search for a 
schedule, the result (the by hand created schedule) is often hard to verify and 
maintain. Examples of on-line scheduling algorithms that handle periodic tasks 
are Earliest Deadline First (EDF) [LAY73], and Rate Monotonic (RM) [LAY73], 
both introduced in the early seventies. Most on-line scheduling algorithms use 
one of these two algorithms as base algorithm. A sample of on-line algorithms 
that handles both periodic and aperiodic tasks is Sporadic Server (SS) [LEH93], 
Robust Earliest Deadline (RED) [BUT93] and the Total Bandwidth Server (TBS) 
[BUT94].  

Multiprocessor scheduling 
The multiprocessor scheduling anomalies that do not exist in the single processor 
case and must be considered when constructing a multiprocessor scheduling 
algorithm are in brief that; the schedule length can be increased by: 

• Increased number of processors 
• Reduced task execution times 
• Weaker precedence constraints 

 
As a consequence when using multiprocessor platforms, algorithms that have 
been showed to be optimal in any sense on a uniprocessor system are often not 
optimal in a multiprocessor system. For instance EDF has been showed to be an 
optimal algorithm, under certain conditions in [DEZ74] for a uniprocessor system. 
In the multiprocessor environment, EDF and other under any conditions optimal 
on-line algorithms fails to be optimal, in [MOK83] it is showed that no algorithm 
can be optimal in an on-line scheduled multiprocessor system, with or without 
precedence and mutual exclusion constraints. Multiprocessor architectures 
combined with real-time scheduling are therefore a delicate problem and an 
ongoing research area. It is clearly easier for an off-line scheduler to be optimal, 
since the time that such a scheduler may consume is potentially unlimited. For 
instance consider an off-line scheduler that tries all possible combinations on all 
processors, if a schedule that solves the problem exists this scheduler will find it. 
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Hence we can say that such a scheduler would be optimal, but it will not be 
practically useable since the time required finding the schedule also are not 
unlimited. When implementing an off-line algorithm for finding a schedule that 
solves a specific scheduling problem, it is easy to understand that the total time 
spent finding a schedule simplified is a formula as below. 
 
 (Time not finding a schedule * Number of failures) + (Time for finding * 1)  
 
Through a quick look at the formula we can see that the biggest time is spent in 
(not finding any schedule), hence it is at least as important for an off-line 
scheduling algorithm to fast detect that there is no solution as actually finding a 
schedule. This is the main reason why no one uses our intuitive, although clearly 
optimal suggestion of pre-runtime scheduling algorithm.  
 
In [STA98] the authors identifies three phases in the scheduling procedure of a 
multiprocessor system, and the text is directed towards on-line scheduling. The 
phases also seem to be suitable for an off-line scheduler. In the off-line scheduler 
case phases 1 and 2 would be executed off-line, and only phase 3 would be 
executed on-line.  

1. Allocation – the assignment of tasks and resources to the appropriate 
nodes or processors in the system. 

2. Scheduling – ordering the execution of tasks and network communication 
such that timing constraints are met and the consistency of recourses is 
maintained. 

3. Dispatching – executing the tasks in conformance with the scheduler’s 
decisions. 

 
To continue the opened discussion and get a little bit more concrete examples on a 
run-time, a pre-run-time and a combined approach will be given. However these 
algorithms assumes a lot of parameters and may be targets for some modifications 
and simplifications before they are applicable in the real world. 

An on-line method 
A holistic approach based on EDF is presented in [STA98]; the method is focused 
on how to perform the analyses so that we can guarantee deadlines on events. In 
the end, real-time scheduling is about being able to guarantee the temporal 
behaviour of a system. The method is an adoption of the holistic approach based 
on static rate monotonic priorities developed in [TIN94]. The assumptions limits 
the algorithm to be used anywhere without modifications, for instance tasks are 
statically allocated to a node, and a token-ring based communication medium is 
assumed. The original method, from [TIN94] has been adopted for use on other 
communication networks as well. For instance in [NOR00] examples on how to 
use the method with rate monotonic priorities and a CAN bus is showed. 
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Each node has a ready queue that is scheduled by EDF and the key to overcome 
the otherwise hard global analysis is attribute inheritance. Every message inherits 
two of the sending tasks temporal attributes, the period and the release jitter. The 
release jitter is simply defined to be the difference between the sender tasks 
earliest start-time and worst-case response-time. The period that is inherited is 
simply the period of the task. Based on that simple notation it is possible to 
perform end-to-end response time analysis of a transaction. The iterative analysis 
formula can be expressed as following: 

1. Set all initial release jitter to zero. 
2. Compute the worst-case response-time for tasks and messages for each 

host processor and network separately. 
3. Compute the worst-case jitter that the response-times in step 2 can 

generate, go to step 2 if the jitter does not change, else we are done. 
 
Each of the different computations in the steps 1, 2 and 3 are quite simple 
summations and can be found in [STA98], however they are iterative and with 
many tasks it may take a while to achieve convergence. 

An off-line method 
A heuristic method for multiprocessor systems dealing with hard periodic tasks is 
the Slack method [ALT98]. Many of the offline methods only deal with this task 
type. The method is divided into two sub-steps named Graph Reduction and CP-
Mapping. In reality we can conclude that the division into three steps easiest 
describes the algorithm, since two sub steps are included in the Graph Reduction 
step. Here comes a brief overview of the method, for a complete and detailed 
description with proofs and formal mathematical definitions refer to [ALT98]. 
 
During the initial Graph Reduction step, transactions (consisting of several tasks) 
are treated separately. Each transaction graph is taken as input to the step.  

1. First the Graph Reduction step tries to reduce each transaction graph to a 
CP graph, by a method named critical path clustering. Critical path 
clustering is about finding the critical path of a transaction. The critical 
path is in short defined as the path with the smallest slack, and the 
smallest slack of a path is in turn defined as the minimum slack of all 
vertices of a path. The slack is determined as the time between a tasks 
deadline and the summation of the computation time and the release time, 
i.e. the time a task can be delayed without missing its deadline. 

2. Secondly the Graph Reduction step tries to fill slack intervals in the 
generated CP graphs, with other paths. This is an initial step to let 
different paths execute on the same processor. 

3. Finally the CP-Mapping step is executed. In this step the different CP-
graphs, which represents one transaction each are mapped onto a physical 
processor. A CP-graph is a drastically reduced form of the initial problem 
formulation; the two reductions executed in the Graph Reduction step are 
successful in most cases. Hence an optimal algorithm is used for the 
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mapping in this step, by optimal we mean an algorithm that finds a 
solution if a solution exists. It is simple to construct an optimal algorithm 
and here backtracking is the choice, i.e. if any deadlines are missed 
during an assignment, backtrack to the next possible assignment.  

A hybrid method, integration of off-line and on-line 
A detailed explanation and description of the Slot Shifting algorithm can be found 
in [FOH95], here comes an introductory description. The Slot Shifting algorithm 
is an algorithm that combines both on-line and off-line scheduling. Easily we can 
state that the Slot Shifting algorithm handles periodic tasks with the off-line 
approach and that the aperiodic tasks are on-line scheduled using the remaining 
capacity. The algorithm uses time slots as the basic abstraction for the system 
time; a slot is an interval of time with a fixed length. 
 
The off-line preparations for slot shifting is basically about creating and ordinary 
off-line schedule and determining spare capacities, i.e. how many time units 
(slots) we can move a tasks execution without jeopardizing its deadline. The task 
assignment to different nodes in the system is done manually or with another 
algorithm, task assignment is not specified in the original algorithm. Further on 
the network between the different nodes are assumed to be a time slotted 
architecture, i.e. token-ring, TDMA etc. The messages on the network is 
integrated in the off-line scheduling procedure. The time model is said to be 
discrete, since both the communication medium and the scheduling algorithm 
uses the same globally synchronized time slots. 
  
The online scheduler is invoked after each slot and checks whether we have any 
aperiodic tasks to schedule. If aperiodic tasks are pending, the scheduler performs 
an on-line guarantee test. The scheduler tries to shift the execution of the periodic 
tasks as much as possible without risking their deadlines, using the off-line 
calculated spare capacities. If we have enough spare capacity to serve the 
aperiodic requests, we execute them else they are rejected.  

Memory management 
When implementing a suitable memory abstraction in the operating system, the 
first thing to study is what the hardware offers. Many attempts for classification 
of hardware memory systems exist. In this survey it is the terms Uniform Memory 
Access (UMA), Non Uniform Memory Access (NUMA) and NO ReMote Access 
system (NORMA) that are used. 

• In UMA architectures, memory access times are equal for all processes to 
the whole address space. A common design technique for those systems is 
processors connected to a bus, and a global shared memory connected to 
the same bus. 

• The NUMA systems also offers a single shared address space that is 
visible for all processors, but the access times for a processor to different 
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memory region differs. A common design technique is processor boards 
with own memory modules attached to a shared bus. 

• NORMA architectures on the other hand do not offer a global shared 
address space. Each processor just accesses its own address space. 
Typically these architectures consist of loosely coupled independent 
computers connected through ordinary Local Area Network (LAN) 
technologies, often referred to as clusters. But bus based NORMA 
systems are also common. 

The software layer 
Usually the operating system implements some memory abstractions above the 
abstraction offered by the hardware. Typically protection, virtual memory, 
allocation and de-allocation primitives are implemented in the operating system. 
Although some parts of the protection and virtual memory support often are 
implemented in hardware, it is the operating system that configures the hardware 
and implements own abstractions. Protection is about associating attributes with 
memory segments like read-only access or read-write access. Virtual memory 
means that we use more memory than is physically available. This is 
accomplished by introducing another bigger but considerably slower level in the 
memory hierarchy, i.e. a disk device. Allocation and de-allocation is about 
allocating and de-allocating memory dynamically during run-time. Another 
example of typical implementation in the software layer is another memory 
abstraction than the hardware offers, for instance NUMA from NORMA, an 
example of this is described under the interprocess communication section. 

Real-time kernels 
Real-time kernels memory management services are often simple and primitive, 
almost non-existent. Virtual memory are for instance often considered as a 
dangerous and unreliable feature, and therefore not implemented. This is easy to 
understand because of the unpredictable long access times to a memory page on a 
disk device. It is easy to agree with the authors of [BEN01], when they state that 
most of the proposed software algorithms and hardware support in commercial 
processors for memory management are optimized for average performance, and 
not for predictable worst-case behaviour. Dynamic allocation of memory is also 
avoided, since the behaviour is both temporal and functional unpredictable. We 
cannot guarantee that memory will be available, and not how long it will take for 
the kernel to find the necessary amount of memory. Another task may allocate 
memory, but some semantic fault may cause the task to never de-allocate the 
memory. Such tasks are said to leek memory. To be completely secure against 
memory leaking tasks, real-time kernels often do not implement dynamic memory 
handling. According to this it sounds like memory management in real-time 
systems is rather boring, but it is not, some more fancy techniques have been 
presented recently.  
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In [BEN01], the authors develop theories for integration of virtual memory and 
the other functions a modern processor offers through its Memory Management 
Unit (MMU). Their approach is motivated by the fact that many safety-critical 
real-time applications consist of both hard and soft real-time tasks, i.e. hard or soft 
deadlines. Suitable processors for their approach are processors, which have 
support for some kind of partitioning of the address space. The introduction of 
real-time address spaces is the proposed solution. Tasks with soft deadlines can 
utilize all fancy mechanisms offered by the processor, and resides within an 
ordinary address space. For instance we can have a monitor task with a soft 
deadline that sometimes need virtual memory. While tasks within a real-time 
address space does not use any virtual memory or caches. Those tasks need a 
predictable memory access time. The definition given in [BEN01] of a real-time 
address space is quoted below. 
 
“An address space is a real-time address space if: The worst-case execution time 
of the virtual-to-physical translation for all pages that do not result in a page 
fault in the address space is known.” 
 
The principle for an implementation of real-time address spaces is described for 
PowerPC, MIPS and StrongArm in [BEN01]. 
 
Research efforts that pay attention to real-time systems and dynamic memory 
management, currently seems to be driven by the need of virtual and dynamic 
memory in programming languages like java and C++.  It is possible to use a 
hardware module for memory allocation; in this way we could get predictable 
allocation time. The Active Memory Module (AAM) [SRI00] is such a device. All 
allocations are bounded to 14 clock cycles; a fast and constant allocation time 
makes this device suitable for real-time applications. The AAM module was 
developed for the use of Java in real-time applications. The garbage collection 
and dynamic memory allocations naturally existing in a Java program jeopardizes 
the execution times. The garbage collection and dynamic allocations in Java 
utilizes only heap memory, so the AAM module only administrates the heap 
memory. The RAM module and the AAM module is physically separated, an 
AAM module consists of memory modules and a controller. 

Interprocess Communication 
Communication is a central component in any operating system; especially in 
multiprocessor operating systems communication has the same importance as the 
instruction set has in a uniprocessor system. Co-operating processes or threads 
often communicate and synchronize. The execution by one certain process can 
affect another process by communication. Generally there are two different types 
of interprocess communication (IPC) for multiprocessor systems: message 
passing and shared memory. 
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Each of these communication models was developed for a different class of 
multiprocessors, reflecting the assumptions about the underlying hardware. The 
shared memory model is typically associated with tightly coupled shared memory 
multiprocessors (UMA, NUMA), while the message passing model is typically 
associated with distributed memory multiprocessors or distributed multicomputers 
(NORMA), which is a network of workstations.  
 
Performance comparisons between message passing and direct use of shared 
memory have been done in [LEB92]. The authors claim that both communication 
models have performance advantages and the factors that influence the choice of 
model may not be known at compile-time. Their conclusions were mainly that the 
advantage with the shared memory model is load balancing, while the main 
advantage with the message-passing model is locality. Today both communication 
models are in use on both classes of machines. 
 
In a shared memory multiprocessor, message passing is a more abstract form of 
communicating than accessing shared memory locations. Message passing 
subsumes communication, buffering and synchronization. Multiprocessor 
operating systems have experimented with a large number of various 
communication abstractions [GOP93], including ports, mailboxes, links etc. In 
other words these abstractions are kernel-handled message buffers. The two basic 
message-passing primitives in such abstractions are send and receive. Sends and 
receives may provide synchronous and/or asynchronous communication and they 
may be blocking (a process does not wait for the communication to complete) or 
non-blocking (a process waits for the communication to complete). 
 
Computing large or complex data structures may be inefficient or difficult using 
message passing in a distributed memory multiprocessor or distributed 
multicomputer. A solution to this problem is to use coherent distributed 
memories, based on a message passing mechanism. As an example of such a 
system we refer to Mirage [FLE89]. Mirage is a protocol that hides the distributed 
memory network boundaries for the application programmers, i.e. used when the 
shared memory model are desirable on a distributed memory multiprocessor. 
 
The difference between communication in a real-time system and a conventional 
(not real-time) system is their different system requirements. The major desirable 
characteristic in a conventional system is performance, expressed in throughput, 
average response time or latency. Real-time tasks must not only produce the 
correct results, they also have to be produced on time. However, this cannot be 
achieved by just providing a fast communication media. In conventional systems, 
IPC can be unpredictable due to the potentially unlimited blocking time of 
applications synchronizing or waiting for messages. So the communication in 
real-time systems must not only be fast, it must also be predictable and 
deterministic, in order to guarantee hard tasks by using some form of analysis 
before the start-up of the system (pre-runtime). A method to make IPC efficient is 
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to implement hardware support for such functionality [FUR01]. The main 
drawback with IPC mechanisms implemented in special purpose hardware is the 
cost of extra hardware. 

Resource reclaiming 
A shared resource is a software structure that can be used by more than one 
process to advance its execution. Any operating system that supports shared 
resources must provide any resource access protocol to ensure consistency of the 
data in the shared resources. In other words the operating system must guarantee 
mutual exclusion (for instance by providing semaphores) among competing tasks, 
so if two or more tasks have resource constraints, they must be synchronized. 
Intertask communication is a critical issue in real-time systems, since the fact that 
shared resources may cause priority inversion [BUT97] and unbounded blocking 
on processes’ executions. A priority inversion occurs when a high-priority task 
requests a shared resource that is used by a low-priority task. This means that the 
high-priority task must wait for the low-priority task to finish its execution, i.e. 
the high-priority task executes with a lower priority than the low-priority task. 
Since the duration of priority inversion in general is unbounded, this jeopardizes 
the predictability of tasks execution. There are many different approaches to solve 
the priority inversion problem. The Priority Inheritance and the priority ceiling 
protocol are two semaphore protocols where the maximum blocking time for a 
task can be calculated. 

Priority Inheritance Protocol 
The priority inheritance protocol, proposed by Sha, Rajkumar and Lehoczky in 
[LEH90], minimizes the blocking time of a high-priority task by increasing the 
priority of the low-priority task when the high-priority task becomes blocked. A 
task can only hold semaphores during the execution, i.e. when a task has finish its 
execution it is not allowed to hold any semaphores. 
Definition of the Priority inheritance protocol: 
 

1. Task A executes and tries to obtain semaphore S. If semaphore S is 
locked, task A is blocked because it cannot lock the semaphore, if not 
task A locks semaphore S. When A unlocks S, the task with the highest 
priority that is blocked by A becomes ready. 

2. Task A uses its assigned priority during execution unless it has locked 
semaphore S and blocks higher-priority tasks. If task A blocks higher-
priority tasks, it will execute with the highest priority of the tasks that is 
blocked by A (A inherits the highest priority). When A unlocks 
semaphore S, A will return to its original priority. 

3. Priority inheritance is transitive. Assume three tasks A, B and C in 
descending priority order. If task C blocks B and B blocks A, task C will 
receive task A’s priority. 
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A drawback with the priority inheritance protocol is that it does not deal with 
blocking-chains and deadlocks. 

Deadlock 
Deadlocks are best described with an example. Assume two tasks A and B that 
both want semaphores S1 and S2. Task A has high priority and task B has low 
priority. Task A attempts to lock semaphore S1 before S2, while B attempts to 
lock S2 before S1. We have the situation illustrated by Figure 1. 

A B

S1 S2

A B

S1 S2

A B

S1 S2
Figure 1, A and B are tasks, S1 and S2 are semaphores. 

 
A deadlock scenario: 

1. All semaphores are free. 
2. Task B locks S2. 
3. Task A preempts B and locks S1. 
4. Task A attempts to lock S2, but S2 is locked so A is blocked. 
5. Task B attempts to lock S1, but S1 is locked so B is blocked. 
6. Both tasks are blocked, waiting for each other. A deadlock has arisen. 

 
A solution to the deadlock problem is to use the Priority Ceiling Protocol, which 
is described in the next section. 

Priority Ceiling Protocol 
The priority ceiling protocol [LEH90] minimizes the blocking time of high-
priority tasks by preventing blocking-chains. Furthermore this protocol prevents 
deadlocks. 
Each semaphore S is assigned a priority ceiling. The value of the ceiling is equal 
to the priority of the task that has highest priority among those tasks that want to 
lock semaphore S. 
 
Definition of the priority ceiling protocol: 

1. Task A executes and attempts to lock semaphore S. Let S* be the 
semaphore with highest priority ceiling among those semaphores that 
currently are locked. Task A cannot lock semaphore S if it is already 
locked, so A is blocked. If semaphore S is not locked, A locks S in case 
A’s priority is higher than the priority ceiling for S*. The task with 
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highest priority among those tasks that are blocked by A, becomes ready 
when A unlocks S. 

2. Task A uses its assigned priority during the execution in case it has not 
locked a semaphore S and blocks higher-priority tasks. If task A blocks 
higher-priority tasks, it will execute with the highest priority of the tasks 
that is blocked by A (A inherits the highest priority). When A unlocks 
semaphore S, A will return to its original priority. 

Interrupts 
Interrupts generated by external I/O devices causes a big problem for the 
predictability of real-time systems, because if they are not properly handled they 
may introduce unbounded delays during process execution. In most operating 
systems, the arrival of an interrupt starts the execution of an interrupt service 
routine (driver), dedicated to the management of the certain device. With this 
approach, all hardware details of the device are encapsulated inside the driver. An 
interrupt service routine should be as small as possible, i.e. handle the device that 
generated the interrupt in order to minimize the blocking time of ordinary tasks. 
Often this means that the interrupt service routine reads or writes a value to the 
device and then just acknowledges the interrupt. Typically the interrupt service 
routine often sends the received value to a task that further serves the value. 
 
