

Design and Benchmarking of Real-Time
Multiprocessor Operating System Kernels

Mikael Åkerholm and Tobias Samuelsson,

Masters’ thesis

The Department of Computer Science and Engineering,
Mälardalen University, June 2002.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 2

Foreword
We are cheerful to present our work to candidate for the degree of Master of
Science in Computer Engineering. The work has been divided into two parts of
equal weight and therefore this examination paper contains two papers that can be
studied independently. The first paper is a survey and evaluation of existing real-
time multiprocessor kernels. In the opening sections of the second paper we
introduce an own implemenatation of such a kernel. The main part of the second
paper presents a benchmark series, wich purpose is to compare our
implemenatation with an existing hardware implementation.

Mikael Åkerholm & Tobias Samuelsson, Mälardalen University, June 2002

 3

Table of Contents

A Survey and Evaluation of Real-Time Multiprocessor Operating System Kernels __ 5
Introduction and Benchmarking of Competitive Real-Time Multiprocessor Kernels 87
Appendix 1 ___ 112

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 4

A Survey and Evaluation of Real-Time
Multiprocessor Operating System Kernels

Mikael Åkerholm and Tobias Samuelsson

Preparatory study for masters’ thesis.

ABSTRACT
Multiprocessor architectures, operating systems and real-time technologies are
all interesting and highly advanced topics. Real-time demands inject an
additional correctness criterion into computer systems. It is not just the result that
is important, timing issues also have to be considered. A multiprocessor system is
able to provide more performance than today’s fastest single processor solution,
and it is often in multiprocessor systems the latest technology is introduced. The
operating system is without hesitation the most important software of all system
programs in a real-time multiprocessor system.

The main limitations and concerns reported so far from the rather young research
area of real-time issues in multiprocessor systems, mainly consists of
schedulability problems and anomalies with old single processor scheduling
algorithms. The possibilities with moving real-time applications onto
multiprocessor platforms on the other hand weight more; scalability, robustness,
more and cheaper computing power are the general advantages. That real-time
operating systems with multiprocessor support will become a desired product in
the near future is a highly realistic prediction, since the requirements and
complexity of real-time applications increases rapidly.

In this survey we review and evaluate both commercial and research solutions
that addresses all three attention-grabbing areas in a homogeneous manner. The
paper first identifies the major design goals and key issues in multiprocessor real-
time operating systems, to follow up with a set of case studies where the identified
issues are unveiled.

The Department of Computer Science and Engineering,
Mälardalen University, March 2002.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 6

Table of contents
Introduction __ 8
Design issues __ 10

Scheduling __ 10
Task management ___ 10
Scheduling algorithms__ 11
Multiprocessor scheduling __ 12

Memory management___ 15
The software layer___ 16
Real-time kernels ___ 16

Interprocess Communication___ 17
Resource reclaiming ___ 19
Interrupts__ 21

Benchmarking real-time operating systems _____________________________ 22
Monitoring __ 22
Testing vs. benchmarking ___ 25
Benchmark examples __ 25

Case Studies ___ 30
Selection criteria ___ 30
Evaluation model __ 31
CHAOSarc___ 33

Scheduling___ 34
Memory management __ 35
Interprocess communication ___ 36
Conclusions__ 37
Evaluation ___ 38

Chimera __ 40
Scheduling___ 41
Memory management __ 41
Interprocess communication ___ 41
Conclusions__ 43
Evaluation ___ 43

MARS__ 45
Scheduling___ 46
Memory management __ 47
Interprocess communication ___ 47
Conclusions__ 48
Evaluation ___ 48

MontaVista Linux __ 50
Scheduling___ 50
Memory management __ 51
Interprocess communication ___ 51
Conclusions__ 51

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 7

Evaluation ___ 52
OSE ___ 53

Scheduling___ 53
Memory management __ 54
Interprocess communication ___ 55
Conclusions__ 56
Evaluation ___ 57

RT-Mach ___ 59
Scheduling___ 59
Memory management __ 60
Interprocess communication ___ 60
Conclusions__ 62
Evaluation ___ 62

RTEMS __ 64
Scheduling___ 64
Memory management __ 65
Interprocess communication ___ 66
Conclusions__ 66
Evaluation ___ 67

SARA __ 68
Scheduling___ 69
Memory management __ 71
Interprocess communication ___ 71
Conclusions__ 72
Evaluation ___ 72

Spring__ 74
Scheduling___ 75
Memory management __ 77
Interprocess communication ___ 77
Conclusions__ 78
Evaluation ___ 79

Summary of evaluations___ 80
Conclusions and Future Work __ 81
Acknowledgements__ 82
References __ 82

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 8

Introduction
The purpose of this survey is to review some of the major concepts concerning
Real-Time Operating Systems (RTOS) aimed for parallel or distributed hardware
platforms, roughly reflecting the state of the art in the early beginning of the 21st
century. The work was carried out as a preparatory study to a masters’ thesis
project at the department of computer science and engineering at Mälardalen
University.

Real-time systems are computing systems that have a time critical nature. When a
certain event occurs in the environment, the real-time system must react with the
correct response within a certain time interval. In ordinary systems it is typically
the value of the output that determines the correctness, in real-time systems we
also have the timing issues to consider. A correct output produced to late or to
early could often be useless, or even dangerous. In [STA00], it is concluded that
98% of the microprocessors produced in 1998 where for real-time or embedded
systems use, and towards the end of 2000 it is predicted to be up against 100%.
Examples of applications that require real-time computing include:

• Vehicle control systems
• Industrial automation systems
• Telecommunication systems
• Military systems
• Railway switching systems
• Forestry automation systems

The purpose with an RTOS is to simplify the development process of real-time
systems, by providing an interface with a higher abstraction level than the bare
hardware architecture offers. The most distinguishing features with a RTOS
compared to an ordinary Operating System (OS) are the deterministic and
predictive time management. An ordinary OS often tries to perform all actions
with average throughput in mind, this methods minimizes the average case at the
cost of the worst-case. An RTOS must try to handle all system calls and task
switches in a predictive and analysable manner, i.e. often by providing a known
worst-case behaviour.

The demand for distributed or parallel hardware architectures in real-time systems
as other systems is mainly due to the fact that the applications requires more than
a single processor can offer. Complexity in real-time systems increases more
rapidly than the performance of the microprocessors increases. A special demand
exists in some real-time systems; since many real-time applications are distributed
by its nature it is motivated to use a distributed control system. Consider
industrial manufacturing pipelines with several robots, the robots is performing
independent work but it is easy to understand that the robotics must be
synchronized in some way. Many slightly different interpretations of the
difference between a parallel and a distributed hardware platform exist. In this
survey the difference is defined by the tightness of the connections in the

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 9

machine, if a processor in the machine requires at least one common and shared
resource or device to be working properly it is a parallel machine. In a distributed
architecture it is assumed that a processor can be taken out together with its own
private devices and resources, without ruin the possibility to use the rest of the
system and the detached processor as two independent computers. The term
multiprocessor is sometimes used to address only parallel computers, but in some
cases both distributed and parallel architectures, it should be no problem to
distinguish between the cases when that is necessary. Finally the term multi
computer is a true distributed architecture.

The authors are not aware of any surveys with the same objectives as this, but it
exists many papers and articles specialized towards a narrower subject covered by
this survey and surveys with slightly different objectives. In [YAN97], the authors
presents a survey directed towards RTOS, but no RTOS is described in detail it is
rather a design issue survey. A chapter in [BUT97] presents some RTOS,
described as a survey, but the selection criteria differs from ours. The survey is
not directed through multiprocessor or distributed hardware platforms, although
some RTOS with support for such target platforms are mentioned. A operating
system survey that is directed towards multiprocessor platforms but not real-time
kernels is [GOP93].

The outline of the survey is as follows. In the design issues section we will try to
discover and explain the most important issues in multiprocessor RTOS and how
they can be compared to each other. The next section is a case study of a set of
selected RTOS with multiprocessor support, each RTOS central concepts will be
presented and an evaluation will follow every RTOS description. The final
section concludes the survey and discusses future work.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 10

Design issues
In this section a framework for description and evaluation of real-time
multiprocessor operating systems are presented. We are aware of that many
important aspects of an operating system have been left out, mainly due to the
need of limit the survey. The issues we have left out include areas such as
structure and I/O. The structure of operating systems is typically referred to as
monolithic, layered or client-server based. Areas sorting under I/O are disks, user
interactions and environment sampling. I/O, structure and most of the other issues
we are not addressing are described in [TAN92]. The three central issues, which
describe almost all essential constructs in a real-time operating system, are:

• Scheduling
• Memory management
• Interprocess communication

In the first part of this section an explanatory presentation of the three mentioned
issues is given, together with an introduction to some of the presented algorithms
and ideas designed for usage within the three specific areas. In the end of the
section benchmarks as method for practical comparison of RTOS:es are reviewed.
Although this survey only evaluates different RTOS:es theoretically, a well and
fair performed benchmark is often the most reliable basis for a comparison.

Scheduling
The first issue to address when talking about scheduling algorithms for real-time
systems is the task management. With task management, we basically mean
attributes associated to tasks. This is an important issue since different scheduling
algorithms require different task attributes, and different real-world problems are
often easiest to express with different task attributes.

Task management
The basic terms concerning tasks and their attributes are easiest explained by an
example. A real-time system is a system that interacts with the environment by
performing pre-defined actions on events within a certain time. The action of a
special event is typically defined in a task and within a certain time forms the
deadline for a task. A real-time task can be classified as periodic or aperiodic
depending on its arrival pattern and as soft or hard based on its deadline. Tasks
with regular arrival times are called periodic and tasks with irregular arrival times
are aperiodic tasks. Each of the hard tasks must complete execution before some
fixed time has elapsed since its request, i.e. finish before its deadline. Soft tasks
do not have any demands in time, which means that soft tasks do not have any
deadlines. Other attributes associated with a real-time task that usually are
mentioned in scheduling and task management contexts are for instance:

• Worst Case Execution Time (WCET) – is the maximum time necessary
for the processor to execute the task without interruption.

• Release time – is the time at which a task becomes ready for execution.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 11

• Sporadic task – is an aperiodic task with a known minimum interarrival
time (MINT), that is the minimum time between two activations.

• Precedence constraints – are constraints about the order of task
execution, some tasks must execute in a defined order.

In almost all real-time operating systems, the information about a task is stored in
a data structure, called the task control block (TCB). The TCB typically contains
the task state, the desired or required set of attributes from those defined above, a
pointer to the procedure that represents the task and a stack pointer. If the
scheduling algorithm is preemptive the TCB must contain everything that is
needed to store and reload the state for the task (registers etc). The rest of the
content in the TCB varies from one RTOS to another; many of the special features
of an RTOS will affect the TCB.

In almost all operating systems, a task can at any point in time be in one of the
following states: Running, Ready or Waiting. The states may have different
names in different operating systems, but the semantic meaning is always the
same. Additional states exist in most operating systems, but these three states are
the most important and basic states. Only one task per processor can be in the
Running state at any instance in time, it is this task that currently uses the
processor. A task that has all that is needed to execute, but for any reason waits
for another task is said to be in the Ready state. Finally a task that misses
something, a shared resource, waiting for an external event or waiting for its
release time etc is said to be in the Waiting state.

Scheduling algorithms
Scheduling real-time systems are all about guaranteeing the temporal constraints
(deadlines, release times and so on). Two main approaches for real-time
scheduling exist. On one side we have off-line scheduling, where all scheduling
decisions is calculated by the system designer before runtime and stored in a
runtime dispatch table. The other approach is on-line scheduling, where all
scheduling decisions is calculated by the scheduling algorithm at run-time.
Throughout this text both the terms on-line and off-line scheduling as well as
runtime and pre-runtime scheduling are used.

Which algorithm that is best suited depends on the scheduling problem to solve.
For instance algorithms based on the off-line scheduling approach are more
deterministic, and it is easy to prove and show that a task will meet its deadline
since the methods in some sense applies the “proof-by-construction” approach.
Off-line scheduling methods can also solve tough scheduling problems with high
CPU utilisation and complicated precedence constraints. An off-line scheduler
can spend long time in finding a suitable schedule, since the system is not up and
running and no deadlines will be missed during the search, but at run-time the
only scheduling mechanism we need is a simple dispatcher that performs a table
lookup. On the other hand, we need to know almost everything about the systems

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 12

timing constraints to be able to create a suitable schedule before run-time.
Algorithms based on the on-line scheduling approach in general offer higher
flexibility and are better to adopt changes in the environment, at a higher cost for
calculating on-line scheduling decisions and they cannot offer the same degree of
provable determinism. The higher flexibility offered by on-line scheduling
approaches cause that most existing algorithms that schedule aperiodic tasks use
the on-line scheduling approach.

Most off-line scheduling algorithms that have been implemented are based on
some kind of search technique with applied heuristics. Examples of such
scheduling algorithms are A* and IDA*, they are analysed and described in
[FOH94] (chapter 3). Other examples are branch-and-bound [RAM90] and meta
[FOH97]. According to [JXU93] most practitioners working on safety-critical
hard real-time systems, that uses the off-line scheduling approach have been
observed doing the schedules by hand instead of letting a computer search for a
schedule, the result (the by hand created schedule) is often hard to verify and
maintain. Examples of on-line scheduling algorithms that handle periodic tasks
are Earliest Deadline First (EDF) [LAY73], and Rate Monotonic (RM) [LAY73],
both introduced in the early seventies. Most on-line scheduling algorithms use
one of these two algorithms as base algorithm. A sample of on-line algorithms
that handles both periodic and aperiodic tasks is Sporadic Server (SS) [LEH93],
Robust Earliest Deadline (RED) [BUT93] and the Total Bandwidth Server (TBS)
[BUT94].

Multiprocessor scheduling
The multiprocessor scheduling anomalies that do not exist in the single processor
case and must be considered when constructing a multiprocessor scheduling
algorithm are in brief that; the schedule length can be increased by:

• Increased number of processors
• Reduced task execution times
• Weaker precedence constraints

As a consequence when using multiprocessor platforms, algorithms that have
been showed to be optimal in any sense on a uniprocessor system are often not
optimal in a multiprocessor system. For instance EDF has been showed to be an
optimal algorithm, under certain conditions in [DEZ74] for a uniprocessor system.
In the multiprocessor environment, EDF and other under any conditions optimal
on-line algorithms fails to be optimal, in [MOK83] it is showed that no algorithm
can be optimal in an on-line scheduled multiprocessor system, with or without
precedence and mutual exclusion constraints. Multiprocessor architectures
combined with real-time scheduling are therefore a delicate problem and an
ongoing research area. It is clearly easier for an off-line scheduler to be optimal,
since the time that such a scheduler may consume is potentially unlimited. For
instance consider an off-line scheduler that tries all possible combinations on all
processors, if a schedule that solves the problem exists this scheduler will find it.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 13

Hence we can say that such a scheduler would be optimal, but it will not be
practically useable since the time required finding the schedule also are not
unlimited. When implementing an off-line algorithm for finding a schedule that
solves a specific scheduling problem, it is easy to understand that the total time
spent finding a schedule simplified is a formula as below.

 (Time not finding a schedule * Number of failures) + (Time for finding * 1)

Through a quick look at the formula we can see that the biggest time is spent in
(not finding any schedule), hence it is at least as important for an off-line
scheduling algorithm to fast detect that there is no solution as actually finding a
schedule. This is the main reason why no one uses our intuitive, although clearly
optimal suggestion of pre-runtime scheduling algorithm.

In [STA98] the authors identifies three phases in the scheduling procedure of a
multiprocessor system, and the text is directed towards on-line scheduling. The
phases also seem to be suitable for an off-line scheduler. In the off-line scheduler
case phases 1 and 2 would be executed off-line, and only phase 3 would be
executed on-line.

1. Allocation – the assignment of tasks and resources to the appropriate
nodes or processors in the system.

2. Scheduling – ordering the execution of tasks and network communication
such that timing constraints are met and the consistency of recourses is
maintained.