In many operating systems, interrupts are served using fixed priority schemes, i.e. 
each driver is scheduled based on a static priority, which is higher than the 
process priorities. This is motivated by the fact that I/O devices normally deals 
with real-time constraints, whereas most application programs do not. An 
important real-time issue with interrupt handling is systems maximum interrupt 
latency, i.e. how long time can the system turn off all interrupts (interrupt 
disable). 
 
Next a brief description three different approaches will be given.  
 

1. This approach eliminates interrupt interference by disabling all interrupts 
except the timer interrupts, which are necessary for the system. Since no 
interrupts are allowed, application tasks handle the external devices 
through polling. This strategy requires that the application tasks have 
direct access to the I/O devices that they want to handle. All device-
dependent functions can be encapsulated in a set of library functions; so 
different application tasks can include different libraries. An advantage 
with this function is that the kernel does not need to be modified when 
new I/O devices are added. The main drawbacks with this approach are 
the response times of external devices and the processor utilization on I/O 
operations. A system that has adopted this approach is RK, which is a 
hard real-time kernel for multi-sensor applications [LEE88]. 
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2. The second approach resembles the previous one, because all interrupts 
except from the timer are disabled. Instead of using application tasks for 
handling devices, this method uses dedicated kernel routines to serve 
devices. The timer periodically activates the kernel routines. This strategy 
eliminates the unbounded delays due to the execution of the interrupt 
drivers and all device-dependent functions are encapsulated in kernel 
routines and do not need to be known to the application tasks. In 
comparison with the previous approach this strategy has a little higher 
system overhead, because of the required communication between the 
kernel routines and the application tasks for exchanging I/O data. This 
approach has for instance been adopted in the MARS system [KOP89]. 

 
3. The third approach enables all interrupts, but the drivers must be reduced 

to the least as possible. The only purpose of the drivers is to activate a 
certain task that will handle the management of the device, i.e. the driver 
do not handle the device directly but only activates a dedicated task. The 
device management tasks are scheduled and guaranteed as all ordinary 
tasks. The major advantages with this method in comparison with the 
previous described approaches are the elimination of the busy wait I/O 
operations, that a control task can have a higher priority than a device-
handling task. A system that has been adopted this approach is the 
SPRING system [MOL90], which is a distributed real-time operating 
system for large complex applications with hard timing constraints. 

Benchmarking real-time operating systems 
Benchmark programs measure the relative speed of computers, algorithms or 
different language implementations. Usually they are used when performance 
comparisons are to be carried out. For instance, benchmarking can be used to 
compare a software implementation with a hardware implementation, since the 
approach: using special-purpose hardware for increasing the performance and 
predictability of a system is widely used today. Another way of using benchmarks 
is when a novel system with performance requirements has been developed. In 
such case, the benchmark program works as a software verification tool. A 
problem with benchmarking of real-time operating systems is the lack of 
standards for measuring performance [ACH91, WEI99]. Especially when 
evaluating real-time kernels from different vendors, the tests often have to be 
rewritten, because the kernels have interface differences. 

Monitoring 
In order to benchmark a system, the system has to be monitored, i.e. gathering 
run-time information for performance measurements. Any attempt to gain more 
information about a system may intrusive the system temporal and/or functional. 
This problem has been referred to as the probe-effect. Probes are necessary for 
monitoring; without probes it is impossible to measure a systems performance. 
When the programmer has monitored a system by using probes, the probes cannot 
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be removed in all cases. Because, an elimination of the probes may also introduce 
the probe-effect. That means that the probe-effect may occur either when probes 
are inserted into the system or when probes are removed from the system. 
 
A system may have performance requirements. In such case, the designers must 
first estimate the performance of the architecture during the design phase, and 
when the system has been tested, measure and evaluate the real performances and 
compare them to the performance requirements. In [CAL98], the authors have 
classified different kind of performances into different categories, see figure 2. 
Dynamic performances are classified into external performances that concern the 
behaviour of the system observed from its interface (response time, throughput 
etc.) and internal performances (process execution time, bus utilization, etc.). The 
dynamic performances are the most difficult to deal with. 

 

Figure 2, Different categories of performances. 
 
The problem of collecting relevant information from distributed real-time systems 
can be classified in three categories: hardware monitoring, software monitoring 
and hybrid monitoring. 
 
The hardware monitoring is based on connecting probes to the hardware system 
in order to observe its behaviour without disturbing it. The probes can for instance 
be logic analyzers or emulators. The main drawbacks according to [CAL98] are: 

• Often the development of a specific hardware and software to monitor it 
are required. 

• The abstraction-level of the collected information is very low, which 
makes it difficult to interpret. 

• With future VLSI components including all the parts (CPU, memory, 
FPGA) in the same chip (system-on-chip), this technique does not work. 

 
The software approach consists of adding a set of extra instructions to the 
software, in order to collect all useful information during runtime. This technique 
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can be fairly target independent, with focus on the hardware architecture. It also 
provides a high level of abstraction of the collected information. The major 
drawback with this approach is the disturbance on the system, affected by the 
information gathering. Both the temporal and system behaviour may be disturbed. 
For real-time applications, the disturbance may end in both wrong results and not 
fulfilled timing constraints. 
 
The hybrid approach is a combination of software monitoring and hardware 
monitoring. It is based on a few instructions in the software code that selects 
adequate information. The information is collected with a specific hardware, and 
then transmitted to a host system [CAL98]. 
 
A hardware approach that overcomes the main drawbacks with hardware 
monitoring listed in [CAL98], is MAMon (Multipurpose/Multiprocessor 
Application Monitor) [SHO01], which is an ongoing research project at 
Mälardalen University. MAMon can be integrated in a System-on-Chip (SoC) 
design and it increases the level of abstraction. The current version of the 
monitoring system can both monitor the logic-level and the system-level in both 
single and multiprocessor systems. The monitoring system is able to monitor in a 
completely passive manner without probe effect, assuming an ideal target system. 
Ideal target systems are systems were a small hardware component could be 
integrated in the hardware as a SoC or a hardware kernel as the RTU [ADO96]. 
Today many SoC applications are hard to verify and optimize, they are often 
monitored from the register transfer level (RTL) or even the gate-level. Bugs are 
however easier to find in the system-level since fewer events/s occurs on that 
level [SHO01] as illustrated in figure 3, this motivates a top-down debugging 
strategy. MAMon allows us monitoring the system-level, this might be important 
in future SoC applications since complexity is increasing with a tremendous 
speed. 
 

Figure 3, Events/s in different abstraction levels. 
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Testing vs. benchmarking 
Software testing is often associated with the terms validation and verification. 
Validation is the process of checking that a programs specification fulfils the 
customers’ requirements. Software testing is a kind of verification of a program or 
system, with consideration to the specification. In general, two methods can be 
applied in the verification process, namely testing and formal methods. Today, 
testing is the state-of-practice, although formal methods seem to be a powerful 
tool, many problems must be solved before formal methods can replace testing in 
complex real-time systems. In [THA00], the author explains the main limitations 
with today’s formal methods. For instance it is at least as error-prone to express 
systems functionality in a formal mathematical language as writing the code, and 
it is also hard to verify that it is the “real system” that is modeled. The interested 
reader can consult [BAR92], for more information on how to use formal methods 
in the software verification process. 
 
Software testing is used in the verification-process of a program or system, with 
consideration to the specification. Testing may be divided into two stages. First, a 
kind of testing strategy is developed. The testing strategy describes how testing is 
to be performed, i.e. how to select input data, what information have to be 
collected and how to collect and analyze this information. Second, the testing 
strategy is applied to a program, which results in a test of that program. 
 
Benchmarking is used with completely different goals in mind, than verification. 
The purpose with a benchmark is to create basis for comparisons of systems, or 
products with similar properties [KAM96]. In other words a suitable benchmark 
must include and cover the most typical properties of the target applications. 

Benchmark examples 
In this section some suitable benchmarks for real-time operating systems are 
presented and described. Classes of benchmark techniques that are skipped in our 
selection include microprocessor-oriented benchmarks. When designing a real-
time or embedded system, microprocessor-oriented benchmarks are used to assist 
the designer in the comparison between different hardware platforms. Some 
examples of microprocessor-oriented benchmarks can be found in the Whetstone 
[CUR76] and the Dhrystone [WEI84] benchmarks. These benchmarks are widely 
used and have own metrics associated with them, whetstones and dhrystones. 
Both benchmarks are based on synthetic workloads, the Whetstone benchmark 
represents a typical scientific workload while the Dhrystone benchmarks 
represents a typical system program instruction stream. Instead of assisting the 
designer to choose the most suitable hardware platform, the following methods 
are used for performance measurements. 



 
 
 
 
 
 
 
Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels 

 26

Rhealstone 
The Rhealstone benchmark [KAR89] is a real-time microbenchmark, based on the 
idea that each real-time application is unique, in contrast to Dhrystone and 
Whetstone. First of all, six categories of components that are crucial to the 
performance of real-time systems are measured and summarized: 

1. Task switching time – The average time the system takes to switch 
between two independent and active tasks of equal priority 

2. Preemption time – The average time it takes a higher priority task to take 
the control of the system from a low priority task. In general this event 
occur when a high priority task becomes ready. 

3. Interrupt latency time – The time between the CPU’s receipt of an 
interrupt request and the execution of the first instruction in the interrupt 
service routine (ISR). 

4. Semaphore shuffling time – The delay of a task releasing a semaphore, 
and the activation of another task waiting for that semaphore. No other 
tasks are scheduled in between. 

5. Deadlock breaking time – The average time it takes to resolve a deadlock, 
which occurs when a high priority task preempts a low priority task that 
hold a resource needed by the high priority task. 

6. Datagram throughput time – The number of kilobytes per second one 
task can send to another, by using kernel primitives, i.e. the average 
interprocess communication speed. 

 
Measurement of these Rhealstone components yields a set of time values. In order 
to perform overall comparisons between different real-time systems, the values 
have to be combined into a single Rhealstone performance number. The following 
steps are necessary to achieve a single Rhealstone number: 

1. Express all measured time values in the same unit (seconds). 
2. Compute the arithmetic mean of the different components. 
3. Arithmetically invert the mean (from step 2), to obtain the number of 

Rhealstones per second. 
[KAR90] 

 
The calculated Rhealstone number treats all the Rhealstone components as 
equally important parameters of real-time performance. In other words, this 
number is good when evaluating a real-time system performance without a 
particular application in mind. When a real-time system is dedicated to a certain 
type of application, it is possible to calculate an application-specific Rhealstone 
number. This number is based on weighted components, i.e. each component is 
given unequal weights. For instance, an application may be interruptdriven and 
don not use semaphores at all. The steps for calculating application-specific 
Rhealstones are: 

1. Estimate the relative frequency of each Rhealstone component’s 
presence, and assign coefficients proportional to the frequencies. 
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2. Compute a weighted average of the Rhealstone components, and the 
invert it to get a result expressed in application-specific Rhealstones per 
second. 

[KAR90] 
 
For further details about computing application-specific Rhealstone numbers look 
in [KAR90], because in contains some improvements in comparison with the 
original proposal [KAR89]. 

Distributed Hartstone 
Distributed Hartstone [KAM91] is an extension of the Hartstone benchmark 
[WEI90]. To be short the Hartstone benchmark is a benchmark aimed for real-
time systems, which consists of 5 test series each with a synthetic workload aimed 
to test different task types. 
The distributed Hartstone benchmark suite is developed for use in distributed real-
time systems, and is well adopted to evaluate the performance of an RTOS. The 
distributed Hartstone benchmark as the Hartstone benchmark is based on a 
synthetic workload that represents the typical instruction stream of a scientific 
application. The benchmark consists of different task sets, which evaluates the 
performance of one particular feature each. In each task set, all factors are kept 
constant except one, which is the varied factor. The varied factor in a task set is 
typically an execution time or the number of task or messages, however the 
common factor is that the factors all can be increased to infinitely. In this way a 
distributed Hartstone benchmark always reaches the breaking point of the system, 
which is the point where the first deadline miss is experienced. In all the different 
tests with different task sets, it is the breaking point that yields the distributed 
Hartstone performance measure. The different task sets or measurements that 
forms the performance measure are: 

• DSHcl Series: Communication latency 
The end-to-end communication delay is measured, it is an important 
metric and we can all agree with that it is preferable to be able to 
distinguish between different systems in this area. A good system in this 
test should be able to provide a bounded worst-case time, and shortest 
possible delay to messages from high-prioritized tasks. 

• DSHpq Series: Priority queuing 
The scheduling of messages is tested; in ordinary systems it is often FIFO 
queues that handle the messages. But in a real-time system this is often 
not a suitable solution, since a high frequency or a fast activity cannot be 
delayed by an arbitrary number of other activities. This test is aimed to 
test if the message passing algorithms can avoid priority inversions and 
how successful the algorithm is on handling message priorities. 

• DSNpp Series: Preemptability of the protocol engine 
If a low priority message is being handled by the protocol engine, this test 
is concerned about how long time it will take to switch over to an recently 
arrived high priority message.  
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• DScb Series: Communication bandwidth 
The communication bandwidth is a metric on how much traffic the 
communication medium can handle, included in this metric is also all the 
operating system processing required for communication. 

• DSHmc Series: Media Contention 
This measure is concerned about the lower levels of the communication 
protocol. A suitable medium access protocol should provide a higher 
degree of service to high-prioritized messages. Even in the medium 
access layer priority inversion should be provided. 

SSU 
The Superconducting Super Collider Laboratory (SSCL) has made performance-
measurements on four different real-time kernels [ACH91]. The products were all 
from different vendors, but in order to compare and evaluate the different 
offerings, they were tested on the same hardware platform. The measurements 
falls into two categories: real-time and non real-time. The non real-time category 
contains the throughput measurements, including process creation/termination 
times, interprocess communication facilities involving messages, semaphores, 
shared memory and memory allocation/deallocation. Measurements classified as 
real-time, are for instance context switch times and interrupt latencies. 
Each test was executed several times in order to compute the average time to 
complete a test. Then the entire measurement was repeated a number of times, to 
measure the minimum and maximum average values. 
 
The different measurements that were performed are: 
 

1. Create/Delete task – This is the time it takes to create and delete a task. 
As soon a task I created, it deletes itself. The measurement includes two 
task context switches and the time it takes to create, start and delete a 
task. 

2. Ping suspend/resume task – A task with low priority resumes a suspended 
high priority task. The high priority task immediately suspends itself. 
This measurement includes two task context switches and the time it takes 
to suspend and resume a task. 

3. Suspend/Resume task – This test is identical to the previous test, except 
that this test does not include any task context switches, since in this test a 
high priority task suspends and resumes a suspended low priority task. 

4. Ping semaphore – Two tasks with equal priorities communicate with each 
other through semaphores, i.e. they are competing for a semaphore. 

5. Getting/Releasing semaphore – This test measure the time it takes to get 
and immediately release a semaphore within the same task context. 

6. Queue Fill, Drain, Fill Urgent – The time it takes to fill a queue and drain 
the queue is measured (two different tests). Then the tests are repeated 
with priority messages. The messages are sent to the head of the queue. 
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7. Queue Fill/Drain –A task sends a message to a queue, which the sending 
task immediately receives on the same queue. No task context switch will 
occur nor there is any pending queue operations. In other words, the time 
measured includes context switches, queue pends and sending and 
receiving a message. 

8. Allocating/Deallocating memory – This test measure the time it takes to 
allocate a number of buffers from a memory partition and the time it takes 
to return those buffers to the partition. 

 
The conclusion that the authors of [ACH91] presented was that standards 
adherence makes code more portable. In order to perform measurements on the 
different kernels, they had to rewrite all the tests for all the kernels, because the 
interfaces were different. In other words, the tests were custom-written for each 
target platform. 
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Case Studies 
In this section some case studies of implemented multiprocessor real-time 
operating system kernels are presented. As introduction to this chapter our 
selection criteria’s, and the used evaluation model are presented. 

Selection criteria 
The overall requirements for the selected operating systems are support for real-
time applications and multiprocessor management. The multiprocessor support 
should preferably be for NUMA or NORMA architectures, rather than only UMA 
systems. While no specific requirements of the real-time support are specified, it 
could be any mix between soft and hard real-time support, and anything the 
inventors of the operating system want to refer to as real-time.  
 
In [BUT97], the authors divide current operating systems having real-time 
characteristics into three main categories, division (1): 

1. Priority-based kernels for embedded applications 
2. Real-time extended time-sharing operating systems 
3. Research operating systems 

 
Another division that exists is (2): 

1. Commercial 
2. Open source 
3. Research 

 
The selection of operating systems in this paper strives to cover both the listings 
above. An overview and classification of the studied operating systems are shown 
in table 1. 
 

RTOS Classification 
according to (1) 

Classification 
according to (2) 

CHAOSarc 3 3 
CHIMERA 3 3 
MARS 3 3 
MontaVista Linux 2 1,2 
OSE 1 1 
RT-MACH 2, 3 3 
RTEMS 1 1,2 
SPRING 3 3 
SARA 1,3 3 

Table 1, RTOS classification table. 
It is easy to conclude that the research operating systems are over-represented, but 
it is also these results and ideas that are most well described and include the most 
advanced solutions. Most of the information available for many commercial 
operating systems tend to be of more advertising nature, than honest descriptions 
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on chosen algorithms and results. We have to make clear that the commercial 
RTOS we picked out, were selected because of the opposite. It was possible to 
find non-advertising documentation concerning OSE. On the other hand many of 
the published papers related to research operating systems, tend to describe only 
the parts that their research are focused on. In other words it is sometimes hard to 
get a general picture of a research system, but often easy to find results according 
to small special areas. Our responses to the documentation related to the open 
source operating systems is mixed. It was a lot of pages written, and it was 
possible to find what we searched for. But the really deep descriptions of methods 
and algorithms were missing; instead they referred to the actual code. The code 
describes everything, but it can be bothersome to understand the details. 
 
Some commercial RTOS that are not investigated in this survey are VxWorks 
[WIN02], QNX [QNX02] and VRTX [MEN02]; all of them seem to be 
interesting. On the open source scene we have for instance not investigated eCos 
[RED02], a Linux distribution for real-time usage. The research systems we have 
left out include RK [LEE88], HARTIK [GBU93] and Asterix [THA01]. The 
reasons why we have not included the mentioned RTOS:es in the survey are for 
some RTOS:es limited multiprocessor support and concerning some other it has 
been hard to find relevant documentation. But the main reason is the need to limit 
the survey, due to the limited time a masters’ thesis project contains. 

Evaluation model 
The chosen evaluation model, strives for the possibility that the readers 
themselves, shall be able to compare the different operating systems. An obvious 
way to achieve this goal is to evaluate many issues and then let the reader 
combine the issues freely. The studied issues will be: scheduling, memory 
management and interprocess communication. Each issue will be evaluated and 
graded from 1 to 5 according to the three keywords listed below, where 5 is the 
best. With this method, the result will be 3 grades for each operating system and 
studied issue. 

• Determinism – guarantee possibilities. 
• Inventiveness – extraordinary solutions. 
• Usefulness – typically flexibility or portability. 

 
In this way the reader can create a lot of ranking orders, for instance it is possible 
to find the operating system with highest overall rank, or the operating system 
with the most deterministic scheduling algorithm, or the most useful interprocess 
communication methods. A summary of the evaluation is presented last in this 
chapter and, the motivations are presented in an evaluation section bounded to 
every investigated RTOS. 
 
Examples of what we will reward can be found in the tables (2, 3 and 4) below for 
each issue and comparison keyword. Note that the listed examples in the tables 
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are only positive qualities; the absence or negation of the mentioned qualities will 
lead to a lower grade. A motivation to each assigned grade will be given.  
 
Category Scheduling 
(1) WCET estimations possibilities. 

Off line analysis possibilities. 
(2) Task placement algorithms. 

Multilevel scheduling. 
(3) Reasonable task attributes, (easy translation of real-world problems). 

High potential CPU utilisation. 
Flexibility in the number of supported scheduling algorithms. 

Table 2, Scheduling evaluation. 
 
Category Memory management 
(1) Bounded worst-case access time. 
(2) Virtual memory and dynamic allocation. 

Cache support. 
(3) Dynamic and virtual memory. 

Table 3, Memory management evaluation. 
 
Category Interprocess Communication 
(1) Bounded worst-case transmission time. 

Resource reclaiming protocols. 
Interrupt handling. 

(2) New or conceptually different methods. 
(3) Number of supported methods (message passing, shared 

memory, remote procedure calls etc). 
Potentially fast communication.  
Interrupt handling. 