3. Dispatching – executing the tasks in conformance with the scheduler’s
decisions.

To continue the opened discussion and get a little bit more concrete examples on a
run-time, a pre-run-time and a combined approach will be given. However these
algorithms assumes a lot of parameters and may be targets for some modifications
and simplifications before they are applicable in the real world.

An on-line method
A holistic approach based on EDF is presented in [STA98]; the method is focused
on how to perform the analyses so that we can guarantee deadlines on events. In
the end, real-time scheduling is about being able to guarantee the temporal
behaviour of a system. The method is an adoption of the holistic approach based
on static rate monotonic priorities developed in [TIN94]. The assumptions limits
the algorithm to be used anywhere without modifications, for instance tasks are
statically allocated to a node, and a token-ring based communication medium is
assumed. The original method, from [TIN94] has been adopted for use on other
communication networks as well. For instance in [NOR00] examples on how to
use the method with rate monotonic priorities and a CAN bus is showed.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 14

Each node has a ready queue that is scheduled by EDF and the key to overcome
the otherwise hard global analysis is attribute inheritance. Every message inherits
two of the sending tasks temporal attributes, the period and the release jitter. The
release jitter is simply defined to be the difference between the sender tasks
earliest start-time and worst-case response-time. The period that is inherited is
simply the period of the task. Based on that simple notation it is possible to
perform end-to-end response time analysis of a transaction. The iterative analysis
formula can be expressed as following:

1. Set all initial release jitter to zero.
2. Compute the worst-case response-time for tasks and messages for each

host processor and network separately.
3. Compute the worst-case jitter that the response-times in step 2 can

generate, go to step 2 if the jitter does not change, else we are done.

Each of the different computations in the steps 1, 2 and 3 are quite simple
summations and can be found in [STA98], however they are iterative and with
many tasks it may take a while to achieve convergence.

An off-line method
A heuristic method for multiprocessor systems dealing with hard periodic tasks is
the Slack method [ALT98]. Many of the offline methods only deal with this task
type. The method is divided into two sub-steps named Graph Reduction and CP-
Mapping. In reality we can conclude that the division into three steps easiest
describes the algorithm, since two sub steps are included in the Graph Reduction
step. Here comes a brief overview of the method, for a complete and detailed
description with proofs and formal mathematical definitions refer to [ALT98].

During the initial Graph Reduction step, transactions (consisting of several tasks)
are treated separately. Each transaction graph is taken as input to the step.

1. First the Graph Reduction step tries to reduce each transaction graph to a
CP graph, by a method named critical path clustering. Critical path
clustering is about finding the critical path of a transaction. The critical
path is in short defined as the path with the smallest slack, and the
smallest slack of a path is in turn defined as the minimum slack of all
vertices of a path. The slack is determined as the time between a tasks
deadline and the summation of the computation time and the release time,
i.e. the time a task can be delayed without missing its deadline.

2. Secondly the Graph Reduction step tries to fill slack intervals in the
generated CP graphs, with other paths. This is an initial step to let
different paths execute on the same processor.

3. Finally the CP-Mapping step is executed. In this step the different CP-
graphs, which represents one transaction each are mapped onto a physical
processor. A CP-graph is a drastically reduced form of the initial problem
formulation; the two reductions executed in the Graph Reduction step are
successful in most cases. Hence an optimal algorithm is used for the

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 15

mapping in this step, by optimal we mean an algorithm that finds a
solution if a solution exists. It is simple to construct an optimal algorithm
and here backtracking is the choice, i.e. if any deadlines are missed
during an assignment, backtrack to the next possible assignment.

A hybrid method, integration of off-line and on-line
A detailed explanation and description of the Slot Shifting algorithm can be found
in [FOH95], here comes an introductory description. The Slot Shifting algorithm
is an algorithm that combines both on-line and off-line scheduling. Easily we can
state that the Slot Shifting algorithm handles periodic tasks with the off-line
approach and that the aperiodic tasks are on-line scheduled using the remaining
capacity. The algorithm uses time slots as the basic abstraction for the system
time; a slot is an interval of time with a fixed length.

The off-line preparations for slot shifting is basically about creating and ordinary
off-line schedule and determining spare capacities, i.e. how many time units
(slots) we can move a tasks execution without jeopardizing its deadline. The task
assignment to different nodes in the system is done manually or with another
algorithm, task assignment is not specified in the original algorithm. Further on
the network between the different nodes are assumed to be a time slotted
architecture, i.e. token-ring, TDMA etc. The messages on the network is
integrated in the off-line scheduling procedure. The time model is said to be
discrete, since both the communication medium and the scheduling algorithm
uses the same globally synchronized time slots.

The online scheduler is invoked after each slot and checks whether we have any
aperiodic tasks to schedule. If aperiodic tasks are pending, the scheduler performs
an on-line guarantee test. The scheduler tries to shift the execution of the periodic
tasks as much as possible without risking their deadlines, using the off-line
calculated spare capacities. If we have enough spare capacity to serve the
aperiodic requests, we execute them else they are rejected.

Memory management
When implementing a suitable memory abstraction in the operating system, the
first thing to study is what the hardware offers. Many attempts for classification
of hardware memory systems exist. In this survey it is the terms Uniform Memory
Access (UMA), Non Uniform Memory Access (NUMA) and NO ReMote Access
system (NORMA) that are used.

• In UMA architectures, memory access times are equal for all processes to
the whole address space. A common design technique for those systems is
processors connected to a bus, and a global shared memory connected to
the same bus.

• The NUMA systems also offers a single shared address space that is
visible for all processors, but the access times for a processor to different

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 16

memory region differs. A common design technique is processor boards
with own memory modules attached to a shared bus.

• NORMA architectures on the other hand do not offer a global shared
address space. Each processor just accesses its own address space.
Typically these architectures consist of loosely coupled independent
computers connected through ordinary Local Area Network (LAN)
technologies, often referred to as clusters. But bus based NORMA
systems are also common.

The software layer
Usually the operating system implements some memory abstractions above the
abstraction offered by the hardware. Typically protection, virtual memory,
allocation and de-allocation primitives are implemented in the operating system.
Although some parts of the protection and virtual memory support often are
implemented in hardware, it is the operating system that configures the hardware
and implements own abstractions. Protection is about associating attributes with
memory segments like read-only access or read-write access. Virtual memory
means that we use more memory than is physically available. This is
accomplished by introducing another bigger but considerably slower level in the
memory hierarchy, i.e. a disk device. Allocation and de-allocation is about
allocating and de-allocating memory dynamically during run-time. Another
example of typical implementation in the software layer is another memory
abstraction than the hardware offers, for instance NUMA from NORMA, an
example of this is described under the interprocess communication section.

Real-time kernels
Real-time kernels memory management services are often simple and primitive,
almost non-existent. Virtual memory are for instance often considered as a
dangerous and unreliable feature, and therefore not implemented. This is easy to
understand because of the unpredictable long access times to a memory page on a
disk device. It is easy to agree with the authors of [BEN01], when they state that
most of the proposed software algorithms and hardware support in commercial
processors for memory management are optimized for average performance, and
not for predictable worst-case behaviour. Dynamic allocation of memory is also
avoided, since the behaviour is both temporal and functional unpredictable. We
cannot guarantee that memory will be available, and not how long it will take for
the kernel to find the necessary amount of memory. Another task may allocate
memory, but some semantic fault may cause the task to never de-allocate the
memory. Such tasks are said to leek memory. To be completely secure against
memory leaking tasks, real-time kernels often do not implement dynamic memory
handling. According to this it sounds like memory management in real-time
systems is rather boring, but it is not, some more fancy techniques have been
presented recently.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 17

In [BEN01], the authors develop theories for integration of virtual memory and
the other functions a modern processor offers through its Memory Management
Unit (MMU). Their approach is motivated by the fact that many safety-critical
real-time applications consist of both hard and soft real-time tasks, i.e. hard or soft
deadlines. Suitable processors for their approach are processors, which have
support for some kind of partitioning of the address space. The introduction of
real-time address spaces is the proposed solution. Tasks with soft deadlines can
utilize all fancy mechanisms offered by the processor, and resides within an
ordinary address space. For instance we can have a monitor task with a soft
deadline that sometimes need virtual memory. While tasks within a real-time
address space does not use any virtual memory or caches. Those tasks need a
predictable memory access time. The definition given in [BEN01] of a real-time
address space is quoted below.

“An address space is a real-time address space if: The worst-case execution time
of the virtual-to-physical translation for all pages that do not result in a page
fault in the address space is known.”

The principle for an implementation of real-time address spaces is described for
PowerPC, MIPS and StrongArm in [BEN01].

Research efforts that pay attention to real-time systems and dynamic memory
management, currently seems to be driven by the need of virtual and dynamic
memory in programming languages like java and C++. It is possible to use a
hardware module for memory allocation; in this way we could get predictable
allocation time. The Active Memory Module (AAM) [SRI00] is such a device. All
allocations are bounded to 14 clock cycles; a fast and constant allocation time
makes this device suitable for real-time applications. The AAM module was
developed for the use of Java in real-time applications. The garbage collection
and dynamic memory allocations naturally existing in a Java program jeopardizes
the execution times. The garbage collection and dynamic allocations in Java
utilizes only heap memory, so the AAM module only administrates the heap
memory. The RAM module and the AAM module is physically separated, an
AAM module consists of memory modules and a controller.

Interprocess Communication
Communication is a central component in any operating system; especially in
multiprocessor operating systems communication has the same importance as the
instruction set has in a uniprocessor system. Co-operating processes or threads
often communicate and synchronize. The execution by one certain process can
affect another process by communication. Generally there are two different types
of interprocess communication (IPC) for multiprocessor systems: message
passing and shared memory.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 18

Each of these communication models was developed for a different class of
multiprocessors, reflecting the assumptions about the underlying hardware. The
shared memory model is typically associated with tightly coupled shared memory
multiprocessors (UMA, NUMA), while the message passing model is typically
associated with distributed memory multiprocessors or distributed multicomputers
(NORMA), which is a network of workstations.

Performance comparisons between message passing and direct use of shared
memory have been done in [LEB92]. The authors claim that both communication
models have performance advantages and the factors that influence the choice of
model may not be known at compile-time. Their conclusions were mainly that the
advantage with the shared memory model is load balancing, while the main
advantage with the message-passing model is locality. Today both communication
models are in use on both classes of machines.

In a shared memory multiprocessor, message passing is a more abstract form of
communicating than accessing shared memory locations. Message passing
subsumes communication, buffering and synchronization. Multiprocessor
operating systems have experimented with a large number of various
communication abstractions [GOP93], including ports, mailboxes, links etc. In
other words these abstractions are kernel-handled message buffers. The two basic
message-passing primitives in such abstractions are send and receive. Sends and
receives may provide synchronous and/or asynchronous communication and they
may be blocking (a process does not wait for the communication to complete) or
non-blocking (a process waits for the communication to complete).

Computing large or complex data structures may be inefficient or difficult using
message passing in a distributed memory multiprocessor or distributed
multicomputer. A solution to this problem is to use coherent distributed
memories, based on a message passing mechanism. As an example of such a
system we refer to Mirage [FLE89]. Mirage is a protocol that hides the distributed
memory network boundaries for the application programmers, i.e. used when the
shared memory model are desirable on a distributed memory multiprocessor.

The difference between communication in a real-time system and a conventional
(not real-time) system is their different system requirements. The major desirable
characteristic in a conventional system is performance, expressed in throughput,
average response time or latency. Real-time tasks must not only produce the
correct results, they also have to be produced on time. However, this cannot be
achieved by just providing a fast communication media. In conventional systems,
IPC can be unpredictable due to the potentially unlimited blocking time of
applications synchronizing or waiting for messages. So the communication in
real-time systems must not only be fast, it must also be predictable and
deterministic, in order to guarantee hard tasks by using some form of analysis
before the start-up of the system (pre-runtime). A method to make IPC efficient is

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 19

to implement hardware support for such functionality [FUR01]. The main
drawback with IPC mechanisms implemented in special purpose hardware is the
cost of extra hardware.

Resource reclaiming
A shared resource is a software structure that can be used by more than one
process to advance its execution. Any operating system that supports shared
resources must provide any resource access protocol to ensure consistency of the
data in the shared resources. In other words the operating system must guarantee
mutual exclusion (for instance by providing semaphores) among competing tasks,
so if two or more tasks have resource constraints, they must be synchronized.
Intertask communication is a critical issue in real-time systems, since the fact that
shared resources may cause priority inversion [BUT97] and unbounded blocking
on processes’ executions. A priority inversion occurs when a high-priority task
requests a shared resource that is used by a low-priority task. This means that the
high-priority task must wait for the low-priority task to finish its execution, i.e.
the high-priority task executes with a lower priority than the low-priority task.
Since the duration of priority inversion in general is unbounded, this jeopardizes
the predictability of tasks execution. There are many different approaches to solve
the priority inversion problem. The Priority Inheritance and the priority ceiling
protocol are two semaphore protocols where the maximum blocking time for a
task can be calculated.

Priority Inheritance Protocol
The priority inheritance protocol, proposed by Sha, Rajkumar and Lehoczky in
[LEH90], minimizes the blocking time of a high-priority task by increasing the
priority of the low-priority task when the high-priority task becomes blocked. A
task can only hold semaphores during the execution, i.e. when a task has finish its
execution it is not allowed to hold any semaphores.
Definition of the Priority inheritance protocol:

1. Task A executes and tries to obtain semaphore S. If semaphore S is
locked, task A is blocked because it cannot lock the semaphore, if not
task A locks semaphore S. When A unlocks S, the task with the highest
priority that is blocked by A becomes ready.

2. Task A uses its assigned priority during execution unless it has locked
semaphore S and blocks higher-priority tasks. If task A blocks higher-
priority tasks, it will execute with the highest priority of the tasks that is
blocked by A (A inherits the highest priority). When A unlocks
semaphore S, A will return to its original priority.

3. Priority inheritance is transitive. Assume three tasks A, B and C in
descending priority order. If task C blocks B and B blocks A, task C will
receive task A’s priority.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

A drawback with the priority inheritance protocol is that it does not deal with
blocking-chains and deadlocks.

Deadlock
Deadlocks are best described with an example. Assume two tasks A and B that
both want semaphores S1 and S2. Task A has high priority and task B has low
priority. Task A attempts to lock semaphore S1 before S2, while B attempts to
lock S2 before S1. We have the situation illustrated by Figure 1.

A B

S1 S2

A B

S1 S2

A B

S1 S2
Figure 1, A and B are tasks, S1 and S2 are semaphores.

A deadlock scenario:

1. All semaphores are free.
2. Task B locks S2.
3. Task A preempts B and locks S1.
4. Task A attempts to lock S2, but S2 is locked so A is blocked.
5. Task B attempts to lock S1, but S1 is locked so B is blocked.
6. Both tasks are blocked, waiting for each other. A deadlock has arisen.

A solution to the deadlock problem is to use the Priority Ceiling Protocol, which
is described in the next section.

Priority Ceiling Protocol
The priority ceiling protocol [LEH90] minimizes the blocking time of high-
priority tasks by preventing blocking-chains. Furthermore this protocol prevents
deadlocks.
Each semaphore S is assigned a priority ceiling. The value of the ceiling is equal
to the priority of the task that has highest priority among those tasks that want to
lock semaphore S.

Definition of the priority ceiling protocol:

1. Task A executes and attempts to lock semaphore S. Let S* be the
semaphore with highest priority ceiling among those semaphores that
currently are locked. Task A cannot lock semaphore S if it is already
locked, so A is blocked. If semaphore S is not locked, A locks S in case
A’s priority is higher than the priority ceiling for S*. The task with

 20

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 21

highest priority among those tasks that are blocked by A, becomes ready
when A unlocks S.

2. Task A uses its assigned priority during the execution in case it has not
locked a semaphore S and blocks higher-priority tasks. If task A blocks
higher-priority tasks, it will execute with the highest priority of the tasks
that is blocked by A (A inherits the highest priority). When A unlocks
semaphore S, A will return to its original priority.

Interrupts
Interrupts generated by external I/O devices causes a big problem for the
predictability of real-time systems, because if they are not properly handled they
may introduce unbounded delays during process execution. In most operating
systems, the arrival of an interrupt starts the execution of an interrupt service
routine (driver), dedicated to the management of the certain device. With this
approach, all hardware details of the device are encapsulated inside the driver. An
interrupt service routine should be as small as possible, i.e. handle the device that
generated the interrupt in order to minimize the blocking time of ordinary tasks.
Often this means that the interrupt service routine reads or writes a value to the
device and then just acknowledges the interrupt. Typically the interrupt service
routine often sends the received value to a task that further serves the value.

In many operating systems, interrupts are served using fixed priority schemes, i.e.
each driver is scheduled based on a static priority, which is higher than the
process priorities. This is motivated by the fact that I/O devices normally deals
with real-time constraints, whereas most application programs do not. An
important real-time issue with interrupt handling is systems maximum interrupt
latency, i.e. how long time can the system turn off all interrupts (interrupt
disable).

Next a brief description three different approaches will be given.

1. This approach eliminates interrupt interference by disabling all interrupts
except the timer interrupts, which are necessary for the system. Since no
interrupts are allowed, application tasks handle the external devices
through polling. This strategy requires that the application tasks have
direct access to the I/O devices that they want to handle. All device-
dependent functions can be encapsulated in a set of library functions; so
different application tasks can include different libraries. An advantage
with this function is that the kernel does not need to be modified when
new I/O devices are added. The main drawbacks with this approach are
the response times of external devices and the processor utilization on I/O
operations. A system that has adopted this approach is RK, which is a
hard real-time kernel for multi-sensor applications [LEE88].

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 22

2. The second approach resembles the previous one, because all interrupts
except from the timer are disabled. Instead of using application tasks for
handling devices, this method uses dedicated kernel routines to serve
devices. The timer periodically activates the kernel routines. This strategy
eliminates the unbounded delays due to the execution of the interrupt
drivers and all device-dependent functions are encapsulated in kernel
routines and do not need to be known to the application tasks. In
comparison with the previous approach this strategy has a little higher
system overhead, because of the required communication between the
kernel routines and the application tasks for exchanging I/O data. This
approach has for instance been adopted in the MARS system [KOP89].

3. The third approach enables all interrupts, but the drivers must be reduced

to the least as possible. The only purpose of the drivers is to activate a
certain task that will handle the management of the device, i.e. the driver
do not handle the device directly but only activates a dedicated task. The
device management tasks are scheduled and guaranteed as all ordinary
tasks. The major advantages with this method in comparison with the
previous described approaches are the elimination of the busy wait I/O
operations, that a control task can have a higher priority than a device-
handling task. A system that has been adopted this approach is the
SPRING system [MOL90], which is a distributed real-time operating
system for large complex applications with hard timing constraints.

Benchmarking real-time operating systems
Benchmark programs measure the relative speed of computers, algorithms or
different language implementations. Usually they are used when performance
comparisons are to be carried out. For instance, benchmarking can be used to
compare a software implementation with a hardware implementation, since the
approach: using special-purpose hardware for increasing the performance and
predictability of a system is widely used today. Another way of using benchmarks
is when a novel system with performance requirements has been developed. In
such case, the benchmark program works as a software verification tool. A
problem with benchmarking of real-time operating systems is the lack of
standards for measuring performance [ACH91, WEI99]. Especially when
evaluating real-time kernels from different vendors, the tests often have to be
rewritten, because the kernels have interface differences.

Monitoring
In order to benchmark a system, the system has to be monitored, i.e. gathering
run-time information for performance measurements. Any attempt to gain more
information about a system may intrusive the system temporal and/or functional.
This problem has been referred to as the probe-effect. Probes are necessary for
monitoring; without probes it is impossible to measure a systems performance.
When the programmer has monitored a system by using probes, the probes cannot

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

be removed in all cases. Because, an elimination of the probes may also introduce
the probe-effect. That means that the probe-effect may occur either when probes
are inserted into the system or when probes are removed from the system.

A system may have performance requirements. In such case, the designers must
first estimate the performance of the architecture during the design phase, and
when the system has been tested, measure and evaluate the real performances and
compare them to the performance requirements. In [CAL98], the authors have
classified different kind of performances into different categories, see figure 2.
Dynamic performances are classified into external performances that concern the
behaviour of the system observed from its interface (response time, throughput
etc.) and internal performances (process execution time, bus utilization, etc.). The
dynamic performances are the most difficult to deal with.

Figure 2, Different categories of performances.

The problem of collecting relevant information from distributed real-time systems
can be classified in three categories: hardware monitoring, software monitoring
and hybrid monitoring.

The hardware monitoring is based on connecting probes to the hardware system
in order to observe its behaviour without disturbing it. The probes can for instance
be logic analyzers or emulators. The main drawbacks according to [CAL98] are:

• Often the development of a specific hardware and software to monitor it
are required.

• The abstraction-level of the collected information is very low, which
makes it difficult to interpret.

• With future VLSI components including all the parts (CPU, memory,
FPGA) in the same chip (system-on-chip), this technique does not work.

The software approach consists of adding a set of extra instructions to the
software, in order to collect all useful information during runtime. This technique

 23

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

can be fairly target independent, with focus on the hardware architecture. It also
provides a high level of abstraction of the collected information. The major
drawback with this approach is the disturbance on the system, affected by the
information gathering. Both the temporal and system behaviour may be disturbed.
For real-time applications, the disturbance may end in both wrong results and not
fulfilled timing constraints.

The hybrid approach is a combination of software monitoring and hardware
monitoring. It is based on a few instructions in the software code that selects
adequate information. The information is collected with a specific hardware, and
then transmitted to a host system [CAL98].

A hardware approach that overcomes the main drawbacks with hardware
monitoring listed in [CAL98], is MAMon (Multipurpose/Multiprocessor
Application Monitor) [SHO01], which is an ongoing research project at
Mälardalen University. MAMon can be integrated in a System-on-Chip (SoC)
design and it increases the level of abstraction. The current version of the
monitoring system can both monitor the logic-level and the system-level in both
single and multiprocessor systems. The monitoring system is able to monitor in a
completely passive manner without probe effect, assuming an ideal target system.
Ideal target systems are systems were a small hardware component could be
integrated in the hardware as a SoC or a hardware kernel as the RTU [ADO96].
Today many SoC applications are hard to verify and optimize, they are often
monitored from the register transfer level (RTL) or even the gate-level. Bugs are
however easier to find in the system-level since fewer events/s occurs on that
level [SHO01] as illustrated in figure 3, this motivates a top-down debugging
strategy. MAMon allows us monitoring the system-level, this might be important
in future SoC applications since complexity is increasing with a tremendous
speed.

Figure 3, Events/s in different abstraction levels.

 24

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 25

Testing vs. benchmarking
Software testing is often associated with the terms validation and verification.
Validation is the process of checking that a programs specification fulfils the
customers’ requirements. Software testing is a kind of verification of a program or
system, with consideration to the specification. In general, two methods can be
applied in the verification process, namely testing and formal methods. Today,
testing is the state-of-practice, although formal methods seem to be a powerful
tool, many problems must be solved before formal methods can replace testing in
complex real-time systems. In [THA00], the author explains the main limitations
with today’s formal methods. For instance it is at least as error-prone to express
systems functionality in a formal mathematical language as writing the code, and
it is also hard to verify that it is the “real system” that is modeled. The interested
reader can consult [BAR92], for more information on how to use formal methods
in the software verification process.

Software testing is used in the verification-process of a program or system, with
consideration to the specification. Testing may be divided into two stages. First, a
kind of testing strategy is developed. The testing strategy describes how testing is
to be performed, i.e. how to select input data, what information have to be
collected and how to collect and analyze this information. Second, the testing
strategy is applied to a program, which results in a test of that program.

Benchmarking is used with completely different goals in mind, than verification.
The purpose with a benchmark is to create basis for comparisons of systems, or
products with similar properties [KAM96]. In other words a suitable benchmark
must include and cover the most typical properties of the target applications.

Benchmark examples
In this section some suitable benchmarks for real-time operating systems are
presented and described. Classes of benchmark techniques that are skipped in our
selection include microprocessor-oriented benchmarks. When designing a real-
time or embedded system, microprocessor-oriented benchmarks are used to assist
the designer in the comparison between different hardware platforms. Some
examples of microprocessor-oriented benchmarks can be found in the Whetstone
[CUR76] and the Dhrystone [WEI84] benchmarks. These benchmarks are widely
used and have own metrics associated with them, whetstones and dhrystones.
Both benchmarks are based on synthetic workloads, the Whetstone benchmark
represents a typical scientific workload while the Dhrystone benchmarks
represents a typical system program instruction stream. Instead of assisting the
designer to choose the most suitable hardware platform, the following methods
are used for performance measurements.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 26

Rhealstone
The Rhealstone benchmark [KAR89] is a real-time microbenchmark, based on the
idea that each real-time application is unique, in contrast to Dhrystone and
Whetstone. First of all, six categories of components that are crucial to the
performance of real-time systems are measured and summarized:

1. Task switching time – The average time the system takes to switch
between two independent and active tasks of equal priority

2. Preemption time – The average time it takes a higher priority task to take
the control of the system from a low priority task. In general this event
occur when a high priority task becomes ready.

3. Interrupt latency time – The time between the CPU’s receipt of an
interrupt request and the execution of the first instruction in the interrupt
service routine (ISR).

4. Semaphore shuffling time – The delay of a task releasing a semaphore,
and the activation of another task waiting for that semaphore. No other
tasks are scheduled in between.

5. Deadlock breaking time – The average time it takes to resolve a deadlock,
which occurs when a high priority task preempts a low priority task that
hold a resource needed by the high priority task.

6. Datagram throughput time – The number of kilobytes per second one
task can send to another, by using kernel primitives, i.e. the average
interprocess communication speed.

Measurement of these Rhealstone components yields a set of time values. In order
to perform overall comparisons between different real-time systems, the values
have to be combined into a single Rhealstone performance number. The following
steps are necessary to achieve a single Rhealstone number:

1. Express all measured time values in the same unit (seconds).
2. Compute the arithmetic mean of the different components.
3. Arithmetically invert the mean (from step 2), to obtain the number of

Rhealstones per second.
[KAR90]

The calculated Rhealstone number treats all the Rhealstone components as
equally important parameters of real-time performance. In other words, this
number is good when evaluating a real-time system performance without a
particular application in mind. When a real-time system is dedicated to a certain
type of application, it is possible to calculate an application-specific Rhealstone
number. This number is based on weighted components, i.e. each component is
given unequal weights. For instance, an application may be interruptdriven and
don not use semaphores at all. The steps for calculating application-specific
Rhealstones are:

1. Estimate the relative frequency of each Rhealstone component’s
presence, and assign coefficients proportional to the frequencies.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 27

2. Compute a weighted average of the Rhealstone components, and the
invert it to get a result expressed in application-specific Rhealstones per
second.

[KAR90]

For further details about computing application-specific Rhealstone numbers look
in [KAR90], because in contains some improvements in comparison with the
original proposal [KAR89].

Distributed Hartstone
Distributed Hartstone [KAM91] is an extension of the Hartstone benchmark
[WEI90]. To be short the Hartstone benchmark is a benchmark aimed for real-
time systems, which consists of 5 test series each with a synthetic workload aimed
to test different task types.
The distributed Hartstone benchmark suite is developed for use in distributed real-
time systems, and is well adopted to evaluate the performance of an RTOS. The
distributed Hartstone benchmark as the Hartstone benchmark is based on a
synthetic workload that represents the typical instruction stream of a scientific
application. The benchmark consists of different task sets, which evaluates the
performance of one particular feature each. In each task set, all factors are kept
constant except one, which is the varied factor. The varied factor in a task set is
typically an execution time or the number of task or messages, however the
common factor is that the factors all can be increased to infinitely. In this way a
distributed Hartstone benchmark always reaches the breaking point of the system,
which is the point where the first deadline miss is experienced. In all the different
tests with different task sets, it is the breaking point that yields the distributed
Hartstone performance measure. The different task sets or measurements that
forms the performance measure are:

• DSHcl Series: Communication latency
The end-to-end communication delay is measured, it is an important
metric and we can all agree with that it is preferable to be able to
distinguish between different systems in this area. A good system in this
test should be able to provide a bounded worst-case time, and shortest
possible delay to messages from high-prioritized tasks.

• DSHpq Series: Priority queuing
The scheduling of messages is tested; in ordinary systems it is often FIFO
queues that handle the messages. But in a real-time system this is often
not a suitable solution, since a high frequency or a fast activity cannot be
delayed by an arbitrary number of other activities. This test is aimed to
test if the message passing algorithms can avoid priority inversions and
how successful the algorithm is on handling message priorities.

• DSNpp Series: Preemptability of the protocol engine
If a low priority message is being handled by the protocol engine, this test
is concerned about how long time it will take to switch over to an recently
arrived high priority message.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 28

• DScb Series: Communication bandwidth
The communication bandwidth is a metric on how much traffic the
communication medium can handle, included in this metric is also all the
operating system processing required for communication.

• DSHmc Series: Media Contention
This measure is concerned about the lower levels of the communication
protocol. A suitable medium access protocol should provide a higher
degree of service to high-prioritized messages. Even in the medium
access layer priority inversion should be provided.

SSU
The Superconducting Super Collider Laboratory (SSCL) has made performance-
measurements on four different real-time kernels [ACH91]. The products were all
from different vendors, but in order to compare and evaluate the different
offerings, they were tested on the same hardware platform. The measurements
falls into two categories: real-time and non real-time. The non real-time category
contains the throughput measurements, including process creation/termination
times, interprocess communication facilities involving messages, semaphores,
shared memory and memory allocation/deallocation. Measurements classified as
real-time, are for instance context switch times and interrupt latencies.
Each test was executed several times in order to compute the average time to
complete a test. Then the entire measurement was repeated a number of times, to
measure the minimum and maximum average values.

The different measurements that were performed are:

1. Create/Delete task – This is the time it takes to create and delete a task.
As soon a task I created, it deletes itself. The measurement includes two
task context switches and the time it takes to create, start and delete a
task.

2. Ping suspend/resume task – A task with low priority resumes a suspended
high priority task. The high priority task immediately suspends itself.
This measurement includes two task context switches and the time it takes
to suspend and resume a task.

3. Suspend/Resume task – This test is identical to the previous test, except
that this test does not include any task context switches, since in this test a
high priority task suspends and resumes a suspended low priority task.

4. Ping semaphore – Two tasks with equal priorities communicate with each
other through semaphores, i.e. they are competing for a semaphore.

5. Getting/Releasing semaphore – This test measure the time it takes to get
and immediately release a semaphore within the same task context.

6. Queue Fill, Drain, Fill Urgent – The time it takes to fill a queue and drain
the queue is measured (two different tests). Then the tests are repeated
with priority messages. The messages are sent to the head of the queue.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 29

7. Queue Fill/Drain –A task sends a message to a queue, which the sending
task immediately receives on the same queue. No task context switch will
occur nor there is any pending queue operations. In other words, the time
measured includes context switches, queue pends and sending and
receiving a message.

8. Allocating/Deallocating memory – This test measure the time it takes to
allocate a number of buffers from a memory partition and the time it takes
to return those buffers to the partition.

The conclusion that the authors of [ACH91] presented was that standards
adherence makes code more portable. In order to perform measurements on the
different kernels, they had to rewrite all the tests for all the kernels, because the
interfaces were different. In other words, the tests were custom-written for each
target platform.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 30

Case Studies
In this section some case studies of implemented multiprocessor real-time
operating system kernels are presented. As introduction to this chapter our
selection criteria’s, and the used evaluation model are presented.

Selection criteria
The overall requirements for the selected operating systems are support for real-
time applications and multiprocessor management. The multiprocessor support
should preferably be for NUMA or NORMA architectures, rather than only UMA
systems. While no specific requirements of the real-time support are specified, it
could be any mix between soft and hard real-time support, and anything the
inventors of the operating system want to refer to as real-time.