Table 4, Interprocess Communication evaluation. 
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CHAOSarc 
CHAOSarc [GHE93] is an object oriented real-time kernel of the CHAOS 
[SCH87] family. The CHAOS family of operating systems is structured in a layer 
model with three layers. The first layer or the layer closest to the hardware is 
CHAOSbase, which is a machine dependent component that implements some 
basic operating system abstractions as threads, memory handling and 
synchronisation primitives. Above CHAOSbase follows CHAOSmin, in this layer 
the object-oriented approach is implemented with abstractions of classes, objects 
and invocations. In the top layer the policies of the different operating systems in 
the CHAOS family are implemented. The most interesting set of policies or 
operating system constructed with CHAOSbase and CHAOSmin are CHAOSarc 
according to the authors of [SCH90]. 
 
The hardware requirements of the operating system are dynamic since the 
hardware dependent module CHAOSbase has been implemented or at least could 
be implemented on several different architectures. The implementation presented 
in this paper is running on a 32 node GP1000 BBN Butterfly [CRO85]. The 
Butterfly is a shared-memory parallel processor, with each processor node mainly 
consisting of a MC68020 processor, 4MB RAM and a co-processor called 
Processor Node Controller (PNC) which handles shared memory requests. The 
interconnection between processor nodes is a 32 Mbit/s per path multistage 
switch. The operating systems itself is running on every processor in the system. 
 
The main contribution with CHAOSarc is the use of an object and class based 
environment for the programmer, when defining the application. Just as an object 
oriented language, CHAOSarc let the programmer define classes that represents a 
desired behaviour and the use of objects that is an instance of a class. 
 
Four built in classes defines all primitive objects Abstract Data Type (ADT), 
Threaded Abstract Data Type (TADT), monitor and task. An ADT defines a 
passive object without execution threads or synchronization for concurrent calls. 
When calling an object of the ADT class, the method is executed in the address 
space of the caller and without synchronization of concurrent calls. When an 
object from the TADT class is called, a new execution thread without automatic 
synchronization of concurrent calls is created. A monitor is an object without 
execution threads that only allows one single call to be active at a time. Finally a 
task is an object with a single execution thread, all calls to a task are serialized 
and executed in the context of the task. These four primitive classes are 
implemented in the CHAOSmin layer. But the CHAOSarc layer offers definition of 
more complex classes that are built upon these four primitive classes. A complex 
object can be represented as in figure 4, by a scheduler a state and a server. 
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Figure 4, Object representation in CHAOSarc. 

 
The objects state is partitioned into a number of components, each of which can 
either be of shared or exclusive type. The shared component is directly accessible 
to all invocations of the same object, while an exclusive component is unique for 
every invocation of an object. But if the invocation commits the shared 
component is atomically copied back to the objects state, on the contrary when an 
invocation is aborted the result of exclusive components is discarded. 
 
The objects scheduler receives and schedules all invocations to the object. The 
scheduling decisions by the objects scheduler is based on parameters passed with 
the invocation call (see section communication). The objects scheduling 
component is described in section scheduling. 
 
The objects servers are simply threads that are able to execute any of the 
operations that the objects interface offers. Threads can either be created 
dynamically during run-time or static at object initialisation. 

Scheduling 
Multiprocessor scheduling is performed by the CHAOSarc policies. The policies 
can be configured different for every invocation of an operation and is carried out 
by the objects scheduler. The multiprocessor scheduling is performed in 
cooperation with the thread schedulers residing on every processor in the system. 
On this object level the processor placement of the task is determined. If the 
operation requires any locks the objects scheduler takes care of that problem, 
calculating times until locks can be achieved etc. Unfortunately the research 
around CHAOSarc was not focused on this type of multilevel scheduling (i.e., 
invocation scheduling followed by thread scheduling) so the exact algorithms 
used for the invocation scheduling were not described in detail. 
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The thread scheduling is distributed across the machine with one scheduler per 
processor. The scheduling algorithms [SCH89] basic data structure is a doubly 
linked list, called a slot list. The slot list records which threads have been 
scheduled during each of the time periods. The threads are preemptive scheduled 
with EDF (Earliest Deadline First)[LAY73], and as close to their start times as 
possible. 
 
When a thread has to be scheduled, a feasibility test is performed. The test is a 
simple search for execution time. It starts with a slot compatible with the threads’ 
start times, and ends at a slot compatible with the threads’ deadline or when the 
total length of available time slots is equal to the threads execution time. If 
enough available time is found the thread is scheduled and the slot list is updated, 
else the thread is reported un-schedulable. The slot list can be accessed through a 
balanced binary tree; therefore a slot with a particular start time can be located in 
O(log n) time. 
 
Once a thread has passed the test and is going to be scheduled it has nothing to do 
with the slot list anymore. Instead all scheduled threads are put in another list and 
scheduled with EDF. This list includes all threads, even threads that have an 
earliest start time later than the current time. This is the reason why the list cannot 
be a queue, since the first thread might not have a feasible start time. So the final 
complexity of the feasibility test and the EDF scheduler is in the worst case 
reported to be O(n log n). 

Memory management 
Memory management is described in [SCH87], because of the heavy use of 
dynamic memory during object creation and invocation; it is obvious that 
CHAOSarc needs some support for predictive dynamic memory. The solution is 
based on the observation that the possible memory requests are a finite set. The 
supported types of requests are: 

• Status block’s of known sizes, that the operating system uses to maintain 
an objects status during an invocation 

• Parameter block’s, which are used for parameter passing during an 
invocation 

• Memory used for the representation of objects and processes 
To provide predictable access times for allocation of these three types of memory, 
the kernel pre allocates memory blocks and store the blocks in four memory 
pools. Two pools for kernel usage and two pools for application usage, this 
prevents that memory usage from the application affect the kernel. The main 
contribution with this is that the kernel is able to provide predictable response 
times, since sizes and maximum amount of memory blocks needed by the kernel 
is predictable.  
 
For application code it is worse, but it is possible to pre determine the memory 
usage. When memory blocks are deallocated, they are returned to the pool from 
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which they originated. A possibility is therefore to begin the application code 
with allocating a certain number of memory blocks with a certain size. Then stick 
to this size when allocating memory, and never allocate more memory blocks at 
the same instance in time than the number of allocated memory blocks pre 
allocated in the beginning. 

Interprocess communication 
The interaction possibilities between objects are: explicit synchronization with the 
use of synchronization points, invocation of each other’s operations and atomic 
computations spanning multiple objects. 
 
Synchronization points are the method for expressing events. A synchronization 
point is an ADT with internal data structures consisting of: 

• A control block, which represents the state (enabled, disabled etc). 
• The connected queue reflects permanent dependencies between 

synchronization points. 
• The delayed queue represents dependencies among multiple invocations 

among a single synchronization point. 
• An enabled synchronization point expresses an internal or external event 

and can be used for object invocations or any other synchronization 
event. 

 
Invoking a method or operation of an object often requires both data transfers (for 
parameters) and control transfers (for the operation’s code). To be able to handle 
different interaction patterns typical to real-time systems, CHAOSarc supports a 
number of invocation modes and to the modes associated attributes. The different 
invocation modes are async, sync, periodic, event, stream and fast. To give a short 
and general view of the invocation semantics and possibilities only a few modes 
and attributes associated to each mode are mentioned here in table 5, but the 
interested reader are referred to [GHE93] for a detailed description. For example 
the async mode has 15 different invocation attributes with default values. 

Mode Semantics Example of Attributes 
Async Sporadic (one time) 

invocation that can 
execute in parallel with 
invoker. 

Hard or soft deadline and 
atomicity.  

Periodic Causes the operation to 
be executed periodically.

Deadline attributes and 
period time. 

Event Invokes the operation 
every time a certain 
synchronization point is 
reached. 

Trigger synchronization 
point. 

Table 5, example of modes their semantics and attributes. 
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The implementation of all functionality that extends CHAOSmin to CHAOSarc is 
actually implemented with the primitive objects offered by CHAOSmin. Examples 
of the added functionality are invocations and atomic computations. The 
invocations are thereby extendable and a user of the operating system can 
implement arbitrary invocation semantics. 

Atomic computations  
An atomic computation is in CHAOSarc an abstraction for a hierarchy of atomic 
invocations of object operations. Namely, an atomic computation represents a 
group of object invocations with common timing, consistency and recovery 
requirements. The whole computation (sequence of operations) is guaranteed to 
end in either commit or abort. When committed, external observers can view the 
result of the computation. When aborted the result is discarded and the system 
state is restored. The success or failure of an atomic computation is determined by 
timing constraints (e.g., deadline for the computation), or by the consistency 
requirements that follows when the computation shall be atomic. 

Conclusions 
CHAOSarc seems to differ from other RTOS in many ways at a first look. The 
biggest differences lies in the upper layers of the layered system, the object 
oriented approach and the lack of ordinary message passing or shared memory. 
The primitives offered by the CHAOSbase layer seem to be quite similar to other 
RTOS primitives, threads, scheduling etc. It is actually this layer that performs all 
operations in the end. All interactions between objects and the objects responses 
to the environment, maps into ordinary thread scheduling. 
 
A question that arises is how to perform scheduling analyses and map the 
environments constraints into the objects, we are sure that the inventors have 
solutions to this. But the method differs from other known and well-understood 
methods and terms, in the RTOS domain.  
 
Another question is their interpretation of atomic computations, a sequence of 
invocations that either are committed or aborted. It is easy to understand the need 
of such transactions in database systems and similar facilities. But in a real-time 
system that interacts with the environment all the time, is it suitable or even 
possible to abort operations? When we have told the controlled physical object to 
turn left, increase the speed or decrease the temperature, it is a little bit late to 
abort the operation. 
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Evaluation 

Scheduling 
• Determinism 

 

The on-line mechanism, with a guarantee algorithm and 
EDF scheduling is analysable. But what happens if a task 
cannot be guaranteed, probably the invocation or 
instansation fails. The off-line analysis of the object-
oriented approach is not presented either, is it possible to 
analyse which tasks that is going to be created during 
runtime from an object point of view? 
 

• Inventiveness 

 

Multilevel scheduling and a form of task migration, when 
an object of the ADT class is invoked is a pretty fancy 
solution. 
 

• Usefulness 

 

It is a tempting idea to use an object hierarchy instead of 
ordinary tasks, but it seems to be harder to translate real-
world problems into this model. Although we have a lot 
of configurable invocation attributes and semantics, but is 
that enough? Real-time engineers are used to the task 
model and this revolutionary solution will probably just 
make it harder to create an application. 
 

Memory management 
• Determinism 

 

The authors claim that it is possible to pre determine the 
memory usage for the application and, in this way, know 
sizes and quantity of memory blocks that the application 
uses. We have to remember that CHAOSarc implements a 
strict object oriented policy, that includes dynamic 
memory allocations that are in some sense hidden for the 
programmer. A worst-case scenario on the other hand is 
easy to create, and likeley to occour. If the application 
allocates various sizes of memory blocks, remember that 
using different sizes of parameter or return value fields 
should be enough.  
 

• Inventiveness 

 

The system pools together with dynamic memory usage, 
provides a base for the implementation of a object 
oriented approach. It is also an solution that add 
additional primitives compared to a basic solution. 
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• Usefulness 

 

The memory management system in CHAOSarc would be 
useful in other RTOSes where the dynamic memory usage 
is more controlled and easy to predict. Used in such 
RTOSes the system could be a way to provide dynamic 
memory. And of course in CHAOSarc, the memory 
management system is a requirement. 
 

Interprocess communication 
• Determinism 

 

 

It cannot be guaranteed that all invocations of type fast 
will succeed. The other non-fast invocations are queued 
can utilize dynamic memory, and remote procedure calls, 
in other words hard to predict. 
 

• Inventiveness 

 

A very extraordinary solution, it is easy to associate IPC 
with shared memory or message passing. Here no such 
abstractions are avalible, although the invocations in the 
end must map onto messages or shared memory in some 
sense. 
 

• Usefulness 

 

We can easily conclude that the communication 
mechanism with object invocations are closely realated to 
remote procedure calls, which are useful. Therefore the 
object invocation mechanism must be useful to, but we 
miss alternatives in CHAOSarc. 
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Chimera 
Chimera [KHO92] is a multiprocessor real-time operating system designed 
especially to support the development of software for robotic and automation 
systems. The advantage with Chimera over other real-time operating systems is 
that it provides features that are necessary for quickly developing reconfigurable 
and reusable code [CHI02]. The environment consists of one or more real-time 
processing units (currently Ironics 68020 CPU boards) connected to a VME bus 
on a SUN 3 workstation. The workstation provides a high-level computing 
environment with editors, compilers, debuggers and so on. Real-time applications 
are developed at the SUN workstation and then executed on the Ironics boards. 
The Sun and Ironics CPU’s has the same 68020-based architecture, so no extra 
cross-compilers/linkers are needed. Chimera code is compiled and linked with an 
ordinary SUN C compiler and linker. This guarantees that the code will have 
exactly the same behaviour when executed on the SUN CPU or the Ironic CPU’s. 
The Chimera software consists of two parts; one part that runs on the Ironics and 
another part that runs on the SUN workstation. User tasks execute concurrently on 
one or more CPU’s and communicate with each other through local shared 
memory and local semaphores. The Ironic boards have distributed dual ported 
memory, i.e. can be accessed by both the Ironics and SUN CPU’s. This makes the 
download from the SUN to Ironics very simple. 
 
According to the developers of Chimera, a predictable system must handle all 
errors in a certain fashion. The best solution if it is possible is to call an error 
handler that corrects the error. An intermediate solution is to operate the system 
with degraded performance, which is often necessary with autonomous systems. 
Last of all the system must be shutdown. 
Chimera has support for both deadline-failure handling (timing errors) and 
handling of non-timing errors. The global error handling mechanism is a 
powerful mechanism in Chimera. It allows the user to develop applications 
without explicitly check the return value if it is an error. Because whenever an 
error is detected an error signal invokes the error handling mechanism. By 
default, a detailed error message is printed and the task is aborted. This 
mechanism allows the error messages to be very specific. 
 
An optional failure handler is called when a task fails to complete its deadline, 
insufficient CPU time is available or when the maximum estimated CPU time for 
a task has surpassed. The failure handler can be programmed to run at either the 
same priority as the task that misses its deadline or at a different priority. The user 
can define own error handlers and alter the default action of the system. The 
authors of [KHO92] claim that the deadline failure handling mechanism is 
essential in predictable systems, because the estimating of a tasks execution time 
is often really difficult. Especially when the hardware has mechanisms for 
increasing the average performance, for instance caches and pipelines. Such 
hardware is often used in real-time systems, which implies that the execution 
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times cannot be predicted accurately enough. Underestimating of a worst-case 
execution time can cause a disaster. 

Scheduling 
Chimera provides typical RTOS kernel task management features, such as 
creating, suspending, restarting, preempting and scheduling. The kernel schedules 
the tasks using virtual timers, all based on a hardware timer. Chimera supports 
both static and dynamic scheduling of real-time tasks. The default scheduler 
supports the rate monotonic scheduling algorithm (static scheduling), the earliest-
deadline-first scheduling algorithm (dynamic scheduling) and the maximum-
urgency-first scheduling algorithm (static and dynamic scheduling). This 
algorithm provides predictable dynamic scheduling possibilities. The scheduler is 
designed as a module that can easily be replaced by any user-defined scheduler. 
That allows Chimera to be used in many different applications, without being 
restricted by the default scheduler. The authors to [KHO92] claims that most real-
time scheduling theory concentrates in ensuring tasks always meet their deadlines. 
In addition, Chimera has a deadline failure handling mechanism, which calls an 
exception handler when a task fails to meet its deadline. 

Memory management 
The Ironic boards have distributed dual ported memory, i.e. can be accessed by 
both the Ironics and SUN CPU’s. The VME bus has many different address 
spaces, and each CPU addresses the spaces in different ways. Memory can be 
dynamically allocated by using express mail, which is explained in the next 
section. Memory can either be allocated locally or remotely on other processing 
units or memory boards (NUMA). The Chimera kernel was designed to provide 
much of the functionality of a true multi-tasking operating system, while 
preserving the response time of a dedicated real-time processor. This was made 
possible by eliminating for instance inter-process security, a large process space 
and virtual memory. 

Interprocess communication 
A task can communicate or synchronize with any other task through local shared 
memory, high-performance local semaphores or user signals. Local semaphores 
are either used to synchronize tasks or provide mutual exclusion during critical 
sections. User signals are an alternate way of synchronizing tasks, allowing the 
receiving task to be interrupted when the signal arrives, instead of polling as done 
with local semaphores. 
Many different types of interprocess communication and synchronization 
mechanisms are built in as layers, in purpose to simplifying the development of 
complex applications. 

• Express mail: The express mail mechanism is a high-speed 
communication protocol that was developed especially for backplane 
communication. It is the lowest communication layer. Express mails are 
handled by server tasks that run on each CPU. The server task monitors 
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the express mails, translates symbolic names into pointers and translates 
addresses within various address spaces on the VME bus. 

• Global Shared Memory: The VME bus has many different address 
spaces, and each CPU addresses the spaces in different ways. Memory 
can be dynamically allocated by using express mail. Memory can either 
be allocated locally or remotely on other processing units or memory 
boards. 

• Spin-locks: The spin-locks use atomic test & set instructions, in purpose 
to provide mutual exclusion of a shared data. The use the polling 
technique to obtain the lock, which could waste a lot of CPU time. But 
generally they require the least amount of overhead, in comparison with 
other synchronized IPC mechanism [HOF89]. 

• Remote Semaphores: Chimera provides both local and remote 
semaphores, which allow several tasks on different CPU’s to use 
semaphores. The remote semaphores use test & set to get hold of a lock. 
A task that tries to obtain a lock that is occupied will be blocked. When 
the lock is released, the blocked task is invoked. 

• Priority Message Passing: The priority message passing system uses the 
express mail to initialise message queues. The user defines lengths of 
queues. Typed messages of variable length can be sent between tasks on 
different or the same processor. The message queues can be sorted using 
first-in-first-out, last-in-first-out or highest-priority-first algorithms. 

• Global State Variable Table Mechanism: This is a mechanism that allows 
multiple CPU’s to control tasks that are co-operating, by means of state 
variable tables. One global table and one local copy of the table for each 
task that requires access are created. I.e. they share state information and 
they can update the states in a correct way. Tasks update the local copies 
periodically and they do always make use of the local copy. 

• Multiprocessor Servo Control: One task in the system can take control of 
some or all processing units. The task can then control the execution of 
other tasks and even spawn new tasks to any processing unit. 

• Extended File System: Instead of having a separate disk file system, the 
real-time system uses the file systems on the host workstation. A task can 
therefore perform file operations as any process on the host workstation. 
All remote operations are transparent to the user. 

• Host Procedure Calls: Tasks running on any processing unit can perform 
procedure calls to the host workstation, i.e. execute routines on the host 
workstation. 

• Host Workstation Integration: The host workstation is transparent to the 
system, which means that the host workstation is totally integrated into 
the real-time environment. The host workstation has all the same features 
as the processing units, for example it can use semaphores and global 
shared memory. 

• Special Purpose Processors: Special purpose processors can be added to 
the system to increase the performance for specialized computations. The 
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hardware interface is independent, which simplifies the integration of 
special purpose processors. Since special purpose processors do not run a 
kernel, they are treated as slaves in the system. 

Conclusions 
The most distinguish feature with Chimera is the SUN workstation that is 
integrated into the environment. The workstation’s purpose is to provide a high-
level computing environment with editors, compilers, debuggers and so on, in 
order to simplify the development of applications. When an application has been 
developed, it is downloaded to and executed on an Ironic board. In [CHI02] the 
authors claim that a deadline failure handling mechanism is essential in 
predictable systems, because the estimating of a tasks execution time is often 
really difficult. But is not the estimating of a tasks execution time easy in a 
predictable system? The reason for making a real-time predictable is the desirable 
prediction of a task’s behaviour, and therefore predictable execution times, which 
are easy to estimate offline. 

Evaluation 

Scheduling 
• Determinism 

 

The scheduling algorithms provided are well known and 
off-line analysable. The WCET seems to be hard to 
estimate, due to the memory management and IPC. 
However Chimera has a deadline failure handler 
mechanism, which is an advantage when the estimation of 
WCET is hard. 
 

• Inventiveness 

 

Chimera has a deadline failure handler mechanism, which 
calls an exception handler when a task fails to meet its 
deadline. No direct multilevel scheduling is provided, but 
the Multiprocessor Servo Control mechanism allows a 
task to take control of some or all processing units. The 
task can then control the execution of other tasks and 
even spawn new tasks to any processing unit. 
 

• Usefulness 

 

The number of different supported scheduling algorithms 
make make Chimera flexible and the EDF algorithm 
makes the potential CPU utilisation really high. 
 

Memory management 
• Determinism 

 

Dynamic memory allocation may jeopardize the 
determinism and another feature is the possibility to 
allocate memory remotely on other processing boards. 
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• Inventiveness 

 

The fact that memory can either be allocated locally or 
remotely on other processing units makes Chimera 
flexible, but this feature could jeopardize the determinism 
of the system. Chimera has own version of malloc, which 
allocates memory dynamically. 
 

• Usefulness 

 

The dynamic memory allocation possibility increases the 
usefulness of this system. 
 

Interprocess communication 
• Determinism 

 

Chimera was designed to minimize communication 
overheads, which aims for good predictability through 
smaller variations in worst and best case.  
 

• Inventiveness 

 

A task running on any processing unit can perform remote 
procedure calls to the host workstation. This feature 
makes the file system on the host workstation available 
for all tasks running on any processing unit. 
 

• Usefulness 

 

Many different communication and synchronisation 
mechanisms aims for flexability. 
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MARS 
Maintainable real time system (MARS) [KOP85, DAM89, KOP89] is a 
distributed operating system built upon standalone computers, with some custom 
built hardware on each node (component). Each node consists of a CPU 
(MC68000), a custom built LAN controller (LANCE), a custom-built clock 
synchronization unit (CSU) and some I/O units. Every node also has an identical 
copy of the kernel. Theoretically MARS has almost no restrictions in the 
maximum number of nodes and every cluster of MARS nodes can be connected 
to another MARS cluster through special interface nodes, which forward all 
messages from one MARS bus to another. However the main contribution with 
MARS, which makes MARS different from other distributed real-time operating 
systems is its deterministic behaviour under all conditions. MARS is completely 
off-line scheduled; even the message bus is pre runtime scheduled. This combined 
with a time driven dispatch policy gives predictability even under peak load 
situations. The other factor that aid for the determinism of a MARS system is a 
high degree of fault-tolerance. Even if a MARS system experiences failure on 
CPU’s etc the system can still be able to deliver full service. Figure 5, shows a 
schematic picture of the MARS system. The I-Component (Interface-Component) 
in the figure is an ordinary node and has its interface against the MARS bus as all 
other nodes, but is actually representing another cluster. 
 

Figure 5, Schematic picture of the MARS system. 
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Scheduling 
MARS supports both hard and soft tasks. Hard tasks in MARS are defined as 
periodic tasks with a hard deadline, within which it has to be completed. The set 
of hard tasks consists of both application tasks and system tasks, where system 
tasks perform specific functions of the kernel. The system tasks include time 
synchronization and protocol conversations to and from MARS messages and RS-
232 strings for example. Soft tasks are tasks that are not subject to strict 
deadlines; usually soft tasks are aperiodic tasks. They are scheduled in 
background under low load conditions. 
 
The complete system is off line scheduled, the off-line task and bus scheduler 
calculate the schedules for tasks and messages before runtime and store the 
schedules in runtime-scheduling tables residing on each node. The schedules in 
the runtime-scheduling table consist of a cycle, which satisfies all expressed 
constraints and should be repeated when executed once. If no such cycle is found 
a redesign must be done. The on line scheduler is simple and fast; the only job to 
do during runtime is to make a table lookup and dispatch the task found. 
The scheduling algorithm used by the off-line task, takes attributes as WCET 
(MAXT), and total transaction time (Mart) for the transaction that the task is 
included in. A schedule is produced, based on a heuristic search strategy that 
calculates task urgency according to estimations of the time necessary to complete 
the transaction. 
Each node can have several different schedules, used in different points of time or 
in different phases of the application. For instance the starting phase of an 
application may require a completely different task set than the remaining part of 
the application. A change of schedule or mode can be simultaneously trigged on 
all operational nodes in the system by messages. 
The off-line scheduling principle requires that the complete system behaviour is 
analysed and known before runtime, but for some applications that cannot be 
satisfied. In such cases the Slot Shifting algorithm can be used as scheduling 
algorithm instead. The Slot Shifting algorithm shows great performance with 
aperiodic tasks, although the guidelines of the scheduling decisions are calculated 
off-line. This is achieved by calculating spare capacities in intervals off-line, 
which simply are unused capacities. Then at run-time the algorithm tries to use 
the spare capacities for aperiodic tasks. Tools for estimating the WCET of a task 
given the code support the designers since that estimation is critical. This 
estimation requires bounded loops and no recursion. All tasks must be present at 
the node before runtime, no task migration allowed. 
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Memory management 
Memory management in MARS is easy to describe, theoretically you could say 
that there is no memory management. MARS does not support any dynamic 
allocation, virtual memory or other potentially un-deterministic memory 
management features. For example every message that is going to be transmitted 
has an own buffer that is pre-allocated (at compile time) and own by the operating 
system, instead of having a task to allocate dynamic memory. We would like to 
describe memory management in MARS as a compiler and hardware issue. 

Interprocess communication 
Every message is transmitted n times over n parallel busses or sequentially n 
times on one bus or any combination between the two extremes. The loss of n-1 
messages is therefore tolerable. This redundancy is implemented in the lower 
levels of the communication protocol; notice that this solution does not increase 
the communication time when a message is lost, as for example a retransmission 
protocol does.  
The communication medium is the MARS bus, which is an off-line scheduled 
TDMA bus. This medium access protocol provides a collision free, deterministic 
and load-independent access to the Ethernet. The semantics for the messages is 
comparable to global variables and they are called state-messages. State-messages 
are not consumed when read, so several tasks can read the same message and a 
new version of a message updates the previous. The messages carry state 
information about the state of the environment that has been observed at a given 
point in time. All messages have an identical structure, with a standard header that 
contains mainly time stamps, a constant but application dependent length of the 
body and a standard trailer that contains a checksum. The send of a message is 
non-blocking, just as writing a global variable. 
Every message has a validity time associated with it due to the real-time 
applications temporal constraints. Two time stamps from the CSU are also 
attached to every message (when sent and received) in this way timing errors can 
be detected, and the validity time can be measured. When the validity time is 
expired, the message is discarded by the operating system. Since every node 
knows which message to expect in every TDMA slot, implicit flow control and 
error detection between sender and receiver(s) exists. 

Clock synchronization 
Since MARS is a true distributed system with nodes consisting of standalone 
computers and is time driven, the need of a global time base is obvious. Each 
MARS node has its own real-time clock with a resolution of 1 µs. The clock 
synchronization algorithm is based on message passing, since all messages in 
MARS have timestamps from the senders CSU and the receivers CSU. Each node 
can record time differences to the other nodes periodically. Based on that 
computation a correction term for the own clock can be computed by the Fault-
Tolerant Average Algorithm (FTA) [KOP87]. 
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Interrupt handling 
All interrupts except the clock interrupt from the CSU are disabled. Allowing 
each device interrupt the CPU would jeopardize the hard tasks deadlines and 
cause an unpredictable run-time behaviour. Many other RTOS use a priority 
scheme for the interrupts, but that solution has also been discarded since high 
priority devices would be favoured and the on-line scheduler just is a dispatcher 
and could cause deadline misses with aperiodic activities. The clock interrupt 
handler polls the devices instead, but not on every clock interrupt. 

Conclusions 
MARS seems to be a very fault-tolerant operating system. MARS achieves fault 
tolerance both logically and physically [KOP89]. Logical fault tolerance is 
achieved by sending each message n times sequentially on the same channel or 
parallel over more channels, and by a fault-tolerant clock synchronization 
algorithm, that can tolerate a known number of faulty clocks. Physical fault 
tolerance is reached with hardware redundancy; each MARS node has one or 
more identical active replica(s) and more than one active redundant 
communication bus are supported. The amount of fault tolerance needed by the 
application decides the number of redundant nodes and busses. Each node also 
has some self-checking properties and thereby fails silently (delivers correct result 
or no result at all). 
 
If trying to be pessimistic and critical, it is easy to understand that the fail-silent 
property must be hard to implement. The redundancy within a FTU assumes that 
components fail silently, so what happens if a component fail anyway (Byzantine 
failure or undiscovered failure etc)? It would maybe be more fault-tolerant to use 
some kind of voting mechanism within a FTU, like the TMR (Triple Modular 
Redundancy) algorithm for instance. The static scheduling requires that the 
application is well known before run-time. Some questions that arises are: 

• What if the application is not even built? 
• What if the applications environment changes during run-time? 
• What if the initial timing hypothesis seems to be wrong? 

Evaluation 

Scheduling 
• Determinism 

 

The off-line scheduling principle, guarantees that no 
deadlines will be missed. Interrupts and other possibilities 
for instability are disabled or designed away. 
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• Inventiveness 

 

Different schemes for different times, and the use of a off-
line task compensates for the otherwise simple on-line 
mechanisms. 
 

• Usefulness 

 

Static scheduling have many requirements on the 
application, but we can have complicated precedence 
constraints etc. 
 

Memory management 
• Determinism 

 

MARS does not provide any construct that jeopardizes 
memory access times, i.e. dynamic or virtual memory. 
Even message buffers have to be allocated before run-
time, and all messages in a MARS system has the same 
size. 
 

• Inventiveness 

 

No extra ordinary solutions here, just the simplest. 
 

• Usefulness 

 

The memory management system is useful in hard real-
time environments. But it is not flexible or provide any 
new ideas, such things that this comparison give credits 
for. 
 

Interprocess communication 
• Determinism 

 

Off-line scheduled messages, and the redundant 
properties, aims for determinism even when messages are 
lost. 
 

• Inventiveness 

 

Redundant communication buses, the implicit flow-
control achieved with the messages and the implicit use of 
all messages for clock synchronization purposes are 
exceptional solutions.  
 

• Usefulness 

 

Off-line scheduled messages limit the usefulness to very 
special applications. 
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MontaVista Linux 
MontaVista Linux [WEI01] is a commercial open-source Linux distribution with 
multiprocessor and real-time support. A popular approach to build a real-time 
Linux distribution is to make use of the RT-Linux [YOD97] kernel. To make it 
clear MontaVista Linux is not based on the RT-Linux kernel, the RT-Linux 
approach is just described here as orientation.  
 
A RT-Linux based operating system is built with an approach that in theory 
disables all common Linux functionality, and replaces it with a new RT-Linux 
kernel. The RT-Linux kernel is aimed for use in hard real-time systems, and 
supports only single processor machines. The common Linux kernel is used to 
boot the system and directly after the boot sequence the RT-Linux kernel takes 
control of the system. Although the two kernels coexist, it is the RT-Linux kernel 
that is in charge. The idea is that it shall be possible to let non real-time tasks take 
advantage of the rich Linux API, i.e. monitoring tasks and soft tasks. The tasks 
that are dispatched by the RT-Linux kernel always have higher priority, but use a 
simple and real-time limited API. In the original description [YOD97] real-time 
tasks are scheduled by fixed priority, earliest deadline or rate monotonic, 
configurable by choosing a scheduling module. No dynamic or virtual memory is 
used, and a single processor message based interprocess communication 
mechanism that adopts real-time theories is provided. 
 
MontaVista Linux uses another approach than the common kernel substitution 
approach; instead the Linux kernel itself is tuned to provide real-time support. 
The scheduling algorithm and interrupt handling are the main targets for 
modification. MontaVista Linux has support for almost all common processor 
platforms and as other commercial RTOS tries to fit with almost all possible 
applications. The multiprocessor support seems to be directed towards back plane 
networking with CompactPCI busses, examples of that are given in [BWE01]. It 
should therefore be possible to use MontaVista Linux on hardware architectures 
like the SARA system (described in this survey), since the CompactPCI bus 
interface are supported.  

Scheduling 
The supported task type is the standard Linux thread, with a boosted priority 
scheme. Standard Linux threads are allowed to have priorities ranging between 0-
99, MontaVista Linux defines priorities up to 128. The threads are free to take 
advantage of the whole Linux API. The scheduling algorithm is the main 
improvement over the standard Linux system; actually the real-time support 
breaks down into the preemption patch, and a second scheduling level [WEI01].  
 
The contribution with the preemption patch is that it does not break or stretch the 
standard Linux API. Until recently it was not considered possible by the Linux 
community to create a fully preemptable Linux distribution, without limit or 
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extend the standard libraries and systems calls. The solution that the MontaVista 
distribution has come up with resides from a special Linux dialect, the Symmetric 
Multi Processing (SMP) version of Linux. The SMP Linux kernel according to 
[WEI01] already offers a highly preemptable response. Although it is not 
intended for use in real-time systems, it is here the preemption patch comes into 
the picture. The patch modifies the spin-lock construct offered by the SMP kernel, 
i.e. the standard IPC construct, to become a preemption lock. This construct is 
then used to protect critical sections. Additionally the preemption patch creates 
possibilities for fast response times, through interrupts. When an interrupt has 
occurred, the patch modifies the kernel to allow rescheduling on return from 
interrupt if a new task has become ready. The main preemption techniques is 
taken from the SMP distribution, although the MontaVista distribution is not 
intended to be used on SMP:s, since the main communication primitive is 
removed. 
 
The scheduling algorithm is based on fixed priorities of 128 levels and overrides 
the standard timesharing scheduler provided by Linux. The scheduling algorithm 
is transparent, it simply means that if no real-time tasks are ready for execution 
the control is given to the standard scheduling algorithm. In this way real-time 
and non real-time tasks can coexist, but the non real-time tasks are only scheduled 
when there are idle time left.  

Memory management 
It is the standard Linux memory management routines that are offered. That 
include dynamic allocations, and virtual memory optimized for throughput. No 
special treatment of real-time tasks is implemented. 

Interprocess communication 
The standard Linux communication primitives are used. It is a rich variety of 
possibilities for IPC on a Linux system, since modules and libraries are freely 
distributed. Included from the beginning in the MontaVista distribution is for 
instance several primitives for semaphores, several message passing systems, one 
shared memory system, two signal systems and a watchdog mechanism. Although 
none of the included mechanisms are intended for real-time systems. 

Conclusions 
The MontaVista Linux distribution is aimed for real-time systems, today the real-
time support is limited. However a reasonable prediction is that Linux will be 
used more and more in embedded and real-time systems. Papers and news groups 
discussing how to port from a conventional RTOS to MontaVista Linux are for 
instance easy to find and it is a lot of peoples involved in Linux related projects. 
MontaVista Linux cannot in its present release be treated as a RTOS with hard 
real-time support, but it is probably useable in more soft real-time applications 
with the rich and among programmers well known Linux API.  
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Evaluation 

Scheduling 
• Determinism 

 

The scheduling algorithm itself is maybe one of the most 
used algorithms in the real-time domain. The WCET:s 
may be hard to estimate, since underlying routines for 
memory management and IPC does not provide bounded 
execution times.  
 

• Inventiveness 

 

No extraordinary solution, the contribution is the 
modification of a system call and the return from interrupt 
routine provided by a patch. 
 

• Usefulness 

 

It is surely a useful scheduling algorithm, it is this type of 
priority driven algorithms that have been used in most 
commercial RTOS in the past. But we are restricted to 
only this algorithm and, we cannot use this RTOS in a 
hard real-time application. 

Memory management 
• Determinism 

 

Any efforts for a deterministic memory management 
system have not been done, we have dynamic allocation 
and virtual memory optimized for throughput. 

• Inventiveness 

 

None of the offered constructs are implemented especially 
for this distribution. It is open source code, shipped with 
almost all Linux distributions.  

• Usefulness 

 

On the other hand it is very useful, many programmers 
are used to the standard Linux API. It is also easy to 
extend the system with other freely distributed packages. 

Interprocess communication 
• Determinism 

 

No bounded delays can be provided. 

• Inventiveness 

 

Standard solutions shipped with almost all Linux 
distributions. 

• Usefulness 

 

A broad range of communication possibilities are 
available for Linux today, it is easy and free to use them.  
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OSE 
OSE [ENE1] is a commercial general-purpose real-time operating system, 
merchandised by ENEA OSE systems. OSE is the first commercial RTOS, that is 
IEC 61508 certified [ENE3]. As most commercial operating systems, OSE 
supports different hardware configurations (processors etc) and can offer 
solutions for almost any purpose, examples include a web-server as interface 
between the embedded system and the internet and a soft kernel that are able to 
simulate a complete system before run-time. 
 
The set of supported processor’s seems to be almost all that is common used in 
embedded and real-time systems (Arm, Motorola, MIPS, Lucent, Mitsubishi, 
Intel, IBM etc), and OSE supports single processor solutions as well as scalable 
distributed solutions. In the distributed case, an image of the kernel is placed on 
every CPU in the system and the kernels communicate through a message-passing 
paradigm. Task migration is not supported. Instead tasks belong to the node 
where they are created, so no task placement algorithm or global scheduler exists. 
 

Figure 6, processes priority. 

Scheduling 
The scheduling algorithm [ENE1] is preemptive and priority based. In OSE 
terminology, processes are approximately the same as the tasks introduced in the 
design issues section. The supported process types are interrupt processes, timer 
interrupt processes, prioritized processes, background processes and phantom 
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processes. The different process types have an internal priority as shown in figure 
6, except for the background processes the priorities inside a certain type can be 
from 0-31. Note that the periodic processes (timer interrupt processes) always run 
with priority Z from the dispatchers point of view, which is the priority of the 
system timer interrupt. Prioritized and background processes has for every 
priority level a round-robin queue containing all ready processes of that priority 
level. The first process in the queue is the process currently running on that 
priority level. 
 

• Interrupt processes are called in response to a hardware interrupt or a 
software event. These processes has the highest priorities in the system, 
therefore an interrupt process can only be interrupted by another interrupt 
process with higher priority. 32 different interrupt priority levels exist. 
Interrupt processes become ready, executes and finally terminates. 

• Timer-interrupt processes are executed with the same priority level as the 
system timer interrupt, but internally has 32 different priorities. These 
processes are OSE’s support for periodic tasks. Their invocation 
semantics are the same as ordinary interrupt processes, becomes ready, 
executes and terminates. 

• Prioritized processes is said to be the most common type of process in 
OSE, they are written as infinite loops that will run until they become 
interrupted by a process with higher priority or suspend themselves. 
Prioritized processes have 32 different priorities, but it is still possible to 
have more than 32 prioritized processes. For each priority level that 
contains prioritized processes, the Kernel has a round-robin queue, 
containing all ready processes of the current priority level. The first 
process in the queue is the process currently running on that priority 
level. Each process on that priority level, share the levels execution time 
like an ordinary time-sharing operating system. 

• Background processes have the lowest priority in the system and run in a 
true time-sharing mode against each others (no internal priorities), they 
are like prioritized processes written as infinite loops.  A background 
process cannot suspend itself, if several background processes exists, they 
always run until their round-robin time slice has expired. 

• Phantom processes does not contain any code, they are used in 
conjunction with redirection tables to form a logical channel when 
communicating outside the target system (CPU). A phantom process is 
used as an image of the receiver processes on the sender’s node. More 
about phantom processes in communication section. 

Memory management 
Memory management [ENE1] in OSE contributes with the possibility to have 
several memory groups; the different memory groups are called memory pools. A 
pool is an area of memory, which message buffers, stacks and kernel areas are 
allocated. In all possible configurations there is always one and only one global 
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memory pool called the system pool. The system pool is the first pool created and 
its existence is crucial for the kernel, if this pool gets corrupted the whole system 
will crash. It is possible to build a system where all processes allocate their 
memory from the global system pool. From a safety point of view, it is better to 
create local pools for user created process. This is the desired way of user 
memory handling, OSE also support grouping processes together into logical 
blocks, some system calls work on entire blocks rather than single processes 
(start, kill etc). It may be a structured and clear approach to design an OSE 
application, with process groups allocated in different memory pools. 

Interprocess communication 
Communication in OSE [KAL, ENE2] seems to be ideally constructed for single 
processor solutions, but with the possibility to support almost any multiprocessor 
configuration. The possibilities for communication and synchronization between 
processes in OSE are message passing and semaphores, but in a multiprocessor 
environment semaphores cannot be used. However messages are not handled in 
the same way in a single processor environment, as in a multiprocessor 
environment. A kind of optimized message semantics (concerning message 
copying) is used in the first case. OSE seems to support some kind of remote 
procedure calls also, but it is just mentioned as quickest in [ENE1]. 
 
Semaphores are only visible within a single processor and can be divided into two 
classes, namely fast semaphores and “ordinary” semaphores. Fast semaphores are 
owned by a single process and hence only can be used by that process. All 
processes can access an ordinary semaphore, but there is no access protocol for 
avoidance of priority inversion present.  
 