In [BUT97], the authors divide current operating systems having real-time
characteristics into three main categories, division (1):

1. Priority-based kernels for embedded applications
2. Real-time extended time-sharing operating systems
3. Research operating systems

Another division that exists is (2):

1. Commercial
2. Open source
3. Research

The selection of operating systems in this paper strives to cover both the listings
above. An overview and classification of the studied operating systems are shown
in table 1.

RTOS Classification
according to (1)

Classification
according to (2)

CHAOSarc 3 3
CHIMERA 3 3
MARS 3 3
MontaVista Linux 2 1,2
OSE 1 1
RT-MACH 2, 3 3
RTEMS 1 1,2
SPRING 3 3
SARA 1,3 3

Table 1, RTOS classification table.
It is easy to conclude that the research operating systems are over-represented, but
it is also these results and ideas that are most well described and include the most
advanced solutions. Most of the information available for many commercial
operating systems tend to be of more advertising nature, than honest descriptions

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 31

on chosen algorithms and results. We have to make clear that the commercial
RTOS we picked out, were selected because of the opposite. It was possible to
find non-advertising documentation concerning OSE. On the other hand many of
the published papers related to research operating systems, tend to describe only
the parts that their research are focused on. In other words it is sometimes hard to
get a general picture of a research system, but often easy to find results according
to small special areas. Our responses to the documentation related to the open
source operating systems is mixed. It was a lot of pages written, and it was
possible to find what we searched for. But the really deep descriptions of methods
and algorithms were missing; instead they referred to the actual code. The code
describes everything, but it can be bothersome to understand the details.

Some commercial RTOS that are not investigated in this survey are VxWorks
[WIN02], QNX [QNX02] and VRTX [MEN02]; all of them seem to be
interesting. On the open source scene we have for instance not investigated eCos
[RED02], a Linux distribution for real-time usage. The research systems we have
left out include RK [LEE88], HARTIK [GBU93] and Asterix [THA01]. The
reasons why we have not included the mentioned RTOS:es in the survey are for
some RTOS:es limited multiprocessor support and concerning some other it has
been hard to find relevant documentation. But the main reason is the need to limit
the survey, due to the limited time a masters’ thesis project contains.

Evaluation model
The chosen evaluation model, strives for the possibility that the readers
themselves, shall be able to compare the different operating systems. An obvious
way to achieve this goal is to evaluate many issues and then let the reader
combine the issues freely. The studied issues will be: scheduling, memory
management and interprocess communication. Each issue will be evaluated and
graded from 1 to 5 according to the three keywords listed below, where 5 is the
best. With this method, the result will be 3 grades for each operating system and
studied issue.

• Determinism – guarantee possibilities.
• Inventiveness – extraordinary solutions.
• Usefulness – typically flexibility or portability.

In this way the reader can create a lot of ranking orders, for instance it is possible
to find the operating system with highest overall rank, or the operating system
with the most deterministic scheduling algorithm, or the most useful interprocess
communication methods. A summary of the evaluation is presented last in this
chapter and, the motivations are presented in an evaluation section bounded to
every investigated RTOS.

Examples of what we will reward can be found in the tables (2, 3 and 4) below for
each issue and comparison keyword. Note that the listed examples in the tables

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 32

are only positive qualities; the absence or negation of the mentioned qualities will
lead to a lower grade. A motivation to each assigned grade will be given.

Category Scheduling
(1) WCET estimations possibilities.

Off line analysis possibilities.
(2) Task placement algorithms.

Multilevel scheduling.
(3) Reasonable task attributes, (easy translation of real-world problems).

High potential CPU utilisation.
Flexibility in the number of supported scheduling algorithms.

Table 2, Scheduling evaluation.

Category Memory management
(1) Bounded worst-case access time.
(2) Virtual memory and dynamic allocation.

Cache support.
(3) Dynamic and virtual memory.

Table 3, Memory management evaluation.

Category Interprocess Communication
(1) Bounded worst-case transmission time.

Resource reclaiming protocols.
Interrupt handling.

(2) New or conceptually different methods.
(3) Number of supported methods (message passing, shared

memory, remote procedure calls etc).
Potentially fast communication.
Interrupt handling.

Table 4, Interprocess Communication evaluation.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 33

CHAOSarc
CHAOSarc [GHE93] is an object oriented real-time kernel of the CHAOS
[SCH87] family. The CHAOS family of operating systems is structured in a layer
model with three layers. The first layer or the layer closest to the hardware is
CHAOSbase, which is a machine dependent component that implements some
basic operating system abstractions as threads, memory handling and
synchronisation primitives. Above CHAOSbase follows CHAOSmin, in this layer
the object-oriented approach is implemented with abstractions of classes, objects
and invocations. In the top layer the policies of the different operating systems in
the CHAOS family are implemented. The most interesting set of policies or
operating system constructed with CHAOSbase and CHAOSmin are CHAOSarc
according to the authors of [SCH90].

The hardware requirements of the operating system are dynamic since the
hardware dependent module CHAOSbase has been implemented or at least could
be implemented on several different architectures. The implementation presented
in this paper is running on a 32 node GP1000 BBN Butterfly [CRO85]. The
Butterfly is a shared-memory parallel processor, with each processor node mainly
consisting of a MC68020 processor, 4MB RAM and a co-processor called
Processor Node Controller (PNC) which handles shared memory requests. The
interconnection between processor nodes is a 32 Mbit/s per path multistage
switch. The operating systems itself is running on every processor in the system.

The main contribution with CHAOSarc is the use of an object and class based
environment for the programmer, when defining the application. Just as an object
oriented language, CHAOSarc let the programmer define classes that represents a
desired behaviour and the use of objects that is an instance of a class.

Four built in classes defines all primitive objects Abstract Data Type (ADT),
Threaded Abstract Data Type (TADT), monitor and task. An ADT defines a
passive object without execution threads or synchronization for concurrent calls.
When calling an object of the ADT class, the method is executed in the address
space of the caller and without synchronization of concurrent calls. When an
object from the TADT class is called, a new execution thread without automatic
synchronization of concurrent calls is created. A monitor is an object without
execution threads that only allows one single call to be active at a time. Finally a
task is an object with a single execution thread, all calls to a task are serialized
and executed in the context of the task. These four primitive classes are
implemented in the CHAOSmin layer. But the CHAOSarc layer offers definition of
more complex classes that are built upon these four primitive classes. A complex
object can be represented as in figure 4, by a scheduler a state and a server.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Figure 4, Object representation in CHAOSarc.

The objects state is partitioned into a number of components, each of which can
either be of shared or exclusive type. The shared component is directly accessible
to all invocations of the same object, while an exclusive component is unique for
every invocation of an object. But if the invocation commits the shared
component is atomically copied back to the objects state, on the contrary when an
invocation is aborted the result of exclusive components is discarded.

The objects scheduler receives and schedules all invocations to the object. The
scheduling decisions by the objects scheduler is based on parameters passed with
the invocation call (see section communication). The objects scheduling
component is described in section scheduling.

The objects servers are simply threads that are able to execute any of the
operations that the objects interface offers. Threads can either be created
dynamically during run-time or static at object initialisation.

Scheduling
Multiprocessor scheduling is performed by the CHAOSarc policies. The policies
can be configured different for every invocation of an operation and is carried out
by the objects scheduler. The multiprocessor scheduling is performed in
cooperation with the thread schedulers residing on every processor in the system.
On this object level the processor placement of the task is determined. If the
operation requires any locks the objects scheduler takes care of that problem,
calculating times until locks can be achieved etc. Unfortunately the research
around CHAOSarc was not focused on this type of multilevel scheduling (i.e.,
invocation scheduling followed by thread scheduling) so the exact algorithms
used for the invocation scheduling were not described in detail.

 34

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 35

The thread scheduling is distributed across the machine with one scheduler per
processor. The scheduling algorithms [SCH89] basic data structure is a doubly
linked list, called a slot list. The slot list records which threads have been
scheduled during each of the time periods. The threads are preemptive scheduled
with EDF (Earliest Deadline First)[LAY73], and as close to their start times as
possible.

When a thread has to be scheduled, a feasibility test is performed. The test is a
simple search for execution time. It starts with a slot compatible with the threads’
start times, and ends at a slot compatible with the threads’ deadline or when the
total length of available time slots is equal to the threads execution time. If
enough available time is found the thread is scheduled and the slot list is updated,
else the thread is reported un-schedulable. The slot list can be accessed through a
balanced binary tree; therefore a slot with a particular start time can be located in
O(log n) time.

Once a thread has passed the test and is going to be scheduled it has nothing to do
with the slot list anymore. Instead all scheduled threads are put in another list and
scheduled with EDF. This list includes all threads, even threads that have an
earliest start time later than the current time. This is the reason why the list cannot
be a queue, since the first thread might not have a feasible start time. So the final
complexity of the feasibility test and the EDF scheduler is in the worst case
reported to be O(n log n).

Memory management
Memory management is described in [SCH87], because of the heavy use of
dynamic memory during object creation and invocation; it is obvious that
CHAOSarc needs some support for predictive dynamic memory. The solution is
based on the observation that the possible memory requests are a finite set. The
supported types of requests are:

• Status block’s of known sizes, that the operating system uses to maintain
an objects status during an invocation

• Parameter block’s, which are used for parameter passing during an
invocation

• Memory used for the representation of objects and processes
To provide predictable access times for allocation of these three types of memory,
the kernel pre allocates memory blocks and store the blocks in four memory
pools. Two pools for kernel usage and two pools for application usage, this
prevents that memory usage from the application affect the kernel. The main
contribution with this is that the kernel is able to provide predictable response
times, since sizes and maximum amount of memory blocks needed by the kernel
is predictable.

For application code it is worse, but it is possible to pre determine the memory
usage. When memory blocks are deallocated, they are returned to the pool from

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 36

which they originated. A possibility is therefore to begin the application code
with allocating a certain number of memory blocks with a certain size. Then stick
to this size when allocating memory, and never allocate more memory blocks at
the same instance in time than the number of allocated memory blocks pre
allocated in the beginning.

Interprocess communication
The interaction possibilities between objects are: explicit synchronization with the
use of synchronization points, invocation of each other’s operations and atomic
computations spanning multiple objects.

Synchronization points are the method for expressing events. A synchronization
point is an ADT with internal data structures consisting of:

• A control block, which represents the state (enabled, disabled etc).
• The connected queue reflects permanent dependencies between

synchronization points.
• The delayed queue represents dependencies among multiple invocations

among a single synchronization point.
• An enabled synchronization point expresses an internal or external event

and can be used for object invocations or any other synchronization
event.

Invoking a method or operation of an object often requires both data transfers (for
parameters) and control transfers (for the operation’s code). To be able to handle
different interaction patterns typical to real-time systems, CHAOSarc supports a
number of invocation modes and to the modes associated attributes. The different
invocation modes are async, sync, periodic, event, stream and fast. To give a short
and general view of the invocation semantics and possibilities only a few modes
and attributes associated to each mode are mentioned here in table 5, but the
interested reader are referred to [GHE93] for a detailed description. For example
the async mode has 15 different invocation attributes with default values.

Mode Semantics Example of Attributes
Async Sporadic (one time)

invocation that can
execute in parallel with
invoker.

Hard or soft deadline and
atomicity.

Periodic Causes the operation to
be executed periodically.

Deadline attributes and
period time.

Event Invokes the operation
every time a certain
synchronization point is
reached.

Trigger synchronization
point.

Table 5, example of modes their semantics and attributes.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 37

The implementation of all functionality that extends CHAOSmin to CHAOSarc is
actually implemented with the primitive objects offered by CHAOSmin. Examples
of the added functionality are invocations and atomic computations. The
invocations are thereby extendable and a user of the operating system can
implement arbitrary invocation semantics.

Atomic computations
An atomic computation is in CHAOSarc an abstraction for a hierarchy of atomic
invocations of object operations. Namely, an atomic computation represents a
group of object invocations with common timing, consistency and recovery
requirements. The whole computation (sequence of operations) is guaranteed to
end in either commit or abort. When committed, external observers can view the
result of the computation. When aborted the result is discarded and the system
state is restored. The success or failure of an atomic computation is determined by
timing constraints (e.g., deadline for the computation), or by the consistency
requirements that follows when the computation shall be atomic.

Conclusions
CHAOSarc seems to differ from other RTOS in many ways at a first look. The
biggest differences lies in the upper layers of the layered system, the object
oriented approach and the lack of ordinary message passing or shared memory.
The primitives offered by the CHAOSbase layer seem to be quite similar to other
RTOS primitives, threads, scheduling etc. It is actually this layer that performs all
operations in the end. All interactions between objects and the objects responses
to the environment, maps into ordinary thread scheduling.

A question that arises is how to perform scheduling analyses and map the
environments constraints into the objects, we are sure that the inventors have
solutions to this. But the method differs from other known and well-understood
methods and terms, in the RTOS domain.

Another question is their interpretation of atomic computations, a sequence of
invocations that either are committed or aborted. It is easy to understand the need
of such transactions in database systems and similar facilities. But in a real-time
system that interacts with the environment all the time, is it suitable or even
possible to abort operations? When we have told the controlled physical object to
turn left, increase the speed or decrease the temperature, it is a little bit late to
abort the operation.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Evaluation

Scheduling
• Determinism

The on-line mechanism, with a guarantee algorithm and
EDF scheduling is analysable. But what happens if a task
cannot be guaranteed, probably the invocation or
instansation fails. The off-line analysis of the object-
oriented approach is not presented either, is it possible to
analyse which tasks that is going to be created during
runtime from an object point of view?

• Inventiveness

Multilevel scheduling and a form of task migration, when
an object of the ADT class is invoked is a pretty fancy
solution.

• Usefulness

It is a tempting idea to use an object hierarchy instead of
ordinary tasks, but it seems to be harder to translate real-
world problems into this model. Although we have a lot
of configurable invocation attributes and semantics, but is
that enough? Real-time engineers are used to the task
model and this revolutionary solution will probably just
make it harder to create an application.

Memory management
• Determinism

The authors claim that it is possible to pre determine the
memory usage for the application and, in this way, know
sizes and quantity of memory blocks that the application
uses. We have to remember that CHAOSarc implements a
strict object oriented policy, that includes dynamic
memory allocations that are in some sense hidden for the
programmer. A worst-case scenario on the other hand is
easy to create, and likeley to occour. If the application
allocates various sizes of memory blocks, remember that
using different sizes of parameter or return value fields
should be enough.

• Inventiveness

The system pools together with dynamic memory usage,
provides a base for the implementation of a object
oriented approach. It is also an solution that add
additional primitives compared to a basic solution.

 38

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

• Usefulness

The memory management system in CHAOSarc would be
useful in other RTOSes where the dynamic memory usage
is more controlled and easy to predict. Used in such
RTOSes the system could be a way to provide dynamic
memory. And of course in CHAOSarc, the memory
management system is a requirement.

Interprocess communication
• Determinism

It cannot be guaranteed that all invocations of type fast
will succeed. The other non-fast invocations are queued
can utilize dynamic memory, and remote procedure calls,
in other words hard to predict.

• Inventiveness

A very extraordinary solution, it is easy to associate IPC
with shared memory or message passing. Here no such
abstractions are avalible, although the invocations in the
end must map onto messages or shared memory in some
sense.

• Usefulness

We can easily conclude that the communication
mechanism with object invocations are closely realated to
remote procedure calls, which are useful. Therefore the
object invocation mechanism must be useful to, but we
miss alternatives in CHAOSarc.