The recommended communication method in OSE is message passing. OSE 
processes communicate directly to each other through intelligent messages also 
referred to as OSE signals. A message in OSE can only have one owner, this 
ensure the integrity of the message. This mechanism is designed to avoid the use 
of global memories (mail boxes and semaphores) for communication. The 
semantics of the messages or the message passing method is named direct 
messages, as the name unveils the messages are sent directly to a process and not 
to a mailbox implemented in global memory or something similar. This is of 
course one of the reasons, why a message only has one owner. The process 
addresses the messages with a receiver task rather than with an id of an intervened 
message queue owned by the RTOS. The real advantage with this method is 
potentially less data copying. In other message passing systems with a mailbox 
owned by the RTOS, the messages are first often copied from the senders memory 
area to a memory area owned by the RTOS, then a second copy from the RTOS 
memory area to the receivers memory area when the receiver reads the message. 
In the direct message-passing paradigm the maximum number of copies will be 
one (from the sender to the receiver), but in many cases there will be no copying 
at all. The desired semantics of the messages is just pointer copying, the 
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“payload” never actually moves in this way. This must require hard restrictions on 
the memory management, since tasks actually are poking in each other’s memory 
areas. Of course the data will be copied when tasks are in different physical 
memory domains, when trying to pass a message across memory address spaces it 
is recognized by OSE and copying has to be performed but just one copy as 
mentioned above. 
 
The OSE message-passing concept is totally transparent to the location of the 
communicating processes. This is implemented with phantom processes in OSE, 
e.g. processes without any executable code. The link-handlers on each node are 
used to set up logical channels, through creating phantom processes, which on the 
sender’s node represent the receiving process and on the receiver’s node the 
sender process. The only purpose of the phantom processes on the sender’s node 
is to hold a redirection table, so that all messages sent to it will be redirected to 
the link handler instead. The link handler is then responsible for sending these 
messages to the link handler in the target where the receiver resides. The phantom 
process on the receiver’s node are used to send messages in the other direction, a 
schematic picture can be seen in figure 7, the logical channel between process A 
on target 1 and process B on target 2 is represented with the dotted arrow. The 
phantom processes A’ and B’ and the link handlers LH are used for the real 
message transport. 
 

 
Figure 7, Tasks communication over memory domains. 

Conclusions 
OSE appears to be a typical commercial RTOS, with support for a lot of hardware 
configurations and a priority driven scheduling algorithm. The message passing 
mechanism with active messages seems to be the special feature that OSE offers. 
It seems to be a fast method and we avoids a lot of copying, semantically 
speaking the implementation is totally transparent to the location of the 
communicating processes. But in a hard real-time environment we cannot treat the 
placement of the communicating processes in OSE as arbitrary. The 
communication time will increase drastically between tasks on the same node and 
tasks on different physical nodes. Overall the communication mechanisms within 
a node appears to be more careful constructed than the global communication 
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mechanisms, collisions on the network and other unexpected communication 
disturbances seems to be a question for the application designer. 

Evaluation 

Scheduling 
• Determinism 

 

The priorities can be set according to RM, and the 
analysis can be performed with RM analysis. The 
problems would probably be to make exact WCET 
analysis, mainly because of unbounded message delays 
and the memory management. Another problem is the 
interrupt handling, interrupts have always the highest 
priority. This is a potential hazard, if any device that 
causes interrupts fail, the system will probably break 
down. 
 

• Inventiveness 

 

Nothing extraordinary here, a simple priority based 
scheduler.  
 

• Usefulness 

 

OSE is probably easy to use, and it seems to be easy to 
adopt real-world problem to the different processes. We 
have the possibility to use different process types, the 
question is if that is a possibility or a limit. For instance 
an interrupt process must always be of higher priority 
than a prioritized process. We also have a limit in the 
maximum number of processes, since we have a limited 
number of priorities. 
 

Memory management 
• Determinism 

 

Dynamic memory allocations, without any efforts of 
additional determinism. 
 

• Inventiveness 

 

OSE have with real-time measurements an advanced 
memory management system, which allows dynamic 
allocation, and protection within different memory 
groups. 
 

• Usefulness 

 

The memory management system in OSE is probably 
useful, dynamic allocations are always useful. But it is the 
protection mechanism, with memory pool system calls 
that seems to be the most useful mechanism. Usually 
memory pools and address spaces are defined off-line, but 
in OSE it seems to be possible to configure these during 

 57



 
 
 
 
 
 
 
Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels 

runtime. 
 

Interprocess communication 
• Determinism 

 

Bounded propagation times, or any collision avoidance 
methods are not supported. Although the communication 
mechanism is what is typically provided. 
 

• Inventiveness 

 

The direct message-passing concept is an excellent 
solution that minimizes the data copying and protects 
address spaces from each other. Although it is not so 
revolutionary, it is ordinary messages that require 
additional processes to propagate between two address 
spaces. 
 

• Usefulness 

 

OSE provides what is necessary and nothing more. 
Although the semaphores could be usable between 
different address spaces, it is a reasonable limit. 
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RT-Mach 
RT-Mach [NAK90] is a further development of Mach [ACC86], which is a 
research operating system with accomplished research goals back in 1994. The 
RT-Mach project is still a living research project; the philosophy behind RT-
Mach is firmly based on real-time scheduling theory and in particular on priority-
driven preemptive scheduling. RT-Mach extends this philosophy by adding a 
fundamental OS notion of temporal protection that enables the timing behaviour 
of applications to be isolated from one another. One of the design goals with the 
original Mach operating system was high portability, it seems like this goal was 
achieved particularly through a memory management system that separates the 
machine dependent and independent parts in an extremely clear and unusual way 
[TAN92]. Because of the high portability of the underlying Mach operating 
system, one of the goals with RT-Mach was to provide a common real-time 
computing environment in various machine architectures including single board, 
multi processor and distributed real time systems [NAK90]. 

Scheduling 
The active entities in RT-Mach are threads [NAK90], processes also mentioned as 
tasks in our references are passive entities. A thread can be defined for a real-time 
or non real-time activity. All threads real-time or not must at least be specified by 
a procedure name and a stack descriptor, which specifies the size and address of 
the private stack region. The real-time threads, which we are interested in, have a 
number of additional attributes. For a real-time thread, timing attributes must be 
defined by a timing attribute descriptor. Other attributes are hard or soft based on 
its deadline and periodic or aperiodic based on the nature of its activity. A 
periodic threads timing attributes is mainly defined by WCET, deadline, period 
time, start time and phase offset. The meaning of this parameters in a periodic 
thread is as follows, a new instantiation of the thread will be scheduled at its start 
time and then repeat the activity every multiple of the period time. The phase 
offset is used to adjust a ready time within each period. The thread will execute a 
maximum time of WCET and must at all activations finish before its deadline. An 
aperiodic threads timing attributes is defined by WCET, deadline, worst-case 
interarrival time. The meaning of WCET and deadline are the same as for a 
periodic thread; the worst-case interarrival time expresses the minimum time 
between two activations of the thread. 
 
The scheduling algorithm(s) in RT-Mach [ARA93, NAK90] has been heavily 
influenced by the goal of the predecessor Mach to run on multiprocessor 
architectures, additional abstractions, as processor sets and task allocation exist. 
Every CPU in a multiprocessor system can be assigned to a processor set, which 
is an operating system and scheduling abstraction. Each processor belongs exactly 
to one processor set and a processor set is the set of one or more processors. 
Threads can also be assigned to processor sets, and it is within the assigned 
processor set that a certain thread is scheduled. A thread cannot migrate to another 
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processor set, but it is a form of thread migration that occurs inside a processor set 
even if the designers never mention or claim that. Notice that the processor set 
solution also works for one processor. Each processor set has a run queue; it is 
from this queue a task to execute is chosen regarding on the processor sets 
scheduling policy. A certain thread can execute on different processors inside the 
processor set. 
Different scheduling policies can be applied to different processor sets, Rate 
Monotonic, Earliest Deadline, Fixed Priority, Deferrable Server and Sporadic 
Server have at least been implemented together with the round-robin time slice 
inheritance from Mach. 
The scheduling algorithm for a processor set can be changed during runtime by 
user level code; the scheduling policy representation inside a processor set is a 
self-contained object. The meaning of self-contained is that it is separated from 
the actual dispatch routine, so a change of the scheduler is just a change of the run 
queue manager. The actual change of schedule algorithm for a user thread is two 
system calls, one to get the scheduler object and a second to set a new schedule 
object. 
Above the actual scheduling algorithm RT-Mach has another algorithm for 
bandwidth allocation and overload handling, ITDS (Integrated Time Driven 
Scheduler). By bandwidth reservation for the hard activities, the ITDS algorithm 
knows how much time there is available for activities with soft deadlines. 

Memory management 
An effort to more deterministic memory management than the inheritance from 
Mach offers is described in [NAK90]. Mach has an unsuitable memory 
management technique for real-time usage called lazy evaluation. The problem 
with this technique is that it causes unbounded delays. For instance if a thread 
allocates a region of memory, the system does not allocate the object unless the 
thread touches the region and causes a page-fault. To make it possible to create 
more deterministic accesses, a “patch” in form of a system call is provided. The 
call named vm_vire makes sure that the portion of memory is pre-allocated, or 
allocated without the lazy evaluation technique. 

Interprocess communication 
Shared memory is a natural way of communication in RT-Mach, since no special 
mechanism is needed for threads created inside the same task to share memory 
objects, they all share the same address space automatically. Remember that 
threads are the only active entities and that tasks are passive, so it not unlikely to 
imagine a system where one process creates all threads. 
 
Synchronization (mutual exclusion) through locks is described in [NAK90] and 
was included in the design the RT-Mach. Mutual exclusion is an important feature 
since all threads created inside the same process shares the same resources. The 
lock and unlock pair provide a priority inheritance mechanism to avoid priority 
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inversions. The mutual exclusion in RT-Mach between threads is therefore 
deterministic and suitable for real-time computing. 
 
A predictable and deterministic communication protocol suited for use in a hard 
real-time environment was on the other hand not included in the design goals of 
RT-Mach. The predecessor Mach supports a variety of communication techniques 
(message passing, remote procedure calls, byte streams etc), but these are 
optimized for throughput rather than determinism and are therefore not included 
in the presentation of RT-Mach in [NAK90]. According to [NAK93] the original 
Mach communication primitives are heavily used in RT-Mach anyway. A method 
(RT-IPC) for implementation of a suitable communication protocol in RT-Mach 
has been proposed in [NAK93], and it is this technique that is described here. RT-
IPC is implemented above the original message passing method and uses the same 
interface, but operates in another name space and logical port. A name space in 
the RT-Mach kernel has the same semantic meaning as a namespace in a regular 
C++ program. In figure 8, the two different namespaces of a communication port 
is illustrated. 

 
Figure 8, In RT-Mach, it is possible for coexistence of real-time messages and ordinary 

messages. 
 
The added real-time features, which aim for determinism when using a real-time 
port, are listed below. 

• Message buffers must be pre-allocated (static or dynamic allocation), to 
avoid unpredictable allocation delays.  

• Priority inheritance to the message-sending server. Messages that are 
going to be sent are first transferred to a message sending server, the 
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server inheritances the highest priority of all the sending threads at any 
instance in time. 

• Message queue ordering. The message queue to the sending server is 
ordered in priority of the messages and each messages priority is the same 
as the sending threads.  

• Priority hand-off. The receiver propagates the priority of the sender. 

Conclusions 
RT-Mach is surprisingly well suited for real-time applications, although the 
building base was an ordinary time-sharing system. The large amount of 
scheduling algorithms provided and the possibility to use different scheduling 
algorithms for different task groups seems to be the main contribution. In this way 
we potentially have more freedom when trying to translate the requirements of 
different activities into tasks. It should also be possible to compare and evaluate 
different scheduling algorithms practically, since we are able to hold all other 
factors except the scheduling algorithm constant. 
 
Efforts to make the communication and memory handling mechanisms more 
predictable have been made, that is good. But any worst-case scenarios or any 
attempts to show the bounded delays were not presented. 

Evaluation 

Scheduling 
• Determinism 

 

The scheduling algorithms are all off-line analyzable, and 
we have overload handling through the ITDS algorithm. 
The WCET estimation should be partially possible, 
although the memory management system seems to be a 
little bit weak form this point of view. The problem may 
lie in the thread migration inside a processor set.  
 

• Inventiveness 

 

Task migration inside a processor set, change of 
scheduling algorithm during runtime, different scheduling 
algorithms on different processor sets and global 
scheduling gives highest score here. 
 

• Usefulness 

 

All desired task types, and very high flexibility. The 
flexibility is achieved through the possibility of different 
scheduling algorithms on different processor sets and the 
possibility to change it during run-time. 
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Memory management 
• Determinism 

 

Efforts to more predictive memory management have 
been implemented, but on the other hand we still have 
dynamic allocations, and other inheritances optimized for 
throughput rather than determinism. 
 

• Inventiveness 

 

Here we have an unsuitable memory system that have 
been adopted to real-time use, with a patch in form of an 
additional system call. That is not inventive; it is rather an 
ad hoc solution. 
 

• Usefulness 

 

It is useful with dynamic memory allocation, but the need 
of an additional primitive is not a desired feature. The 
memory system separates machine dependent and 
independent parts in a clear and unusual way that is 
clearly useful. This separation is said to make the whole 
operating system more portable than others. 
 

Interprocess communication 
• Determinism 

 

The priority inversion problem is considered and cares to 
real time aspects are taken. The proposed communication 
protocol seems to provide a deterministic access to the 
communication medium. A potential problem is to let 
ordinary traffic coexist with real-time traffic, of course we 
can avoid that in the design but it is still a hazard. 
 

• Inventiveness 

 

The contribution is namespaces, which show us how to 
extend an existing message passing mechanism into a 
more real-time suited one. 
 

• Usefulness 

 

Message passing, shared memory and synchronization 
primitives are available. More than necessary. 
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RTEMS 
RTEMS [OAR00] is a free, open-source real-time kernel that provides a high 
performance environment for embedded systems. Initially RTEMS stood for the 
Real-Time Executive for Missile Systems but as it became clear that the working 
range extended far beyond missiles, the "M" changed to mean Military. There are 
two implementations of RTEMS, one Ada implementation and one C 
implementation. The C version changed the "M" to mean Multiprocessor while 
the Ada version remained with the "M" meaning Military. 
The main issue during the development of RTEMS was portability. RTEMS is 
designed to isolate the hardware dependencies in specific board support packages. 
Therefore real-time applications should be easily ported to different processors, 
for instance Intel i80386 and above, Motorola MC68xxx, PowerPC and SPARC.  
RTEMS adopts an object-oriented model, which increase the reusability and 
extendibility of code. Tasks, message queues, semaphores, memory regions, 
memory partitions, timers, ports and rate monotonic periods are all objects that 
can be dynamically created, deleted and manipulated. 

Scheduling 
The task manager in RTEMS provides a comprehensive set of directives to create, 
delete and administrate tasks. All tasks have priorities that are used by the 
scheduler. A task is defined as the smallest thread of execution that can compete 
on its own for system resources. During system initialization a TCB is allocated to 
each task. The TCB contains all information that is pertinent to the execution of 
the task. A task can support either preemption or non-preemption. A task that 
supports preemption leaves the processor to a higher priority task that is ready, 
even if the lower priority task is in the execution state, i.e. the task has not finish 
the execution. A task that has disabled preemption retains the control of the 
processor as long as it is in the execution state. 
RTEMS supports 255 levels of priorities, and several tasks are allowed to have 
the same priority. A timeslicing component is used by the scheduler to determine 
how to allocate the processor to tasks of equal priority. If timeslicing is enabled, 
then the time a task can execute is limited. The processor is then allocated to 
another ready task of equal priority, i.e. round robin scheduling within individual 
priority groups. If timeslicing is disabled, then the task will execute until another 
higher priority task becomes ready. An interrupt level component is used to 
determine which interrupts will be enabled during execution of a task. This is 
done by setting an interrupt-level for each task. Another component is the 
asynchronous processing component, which is used to determine when received 
signals are to be processed by the task. This component does only affect tasks that 
have established a routine to process asynchronous signals. If signal processing is 
enabled, signals set to the task will be processed next time the task executes, 
otherwise all signals received will remain posted until signal processing is 
enabled. 
 



 
 
 
 
 
 
 
Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002 

 65

RTEMS’ scheduling concept is to provide immediate response to specific external 
events. The scheduler allocates the processor using a priority-based, preemptive 
algorithm extended to provide timeslicing within individual priority groups. The 
goal with the RTEMS algorithm is to guarantee that the executing task on a 
processor at any instance of time is the one with the highest priority among all 
tasks in the ready state. The user of the system assigns priority levels to the tasks 
when they are created. The priority levels can also be altered during run-time. A 
mechanism for altering the RTEMS scheduling algorithm is called manual round 
robin. This allows a task to give up the processor and immediately returned to the 
ready queue. If no other task with the same priority is ready to run, then the 
executing task will not give up the processor. 
 
A rate monotonic manager is provided, which facilities the manage (of execution) 
of periodic tasks. This manager was designed to support application programmers 
that want to utilize the Rate Monotonic Scheduling Algorithm (RM) to guarantee 
that all periodic tasks will meet their deadlines, even under transient overload 
conditions, by means of schedulability rules for RM. If there are several ready 
tasks of equal priority level, the task that have been ready longest time will 
execute first. The RM manager definitions of different task types: 

• Periodic task – tasks that executes at regular intervals (periods). Periodic 
tasks have hard deadlines, which are the same as their periods. 

• Aperiodic task – tasks that executes at irregular intervals with soft 
deadlines. That means that the deadlines are not rigid, but adequate 
response times are desirable. 

• Sporadic task – aperiodic tasks with hard deadlines and minimum 
interarrival times. 

 
All tasks with hard deadlines (periodic and sporadic tasks) are typically referred 
as critical tasks, while tasks with soft deadlines (aperiodic tasks) are referred as 
non-critical tasks. The critical tasks are scheduled using RMS, and the non-critical 
tasks are scheduled as background tasks, i.e. by assigning priorities such that the 
lowest priority critical task has a higher priority level than the highest priority 
non-critical task. The motivation to this type of scheduling is that all critical tasks 
must be guaranteed execution (using the RM schedulability analysis), even under 
transient overload, while schedulability is not guaranteed for non-critical tasks. 

Memory management 
A processor may support any combination of memory models ranging from pure 
physical addressing to complex demand paged virtual memory systems. 
Regardless of the support from the processor RTEMS supports only a flat 
memory model, which ranges contiguously over the processor's available address 
space. RTEMS does not support segmentation or virtual memory of any kind. 
The RTEMS memory manager provides dynamic memory allocation and address 
translation. The dynamic memory allocation is required by applications with 
memory requirements that vary during execution. The address translation 
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mechanism is used by applications that share memory with other processors. The 
owner of a shared memory accesses the memory using internal addresses, while 
other processors must use external addresses. 

Interprocess communication 
RTEMS provide different managers that is dedicated to communication and 
synchronization: 

• Semaphore 
• Message Queue 
• Event 
• Signal 

The semaphore manager is used when mutual exclusion of one or more shared 
resources is necessary. Both binary and counting semaphores are supported by 
RTEMS. A binary semaphore is restricted to either zero or one, while counting 
semaphores are restricted to all positive integer values. A counting semaphore is 
typically used to control access to pool of two or more shared resources. RTEMS 
support both the Priority Inheritance and the Priority Ceiling protocol to solve the 
priority inversion problem. 
 
The message manager supports both communication and synchronization between 
different tasks. A message is a variable length buffer where information can be 
stored. The message queues can contain variable number of messages and they are 
sorted in FIFO order, with the exception of urgent messages that can be placed at 
the head of a queue. Tasks can either do a (block) wait for a message to arrive at a 
queue or poll a queue for the arrival of a message. 
 
The event manager provides a high performance synchronization intertask 
communication mechanism. A task uses an event flag to inform another task of 
the occurrence of significant situation. 
 
The signal manager supports asynchronous communication and is typically used 
for exception handling. The directives provided are establish an asynchronous 
signal routine (ASR) and send signal to a task. 

Conclusions 
RTEMS is probably one of the most distinguishing operating system in this paper. 
The fact that RTEMS is a free, open-source real-time kernel is the main 
motivation. The main issue during the development of RTEMS was portability. 
RTEMS isolates the hardware dependencies in specific board support packages. 
So real-time applications is easily ported to different processor families. 
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Evaluation 

Scheduling 
• Determinism 

 

Off-line analysis is possible, we can also disable 
interrupts during task execution. We can also set priorities 
on interrupts, higher, lower or in between tasks. Although 
interrupts exist and for instance dynamic memory 
allocation may jeopardize the WCET estimation. 
 

• Inventiveness 

 

Nothing special here. Just a simple priority based 
scheduler. 
 

• Usefulness 

 

In RTEMS it seems to be easy to adopt real-world 
problems. We can use interrupts freely, although we miss 
real freedom in the choice of scheduling algorithms etc. 
 

Memory management 
• Determinism 

 

RTEMS does not support segmentation or virtual memory 
of any kind. But dynamic memory allocations are a little 
problem. 
 

• Inventiveness 

 

RTEMS supports dynamic allocation of memory. 
 

• Usefulness 

 

Dynamic memory is an advantage when a tasks memory 
requirements change during runtime. 
 

Interprocess communication 
• Determinism 

 

The fact that the message-queues are sorted in FIFO 
order, may jeopardize the determinism of the message 
passing mechanism. The transmission times are not 
bounded. 
 

• Inventiveness 

 

No distinguishing mechanism is provided. 
 

• Usefulness 

 

Several different communication and synchronization 
primitives aim for a high grade of usefulness. 
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SARA 
The hardware architecture of the SARA system [FUR99] is divided into local 
CPU board, bus arbitrator, global RAM, I/O and Real-Time Unit (RTU) [FUR95, 
ADO96]. The RTU is a co-processor that performs real-time operating system 
functions. The RTU is further investigated in the scheduling section. The 
processor boards, RTU and other facilities are connected to each other with a 
Compact PCI bus (CPCI). The CPCI bus offers eight slots for CPU boards, 
however in a CPCI system there is always one special “system-slot”. This slot has 
a special CPU-board (system board) that handles the arbitration, clock-
distribution, etc on the back plane. An overview of the SARA-system is shown in 
figure 9. 

 
Figure 9: Block diagram of SARA system. 

 
The RTU is attached to the local PCI bus on the system board, when the RTU 
signals something for instance task-switch, it will generate an interrupt on the 
local PCI bridge on the system board. As the local bus on the system board is 
attached with a transparent bridge to the global CPCI bus, all interrupts will 
become visible for all other boards. The problem with this is that the interrupts is 
signaled through four interrupt-lines that are available on the CPCI bus. If more 
than four boards are inserted, some boards have to share interrupts and this may 
cause latencies. The SARA system provides a solution for the latencies through 
16 bit wide doorbell registers in all non-transparent bridges; all doorbell registers 
in the system have a unique address. When the RTU generates an interrupt, it 
generates a write-cycle from the local bus where it is hosted to all doorbell 
registers it wants to access. The interrupts to the system board is generated 
through the standard interrupt lines. The doorbell registers not only provide a 
solution to the latencies with shared interrupts, through them it is also possible to 
use 216 different interrupts. 
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Scheduling 
As the applications become larger and more complex, the demands on real-time 
kernels increase every year. A real-time kernel must give short and predictable 
response. For the purpose of meeting these demands in time, the RTU, which is a 
real-time kernel coprocessor, has been implemented in hardware [FUR95]. By 
implementing the kernel in hardware, the performance and determinism can be 
improved. 
 
The RTU is a small single- or multiprocessor multitasking real-time kernel. It can 
handle 1 to 3 processors, 64 tasks and 8 priority levels. The interface to the RTU 
is read- and writeable registers, which makes it easy to port to different types of 
processors. (See the register model section for further details). 
 
 
Advantages of using a hardware kernel: 

• Flexible, the only software segment, which must be rewritten on a new 
processor type, is the assembler code for taskswitch. 

• The performance increases. The scheduling of a task is done within 5 to 
80 clock cycles, and the scheduling doesn’t load the processor. 

• Deterministic execution of the service instructions, which make it easier 
to calculate the execution time for a system. 

• No clock tick interrupts are needed, because the RTU handles the task 
scheduling. 

• The response time decreases for all service calls, because the RTU is 
designed of parallel hardware. 

• Easier software development, because the kernel code doesn’t have to be 
executed by the processor. 

• Easier understand ability for the system, because the real-time kernel is 
separated from the RAM. 

• A more safe execution of the real-time kernel, because no interference 
between the kernel functions are possible (designed in physical separated 
parts). 

• No interrupt handler for external interrupts has to be implemented in 
software. 

• Easier to debug without affecting it, because the service calls can be 
logged on the bus. 

 
The RTU consists of several units, where each unit represents certain 
functionality. Depending on what kind of system the RTU is going to be used in, 
it can be configured with different units, i.e. it depends on the service 
requirements. The simplest RTU consists only a scheduler. Functionalities 
available (1999): 
 

• Scheduler: The scheduling algorithm is priority-based and supports 
preemption of tasks. The goal is to ensure that the task, which is 
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executing on the processor at an arbitrary time, is the one with the highest 
priority among all tasks in the ready-queue. Only one task can execute on 
a CPU at a time, so the maximum number of executing tasks is the same 
as number of CPU’s. The RTU has several ready queues, one ready-
queue for each CPU and a “global” ready queue, i.e. it contains task that 
can be executed at any of the connected CPU’s. The scheduler compares 
the own and the global queue in parallel, for each CPU in order to execute 
the task with highest priority. There are two events that can do a 
taskswitch. The task itself can request a switch and the scheduler can 
interrupt the executing task when a task with higher priority is ready. 

• Delay: Holds a task in the delay queue until the delay time has expired. 
Then the task is placed in the ready queue. 

• Periodic start: Holds a task in the periodic queue until the periodic time 
has expired. Then the task is placed in the ready queue. 

• Watchdog: A watchdog task is suspended until the watchdog timer has 
expired 100 ms. After 100 ms has expired, the task becomes ready to 
execute. 

• Semaphores: The RTU can hold four tasks in the semaphore queue.  It is 
a FIFO queue, which means that the first task in the queue gets the 
semaphore, when it is released (free). When a task gets the semaphore, it 
is removed from the semaphore queue and sent to the ready queue. 

• Event flags: the RTU can hold four tasks in the event flag queue. When 
the flag is set, all tasks in the queue are sent to the ready queue. 

• External interrupts: Holds a task until an interrupt corresponding to the 
task’s interrupt level occurs. Then the task is sent to the ready queue. 

• Interface: The RTU has this I/O interface between the real-time functions 
and the PCI bus. 

Register model 
Each processor have three dedicated registers: cpu_control_register, next_task_id 
and cpu_status_register. The RTU has two registers that hold the overall 
information: rtu_status_register and rtu_control_register. Finally there are two 
more registers: svc_instruction_register and svc_semaphore_register. They are 
both service-call registers (SVC). The register address is calculated by adding a 
base address to the address offset in the table 6. 
 
Register name Address offset (hex) Read/Write Size 
CPU_STATUS_REGISTER (0 to 2) 0, 2, 4 R 16 bit 
RTU_STATUS_REGISTER 6 R 16 bit 
RTU_CONTROL_REGISTER 8 r/w 16 bit 
NEXT_TASK_ID (0 to 2) A, C, E R 16 bit 
SVC_INSTRUCTION_REGISTER 10 W 16 bit 
SVC_SEMAPHORE_REGISTER 12 r/w 8 bit 
CPU_CONTROL_REGISTER (0 to 2) 16, 18, 1A r/w 16 bit 

Table 6, register offsets. 
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Memory management 
Communication and synchronization between different processes in the system is 
performed through the global memory that resides on the system board. The 
global memory is also used for TCB and stacks. As shown in figure 1, there are 
two kinds of PCI buses in the system. All boards have a local PCI bus that is 
connected to the CPCI bus through a PCI-PCI bridge. The system board has a 
transparent bridge, while other boards have bridges that remap addresses on one 
bus to another address on the other bus. With this non-transparent bridges address 
collisions on the CPCI bus can be avoided and all boards can use it’s full address 
range on the local PCI bus.  

Figure 10: Logical picture of a VCB system 

Interprocess communication 
A Virtual Communication Bus (VCB) that uses the global memory on the system 
board is used for inter process communication and synchronization between tasks 
in the system [NYG00]. As the name says, the VCB is just a virtual bus that uses 
the physical CPCI bus and the global memory on the system board. The VCB 
provides a message passing mechanism that allows task-to-task communication 
locally on one CPU as well as between several different CPUs. The logical 
architecture of a system with a VCB bus is shown in figure 10. 
 
The VCB bus is divided in two layers. The lower hardware layer consists of base 
primitives and is implemented and integrated in a FPGA (Field Programmable 
Gate Array). The upper layer is implemented in software and it provides different 
types of functionality from the bus. When a task wants to communicate on the 
VCB bus, it has to connect to the virtual bus. This is done by allocating one VCB-
slot. When a task allocates a slot, it has to decide a message-sorting algorithm that 
will sort the message-queue. The two available sorting algorithms are First In 
First Out (FIFO) and a priority-based algorithm (highest priority first). The 
sender of a message has to set a priority to the message. VCB provides support for 
both synchronous and asynchronous communication. A task that is connected to a 
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VCB-slot can communicate with all the other tasks in the system. The functions 
this bus supports are for instance: send, receive, broadcast, send and wait, 
multicast and subscribe. It is the hardware layer that performs the job, when a call 
to the VCB is made. This feature speeds up the message passing compared to 
similar implementations in software [RTU00]. 
 
When a task allocates a VCB slot, a message-sorting algorithm must be chosen. It 
is a choice between two algorithms, namely FIFO and PRIORITY based sorting. 
If FIFO sorting is chosen, we will have an ordinary queue, the message received 
first will be read first. It is PRIORITY that is interesting in real-time applications. 
If the PRIORITY sorting algorithm is chosen the incoming message will be 
placed in the queue depending on its priority. If an incoming message has higher 
priority than the receiving task, the priority of the receiving task will be raised to 
the same priority as the message. The priority of the task will be restored to its 
origin when the message has been taken care of. By raising the priority of the 
receiving task when high priority messages arrives priority inversion is avoided. 
 

Conclusions 
The SARA system together with the RTU provides an interesting solution that has 
proved to be efficient [FUR00] in comparison with some commercially available 
solutions. The speciality is of course the large amount of typical software routines 
that has moved into hardware. According to us the algorithms implemented in the 
RTU are of typical soft real-time class, but an interesting question arises when 
moving such algorithms into hardware. Is it possible that algorithms that usually 
cannot provide bounded response times etc, can be moved to hardware and then 
provide this? It seems like almost all the system calls have bounded worst-case 
response times; this together with the possibility of high “useful” CPU utilization 
could make the system suitable for hard real-time applications. 
 
A potential problem with the SARA system today is the non-deterministic 
arbitration for the CPCI bus. Besides this problem, the fact that the bus is used for 
both system calls to the RTU and interprocess communication may cause new and 
undiscovered race conditions. Conflict between messages and system calls is not a 
problem in an ordinary software implemented RTOS. 

Evaluation 

Scheduling 
• Determinism 

 

Static priorities suggest the use of for instance RM, and it 
is analyzable. The interrupts are also mapped into 
priority-based tasks. The execution of the scheduling 
algorithm does not require any CPU time either. 
 

• Inventiveness The algorithm itself is not fancy, but the hardware 
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implementation compensates for that. 
 

• Usefulness 

 

Certainly, easy to map a real-world problem. This 
together with the possible speedup with a hardware 
implementation aims for a higher grade. 
 

Memory management 
• Determinism 

 

The SARA system does not provide any virtual or 
dynamic memory. Although access times to the shared 
memory on the system board may be varying, it is not 
supposed to be addressed as a part of the memory, instead 
through the message passing mechanism. 
 

• Inventiveness 

 

The memory management system on the SARA system 
does not provide any fancy solutions. 
 

• Usefulness 

 

No virtual memory or dynamic allocations are supported, 
in other words nothing that increases the usefulness. 

Interprocess communication 
• Determinism 

 

The priority based message queues are a nice real-time 
feature; together with a more deterministic hardware 
implementation and priority inversion handling a higher 
grade is motivated. 

• Inventiveness 

 
 

Nothing new, but not a copy of another solution either. 

• Usefulness 

 

Certainly useful, the speedup achieved with a hardware 
implementation is a desired feature. But a higher grade 
here would be achieved with more communication 
possibilities. 
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Spring 
Spring [RAM91] is a distributed real-time operating system for large complex 
applications with hard timing constraints. According to the inventors, to ensure 
predictability, the design and implementation of all levels of the system must be 
integrated, i.e. a predictable architecture facilitates the construction of a 
predictable operating system, which is necessary to build predictable application 
software. Spring is a complete real-time system with among other things a 
partially customized hardware, a predictable operating system and a compiler. 
The Spring system is physically distributed and consists of multiprocessor nodes 
connected through a network, where each multiprocessor contains one or more 
application processors (AP), one or more system processors and an I/O 
subsystem, as in the block diagram in figure 11. 

Figure 11, hierachical block diagram of a Spring system. 
 

• Application processors execute previously guaranteed application tasks. 
• The system processor executes the scheduling algorithm and other 

operating system tasks. The advantage with a physical separation between 
system activities and application activities is that the system overhead on 
the application processors is reduced. It also removes unpredictable 
delays since the application processors are not affected by external 
interrupts. 

• The I/O subsystem handles non-critical I/O, slow I/O devices and fast 
sensors. 

 
Each processing unit within a node consists of a commercial Motorola 68020-
based MVME136A board [MOL90]. The MVME136A boards have the typical 
shared bus multiprocessors features, for instance an asynchronous bus interface 
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and a local memory. A part of this memory is used for storing programs and 
private data, and can only be accessed by the local processor. The rest of the 
memory can either be accessed by the local processor or remotely over the VME 
bus by another processor. 

Scheduling 
The scheduling is the most distinguishing feature of the Spring Kernel, and the 
mechanism is divided into four levels: 

• At the lowest level, there is one type of dispatcher running on each 
application processor and another type running on the system processors. 
The application dispatchers simply removes next ready task from a 
system task table that contains previously guaranteed tasks arranged in 
the proper order for each application processor. The dispatcher on the 
system processor allows the periodic execution of systems tasks. 

• The second level consists of a local scheduler that is resident on the 
system processor. It is responsible for dynamically guaranteeing the 
schedulability of a task set on an especial application processor. The 
scheduler produces a task table that is passed to the application processor. 

• The third level is a distributed scheduler that tries to find an alternative 
node to execute any task that cannot be locally guaranteed. 

• The fourth scheduling level is a metalevel controller that adapts various 
parameters of the scheduling algorithm to the different load conditions. 

[BUT97] 
 
Spring tasks are characterized by many different parameters. The user has to 
specify a worst-case execution time, a deadline, and interarrival time, a task-type 
(critical, essential or unessential), preemptive or non-preemptive, an importance 
level (value), a list of resources, a precedence graph and a list of nodes on which 
the task code will be loaded. The scheduling algorithm uses this information to 
find a feasible schedule. 
 
A task is not defined as a large process, but rather a compiler generated non-
preemptable piece of a process [NIE93, BUR93]. This is necessary because the 
compiler takes resource needs into account when creating small and predictable 
tasks from larger processes written by an application programmer. 
A task holds a requested resource as long as it executes, i.e. each task acquires 
resources before it begins and releases the resources upon completion. The 
assignment of tasks to processors is initially done statically to avoid unpredictable 
delays and improve speed. A task can be loaded on more than one processor 
during runtime, so if an overload occurs, a task can be executed on another 
processor without a large overhead. Tasks with precedence constraints that share a 
single deadline are placed together in a task group. 
 
Tasks are classified based on importance and timing requirements. The 
importance of a task is the same as the value gained by the system when the task 
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completes before its deadline. Timing requirements represent the real-time 
properties of a task, for instance periodic or aperiodic execution, hard or soft 
deadlines, while some tasks may not have any explicit timing requirements. 
Based on importance and timing requirements, three different types of tasks are 
defined: critical tasks, essential tasks and unessential tasks. 

• Critical tasks are those tasks that must complete their deadlines. A critical 
task that misses its deadline might occur a catastrophic result. The 
number of truly critical tasks is usually relatively small compared to the 
total number of tasks in the system. 

• Essential tasks are those tasks that have timing constraints and are 
necessary to the operation of the system. A deadline miss does not cause 
catastrophic result, but the systems performance will be degraded. The 
number of essential tasks is normally large in complex control 
applications, and they must be treated dynamically because it is 
impossible to reserve enough resources for all of them [RAM91]. The 
Spring Kernel provides an on-line, dynamic algorithm for this type of 
tasks. 

• Unessential tasks execute when they do not affect critical or essential 
tasks, and they may or may not have deadlines, i.e. they are executed in 
background. Maintenance functions and long-range planning tasks belong 
to this category. 

 
The Spring scheduling algorithm [NIE93, BUR93] dynamically guarantees the 
execution of newly arrived tasks depending on the current load. The feasibility is 
determined based on many issues, such as timing constraints, mutual exclusions 
on shared resources, precedence relations, preemption properties and fault-
tolerant requirements. The algorithm uses a heuristic function to reduce the search 
space and find a result in a polynomial time, since the problem is NP-hard. The 
heuristic function H is applied to each of the tasks that are waiting for to be 
scheduled. The task with the smallest value is selected to extend the current 
schedule. It is easy to modify the heuristic function. The value that the function 
determines can for instance be arrival time (the algorithm will work as first come 
first served), absolute deadline (the algorithm will work as earliest deadline first) 
and computation time (the algorithm will work as shortest job first). 
 
Each task has to declare a binary array of resources Ri = [R1(i),…,Rr(i)]. If a 
specific resource is not used by a task, the tasks element in the binary array is set 
to zero Rk(i) = 0, and the element is set to one if it is used. For each resource, the 
algorithm determines the earliest time the resource is available, denoted as EATk 
(Earliest Available Time). The earliest start time Test(i) that a task τi can start the 
execution without blocking any shared resources is: 
 
Test(i) = max[ai, max(EATk)], 
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Where ai is the arrival time of τi. Once Test as been calculated for all of the tasks, 
the heuristic function selects the task with smallest value of Test. The complexity 
of the Spring scheduling algorithm is O(n2), where n denotes number nodes. 
 
Precedence relations can be handled by a factor called eligibility. A task becomes 
eligible for execution when all tasks in front of the current task in the precedence 
graph have completed. A task that is not eligible cannot be selected for extending 
a partial schedule. 

Memory management 
Figure 11 shows that each node is a distributed memory multiprocessor with non-
uniform (NUMA) memory access times. Local access is significantly faster, since 
it does not use the system bus. Each node has a 2 MB reflective memory that is 
used to support predictable IPC. 
Traditional memory management with support for virtual memory introduces 
several sources of unpredictability. Each memory reference is subject to three 
possible delays: page fault, TLB loading and TLB translation [NAH92]. Each of 
these delays makes it harder to calculate worst-case execution times that are not to 
pessimistic. Therefore the Spring memory management unit (MMU) has two 
following basic ideas: 

1. Avoid page faults by preallocating, at process creation time, a physical 
page for every used page in a program’s address space and loading that 
page in memory. 

1. Explicitly manage the contents of the translation look-aside buffer (TLB) 
to ensure that all memory references experience TLB hits. 

 
The first idea eliminates unpredictability due to page faults, and the second 
eliminates unpredictability due to TLB misses. Since every memory reference 
results in a TLB hit, the MMU influence on memory references time is 
predictable. [NAH92] describes how the memory management unit is 
implemented. 
 
Spring has memory-management primitives that create various resource segments 
that are completely memory-resident, for instance code, stacks, task control 
blocks, task descriptors, local data, global data and ports. The kernel allocates all 
the required segments when a task begins execution. 

Interprocess communication 
Due to hard real-time requirements, all communication must be predictable. This 
include bounding of execution times of IPC primitives, network protocol 
processing and message propagation delay. The Spring IPC system supports both 
synchronous and asynchronous message passing through ports, which are kernel-
protected memory objects. Processes can communicate by placing messages into 
ports and removing messages from ports. The ports are typed by the kind of 
process that uses them (guaranteed hard real-time, soft real-time or non real-time) 
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and according to the communication they are used for, namely synchronous and 
asynchronous. Ports have bounded capacity and the messages have fixed sizes. 
Messages can have deadlines, which determine when they must be delivered to a 
port. 

Interrupt handling 
Peripheral I/O devices are divided into two classes: fast and slow I/O devices. The 
system processor handles fast I/O devices, so the application processors are not 
affected. Interrupts from fast I/O devices are treated as a new task that is subject 
to the guarantee routine like any other task in the system. Slow I/O devices are 
multiplexed through a front-end dedicated processor (I/O processor) controlled by 
a commercial operating system. The guarantee algorithm does not affect device 
drivers running on the I/O processor, although they can activate critical or 
essential tasks. 