 39

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 40

Chimera
Chimera [KHO92] is a multiprocessor real-time operating system designed
especially to support the development of software for robotic and automation
systems. The advantage with Chimera over other real-time operating systems is
that it provides features that are necessary for quickly developing reconfigurable
and reusable code [CHI02]. The environment consists of one or more real-time
processing units (currently Ironics 68020 CPU boards) connected to a VME bus
on a SUN 3 workstation. The workstation provides a high-level computing
environment with editors, compilers, debuggers and so on. Real-time applications
are developed at the SUN workstation and then executed on the Ironics boards.
The Sun and Ironics CPU’s has the same 68020-based architecture, so no extra
cross-compilers/linkers are needed. Chimera code is compiled and linked with an
ordinary SUN C compiler and linker. This guarantees that the code will have
exactly the same behaviour when executed on the SUN CPU or the Ironic CPU’s.
The Chimera software consists of two parts; one part that runs on the Ironics and
another part that runs on the SUN workstation. User tasks execute concurrently on
one or more CPU’s and communicate with each other through local shared
memory and local semaphores. The Ironic boards have distributed dual ported
memory, i.e. can be accessed by both the Ironics and SUN CPU’s. This makes the
download from the SUN to Ironics very simple.

According to the developers of Chimera, a predictable system must handle all
errors in a certain fashion. The best solution if it is possible is to call an error
handler that corrects the error. An intermediate solution is to operate the system
with degraded performance, which is often necessary with autonomous systems.
Last of all the system must be shutdown.
Chimera has support for both deadline-failure handling (timing errors) and
handling of non-timing errors. The global error handling mechanism is a
powerful mechanism in Chimera. It allows the user to develop applications
without explicitly check the return value if it is an error. Because whenever an
error is detected an error signal invokes the error handling mechanism. By
default, a detailed error message is printed and the task is aborted. This
mechanism allows the error messages to be very specific.

An optional failure handler is called when a task fails to complete its deadline,
insufficient CPU time is available or when the maximum estimated CPU time for
a task has surpassed. The failure handler can be programmed to run at either the
same priority as the task that misses its deadline or at a different priority. The user
can define own error handlers and alter the default action of the system. The
authors of [KHO92] claim that the deadline failure handling mechanism is
essential in predictable systems, because the estimating of a tasks execution time
is often really difficult. Especially when the hardware has mechanisms for
increasing the average performance, for instance caches and pipelines. Such
hardware is often used in real-time systems, which implies that the execution

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 41

times cannot be predicted accurately enough. Underestimating of a worst-case
execution time can cause a disaster.

Scheduling
Chimera provides typical RTOS kernel task management features, such as
creating, suspending, restarting, preempting and scheduling. The kernel schedules
the tasks using virtual timers, all based on a hardware timer. Chimera supports
both static and dynamic scheduling of real-time tasks. The default scheduler
supports the rate monotonic scheduling algorithm (static scheduling), the earliest-
deadline-first scheduling algorithm (dynamic scheduling) and the maximum-
urgency-first scheduling algorithm (static and dynamic scheduling). This
algorithm provides predictable dynamic scheduling possibilities. The scheduler is
designed as a module that can easily be replaced by any user-defined scheduler.
That allows Chimera to be used in many different applications, without being
restricted by the default scheduler. The authors to [KHO92] claims that most real-
time scheduling theory concentrates in ensuring tasks always meet their deadlines.
In addition, Chimera has a deadline failure handling mechanism, which calls an
exception handler when a task fails to meet its deadline.

Memory management
The Ironic boards have distributed dual ported memory, i.e. can be accessed by
both the Ironics and SUN CPU’s. The VME bus has many different address
spaces, and each CPU addresses the spaces in different ways. Memory can be
dynamically allocated by using express mail, which is explained in the next
section. Memory can either be allocated locally or remotely on other processing
units or memory boards (NUMA). The Chimera kernel was designed to provide
much of the functionality of a true multi-tasking operating system, while
preserving the response time of a dedicated real-time processor. This was made
possible by eliminating for instance inter-process security, a large process space
and virtual memory.

Interprocess communication
A task can communicate or synchronize with any other task through local shared
memory, high-performance local semaphores or user signals. Local semaphores
are either used to synchronize tasks or provide mutual exclusion during critical
sections. User signals are an alternate way of synchronizing tasks, allowing the
receiving task to be interrupted when the signal arrives, instead of polling as done
with local semaphores.
Many different types of interprocess communication and synchronization
mechanisms are built in as layers, in purpose to simplifying the development of
complex applications.

• Express mail: The express mail mechanism is a high-speed
communication protocol that was developed especially for backplane
communication. It is the lowest communication layer. Express mails are
handled by server tasks that run on each CPU. The server task monitors

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 42

the express mails, translates symbolic names into pointers and translates
addresses within various address spaces on the VME bus.

• Global Shared Memory: The VME bus has many different address
spaces, and each CPU addresses the spaces in different ways. Memory
can be dynamically allocated by using express mail. Memory can either
be allocated locally or remotely on other processing units or memory
boards.

• Spin-locks: The spin-locks use atomic test & set instructions, in purpose
to provide mutual exclusion of a shared data. The use the polling
technique to obtain the lock, which could waste a lot of CPU time. But
generally they require the least amount of overhead, in comparison with
other synchronized IPC mechanism [HOF89].

• Remote Semaphores: Chimera provides both local and remote
semaphores, which allow several tasks on different CPU’s to use
semaphores. The remote semaphores use test & set to get hold of a lock.
A task that tries to obtain a lock that is occupied will be blocked. When
the lock is released, the blocked task is invoked.

• Priority Message Passing: The priority message passing system uses the
express mail to initialise message queues. The user defines lengths of
queues. Typed messages of variable length can be sent between tasks on
different or the same processor. The message queues can be sorted using
first-in-first-out, last-in-first-out or highest-priority-first algorithms.

• Global State Variable Table Mechanism: This is a mechanism that allows
multiple CPU’s to control tasks that are co-operating, by means of state
variable tables. One global table and one local copy of the table for each
task that requires access are created. I.e. they share state information and
they can update the states in a correct way. Tasks update the local copies
periodically and they do always make use of the local copy.

• Multiprocessor Servo Control: One task in the system can take control of
some or all processing units. The task can then control the execution of
other tasks and even spawn new tasks to any processing unit.

• Extended File System: Instead of having a separate disk file system, the
real-time system uses the file systems on the host workstation. A task can
therefore perform file operations as any process on the host workstation.
All remote operations are transparent to the user.

• Host Procedure Calls: Tasks running on any processing unit can perform
procedure calls to the host workstation, i.e. execute routines on the host
workstation.

• Host Workstation Integration: The host workstation is transparent to the
system, which means that the host workstation is totally integrated into
the real-time environment. The host workstation has all the same features
as the processing units, for example it can use semaphores and global
shared memory.

• Special Purpose Processors: Special purpose processors can be added to
the system to increase the performance for specialized computations. The

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

hardware interface is independent, which simplifies the integration of
special purpose processors. Since special purpose processors do not run a
kernel, they are treated as slaves in the system.

Conclusions
The most distinguish feature with Chimera is the SUN workstation that is
integrated into the environment. The workstation’s purpose is to provide a high-
level computing environment with editors, compilers, debuggers and so on, in
order to simplify the development of applications. When an application has been
developed, it is downloaded to and executed on an Ironic board. In [CHI02] the
authors claim that a deadline failure handling mechanism is essential in
predictable systems, because the estimating of a tasks execution time is often
really difficult. But is not the estimating of a tasks execution time easy in a
predictable system? The reason for making a real-time predictable is the desirable
prediction of a task’s behaviour, and therefore predictable execution times, which
are easy to estimate offline.

Evaluation

Scheduling
• Determinism

The scheduling algorithms provided are well known and
off-line analysable. The WCET seems to be hard to
estimate, due to the memory management and IPC.
However Chimera has a deadline failure handler
mechanism, which is an advantage when the estimation of
WCET is hard.

• Inventiveness

Chimera has a deadline failure handler mechanism, which
calls an exception handler when a task fails to meet its
deadline. No direct multilevel scheduling is provided, but
the Multiprocessor Servo Control mechanism allows a
task to take control of some or all processing units. The
task can then control the execution of other tasks and
even spawn new tasks to any processing unit.

• Usefulness

The number of different supported scheduling algorithms
make make Chimera flexible and the EDF algorithm
makes the potential CPU utilisation really high.

Memory management
• Determinism

Dynamic memory allocation may jeopardize the
determinism and another feature is the possibility to
allocate memory remotely on other processing boards.

 43

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

• Inventiveness

The fact that memory can either be allocated locally or
remotely on other processing units makes Chimera
flexible, but this feature could jeopardize the determinism
of the system. Chimera has own version of malloc, which
allocates memory dynamically.

• Usefulness

The dynamic memory allocation possibility increases the
usefulness of this system.

Interprocess communication
• Determinism

Chimera was designed to minimize communication
overheads, which aims for good predictability through
smaller variations in worst and best case.

• Inventiveness

A task running on any processing unit can perform remote
procedure calls to the host workstation. This feature
makes the file system on the host workstation available
for all tasks running on any processing unit.

• Usefulness

Many different communication and synchronisation
mechanisms aims for flexability.

 44

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

MARS
Maintainable real time system (MARS) [KOP85, DAM89, KOP89] is a
distributed operating system built upon standalone computers, with some custom
built hardware on each node (component). Each node consists of a CPU
(MC68000), a custom built LAN controller (LANCE), a custom-built clock
synchronization unit (CSU) and some I/O units. Every node also has an identical
copy of the kernel. Theoretically MARS has almost no restrictions in the
maximum number of nodes and every cluster of MARS nodes can be connected
to another MARS cluster through special interface nodes, which forward all
messages from one MARS bus to another. However the main contribution with
MARS, which makes MARS different from other distributed real-time operating
systems is its deterministic behaviour under all conditions. MARS is completely
off-line scheduled; even the message bus is pre runtime scheduled. This combined
with a time driven dispatch policy gives predictability even under peak load
situations. The other factor that aid for the determinism of a MARS system is a
high degree of fault-tolerance. Even if a MARS system experiences failure on
CPU’s etc the system can still be able to deliver full service. Figure 5, shows a
schematic picture of the MARS system. The I-Component (Interface-Component)
in the figure is an ordinary node and has its interface against the MARS bus as all
other nodes, but is actually representing another cluster.

Figure 5, Schematic picture of the MARS system.

 45

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 46

Scheduling
MARS supports both hard and soft tasks. Hard tasks in MARS are defined as
periodic tasks with a hard deadline, within which it has to be completed. The set
of hard tasks consists of both application tasks and system tasks, where system
tasks perform specific functions of the kernel. The system tasks include time
synchronization and protocol conversations to and from MARS messages and RS-
232 strings for example. Soft tasks are tasks that are not subject to strict
deadlines; usually soft tasks are aperiodic tasks. They are scheduled in
background under low load conditions.

The complete system is off line scheduled, the off-line task and bus scheduler
calculate the schedules for tasks and messages before runtime and store the
schedules in runtime-scheduling tables residing on each node. The schedules in
the runtime-scheduling table consist of a cycle, which satisfies all expressed
constraints and should be repeated when executed once. If no such cycle is found
a redesign must be done. The on line scheduler is simple and fast; the only job to
do during runtime is to make a table lookup and dispatch the task found.
The scheduling algorithm used by the off-line task, takes attributes as WCET
(MAXT), and total transaction time (Mart) for the transaction that the task is
included in. A schedule is produced, based on a heuristic search strategy that
calculates task urgency according to estimations of the time necessary to complete
the transaction.
Each node can have several different schedules, used in different points of time or
in different phases of the application. For instance the starting phase of an
application may require a completely different task set than the remaining part of
the application. A change of schedule or mode can be simultaneously trigged on
all operational nodes in the system by messages.
The off-line scheduling principle requires that the complete system behaviour is
analysed and known before runtime, but for some applications that cannot be
satisfied. In such cases the Slot Shifting algorithm can be used as scheduling
algorithm instead. The Slot Shifting algorithm shows great performance with
aperiodic tasks, although the guidelines of the scheduling decisions are calculated
off-line. This is achieved by calculating spare capacities in intervals off-line,
which simply are unused capacities. Then at run-time the algorithm tries to use
the spare capacities for aperiodic tasks. Tools for estimating the WCET of a task
given the code support the designers since that estimation is critical. This
estimation requires bounded loops and no recursion. All tasks must be present at
the node before runtime, no task migration allowed.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 47

Memory management
Memory management in MARS is easy to describe, theoretically you could say
that there is no memory management. MARS does not support any dynamic
allocation, virtual memory or other potentially un-deterministic memory
management features. For example every message that is going to be transmitted
has an own buffer that is pre-allocated (at compile time) and own by the operating
system, instead of having a task to allocate dynamic memory. We would like to
describe memory management in MARS as a compiler and hardware issue.

Interprocess communication
Every message is transmitted n times over n parallel busses or sequentially n
times on one bus or any combination between the two extremes. The loss of n-1
messages is therefore tolerable. This redundancy is implemented in the lower
levels of the communication protocol; notice that this solution does not increase
the communication time when a message is lost, as for example a retransmission
protocol does.
The communication medium is the MARS bus, which is an off-line scheduled
TDMA bus. This medium access protocol provides a collision free, deterministic
and load-independent access to the Ethernet. The semantics for the messages is
comparable to global variables and they are called state-messages. State-messages
are not consumed when read, so several tasks can read the same message and a
new version of a message updates the previous. The messages carry state
information about the state of the environment that has been observed at a given
point in time. All messages have an identical structure, with a standard header that
contains mainly time stamps, a constant but application dependent length of the
body and a standard trailer that contains a checksum. The send of a message is
non-blocking, just as writing a global variable.
Every message has a validity time associated with it due to the real-time
applications temporal constraints. Two time stamps from the CSU are also
attached to every message (when sent and received) in this way timing errors can
be detected, and the validity time can be measured. When the validity time is
expired, the message is discarded by the operating system. Since every node
knows which message to expect in every TDMA slot, implicit flow control and
error detection between sender and receiver(s) exists.

Clock synchronization
Since MARS is a true distributed system with nodes consisting of standalone
computers and is time driven, the need of a global time base is obvious. Each
MARS node has its own real-time clock with a resolution of 1 µs. The clock
synchronization algorithm is based on message passing, since all messages in
MARS have timestamps from the senders CSU and the receivers CSU. Each node
can record time differences to the other nodes periodically. Based on that
computation a correction term for the own clock can be computed by the Fault-
Tolerant Average Algorithm (FTA) [KOP87].

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Interrupt handling
All interrupts except the clock interrupt from the CSU are disabled. Allowing
each device interrupt the CPU would jeopardize the hard tasks deadlines and
cause an unpredictable run-time behaviour. Many other RTOS use a priority
scheme for the interrupts, but that solution has also been discarded since high
priority devices would be favoured and the on-line scheduler just is a dispatcher
and could cause deadline misses with aperiodic activities. The clock interrupt
handler polls the devices instead, but not on every clock interrupt.

Conclusions
MARS seems to be a very fault-tolerant operating system. MARS achieves fault
tolerance both logically and physically [KOP89]. Logical fault tolerance is
achieved by sending each message n times sequentially on the same channel or
parallel over more channels, and by a fault-tolerant clock synchronization
algorithm, that can tolerate a known number of faulty clocks. Physical fault
tolerance is reached with hardware redundancy; each MARS node has one or
more identical active replica(s) and more than one active redundant
communication bus are supported. The amount of fault tolerance needed by the
application decides the number of redundant nodes and busses. Each node also
has some self-checking properties and thereby fails silently (delivers correct result
or no result at all).

If trying to be pessimistic and critical, it is easy to understand that the fail-silent
property must be hard to implement. The redundancy within a FTU assumes that
components fail silently, so what happens if a component fail anyway (Byzantine
failure or undiscovered failure etc)? It would maybe be more fault-tolerant to use
some kind of voting mechanism within a FTU, like the TMR (Triple Modular
Redundancy) algorithm for instance. The static scheduling requires that the
application is well known before run-time. Some questions that arises are:

• What if the application is not even built?
• What if the applications environment changes during run-time?
• What if the initial timing hypothesis seems to be wrong?

Evaluation

Scheduling
• Determinism

The off-line scheduling principle, guarantees that no
deadlines will be missed. Interrupts and other possibilities
for instability are disabled or designed away.

 48

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

• Inventiveness

Different schemes for different times, and the use of a off-
line task compensates for the otherwise simple on-line
mechanisms.

• Usefulness

Static scheduling have many requirements on the
application, but we can have complicated precedence
constraints etc.

Memory management
• Determinism

MARS does not provide any construct that jeopardizes
memory access times, i.e. dynamic or virtual memory.
Even message buffers have to be allocated before run-
time, and all messages in a MARS system has the same
size.

• Inventiveness

No extra ordinary solutions here, just the simplest.

• Usefulness

The memory management system is useful in hard real-
time environments. But it is not flexible or provide any
new ideas, such things that this comparison give credits
for.

Interprocess communication
• Determinism

Off-line scheduled messages, and the redundant
properties, aims for determinism even when messages are
lost.

• Inventiveness

Redundant communication buses, the implicit flow-
control achieved with the messages and the implicit use of
all messages for clock synchronization purposes are
exceptional solutions.

• Usefulness

Off-line scheduled messages limit the usefulness to very
special applications.

 49

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 50

MontaVista Linux
MontaVista Linux [WEI01] is a commercial open-source Linux distribution with
multiprocessor and real-time support. A popular approach to build a real-time
Linux distribution is to make use of the RT-Linux [YOD97] kernel. To make it
clear MontaVista Linux is not based on the RT-Linux kernel, the RT-Linux
approach is just described here as orientation.

A RT-Linux based operating system is built with an approach that in theory
disables all common Linux functionality, and replaces it with a new RT-Linux
kernel. The RT-Linux kernel is aimed for use in hard real-time systems, and
supports only single processor machines. The common Linux kernel is used to
boot the system and directly after the boot sequence the RT-Linux kernel takes
control of the system. Although the two kernels coexist, it is the RT-Linux kernel
that is in charge. The idea is that it shall be possible to let non real-time tasks take
advantage of the rich Linux API, i.e. monitoring tasks and soft tasks. The tasks
that are dispatched by the RT-Linux kernel always have higher priority, but use a
simple and real-time limited API. In the original description [YOD97] real-time
tasks are scheduled by fixed priority, earliest deadline or rate monotonic,
configurable by choosing a scheduling module. No dynamic or virtual memory is
used, and a single processor message based interprocess communication
mechanism that adopts real-time theories is provided.

MontaVista Linux uses another approach than the common kernel substitution
approach; instead the Linux kernel itself is tuned to provide real-time support.
The scheduling algorithm and interrupt handling are the main targets for
modification. MontaVista Linux has support for almost all common processor
platforms and as other commercial RTOS tries to fit with almost all possible
applications. The multiprocessor support seems to be directed towards back plane
networking with CompactPCI busses, examples of that are given in [BWE01]. It
should therefore be possible to use MontaVista Linux on hardware architectures
like the SARA system (described in this survey), since the CompactPCI bus
interface are supported.

Scheduling
The supported task type is the standard Linux thread, with a boosted priority
scheme. Standard Linux threads are allowed to have priorities ranging between 0-
99, MontaVista Linux defines priorities up to 128. The threads are free to take
advantage of the whole Linux API. The scheduling algorithm is the main
improvement over the standard Linux system; actually the real-time support
breaks down into the preemption patch, and a second scheduling level [WEI01].

The contribution with the preemption patch is that it does not break or stretch the
standard Linux API. Until recently it was not considered possible by the Linux
community to create a fully preemptable Linux distribution, without limit or

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 51

extend the standard libraries and systems calls. The solution that the MontaVista
distribution has come up with resides from a special Linux dialect, the Symmetric
Multi Processing (SMP) version of Linux. The SMP Linux kernel according to
[WEI01] already offers a highly preemptable response. Although it is not
intended for use in real-time systems, it is here the preemption patch comes into
the picture. The patch modifies the spin-lock construct offered by the SMP kernel,
i.e. the standard IPC construct, to become a preemption lock. This construct is
then used to protect critical sections. Additionally the preemption patch creates
possibilities for fast response times, through interrupts. When an interrupt has
occurred, the patch modifies the kernel to allow rescheduling on return from
interrupt if a new task has become ready. The main preemption techniques is
taken from the SMP distribution, although the MontaVista distribution is not
intended to be used on SMP:s, since the main communication primitive is
removed.

The scheduling algorithm is based on fixed priorities of 128 levels and overrides
the standard timesharing scheduler provided by Linux. The scheduling algorithm
is transparent, it simply means that if no real-time tasks are ready for execution
the control is given to the standard scheduling algorithm. In this way real-time
and non real-time tasks can coexist, but the non real-time tasks are only scheduled
when there are idle time left.

Memory management
It is the standard Linux memory management routines that are offered. That
include dynamic allocations, and virtual memory optimized for throughput. No
special treatment of real-time tasks is implemented.

Interprocess communication
The standard Linux communication primitives are used. It is a rich variety of
possibilities for IPC on a Linux system, since modules and libraries are freely
distributed. Included from the beginning in the MontaVista distribution is for
instance several primitives for semaphores, several message passing systems, one
shared memory system, two signal systems and a watchdog mechanism. Although
none of the included mechanisms are intended for real-time systems.

Conclusions
The MontaVista Linux distribution is aimed for real-time systems, today the real-
time support is limited. However a reasonable prediction is that Linux will be
used more and more in embedded and real-time systems. Papers and news groups
discussing how to port from a conventional RTOS to MontaVista Linux are for
instance easy to find and it is a lot of peoples involved in Linux related projects.
MontaVista Linux cannot in its present release be treated as a RTOS with hard
real-time support, but it is probably useable in more soft real-time applications
with the rich and among programmers well known Linux API.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Evaluation

Scheduling
• Determinism

The scheduling algorithm itself is maybe one of the most
used algorithms in the real-time domain. The WCET:s
may be hard to estimate, since underlying routines for
memory management and IPC does not provide bounded
execution times.

• Inventiveness

No extraordinary solution, the contribution is the
modification of a system call and the return from interrupt
routine provided by a patch.

• Usefulness

It is surely a useful scheduling algorithm, it is this type of
priority driven algorithms that have been used in most
commercial RTOS in the past. But we are restricted to
only this algorithm and, we cannot use this RTOS in a
hard real-time application.

Memory management
• Determinism

Any efforts for a deterministic memory management
system have not been done, we have dynamic allocation
and virtual memory optimized for throughput.

• Inventiveness

None of the offered constructs are implemented especially
for this distribution. It is open source code, shipped with
almost all Linux distributions.

• Usefulness

On the other hand it is very useful, many programmers
are used to the standard Linux API. It is also easy to
extend the system with other freely distributed packages.

Interprocess communication
• Determinism

No bounded delays can be provided.

• Inventiveness

Standard solutions shipped with almost all Linux
distributions.

• Usefulness

A broad range of communication possibilities are
available for Linux today, it is easy and free to use them.

 52

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

OSE
OSE [ENE1] is a commercial general-purpose real-time operating system,
merchandised by ENEA OSE systems. OSE is the first commercial RTOS, that is
IEC 61508 certified [ENE3]. As most commercial operating systems, OSE
supports different hardware configurations (processors etc) and can offer
solutions for almost any purpose, examples include a web-server as interface
between the embedded system and the internet and a soft kernel that are able to
simulate a complete system before run-time.

The set of supported processor’s seems to be almost all that is common used in
embedded and real-time systems (Arm, Motorola, MIPS, Lucent, Mitsubishi,
Intel, IBM etc), and OSE supports single processor solutions as well as scalable
distributed solutions. In the distributed case, an image of the kernel is placed on
every CPU in the system and the kernels communicate through a message-passing
paradigm. Task migration is not supported. Instead tasks belong to the node
where they are created, so no task placement algorithm or global scheduler exists.

Figure 6, processes priority.

Scheduling
The scheduling algorithm [ENE1] is preemptive and priority based. In OSE
terminology, processes are approximately the same as the tasks introduced in the
design issues section. The supported process types are interrupt processes, timer
interrupt processes, prioritized processes, background processes and phantom

 53

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 54

processes. The different process types have an internal priority as shown in figure
6, except for the background processes the priorities inside a certain type can be
from 0-31. Note that the periodic processes (timer interrupt processes) always run
with priority Z from the dispatchers point of view, which is the priority of the
system timer interrupt. Prioritized and background processes has for every
priority level a round-robin queue containing all ready processes of that priority
level. The first process in the queue is the process currently running on that
priority level.

• Interrupt processes are called in response to a hardware interrupt or a
software event. These processes has the highest priorities in the system,
therefore an interrupt process can only be interrupted by another interrupt
process with higher priority. 32 different interrupt priority levels exist.
Interrupt processes become ready, executes and finally terminates.

• Timer-interrupt processes are executed with the same priority level as the
system timer interrupt, but internally has 32 different priorities. These
processes are OSE’s support for periodic tasks. Their invocation
semantics are the same as ordinary interrupt processes, becomes ready,
executes and terminates.

• Prioritized processes is said to be the most common type of process in
OSE, they are written as infinite loops that will run until they become
interrupted by a process with higher priority or suspend themselves.
Prioritized processes have 32 different priorities, but it is still possible to
have more than 32 prioritized processes. For each priority level that
contains prioritized processes, the Kernel has a round-robin queue,
containing all ready processes of the current priority level. The first
process in the queue is the process currently running on that priority
level. Each process on that priority level, share the levels execution time
like an ordinary time-sharing operating system.

• Background processes have the lowest priority in the system and run in a
true time-sharing mode against each others (no internal priorities), they
are like prioritized processes written as infinite loops. A background
process cannot suspend itself, if several background processes exists, they
always run until their round-robin time slice has expired.

• Phantom processes does not contain any code, they are used in
conjunction with redirection tables to form a logical channel when
communicating outside the target system (CPU). A phantom process is
used as an image of the receiver processes on the sender’s node. More
about phantom processes in communication section.

Memory management
Memory management [ENE1] in OSE contributes with the possibility to have
several memory groups; the different memory groups are called memory pools. A
pool is an area of memory, which message buffers, stacks and kernel areas are
allocated. In all possible configurations there is always one and only one global

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 55

memory pool called the system pool. The system pool is the first pool created and
its existence is crucial for the kernel, if this pool gets corrupted the whole system
will crash. It is possible to build a system where all processes allocate their
memory from the global system pool. From a safety point of view, it is better to
create local pools for user created process. This is the desired way of user
memory handling, OSE also support grouping processes together into logical
blocks, some system calls work on entire blocks rather than single processes
(start, kill etc). It may be a structured and clear approach to design an OSE
application, with process groups allocated in different memory pools.

Interprocess communication
Communication in OSE [KAL, ENE2] seems to be ideally constructed for single
processor solutions, but with the possibility to support almost any multiprocessor
configuration. The possibilities for communication and synchronization between
processes in OSE are message passing and semaphores, but in a multiprocessor
environment semaphores cannot be used. However messages are not handled in
the same way in a single processor environment, as in a multiprocessor
environment. A kind of optimized message semantics (concerning message
copying) is used in the first case. OSE seems to support some kind of remote
procedure calls also, but it is just mentioned as quickest in [ENE1].

Semaphores are only visible within a single processor and can be divided into two
classes, namely fast semaphores and “ordinary” semaphores. Fast semaphores are
owned by a single process and hence only can be used by that process. All
processes can access an ordinary semaphore, but there is no access protocol for
avoidance of priority inversion present.

The recommended communication method in OSE is message passing. OSE
processes communicate directly to each other through intelligent messages also
referred to as OSE signals. A message in OSE can only have one owner, this
ensure the integrity of the message. This mechanism is designed to avoid the use
of global memories (mail boxes and semaphores) for communication. The
semantics of the messages or the message passing method is named direct
messages, as the name unveils the messages are sent directly to a process and not
to a mailbox implemented in global memory or something similar. This is of
course one of the reasons, why a message only has one owner. The process
addresses the messages with a receiver task rather than with an id of an intervened
message queue owned by the RTOS. The real advantage with this method is
potentially less data copying. In other message passing systems with a mailbox
owned by the RTOS, the messages are first often copied from the senders memory
area to a memory area owned by the RTOS, then a second copy from the RTOS
memory area to the receivers memory area when the receiver reads the message.
In the direct message-passing paradigm the maximum number of copies will be
one (from the sender to the receiver), but in many cases there will be no copying
at all. The desired semantics of the messages is just pointer copying, the

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

“payload” never actually moves in this way. This must require hard restrictions on
the memory management, since tasks actually are poking in each other’s memory
areas. Of course the data will be copied when tasks are in different physical
memory domains, when trying to pass a message across memory address spaces it
is recognized by OSE and copying has to be performed but just one copy as
mentioned above.

The OSE message-passing concept is totally transparent to the location of the
communicating processes. This is implemented with phantom processes in OSE,
e.g. processes without any executable code. The link-handlers on each node are
used to set up logical channels, through creating phantom processes, which on the
sender’s node represent the receiving process and on the receiver’s node the
sender process. The only purpose of the phantom processes on the sender’s node
is to hold a redirection table, so that all messages sent to it will be redirected to
the link handler instead. The link handler is then responsible for sending these
messages to the link handler in the target where the receiver resides. The phantom
process on the receiver’s node are used to send messages in the other direction, a
schematic picture can be seen in figure 7, the logical channel between process A
on target 1 and process B on target 2 is represented with the dotted arrow. The
phantom processes A’ and B’ and the link handlers LH are used for the real
message transport.

Figure 7, Tasks communication over memory domains.

Conclusions
OSE appears to be a typical commercial RTOS, with support for a lot of hardware
configurations and a priority driven scheduling algorithm. The message passing
mechanism with active messages seems to be the special feature that OSE offers.
It seems to be a fast method and we avoids a lot of copying, semantically
speaking the implementation is totally transparent to the location of the
communicating processes. But in a hard real-time environment we cannot treat the
placement of the communicating processes in OSE as arbitrary. The
communication time will increase drastically between tasks on the same node and
tasks on different physical nodes. Overall the communication mechanisms within
a node appears to be more careful constructed than the global communication

 56

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

mechanisms, collisions on the network and other unexpected communication
disturbances seems to be a question for the application designer.

Evaluation

Scheduling
• Determinism

The priorities can be set according to RM, and the
analysis can be performed with RM analysis. The
problems would probably be to make exact WCET
analysis, mainly because of unbounded message delays
and the memory management. Another problem is the
interrupt handling, interrupts have always the highest
priority. This is a potential hazard, if any device that
causes interrupts fail, the system will probably break
down.

• Inventiveness

Nothing extraordinary here, a simple priority based
scheduler.

• Usefulness

OSE is probably easy to use, and it seems to be easy to
adopt real-world problem to the different processes. We
have the possibility to use different process types, the
question is if that is a possibility or a limit. For instance
an interrupt process must always be of higher priority
than a prioritized process. We also have a limit in the
maximum number of processes, since we have a limited
number of priorities.

Memory management
• Determinism

Dynamic memory allocations, without any efforts of
additional determinism.

• Inventiveness

OSE have with real-time measurements an advanced
memory management system, which allows dynamic
allocation, and protection within different memory
groups.

• Usefulness

The memory management system in OSE is probably
useful, dynamic allocations are always useful. But it is the
protection mechanism, with memory pool system calls
that seems to be the most useful mechanism. Usually
memory pools and address spaces are defined off-line, but
in OSE it seems to be possible to configure these during

 57

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

runtime.

Interprocess communication
• Determinism

Bounded propagation times, or any collision avoidance
methods are not supported. Although the communication
mechanism is what is typically provided.

• Inventiveness

The direct message-passing concept is an excellent
solution that minimizes the data copying and protects
address spaces from each other. Although it is not so
revolutionary, it is ordinary messages that require
additional processes to propagate between two address
spaces.

• Usefulness

OSE provides what is necessary and nothing more.
Although the semaphores could be usable between
different address spaces, it is a reasonable limit.