Conclusions 
Predictability is a keyword that come back again and over again when talking 
about the Spring system’s design issues. It is obvious that a hard real-time system 
with hard timing constraints must be predictable to manage the application’s 
timing requirements. In order to achieve predictability, all levels of the system 
must be predictable, i.e. a predictable architecture facilitates the construction of a 
predictable operating system, which is necessary to build predictable application 
software. 
A distinguishing feature with Spring in comparison with other multiprocessor 
real-time systems is the system processor, which only executes scheduling and 
system tasks. The application tasks execute on application processors. The 
advantage with a physical separation between system activities and application 
activities is that the system overhead on the application processors is reduced. It 
also removes unpredictable delays since the application processors are not 
affected by external interrupts. It is certainly a powerful feature to achieve 
predictability in a real-time system. Another solution to achieve predictability is 
to eliminate some or all interrupts, instead of separating system activities from 
application activities. 
Spring is a distributed real-time system for large complex applications with hard 
timing constraints, but it does not provide any fault tolerance. 

• What will happen if a critical task misses its deadline? 
• The task migration may also be a problem. What will happen with 

globally rejected tasks, i.e. tasks that cannot be guaranteed?  
• What if acknowledgements get lost, i.e. when a task is migrated to 

another node? Inconsistent state? 
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Evaluation 

Scheduling 
• Determinism 

 

All levels of the system have been designed to ensure 
predictability. Offline analysis is possible for tasks with 
hard deadlines. Tasks that have timing constraints but are 
not necessary to the operation of the system are treated 
dynamically, with an online guarantee algorithm. 
Combined with a hardware implementation, this is a 
deterministic solution. 
 

• Inventiveness 

 

Spring supports both multilevel scheduling and task 
migration. Again this together with a hardware 
implementation aim for the highest grade. 
 

• Usefulness 

 

Spring has all desired task types, and a very high 
flexibility. The flexibility is achieved through the 
possibility of different scheduling algorithms. 
 

Memory management 
• Determinism 

 

The Spring memory management unit (MMU) eliminates 
unpredictability due to page faults and TLB misses. So 
every memory reference results in a TLB hit, the MMU 
influence on memory references time is predictable. 
 

• Inventiveness 

 

Spring supports virtual memory and dynamic memory 
allocation. 
 

• Usefulness 

 

Both virtual memory and dynamic memory allocation 
make Spring flexible. 
 

Interprocess communication 
• Determinism 

 

Spring have bounded execution times of IPC primitives, 
network protocol processing and message propagation 
delay. The IPC system provides a message passing 
mechanism that uses ports, which are kernel-protected 
memory objects. The ports can be typed by the kind of 
communication they are used for, i.e. guaranteed hard 
real-time, soft real-time or non real-time. 
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• Inventiveness 

 

No extraordinary features are provided. 
 

• Usefulness 

 

The system processor handles fast I/O devices, so the 
application processors are not affected. 
 

 

Summary of evaluations 
In table 7, a summary containing all the evaluation parts of all reviewed RTOS:es 
is presented. As before each of the areas scheduling, memory management and 
interprocess communication are graded within the three topics (D)eterminism, 
(I)nventiveness and (U)sefulness. A lot of grades give the reader the opportunity 
to self create ranking orders focusing on the issue that is the most interesting for 
his/hers own purposes.  
 

 Scheduling Memory 
management 

Interprocess 
communication 

 D I U D I U D I U 
CHAOSarc 2 5 2 2 4 4 3 5 2 
Chimera 3 4 4 2 4 3 3 3 4 
MARS 5 3 2 5 2 2 5 4 1 

MontaVista Linux 2 2 3 1 1 5 1 1 5 
OSE 3 2 4 2 4 4 3 3 3 

RT-Mach 4 5 5 3 2 4 4 3 4 
RTEMS 4 2 4 3 3 3 2 2 4 
SARA 4 3 4 4 2 2 4 3 3 
Spring 5 5 5 4 4 4 4 2 3 

Table 7, Summary of all evaluation parts. 
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Conclusions and Future Work 
When having reviewed a considerable amount of material related to 
multiprocessor RTOS, it is tempting to predict a “silver-bullet” solution that is the 
best solution for all real-time multiprocessor systems. Unfortunately, as with 
many other issues about computer science, an RTOS that always performs best, 
when used with different hardware platforms and in different purposes, does not 
exist. I.e. a RTOS must be designed (both software and hardware) considering the 
real-world requirements. For instance, safety critical real-time systems have to be 
predictable so that we are able to guarantee all timing constraints. While some 
other real-time systems are allowed to have deadline-misses. These real-time 
applications are often referred to, as applications with soft real-time demands. In 
these systems many ordinary operating system constructs optimized for 
throughput and processor utilization can be suitable. This is obvious since we 
always want to use the processor to its maximum, but algorithms developed for 
hard real-time systems often limits the utilization, because the focus is on 
completing all temporal constraints whatever it costs. 
 
When designing an RTOS, there are many trade-offs that have to be considered. 
Concentrating the focus on real-time, one important trade-off is determinism and 
flexibility/high average performance. But we cannot say that one solution is better 
than the other, it is application dependent. In this survey, MARS is the most 
deterministic operating system, and therefore most suitable for safety critical 
applications. MARS is completely offline scheduled, even the communication is 
offline scheduled. This feature makes MARS totally predictable and 
deterministic, but it is not flexible at all, since the applications behavior must be 
known before runtime, in order to schedule execution and communication. The 
RTOS:es found among the most flexible are more suitable for applications with 
soft demands. The application can be faster developed, we do not have to analyze 
the whole behavior before runtime and we can use more advanced system calls. 
We can also potentially achieve higher processor utilization with more released 
and throughput oriented algorithms for scheduling, communication and memory 
management.  
 
Concerning multiprocessor support in RTOS, it is possible to distinguish between 
RTOS:es constructed for multiprocessor platforms and RTOS:es constructed for 
single processor machines, with lately added multiprocessor support. As with all 
attempts to generalize exceptions exists, but the scheduling algorithms and IPC 
routines can be treated as some kind of indication. A RTOS originally constructed 
for multiprocessor platforms, should through the scheduling algorithm take 
advantage of the possibilities with multiprocessor platforms, or all the IPC 
routines should be constructed for communication between different nodes. While 
many of the RTOS:es originally aimed for single processor machines does not 
bother about the number of processors in the scheduling procedures, and have 
different IPC routines for tasks that resides on the same node and tasks 
communicating across node boundaries.  
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As future work, an operating system will be designed and implemented, with the 
survey as a preparatory study. The operating system will be implemented in 
software with the same interface as the hardware implemented RTU, and operate 
on the SARA system. Both described in the case studies section. A fair 
benchmark between the two operating systems should be easy to achieve, since 
the same interface is used. 
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ABSTRACT 
As the demands on real-time applications increase and they become more 
complex every year, the demands of real-time platforms also grow larger every 
year. Today both good performance and correct timing are to be desired in a 
real-time system. The motivations for using multiprocessor systems are 
scalability, robustness and performance. No single processor solution is able to 
provide more computing power than a multiprocessor system built of the same 
processors. The operating system is without hesitation the most important 
software of all system programs in a real-time multiprocessor system. A real-time 
system must be predictable in order to offer correct timing. One way to achieve 
both performance and determinism is to implement the kernel in hardware. 
 
In this paper we introduce MPSWOS, which is a multiprocessor operating system 
kernel implemented in software. With the purpose to find out the differences 
between kernels implemented in hardware and kernels implemented in software, 
we compare MPSWOS with an existing kernel in hardware. The kernels 
operatates on the same hardware architecture and have the same application 
interface, so the only difference is the kernel implementation. This paper mainly 
contain a practical comparison between the different kernels, in the form of a 
benchmark. 
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Introduction 
This paper is the second part of our masters’ thesis project presented to the 
department of computer science and engineering at Mälardalen University. The 
first part of this thesis evaluates and compares different selected multiprocessor 
real-time operating system kernels as a prepearatory study. The preparatory study 
for this thesis has been used as base for this the second part, which assignment 
was to design and develop a real-time operating system in software with the same 
application interface (API) as the RTU [RTU00] and then benchmark and 
compare it with the existing SARA system [FUR99] equipped with a RTU. The 
RTU is a RTOS co-processor, developed at Mälardalen University. 
 
As real-time applications become larger and therefore more complex every year, 
the demands on performance and timing correctness increase. The fact that no 
single processor solution is able to provide more computing power than a 
multiprocessor system built of the same processors is one motivation to use 
multiprocessors. The performance of multiple processors may be limited by the 
hardware architecture. For instance, in a shared bus multiprocessor system, 
accessing the bus may limit the performance of the system. One solution to obtain 
more performance is to decrease the administration of the system e.g. scheduling, 
clock-tick management and so on, by utilizing special purpose hardware. The 
RTU is an example of such solution. Not only the performance is increased, by 
utilizing parallel hardware the determinism is also better. 
 
The new software OS introduced in this paper utilizes the same hardware 
architecture and has the same application interface (API) as the existing SARA 
system with RTU. The name of the new software OS is MPSWOS, which is a 
shortening for Multiprocessor SoftWare Operating System. The motivation to this 
paper is to show the differences between utilizing a co-processor and utilizing a 
standard processor. 
 
A similar comparison has been made in [FUR00], but the differences are the 
software operating system and the benchmark programs. In [RIZ01], a 
comparison between a software kernel and a hardware kernel on a single 
processor system has been done. 
 
The outline of this paper is as follows. First we introduce the design of MPSWOS 
and the motivations behind the selection of the design. In that section we will also 
explain the differences between the RTU and MPSWOS. The next section is 
benchmark, which contains a practical comparison between the different kernels. 
Different benchmarks have been performed, in order to achieve values for 
communication bandwidth, communication latency, OS-overhead and so on. Both 
the results and the motivation to them are presented. The final section concludes 
the paper with conclusions and future work suggestions. 
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Design of MPSWOS 
The hardware architecture MPSWOS run on is a SARA system without RTU. The 
SARA system is divided into local CPU board, bus arbitrator, global RAM and 
I/O. The processor boards are connected to each other with a Compact PCI bus 
(CPCI). The CPCI bus offers eight slots for CPU boards, however in a CPCI 
system there is always one special “system-slot”. This slot has a special CPU-
board (system board) that handles the arbitration, clock-distribution, etc on the 
back plane. An overview of the SARA-system that MPSWOS runs on is shown in 
figure 1. 

  
Figure 1, block diagram of the SARA system (without RTU) 

 

Scheduling 
A central part of a multiprocessor RTOS is the placement of the processor 
schedulers and different task queues. It is a choice between schedulers residing on 
the different processors, a centralized scheduler, perhaps with dedicated 
application and system processors or any combined approach. 
 
Unlike the SARA system equipped with an RTU, MPSWOS consists of several 
schedulers. The system board has a complete scheduler while the slave boards 
have simpler schedulers. The idea with several different schedulers can for 
instance be found in the Spring system [RAM91]. In general it is possible to 
compare the non-system boards (slaves) in the SARA system with the application 
processors in Spring. The main difference is that the scheduler on the slave boards 
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in the MPSWOS system has some more functionality than the dispatchers in the 
Spring system. Since the system board has a different scheduler than the slave 
boards, they do have different versions of the operating system. 
 
The different operating systems are communicating by sending interrupts to each 
other. Parameters are passed through the global memory. Each CPU board has 
one parameter area in the global memory to use when sending interrupt to the 
system board. This implies that some kind of protection is needed; i.e. only one 
task per board is allowed to use the parameter area at the same time. The lock we 
have chosen is a load-locked/store-conditional (LL-SC) lock provided by the 
hardware. The first instruction (load-locked) loads a synchronization variable into 
a register. It may be followed by arbitrary instructions that modify the value in the 
register. The last instruction (store-conditional) tries to write the register back to 
memory location, if and if only no other process has written to that location. In 
other words, these instructions allow us to implement a range of atomic read-
modify-write operations. The task placement is offline scheduled and the tasks 
can only execute on one node. For instance when a task is placed on the system 
board, it can only execute on the system board. 
The task management and scheduling algorithm are the same as in the original 
SARA system, i.e. pre-emptive priority-driven scheduler, which guarantees that 
the task with highest priority is executing (at any instance of time). 
 
Each slave board has a local ready queue and blocked queue, while the system 
board has semaphore-blocked queues, a waiting queue, a local ready queue and a 
blocked queue, see figure 2. In order to avoid clock-synchronization, the master 
node (system board) handles all timing, i.e. the master node is the only node that 
has clock interrupts. The waiting queue contains both master and slave tasks. On 
each clock interrupt, the master checks the waiting queue, i.e. is there any task 
that becomes ready to execute? If a slave-task becomes ready, an interrupt to the 
slave is sent. When a slave-task makes a delay, an interrupt to the master is sent 
and the first task in the ready queue is dispatched. 
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Blocked Queue Blocked Queue Blocked Queue 

Semaphore-Blocked 
Queues 

Ready Queue Ready Queue Ready Queue 

Clock interrupts 

Blocked Queue  
Waiting Queue  

Figure 2, Placement of Scheduling queues 
 
 
The state transition diagram for tasks are shown in figure 3. The different states 
are ready, executing, waiting, blocked and  semaphore-blocked. The OS text in 
figure 3 means that this event is caused by the operating system. 
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Figure 3, state transition diagram for tasks 
 

Memory management 
Communication and synchronization between different processes in the system is 
performed through the global memory that resides on the system board. Global 
memory areas can be defined on any CPU board. As shown in figure 1, there are 
two kinds of PCI buses in the system. All boards have a local PCI bus that is 
connected to the CPCI bus through a PCI-PCI bridge. The system board has a 
transparent bridge, while the other boards have bridges that remap addresses on 
one bus to another address on the other bus. With this non-transparent bridges, 
address collisions on the CPCI bus can be avoided and all boards can use its full 
address range on the local PCI bus. 
 
MPSWOS has the same memory settings as the original SARA system, i.e. global 
memory is residing on the system board. With this solution, all communication 
between tasks goes through the system board, even if two tasks that are 
communicating reside on slave boards. We have an idea to relieve the pressure on 
the system board. But due to lack of time, we have implemented the simpler 
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solution that has the same memory settings as the original SARA system. The 
idea was to define global memory areas on each CPU board. We wanted 16 MB 
physically on each node, starting at adress 0x1000000 and ending at 0x1FFFFFF. 
That will result in a 48 MB continous memory, when using three CPU boards. 
Since the slave boards have non-transparent bridges, they are able to translate an 
address on one bus to another address on another bus. By setting the non-
transparent bridges, this solution is feasible. The idea is shortly described in the 
Future Work section. 

Interprocess communication 
A Virtual Communication Bus (VCB) that uses the global memory on the system 
board is used for inter process communication and synchronization between tasks 
in the system [NYG00]. As the name says, the VCB is just a virtual bus that uses 
the physical CPCI bus and the global memory on the system board. The VCB 
provides a message passing mechanism that allows task-to-task communication 
locally on one CPU as well as between several different CPUs. The logical 
architecture of a system with a VCB bus is shown in figure 4. The VCB bus is 
divided in two layers. The lower hardware layer consists of base primitives and is 
implemented and integrated in a FPGA (Field Programmable Gate Array). The 
upper layer is implemented in software and it provides different types of 
functionality from the bus. When a task wants to communicate on the VCB bus, it 
has to connect to the virtual bus. This is done by allocating a VCB-slot. The 
sender of a message has to set a priority to the message. VCB provides support for 
both synchronous and asynchronous communication. A task that is connected to a 
VCB-slot can communicate with all the other tasks in the system. The functions 
this bus supports are for instance: send, receive, broadcast, send and wait, 
multicast and subscribe. It is the hardware layer that performs the job, when a call 
to the VCB is made. This feature speeds up the message passing compared to 
similar implementations in software [RTU00]. 
 
In MPSWOS, the lower hardware layer has been replaced by a software layer. 
This means that the VCB interface to the user has not been changed, see figure X. 
Only the most important methods have been implemented, such as send, receive 
and so on. 
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Figure 4, the VCB communication model 

 
The message-queues are placed in the global memory on the system board. Each 
slot has a message-queue. To protect the message-queues, i.e. guarantee mutual 
exclusion, a semaphore-protocol has been implemented. The system board 
handles the semaphores. Each message-queue (slot) has a semaphore, and each 
semaphore has a semaphore blocked-queue residing in the global memory. A task 
that tries to take a semaphore that is occupied, is placed in the semaphore 
blocked-queue. The semaphore blocked-queues are sorted by priority. 
 

Clockmanagement 
Since the system board handles the waiting-queue, the non-system boards need no 
clock interrupts, i.e. no clock-synchronization or distribution is needed. Clock-
tick interrupts is taken when decrementer exception occurs, i.e. when the 
decrementer register is equal to zero and no exception with higher priority exists. 
The decrementer register is decremented at 16.75MHz, one fourth of the bus 
clock rate. When a decrementer exception is taken, instruction fetching resumes at 
offset 0x0000_0900, from the base 0x0000_0000 or 0xFFFF_0000 configurable 
in the processor machine state-register. 
 
The system board has a time base facility (TB), which is a 64-bit structure that 
consists of two 32-bit registers, time base upper (TBU) and time base lower 
(TBL). 
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Benchmarking 
The benchmark presented here is aimed to serve as comparison between a 
software and a hardware operating system. The software operating system is the 
MPSWOS described earlier in this paper; the hardware operating system is the 
SARAOS or the RTU [RTU00]. Both operating systems have the same 
programming interface, although the software operating system has a slightly 
reduced version.  
 
The benchmark series is built with own ideas and parts from several well-known 
benchmarks: Rhealstone [KAR89], SSU [ACH91] and Distributed Hartstone 
[KAM91]. It was the most suitable solution to create an own benchmark series 
that gives the freedom of measuring what we feel are important, if using another 
benchmark we would have to port the benchmark to our operating system and that 
would require almost the same amount of work. The different test cases that are 
used are first explained both the idea and the implementation, at the end of each 
test case the results are presented.  
 
All tests have been executed five times in order to compute the average result. 
Worth to notice is that all times expressed in the results is expressed in the one 
fourth of the processor bus clock speed. To transform the times to seconds one 
should multiply the time with 1/16,7 MHz, since the processor bus clock speed is 
67 MHz on all nodes in the system. 

Create task 
This test case is taken from the SSU benchmark and the time it takes to create a 
task is measured. The timekeeping starts when a task is going to be created and 
stops when the task has been created. All tasks in both operating systems are 
created at the system start-up, so this test is classified as non real-time and it is not 
critical to the system. The reason to this measurement is the comparison between 
the hardware and software implementation that is desirable. Conditions that may 
affect the task creation time are the number of already created tasks and where in 
the system the task is located.  

Method 
The practical part of this benchmark is pretty straightforward, just measure the 
time for the system call representing create task. The number of already created 
tasks is varied between 0 and 16 and the test is performed on both the master and 
a slave node independently. 

Result 
The results are presented with the two graphs below. As we can see the software 
operating system is faster on both the master node in figure 5, and the slave node 
in figure 6. That is an expected result, since the tasks are created locally and we 
do not need any communication with PCI devices. The hardware operating system 
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on the other hand is a PCI device with enclosed latencies. Also as predicted the 
software operating system has longer latencies with increasing number of already 
created tasks. That is because of the list management latencies that increase with 
increasing number of tasks. The cache memory effects are also visible in the test, 
since the first task create call take more time than the second.  
 
It is confusing that both the hardware and the software operating system is faster 
on the slave node than the master node, which is a result we cannot explain. The 
hardware operating system should be slower on the slave node, since it is 
physically longer distance between the slave processor and the operating system 
than between the master node and the operating system. We have verified the 
result with repeated measurements and we have also used the MAMON [SHO01] 
monitoring device, which indicates the same result. Appendix 1 contains tables 
with listings of the results from this benchmark. 
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Fig 5, Create task benchmarks on the master node for both operating systems. 
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Fig 6, Create task benchmarks on the slave node for both operating systems. 

Task switch 
This test case has been influenced by the Rhealstone benchmark and it measures 
the time the system takes to switch between two independent and active tasks 
with equal priority. The task switch time is crucial to the performance in a real-
time system. In this test the terms for variation are the number of simultaneously 
active tasks and the placement of tasks, i.e. on master or slave node. 