 58

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 59

RT-Mach
RT-Mach [NAK90] is a further development of Mach [ACC86], which is a
research operating system with accomplished research goals back in 1994. The
RT-Mach project is still a living research project; the philosophy behind RT-
Mach is firmly based on real-time scheduling theory and in particular on priority-
driven preemptive scheduling. RT-Mach extends this philosophy by adding a
fundamental OS notion of temporal protection that enables the timing behaviour
of applications to be isolated from one another. One of the design goals with the
original Mach operating system was high portability, it seems like this goal was
achieved particularly through a memory management system that separates the
machine dependent and independent parts in an extremely clear and unusual way
[TAN92]. Because of the high portability of the underlying Mach operating
system, one of the goals with RT-Mach was to provide a common real-time
computing environment in various machine architectures including single board,
multi processor and distributed real time systems [NAK90].

Scheduling
The active entities in RT-Mach are threads [NAK90], processes also mentioned as
tasks in our references are passive entities. A thread can be defined for a real-time
or non real-time activity. All threads real-time or not must at least be specified by
a procedure name and a stack descriptor, which specifies the size and address of
the private stack region. The real-time threads, which we are interested in, have a
number of additional attributes. For a real-time thread, timing attributes must be
defined by a timing attribute descriptor. Other attributes are hard or soft based on
its deadline and periodic or aperiodic based on the nature of its activity. A
periodic threads timing attributes is mainly defined by WCET, deadline, period
time, start time and phase offset. The meaning of this parameters in a periodic
thread is as follows, a new instantiation of the thread will be scheduled at its start
time and then repeat the activity every multiple of the period time. The phase
offset is used to adjust a ready time within each period. The thread will execute a
maximum time of WCET and must at all activations finish before its deadline. An
aperiodic threads timing attributes is defined by WCET, deadline, worst-case
interarrival time. The meaning of WCET and deadline are the same as for a
periodic thread; the worst-case interarrival time expresses the minimum time
between two activations of the thread.

The scheduling algorithm(s) in RT-Mach [ARA93, NAK90] has been heavily
influenced by the goal of the predecessor Mach to run on multiprocessor
architectures, additional abstractions, as processor sets and task allocation exist.
Every CPU in a multiprocessor system can be assigned to a processor set, which
is an operating system and scheduling abstraction. Each processor belongs exactly
to one processor set and a processor set is the set of one or more processors.
Threads can also be assigned to processor sets, and it is within the assigned
processor set that a certain thread is scheduled. A thread cannot migrate to another

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 60

processor set, but it is a form of thread migration that occurs inside a processor set
even if the designers never mention or claim that. Notice that the processor set
solution also works for one processor. Each processor set has a run queue; it is
from this queue a task to execute is chosen regarding on the processor sets
scheduling policy. A certain thread can execute on different processors inside the
processor set.
Different scheduling policies can be applied to different processor sets, Rate
Monotonic, Earliest Deadline, Fixed Priority, Deferrable Server and Sporadic
Server have at least been implemented together with the round-robin time slice
inheritance from Mach.
The scheduling algorithm for a processor set can be changed during runtime by
user level code; the scheduling policy representation inside a processor set is a
self-contained object. The meaning of self-contained is that it is separated from
the actual dispatch routine, so a change of the scheduler is just a change of the run
queue manager. The actual change of schedule algorithm for a user thread is two
system calls, one to get the scheduler object and a second to set a new schedule
object.
Above the actual scheduling algorithm RT-Mach has another algorithm for
bandwidth allocation and overload handling, ITDS (Integrated Time Driven
Scheduler). By bandwidth reservation for the hard activities, the ITDS algorithm
knows how much time there is available for activities with soft deadlines.

Memory management
An effort to more deterministic memory management than the inheritance from
Mach offers is described in [NAK90]. Mach has an unsuitable memory
management technique for real-time usage called lazy evaluation. The problem
with this technique is that it causes unbounded delays. For instance if a thread
allocates a region of memory, the system does not allocate the object unless the
thread touches the region and causes a page-fault. To make it possible to create
more deterministic accesses, a “patch” in form of a system call is provided. The
call named vm_vire makes sure that the portion of memory is pre-allocated, or
allocated without the lazy evaluation technique.

Interprocess communication
Shared memory is a natural way of communication in RT-Mach, since no special
mechanism is needed for threads created inside the same task to share memory
objects, they all share the same address space automatically. Remember that
threads are the only active entities and that tasks are passive, so it not unlikely to
imagine a system where one process creates all threads.

Synchronization (mutual exclusion) through locks is described in [NAK90] and
was included in the design the RT-Mach. Mutual exclusion is an important feature
since all threads created inside the same process shares the same resources. The
lock and unlock pair provide a priority inheritance mechanism to avoid priority

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

inversions. The mutual exclusion in RT-Mach between threads is therefore
deterministic and suitable for real-time computing.

A predictable and deterministic communication protocol suited for use in a hard
real-time environment was on the other hand not included in the design goals of
RT-Mach. The predecessor Mach supports a variety of communication techniques
(message passing, remote procedure calls, byte streams etc), but these are
optimized for throughput rather than determinism and are therefore not included
in the presentation of RT-Mach in [NAK90]. According to [NAK93] the original
Mach communication primitives are heavily used in RT-Mach anyway. A method
(RT-IPC) for implementation of a suitable communication protocol in RT-Mach
has been proposed in [NAK93], and it is this technique that is described here. RT-
IPC is implemented above the original message passing method and uses the same
interface, but operates in another name space and logical port. A name space in
the RT-Mach kernel has the same semantic meaning as a namespace in a regular
C++ program. In figure 8, the two different namespaces of a communication port
is illustrated.

Figure 8, In RT-Mach, it is possible for coexistence of real-time messages and ordinary

messages.

The added real-time features, which aim for determinism when using a real-time
port, are listed below.

• Message buffers must be pre-allocated (static or dynamic allocation), to
avoid unpredictable allocation delays.

• Priority inheritance to the message-sending server. Messages that are
going to be sent are first transferred to a message sending server, the

 61

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

server inheritances the highest priority of all the sending threads at any
instance in time.

• Message queue ordering. The message queue to the sending server is
ordered in priority of the messages and each messages priority is the same
as the sending threads.

• Priority hand-off. The receiver propagates the priority of the sender.

Conclusions
RT-Mach is surprisingly well suited for real-time applications, although the
building base was an ordinary time-sharing system. The large amount of
scheduling algorithms provided and the possibility to use different scheduling
algorithms for different task groups seems to be the main contribution. In this way
we potentially have more freedom when trying to translate the requirements of
different activities into tasks. It should also be possible to compare and evaluate
different scheduling algorithms practically, since we are able to hold all other
factors except the scheduling algorithm constant.

Efforts to make the communication and memory handling mechanisms more
predictable have been made, that is good. But any worst-case scenarios or any
attempts to show the bounded delays were not presented.

Evaluation

Scheduling
• Determinism

The scheduling algorithms are all off-line analyzable, and
we have overload handling through the ITDS algorithm.
The WCET estimation should be partially possible,
although the memory management system seems to be a
little bit weak form this point of view. The problem may
lie in the thread migration inside a processor set.

• Inventiveness

Task migration inside a processor set, change of
scheduling algorithm during runtime, different scheduling
algorithms on different processor sets and global
scheduling gives highest score here.

• Usefulness

All desired task types, and very high flexibility. The
flexibility is achieved through the possibility of different
scheduling algorithms on different processor sets and the
possibility to change it during run-time.

 62

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

Memory management
• Determinism

Efforts to more predictive memory management have
been implemented, but on the other hand we still have
dynamic allocations, and other inheritances optimized for
throughput rather than determinism.

• Inventiveness

Here we have an unsuitable memory system that have
been adopted to real-time use, with a patch in form of an
additional system call. That is not inventive; it is rather an
ad hoc solution.

• Usefulness

It is useful with dynamic memory allocation, but the need
of an additional primitive is not a desired feature. The
memory system separates machine dependent and
independent parts in a clear and unusual way that is
clearly useful. This separation is said to make the whole
operating system more portable than others.

Interprocess communication
• Determinism

The priority inversion problem is considered and cares to
real time aspects are taken. The proposed communication
protocol seems to provide a deterministic access to the
communication medium. A potential problem is to let
ordinary traffic coexist with real-time traffic, of course we
can avoid that in the design but it is still a hazard.

• Inventiveness

The contribution is namespaces, which show us how to
extend an existing message passing mechanism into a
more real-time suited one.

• Usefulness

Message passing, shared memory and synchronization
primitives are available. More than necessary.

 63

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 64

RTEMS
RTEMS [OAR00] is a free, open-source real-time kernel that provides a high
performance environment for embedded systems. Initially RTEMS stood for the
Real-Time Executive for Missile Systems but as it became clear that the working
range extended far beyond missiles, the "M" changed to mean Military. There are
two implementations of RTEMS, one Ada implementation and one C
implementation. The C version changed the "M" to mean Multiprocessor while
the Ada version remained with the "M" meaning Military.
The main issue during the development of RTEMS was portability. RTEMS is
designed to isolate the hardware dependencies in specific board support packages.
Therefore real-time applications should be easily ported to different processors,
for instance Intel i80386 and above, Motorola MC68xxx, PowerPC and SPARC.
RTEMS adopts an object-oriented model, which increase the reusability and
extendibility of code. Tasks, message queues, semaphores, memory regions,
memory partitions, timers, ports and rate monotonic periods are all objects that
can be dynamically created, deleted and manipulated.

Scheduling
The task manager in RTEMS provides a comprehensive set of directives to create,
delete and administrate tasks. All tasks have priorities that are used by the
scheduler. A task is defined as the smallest thread of execution that can compete
on its own for system resources. During system initialization a TCB is allocated to
each task. The TCB contains all information that is pertinent to the execution of
the task. A task can support either preemption or non-preemption. A task that
supports preemption leaves the processor to a higher priority task that is ready,
even if the lower priority task is in the execution state, i.e. the task has not finish
the execution. A task that has disabled preemption retains the control of the
processor as long as it is in the execution state.
RTEMS supports 255 levels of priorities, and several tasks are allowed to have
the same priority. A timeslicing component is used by the scheduler to determine
how to allocate the processor to tasks of equal priority. If timeslicing is enabled,
then the time a task can execute is limited. The processor is then allocated to
another ready task of equal priority, i.e. round robin scheduling within individual
priority groups. If timeslicing is disabled, then the task will execute until another
higher priority task becomes ready. An interrupt level component is used to
determine which interrupts will be enabled during execution of a task. This is
done by setting an interrupt-level for each task. Another component is the
asynchronous processing component, which is used to determine when received
signals are to be processed by the task. This component does only affect tasks that
have established a routine to process asynchronous signals. If signal processing is
enabled, signals set to the task will be processed next time the task executes,
otherwise all signals received will remain posted until signal processing is
enabled.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 65

RTEMS’ scheduling concept is to provide immediate response to specific external
events. The scheduler allocates the processor using a priority-based, preemptive
algorithm extended to provide timeslicing within individual priority groups. The
goal with the RTEMS algorithm is to guarantee that the executing task on a
processor at any instance of time is the one with the highest priority among all
tasks in the ready state. The user of the system assigns priority levels to the tasks
when they are created. The priority levels can also be altered during run-time. A
mechanism for altering the RTEMS scheduling algorithm is called manual round
robin. This allows a task to give up the processor and immediately returned to the
ready queue. If no other task with the same priority is ready to run, then the
executing task will not give up the processor.

A rate monotonic manager is provided, which facilities the manage (of execution)
of periodic tasks. This manager was designed to support application programmers
that want to utilize the Rate Monotonic Scheduling Algorithm (RM) to guarantee
that all periodic tasks will meet their deadlines, even under transient overload
conditions, by means of schedulability rules for RM. If there are several ready
tasks of equal priority level, the task that have been ready longest time will
execute first. The RM manager definitions of different task types:

• Periodic task – tasks that executes at regular intervals (periods). Periodic
tasks have hard deadlines, which are the same as their periods.

• Aperiodic task – tasks that executes at irregular intervals with soft
deadlines. That means that the deadlines are not rigid, but adequate
response times are desirable.

• Sporadic task – aperiodic tasks with hard deadlines and minimum
interarrival times.

All tasks with hard deadlines (periodic and sporadic tasks) are typically referred
as critical tasks, while tasks with soft deadlines (aperiodic tasks) are referred as
non-critical tasks. The critical tasks are scheduled using RMS, and the non-critical
tasks are scheduled as background tasks, i.e. by assigning priorities such that the
lowest priority critical task has a higher priority level than the highest priority
non-critical task. The motivation to this type of scheduling is that all critical tasks
must be guaranteed execution (using the RM schedulability analysis), even under
transient overload, while schedulability is not guaranteed for non-critical tasks.

Memory management
A processor may support any combination of memory models ranging from pure
physical addressing to complex demand paged virtual memory systems.
Regardless of the support from the processor RTEMS supports only a flat
memory model, which ranges contiguously over the processor's available address
space. RTEMS does not support segmentation or virtual memory of any kind.
The RTEMS memory manager provides dynamic memory allocation and address
translation. The dynamic memory allocation is required by applications with
memory requirements that vary during execution. The address translation

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 66

mechanism is used by applications that share memory with other processors. The
owner of a shared memory accesses the memory using internal addresses, while
other processors must use external addresses.

Interprocess communication
RTEMS provide different managers that is dedicated to communication and
synchronization:

• Semaphore
• Message Queue
• Event
• Signal

The semaphore manager is used when mutual exclusion of one or more shared
resources is necessary. Both binary and counting semaphores are supported by
RTEMS. A binary semaphore is restricted to either zero or one, while counting
semaphores are restricted to all positive integer values. A counting semaphore is
typically used to control access to pool of two or more shared resources. RTEMS
support both the Priority Inheritance and the Priority Ceiling protocol to solve the
priority inversion problem.

The message manager supports both communication and synchronization between
different tasks. A message is a variable length buffer where information can be
stored. The message queues can contain variable number of messages and they are
sorted in FIFO order, with the exception of urgent messages that can be placed at
the head of a queue. Tasks can either do a (block) wait for a message to arrive at a
queue or poll a queue for the arrival of a message.

The event manager provides a high performance synchronization intertask
communication mechanism. A task uses an event flag to inform another task of
the occurrence of significant situation.

The signal manager supports asynchronous communication and is typically used
for exception handling. The directives provided are establish an asynchronous
signal routine (ASR) and send signal to a task.

Conclusions
RTEMS is probably one of the most distinguishing operating system in this paper.
The fact that RTEMS is a free, open-source real-time kernel is the main
motivation. The main issue during the development of RTEMS was portability.
RTEMS isolates the hardware dependencies in specific board support packages.
So real-time applications is easily ported to different processor families.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

Evaluation

Scheduling
• Determinism

Off-line analysis is possible, we can also disable
interrupts during task execution. We can also set priorities
on interrupts, higher, lower or in between tasks. Although
interrupts exist and for instance dynamic memory
allocation may jeopardize the WCET estimation.

• Inventiveness

Nothing special here. Just a simple priority based
scheduler.

• Usefulness

In RTEMS it seems to be easy to adopt real-world
problems. We can use interrupts freely, although we miss
real freedom in the choice of scheduling algorithms etc.

Memory management
• Determinism

RTEMS does not support segmentation or virtual memory
of any kind. But dynamic memory allocations are a little
problem.

• Inventiveness

RTEMS supports dynamic allocation of memory.

• Usefulness

Dynamic memory is an advantage when a tasks memory
requirements change during runtime.

Interprocess communication
• Determinism

The fact that the message-queues are sorted in FIFO
order, may jeopardize the determinism of the message
passing mechanism. The transmission times are not
bounded.

• Inventiveness

No distinguishing mechanism is provided.

• Usefulness

Several different communication and synchronization
primitives aim for a high grade of usefulness.

 67

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

SARA
The hardware architecture of the SARA system [FUR99] is divided into local
CPU board, bus arbitrator, global RAM, I/O and Real-Time Unit (RTU) [FUR95,
ADO96]. The RTU is a co-processor that performs real-time operating system
functions. The RTU is further investigated in the scheduling section. The
processor boards, RTU and other facilities are connected to each other with a
Compact PCI bus (CPCI). The CPCI bus offers eight slots for CPU boards,
however in a CPCI system there is always one special “system-slot”. This slot has
a special CPU-board (system board) that handles the arbitration, clock-
distribution, etc on the back plane. An overview of the SARA-system is shown in
figure 9.