Method 
Measuring the time between that a task calls for a manual task switch, until the 
next task becomes executing is a reasonable method of measurement. The number 
of active tasks is varied between 2 and 16, and the tests are performed on both the 
master and a slave node independently. 

Result 
In this test the software operating system is faster than the hardware operating 
system, that is because of the task switches that can be handled locally on a node. 
Each node manages its own queue of active tasks. But in the hardware case the 
operating system queues are managed centrally in the operating system core, 
residing as a PCI device, which causes access latencies to the queues. Notice that 
the software operating system is not affected by the number of tasks in this test, 
which is because of the two tasks that are involved in the switch, has the highest 
priority in the system. In figure 7, the result from the test on the master node is 
compared and figure 8 summaries the result from the slave node. In appendix 1 
tables with complete result listings are presented.  
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Fig 7, Task switch benchmarks on the master node for both operating systems. 
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Fig 8, Task switch benchmarks on a slave node for both operating systems. 

RTOS overhead 
The method used in this benchmark is for instance used in [FUR00]. The paper 
presents a performance comparison between systems that utilises hardware 
operating systems and ordinary operating systems. The comparison is based on 
executing an application. In this test case two different kinds of applications are 
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going to be used as variation to the measurement, one application that 
communicates heavily and another that does not any exchange messages.  

Method 
Practically this measurement should be possible by comparing execution times 
between the hardware implemented and the software implemented RTOS, and it 
is not really necessary to know the exact utilisation of the application. As 
applications the classic problems Nqueens and Travelling Salesman was chosen. 
 
Nqueens is the problem to find all the positions of n queens on an n*n chessboard 
so that no two queens attack each other (not on the same column or diagonal). 
The base algorithm to solve the problem is a recursive algorithm that finds all 
solutions, by trying all solutions. 
 
The Travelling Salesman Problem (TSP) is a classic combinatorial problem. It is 
also practical since it is the basics for things like scheduling planes and personnel 
at an airplane company. Given are n cities and a symmetric matrix dist[1:n,1:n]. 
The value in dist[i,j] is the distance from city i to j. A salesman starts in city 1 and 
wishes to visit every city exactly once, ending back in city 1. The problem is to 
determine a path that minimizes the distance the salesman must travel. The 
algorithm to solve the problem is based on a work pool that resides on the master 
node, while the two slaves fetches pieces of work and report results back to the 
master. In this test the whole system is exercised. 

Result 
In figure 9, we can see that for Nqueens the result is essentially the same for both 
the hardware and the software operating system. But when running the TSP 
application and exercising the whole system with messages as synchronisation, 
the hardware operating system is faster. In appendix 1, the complete result listings 
are included. 
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Figure 9, an application benchmark between the two operating systems. 
 

Communication bandwidth 
Variants of this measurement are included in Rhealstone and Distributed 
Hartstone. This measurement aims to measure the number of kilobytes per second 
one task can send to another. Included in this metric is not only the limitation of 
the physical communication medium, but also the operating system overhead 
required for sending messages. The communication bandwidth may be different 
for tasks hosted by different processors and tasks hosted by the same processor. 
For this reason the result will be reported by the communication bandwidth 
between: 

• Two tasks hosted by the master node 
• Two tasks hosted by a slave node 
• The sender on a slave node, and the receiver on the master node  

The bandwidth is also in most systems depending of the message size. The 
message size is therefore a target for variation.  

Method 
Practically the measure can be carried out by measuring the time it takes to send a 
fixed amount of raw data between two tasks, with no other communication 
present. The time is from which the first message is sent by the sending task, until 
the last message is received by the receiving task. The number of messages the 
data is dived into is varied between 10 and 640, and the amount of data is 10240 
bytes. This gives message sizes varying between 16 and 1024 bytes. The 
communicating tasks placement is also varied in independent tests. 
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Result 
This benchmark shows that the bandwidth between tasks hosted by the same node 
is greater with the software operating system, but when communicating across 
node boundaries the bandwidth is greater with the hardware operating system. 
The result is probably depending of the rather complicated message semantics 
with priority boosting of the receiving task. When that priority change is taking 
place on the same node, i.e the sender and the receiver are on the same node. The 
software operating system is more efficient, since the enclosed latencies with PCI 
accesses can be avoided. But when communicating across node boundaries the 
hardware implementation is more efficient. The priority boosting occurs inside 
the hardware without any processor involvement, while the software operating 
system processors must communicate and synchronize with each other to achieve 
the priority boosting.  
 
The three figures 10, 11 and 12 summarises the bandwidth benchmarks. In figure 
10 the bandwidth between tasks on the master node is compared. In figure 11 the 
bandwidth between two tasks on a slave node is compared, notice that the 
bandwidth in this test is lower than when both tasks are residing on the master 
node. The explanation is that the communication is implanted through a shared 
memory that resides on the master node; this gives the master node shorter access 
times. Finally figure 12 compares the bandwidth between tasks communicating 
across node boundaries. Complete results are presented in appendix 1. 
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Figure 10, bandwidth between two tasks hosted by the master node for both operating 
systems. 
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Figure 11, bandwidth between two tasks hosted by a slave node for both operating 
systems.  
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Figure 12, bandwidth between a sending task on a slave node and a receiving task on the 
master node. 
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Communication latency  
The end-to-end communication latency is also measured in distributed Hartstone. 
This is an important metric in real-time systems, since many of the calculations 
used for guaranteeing deadlines use the end-to-end communication latency. A 
RTOS suitable for hard real-time systems should also be able to provide a 
bounded worst-case end-to-end delay for messages independent on other traffic. 
 
The effect other traffic have on messages are tested by the message priorities 
measure also included in this benchmark. Using different message sizes with 
regular intervals between the two extremes tests the effect of message size. The 
effect of task placement will be taken care of by three different cases; the end-to-
end delay will be reported by the delay between: 

• Two tasks hosted by the master node. 
• Two tasks hosted by a slave node. 
• Sender and receiver on different nodes 

Method 
This measure simply consists of measuring the end-to-end delay, i.e. the time 
from which the message is sent by the sending task until it is received by the 
receiving task. In the case with the software operating system and communication 
across node boundaries, it is most suitable to measure the roundtrip delay. Since 
we have no accurate external clock and no clock synchronization between nodes, 
it is easiest to achieve an accurate result by taking the two necessary timestamps 
on the same node. The first timestamp is taken when a message is sent and the 
second timestamp when the receiver returns the message. The message sizes are 
varied between 1 and 128 bytes. The test is divided into three different 
independent measures, with sender and receivers placed as described above. 

Result 
This test shows that the end-to-end delay, also referred to, as the transmission 
latency is shorter with the hardware operating system. How come that the 
bandwidth and latency not follows each other, is an immediate reaction. The 
problem with the software operating system is that the scheduling routines are 
executed in a speculative manner, with the purpose to find out if we should switch 
task. A speculation takes place in association with many system calls, such as 
send and receive. These speculations surely take place in the hardware operating 
system too, but they do not steal any execution time on the systems processors. 
However, when the speculations are successful the software operating system also 
is successful. Such a case seems to be when a send and receive pattern is repeated, 
as in the bandwidth test. 
 
The communication latency on the master node is compared in figure 13. Figure 
14 shows a comparison of the latency on a slave node. Figure 15 shows the 
latency between tasks hosted by different nodes. Finally appendix 1 presents the 



 
 
 
 
 
 
 
Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002 

exact results. We can see that the differences are smallest on the master node, 
because that the software operating system routes the semaphore calls to the 
master node.  
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Figure 13, the communication latency between tasks residing on the master node for both 
operating systems. 
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Figure 14, the communication latency between tasks residing a slave node for both 
operating systems. 
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Figure 15, the communication latency between the sender residing on a slave node and a 
receiver residing on the master node for both operating systems. 

Message priorities  
In Distributed Hartstone, the message priority test is performed as a special real-
time test. It is the scheduling of messages that is tested; in ordinary systems it is 
often First In First Out (FIFO) queues that handle the messages. But in a real-time 
system this is often not a suitable solution, since a high frequency or fast activity 
cannot be delayed by an arbitrary number of other activities. This test is aimed to 
test if the message passing algorithms can avoid priority inversions and how 
successful the algorithm is on handling message priorities. In the distributed 
Hartstone test, this benchmark has a result of yes or no type. To associate a 
number and thereby make the two solutions comparable, we aim to measure the 
time it takes to send a high-prioritised message, when the receiver have a huge 
number of low-prioritised messages pending. 

Method 
Practically an applicable method should be to let a task send as many low 
prioritised messages as possible. Simultaneously let another task send a high-
prioritised message and compare the time it took with the ideal case, when no 
other traffic takes place. The message size is varied between 1 and 128 bytes. The 
placement of the sender and receiver is varied between, both on the master node, 
both on a slave node and the sender on a slave node and the receiver hosted by the 
master node. The task that sends low prioritised messages as fast as possible is 
always placed on an idle node. To achieve as much disturbing messages as 
possible it is important that this task never is interrupted. 
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Result 
This test shows that the hardware operating system is much more successful than 
the software operating system in handling these situations. The problem with the 
software operating system seems to be that interrupts following message sends are 
queued in the interrupt handlers. Even if the message-passing algorithm itself is 
clearly priority driven, the messages are not delivered in correct order since the 
interrupts indicating message deliveries are routed in the sent order. Another 
problem is that all bridges between busses in the system are FIFO-driven and this 
may result in unpredictability’s in both operating systems.  
 
In figure 16 the results from the master node is shown. In the case with both the 
sender and the receiver on the slave node visualised in figure 17, the hardware 
operating system also shows an example of un-deterministic behaviour and the 
curve is a bit swingy. Figure 18 presents a comparison in the case with sender and 
receiver on different nodes. In appendix 1, the complete results are presented. 
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Figure 16, the message priority benchmark when the master node hosts both sender and 
receiver. A slave node sends the disturbing messages.  
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Figure 17, the message priority benchmark when a slave node hosts both sender and 
receiver. The master node sends the disturbing messages.  
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Figure 18, the message priority benchmark when the master node hosts the receiving task 
and a slave node hosts the sender. An idle slave node sends the disturbing messages.  
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Conclusions and future work 
As summary and conclusion we end up with our opinions of advantages and 
disadvantages with the two operating systems.  
 
The software operating system MPSWOS main advantage in comparison with the 
hardware operating system RTU is that some system calls can be executed in 
parallel. Intelligence has been moved from a centralized source to the system 
nodes, this implies that some decisions can be made faster and we can utilize the 
natural locality of data close to each node. An example is for instance the 
processor dispatch queues that has been moved to the respective node. It should 
also be easier to make small changes in the kernel since it is implemented in 
software instead of hardware.  
 
The hardware operating system RTU has a great advantage over all software 
implementations, the execution of scheduling decisions and other operating 
system functionality does not load the systems processors. A hardware 
implementation also makes it easier to create bounded execution times for system 
calls, which is desired in real-time systems when guaranteeing deadlines of 
events. As we could see in our benchmarks, the main advantage with using the 
hardware implememantion in the SARA system today is that it is more 
deterministic than the software version. But notice that since scheduling decisions 
and many other system calls does not load the processors, the gain with a 
hardware implemenation becomes greater with more complicated algorithms and 
more tasks. 
 
As a future work section we present some suggestions to improve the SARA and 
RTU implementations. The first and biggest proposal is to implement global 
memory areas on all nodes. Global memory areas on all CPU boards will relieve 
the pressure on the system board. As it works today, all communication goes 
through the system board, even when tasks that are located on slave boards are 
communicating with each other. Secondly since the scheduling algorithm does not 
load the application processors, make use of a really fancy and effective algorithm 
that hardly cannot be used in software implementations. Finally we think that an 
improvement of the interface between processors and the RTU should be useful, it 
is often big latencies in communicating across the PCI busses. As for example the 
dispatch queues could be moved to the processors, as in the software operating 
system. 
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Appendix 1 
 

Task create software master 
Number of 

tasks min max average 
0 563 567 564,2 
2 437 439 438 
4 497 502 500,8 
6 519 522 520 
8 550 552 551,2 
12 612 622 616,2 
16 675 686 681,4 

 
Task create software slave 

Number of 
tasks min max average 

0 363 374 365,4 
2 312 322 314,6 
4 351 362 357,6 
6 371 380 372,8 
8 395 404 397,4 
12 439 448 443,6 
16 486 497 490,4 

 
Task create hardware master 

Number of 
tasks min max average 

0 996 1010 1002,4 
2 822 833 828,2 
4 831 844 835 
6 828 831 829,6 
8 831 839 835,6 
12 825 838 829,6 
16 822 841 832,4 

 
Task create hardware slave 

Number of 
tasks min max average 

0 703 711 706 
2 627 649 636,8 
4 633 646 638,4 
6 629 640 636 
8 627 631 627,8 
12 625 634 627 
16 624 626 624,6 
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Task switch software master 

Number of 
tasks min max average 

2 834 845 836,6 
4 834 844 837,8 
6 834 845 840,8 
8 835 845 839,2 
12 834 843 838,2 
16 834 846 840 

 
Task switch software slave 

Number of 
tasks min max average 

2 562 569 565,2 
4 562 570 566 
6 560 570 564,8 
8 567 569 568 
12 560 568 562,6 
16 559 569 564,4 

 
Task switch hardware master 

Number of 
tasks min max average 

2 931 943 936,6 
4 921 946 936,2 
6 937 943 939 
8 930 943 938,8 
12 919 945 932,2 
16 930 941 937 

 
Task switch hardware slave 

Number of 
tasks min max average 

2 696 707 700,4 
4 692 719 701,8 
6 695 706 701,4 
8 686 715 699,8 
12 694 702 698,6 
16 694 701 696,8 

 
RTOS overhead software 

Application min max average 
Nqueuens 145611618 145612170 145611973,2 

TSP 176728413 176732478 176730136,2 
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RTOS overhead hardware 

Application min max average 
Nqueuens 145605961 145606827 145606411,8 

TSP 170350982 170359110 170353193 
 

Bandwidth software master/master 
Number of 
messages min max average 

10 2313,294735 2313,576405 2313,413661 
20 1475,160664 1475,415211 1475,234479 
40 851,8286062 852,0068556 851,9117848 
80 461,6884046 461,7295417 461,701618 

160 241,0366063 241,048158 241,0419744 
320 123,1760355 123,1793184 123,177189 
640 62,29388882 62,30896001 62,30290881 

 
Bandwidth software slave/slave 

Number of 
messages min max average 

10 1196,044147 1197,199664 1196,648542 
20 821,7074378 822,7590487 822,3121268 
40 504,3293618 504,8027819 504,6273603 
80 284,5831385 284,8206047 284,703793 

160 152,2172386 152,2448838 152,2314403 
320 78,86757002 78,93058219 78,89431595 
640 40,14321302 40,16127638 40,15112246 

 
Bandwidth software slave/master 

Number of 
messages min max average 

10 5205,247618 5210,402035 5208,212697 
20 3305,939781 3307,28245 3306,630227 
40 1851,046442 1851,778057 1851,228832 
80 957,3334752 957,4889208 957,4095879 

160 572,105316 572,5123243 572,2755495 
320 296,4313759 298,7456763 297,5183925 
640 153,7723493 154,200667 153,9889073 
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Bandwidth hardware master/master 

Number of 
messages min max average 

10 1726,655897 1728,278776 1727,741162 
20 1456,180388 1457,495952 1456,843002 
40 133,5179073 133,5260391 133,5215561 
80 68,06516118 68,06860198 68,06696013 

160 34,59892716 34,60068429 34,59995062 
320 15,5208208 15,52104055 15,52096956 
640 7,377148613 7,377244724 7,377214235 

 
Bandwidth hardware slave/slave 

Number of 
messages min max average 

10 786,0449082 786,3629884 786,1526099 
20 724,3646222 724,8220878 724,5868699 
40 131,0706438 131,0796858 131,07629 
80 67,42353602 67,42699201 67,42496625 

160 34,43009879 34,43144366 34,43079202 
320 15,50346835 15,50370449 15,50356365 
640 7,375079968 7,375148035 7,375110121 

 
Bandwidth hardware slave/master 

Number of 
messages min max average 

10 5122,300434 5253,863406 5224,245917 
20 4292,854364 4565,814065 4409,570644 
40 4038,016978 4063,781754 4048,15388 
80 2620,691769 2647,633498 2635,179051 

160 1423,429722 1426,760945 1424,821782 
320 812,4435829 815,3216079 813,9432077 
640 425,3533563 426,6932818 425,8482222 

 
Latency software master/master 

Size of 
messages min max average 

1 2871 2881 2876,2 
2 2529 2533 2531,2 
4 2551 2560 2555,4 
8 2602 2611 2606 
16 2560 2572 2565,2 
32 2603 2617 2609,2 
64 2705 2716 2711,2 

128 2911 2913 2912,6 
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Latency software slave/slave 

Size of 
messages min max average 

1 4390 4432 4408,4 
2 4185 4233 4207,8 
4 4239 4272 4260,8 
8 4370 4390 4380 
16 4238 4297 4267,8 
32 4388 4406 4395 
64 4623 4661 4650,4 

128 5136 5175 5147 
 

Latency software slave/master 
Size of 

messages min max Average 
1 4800,5 4825 4809,3 
2 4406 4440 4423,9 
4 4445 4481 4461,1 
8 4556 4562 4558,9 
16 4460 4491,5 4472,5 
32 4552,5 4578,5 4566,3 
64 4717,5 4749 4733,4 

128 5076,5 5091 5085,2 
 

Latency hardware master/master 
Size of 

messages min max Average 
1 2970 3004 2992,4 
2 2592 2609 2601,4 
4 2597 2625 2610,4 
8 2641 2662 2652,4 
16 2591 2611 2604,2 
32 2643 2660 2649,6 
64 2713 2739 2725 

128 2902 2911 2905,4 
 

Latency hardware slave/slave 
Size of 

messages min max Average 
1 2736 2743 2739,2 
2 2558 2583 2572,2 
4 2609 2633 2623 
8 2737 2759 2747,6 
16 2628 2649 2639,2 
32 2733 2753 2745,8 
64 2977 3002 2989,2 

128 3469 3488 3475,6 
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Latency hardware slave/master 
Size of 

messages min max Average 
1 2633 2687 2650,1 
2 2392 2405 2398,1 
4 2406,5 2434,5 2422,8 
8 2478,5 2515,5 2505,9 
16 2421 2439,5 2428,1 
32 2495,5 2522 2507,7 
64 2655,5 2687 2672,2 

128 2998,5 3021 3006,3 
 

Message priorities software master/master 
Size of 

messages min max Average 
1 7100 14002 12615,4 
2 9064 9513 9401,4 
4 5195 9540 8629,4 
8 5229 13159 7946,8 
16 5203 13130 8468 
32 5274 9535 7481,4 
64 5379 9485 6939,6 

128 5664 10667 8235,4 
 

Message priorities software slave/slave 
Size of 

messages min max Average 
1 6142 6589 6270,4 
2 7664 57593 27616,2 
4 8817 57851 28411,2 
8 6276 6604 6360,6 
16 7727 57835 37706 
32 7804 57887 47748,2 
64 6449 6595 6498 

128 8502 58490 28497,2 
 

Message priorities software slave/master 
Size of 

messages min Max Average 
1 7147 19078,5 10218,2 
2 7211 29961,5 16926,4 
4 7055 21772,5 12314,8 
8 4093,5 135553,5 32344,7 
16 3597 9527,5 6571,5 
32 4139 7104,5 6098,6 
64 3722,5 16848 9985,3 

128 5648,5 135579,5 36679 
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Message priorities hardware master/master 
Size of 

messages min Max Average 
1 4709 5708 5016,8 
2 4261 4612 4429,2 
4 4294 4588 4479,6 
8 4367 4800 4586,8 
16 4485 4677 4551,2 
32 4466 4627 4536 
64 4383 4665 4522,6 

128 4577 4779 4704,8 
 

Message priorities hardware slave/slave 
Size of 

messages min max Average 
1 4775 5015 4879,8 
2 3851 4771 4325,8 
4 3897 4926 4617,6 
8 4636 4848 4698 
16 4370 4979 4603,8 
32 4315 5105 4797,8 
64 5216 7270 5781,8 

128 5509 60301 16736,2 
 

Message priorities hardware slave/master 
Size of 

messages min max Average 
1 2581,5 3530 2965,3 
2 2376,5 2988 2710,2 
4 2420,5 2967,5 2596,5 
8 2590 3314 3000,2 
16 2764,5 3157,5 2929 
32 2908 3411 3168,8 
64 2750,5 4067 3095 

128 3644 4664,5 4083,1 
 
 
 