Figure 9: Block diagram of SARA system.

The RTU is attached to the local PCI bus on the system board, when the RTU
signals something for instance task-switch, it will generate an interrupt on the
local PCI bridge on the system board. As the local bus on the system board is
attached with a transparent bridge to the global CPCI bus, all interrupts will
become visible for all other boards. The problem with this is that the interrupts is
signaled through four interrupt-lines that are available on the CPCI bus. If more
than four boards are inserted, some boards have to share interrupts and this may
cause latencies. The SARA system provides a solution for the latencies through
16 bit wide doorbell registers in all non-transparent bridges; all doorbell registers
in the system have a unique address. When the RTU generates an interrupt, it
generates a write-cycle from the local bus where it is hosted to all doorbell
registers it wants to access. The interrupts to the system board is generated
through the standard interrupt lines. The doorbell registers not only provide a
solution to the latencies with shared interrupts, through them it is also possible to
use 216 different interrupts.

 68

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 69

Scheduling
As the applications become larger and more complex, the demands on real-time
kernels increase every year. A real-time kernel must give short and predictable
response. For the purpose of meeting these demands in time, the RTU, which is a
real-time kernel coprocessor, has been implemented in hardware [FUR95]. By
implementing the kernel in hardware, the performance and determinism can be
improved.

The RTU is a small single- or multiprocessor multitasking real-time kernel. It can
handle 1 to 3 processors, 64 tasks and 8 priority levels. The interface to the RTU
is read- and writeable registers, which makes it easy to port to different types of
processors. (See the register model section for further details).

Advantages of using a hardware kernel:

• Flexible, the only software segment, which must be rewritten on a new
processor type, is the assembler code for taskswitch.

• The performance increases. The scheduling of a task is done within 5 to
80 clock cycles, and the scheduling doesn’t load the processor.

• Deterministic execution of the service instructions, which make it easier
to calculate the execution time for a system.

• No clock tick interrupts are needed, because the RTU handles the task
scheduling.

• The response time decreases for all service calls, because the RTU is
designed of parallel hardware.

• Easier software development, because the kernel code doesn’t have to be
executed by the processor.

• Easier understand ability for the system, because the real-time kernel is
separated from the RAM.

• A more safe execution of the real-time kernel, because no interference
between the kernel functions are possible (designed in physical separated
parts).

• No interrupt handler for external interrupts has to be implemented in
software.

• Easier to debug without affecting it, because the service calls can be
logged on the bus.

The RTU consists of several units, where each unit represents certain
functionality. Depending on what kind of system the RTU is going to be used in,
it can be configured with different units, i.e. it depends on the service
requirements. The simplest RTU consists only a scheduler. Functionalities
available (1999):

• Scheduler: The scheduling algorithm is priority-based and supports
preemption of tasks. The goal is to ensure that the task, which is

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 70

executing on the processor at an arbitrary time, is the one with the highest
priority among all tasks in the ready-queue. Only one task can execute on
a CPU at a time, so the maximum number of executing tasks is the same
as number of CPU’s. The RTU has several ready queues, one ready-
queue for each CPU and a “global” ready queue, i.e. it contains task that
can be executed at any of the connected CPU’s. The scheduler compares
the own and the global queue in parallel, for each CPU in order to execute
the task with highest priority. There are two events that can do a
taskswitch. The task itself can request a switch and the scheduler can
interrupt the executing task when a task with higher priority is ready.

• Delay: Holds a task in the delay queue until the delay time has expired.
Then the task is placed in the ready queue.

• Periodic start: Holds a task in the periodic queue until the periodic time
has expired. Then the task is placed in the ready queue.

• Watchdog: A watchdog task is suspended until the watchdog timer has
expired 100 ms. After 100 ms has expired, the task becomes ready to
execute.

• Semaphores: The RTU can hold four tasks in the semaphore queue. It is
a FIFO queue, which means that the first task in the queue gets the
semaphore, when it is released (free). When a task gets the semaphore, it
is removed from the semaphore queue and sent to the ready queue.

• Event flags: the RTU can hold four tasks in the event flag queue. When
the flag is set, all tasks in the queue are sent to the ready queue.

• External interrupts: Holds a task until an interrupt corresponding to the
task’s interrupt level occurs. Then the task is sent to the ready queue.

• Interface: The RTU has this I/O interface between the real-time functions
and the PCI bus.

Register model
Each processor have three dedicated registers: cpu_control_register, next_task_id
and cpu_status_register. The RTU has two registers that hold the overall
information: rtu_status_register and rtu_control_register. Finally there are two
more registers: svc_instruction_register and svc_semaphore_register. They are
both service-call registers (SVC). The register address is calculated by adding a
base address to the address offset in the table 6.

Register name Address offset (hex) Read/Write Size
CPU_STATUS_REGISTER (0 to 2) 0, 2, 4 R 16 bit
RTU_STATUS_REGISTER 6 R 16 bit
RTU_CONTROL_REGISTER 8 r/w 16 bit
NEXT_TASK_ID (0 to 2) A, C, E R 16 bit
SVC_INSTRUCTION_REGISTER 10 W 16 bit
SVC_SEMAPHORE_REGISTER 12 r/w 8 bit
CPU_CONTROL_REGISTER (0 to 2) 16, 18, 1A r/w 16 bit

Table 6, register offsets.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

Memory management
Communication and synchronization between different processes in the system is
performed through the global memory that resides on the system board. The
global memory is also used for TCB and stacks. As shown in figure 1, there are
two kinds of PCI buses in the system. All boards have a local PCI bus that is
connected to the CPCI bus through a PCI-PCI bridge. The system board has a
transparent bridge, while other boards have bridges that remap addresses on one
bus to another address on the other bus. With this non-transparent bridges address
collisions on the CPCI bus can be avoided and all boards can use it’s full address
range on the local PCI bus.

Figure 10: Logical picture of a VCB system

Interprocess communication
A Virtual Communication Bus (VCB) that uses the global memory on the system
board is used for inter process communication and synchronization between tasks
in the system [NYG00]. As the name says, the VCB is just a virtual bus that uses
the physical CPCI bus and the global memory on the system board. The VCB
provides a message passing mechanism that allows task-to-task communication
locally on one CPU as well as between several different CPUs. The logical
architecture of a system with a VCB bus is shown in figure 10.

The VCB bus is divided in two layers. The lower hardware layer consists of base
primitives and is implemented and integrated in a FPGA (Field Programmable
Gate Array). The upper layer is implemented in software and it provides different
types of functionality from the bus. When a task wants to communicate on the
VCB bus, it has to connect to the virtual bus. This is done by allocating one VCB-
slot. When a task allocates a slot, it has to decide a message-sorting algorithm that
will sort the message-queue. The two available sorting algorithms are First In
First Out (FIFO) and a priority-based algorithm (highest priority first). The
sender of a message has to set a priority to the message. VCB provides support for
both synchronous and asynchronous communication. A task that is connected to a

 71

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

VCB-slot can communicate with all the other tasks in the system. The functions
this bus supports are for instance: send, receive, broadcast, send and wait,
multicast and subscribe. It is the hardware layer that performs the job, when a call
to the VCB is made. This feature speeds up the message passing compared to
similar implementations in software [RTU00].

When a task allocates a VCB slot, a message-sorting algorithm must be chosen. It
is a choice between two algorithms, namely FIFO and PRIORITY based sorting.
If FIFO sorting is chosen, we will have an ordinary queue, the message received
first will be read first. It is PRIORITY that is interesting in real-time applications.
If the PRIORITY sorting algorithm is chosen the incoming message will be
placed in the queue depending on its priority. If an incoming message has higher
priority than the receiving task, the priority of the receiving task will be raised to
the same priority as the message. The priority of the task will be restored to its
origin when the message has been taken care of. By raising the priority of the
receiving task when high priority messages arrives priority inversion is avoided.

Conclusions
The SARA system together with the RTU provides an interesting solution that has
proved to be efficient [FUR00] in comparison with some commercially available
solutions. The speciality is of course the large amount of typical software routines
that has moved into hardware. According to us the algorithms implemented in the
RTU are of typical soft real-time class, but an interesting question arises when
moving such algorithms into hardware. Is it possible that algorithms that usually
cannot provide bounded response times etc, can be moved to hardware and then
provide this? It seems like almost all the system calls have bounded worst-case
response times; this together with the possibility of high “useful” CPU utilization
could make the system suitable for hard real-time applications.

A potential problem with the SARA system today is the non-deterministic
arbitration for the CPCI bus. Besides this problem, the fact that the bus is used for
both system calls to the RTU and interprocess communication may cause new and
undiscovered race conditions. Conflict between messages and system calls is not a
problem in an ordinary software implemented RTOS.

Evaluation

Scheduling
• Determinism

Static priorities suggest the use of for instance RM, and it
is analyzable. The interrupts are also mapped into
priority-based tasks. The execution of the scheduling
algorithm does not require any CPU time either.

• Inventiveness The algorithm itself is not fancy, but the hardware

 72

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

implementation compensates for that.

• Usefulness

Certainly, easy to map a real-world problem. This
together with the possible speedup with a hardware
implementation aims for a higher grade.

Memory management
• Determinism

The SARA system does not provide any virtual or
dynamic memory. Although access times to the shared
memory on the system board may be varying, it is not
supposed to be addressed as a part of the memory, instead
through the message passing mechanism.

• Inventiveness

The memory management system on the SARA system
does not provide any fancy solutions.

• Usefulness

No virtual memory or dynamic allocations are supported,
in other words nothing that increases the usefulness.

Interprocess communication
• Determinism

The priority based message queues are a nice real-time
feature; together with a more deterministic hardware
implementation and priority inversion handling a higher
grade is motivated.

• Inventiveness

Nothing new, but not a copy of another solution either.

• Usefulness

Certainly useful, the speedup achieved with a hardware
implementation is a desired feature. But a higher grade
here would be achieved with more communication
possibilities.

 73

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Spring
Spring [RAM91] is a distributed real-time operating system for large complex
applications with hard timing constraints. According to the inventors, to ensure
predictability, the design and implementation of all levels of the system must be
integrated, i.e. a predictable architecture facilitates the construction of a
predictable operating system, which is necessary to build predictable application
software. Spring is a complete real-time system with among other things a
partially customized hardware, a predictable operating system and a compiler.
The Spring system is physically distributed and consists of multiprocessor nodes
connected through a network, where each multiprocessor contains one or more
application processors (AP), one or more system processors and an I/O
subsystem, as in the block diagram in figure 11.

Figure 11, hierachical block diagram of a Spring system.

• Application processors execute previously guaranteed application tasks.
• The system processor executes the scheduling algorithm and other

operating system tasks. The advantage with a physical separation between
system activities and application activities is that the system overhead on
the application processors is reduced. It also removes unpredictable
delays since the application processors are not affected by external
interrupts.

• The I/O subsystem handles non-critical I/O, slow I/O devices and fast
sensors.

Each processing unit within a node consists of a commercial Motorola 68020-
based MVME136A board [MOL90]. The MVME136A boards have the typical
shared bus multiprocessors features, for instance an asynchronous bus interface

 74

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 75

and a local memory. A part of this memory is used for storing programs and
private data, and can only be accessed by the local processor. The rest of the
memory can either be accessed by the local processor or remotely over the VME
bus by another processor.

Scheduling
The scheduling is the most distinguishing feature of the Spring Kernel, and the
mechanism is divided into four levels:

• At the lowest level, there is one type of dispatcher running on each
application processor and another type running on the system processors.
The application dispatchers simply removes next ready task from a
system task table that contains previously guaranteed tasks arranged in
the proper order for each application processor. The dispatcher on the
system processor allows the periodic execution of systems tasks.

• The second level consists of a local scheduler that is resident on the
system processor. It is responsible for dynamically guaranteeing the
schedulability of a task set on an especial application processor. The
scheduler produces a task table that is passed to the application processor.

• The third level is a distributed scheduler that tries to find an alternative
node to execute any task that cannot be locally guaranteed.

• The fourth scheduling level is a metalevel controller that adapts various
parameters of the scheduling algorithm to the different load conditions.

[BUT97]

Spring tasks are characterized by many different parameters. The user has to
specify a worst-case execution time, a deadline, and interarrival time, a task-type
(critical, essential or unessential), preemptive or non-preemptive, an importance
level (value), a list of resources, a precedence graph and a list of nodes on which
the task code will be loaded. The scheduling algorithm uses this information to
find a feasible schedule.

A task is not defined as a large process, but rather a compiler generated non-
preemptable piece of a process [NIE93, BUR93]. This is necessary because the
compiler takes resource needs into account when creating small and predictable
tasks from larger processes written by an application programmer.
A task holds a requested resource as long as it executes, i.e. each task acquires
resources before it begins and releases the resources upon completion. The
assignment of tasks to processors is initially done statically to avoid unpredictable
delays and improve speed. A task can be loaded on more than one processor
during runtime, so if an overload occurs, a task can be executed on another
processor without a large overhead. Tasks with precedence constraints that share a
single deadline are placed together in a task group.

Tasks are classified based on importance and timing requirements. The
importance of a task is the same as the value gained by the system when the task

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 76

completes before its deadline. Timing requirements represent the real-time
properties of a task, for instance periodic or aperiodic execution, hard or soft
deadlines, while some tasks may not have any explicit timing requirements.
Based on importance and timing requirements, three different types of tasks are
defined: critical tasks, essential tasks and unessential tasks.

• Critical tasks are those tasks that must complete their deadlines. A critical
task that misses its deadline might occur a catastrophic result. The
number of truly critical tasks is usually relatively small compared to the
total number of tasks in the system.

• Essential tasks are those tasks that have timing constraints and are
necessary to the operation of the system. A deadline miss does not cause
catastrophic result, but the systems performance will be degraded. The
number of essential tasks is normally large in complex control
applications, and they must be treated dynamically because it is
impossible to reserve enough resources for all of them [RAM91]. The
Spring Kernel provides an on-line, dynamic algorithm for this type of
tasks.

• Unessential tasks execute when they do not affect critical or essential
tasks, and they may or may not have deadlines, i.e. they are executed in
background. Maintenance functions and long-range planning tasks belong
to this category.

The Spring scheduling algorithm [NIE93, BUR93] dynamically guarantees the
execution of newly arrived tasks depending on the current load. The feasibility is
determined based on many issues, such as timing constraints, mutual exclusions
on shared resources, precedence relations, preemption properties and fault-
tolerant requirements. The algorithm uses a heuristic function to reduce the search
space and find a result in a polynomial time, since the problem is NP-hard. The
heuristic function H is applied to each of the tasks that are waiting for to be
scheduled. The task with the smallest value is selected to extend the current
schedule. It is easy to modify the heuristic function. The value that the function
determines can for instance be arrival time (the algorithm will work as first come
first served), absolute deadline (the algorithm will work as earliest deadline first)
and computation time (the algorithm will work as shortest job first).

Each task has to declare a binary array of resources Ri = [R1(i),…,Rr(i)]. If a
specific resource is not used by a task, the tasks element in the binary array is set
to zero Rk(i) = 0, and the element is set to one if it is used. For each resource, the
algorithm determines the earliest time the resource is available, denoted as EATk
(Earliest Available Time). The earliest start time Test(i) that a task τi can start the
execution without blocking any shared resources is:

Test(i) = max[ai, max(EATk)],

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 77

Where ai is the arrival time of τi. Once Test as been calculated for all of the tasks,
the heuristic function selects the task with smallest value of Test. The complexity
of the Spring scheduling algorithm is O(n2), where n denotes number nodes.

Precedence relations can be handled by a factor called eligibility. A task becomes
eligible for execution when all tasks in front of the current task in the precedence
graph have completed. A task that is not eligible cannot be selected for extending
a partial schedule.

Memory management
Figure 11 shows that each node is a distributed memory multiprocessor with non-
uniform (NUMA) memory access times. Local access is significantly faster, since
it does not use the system bus. Each node has a 2 MB reflective memory that is
used to support predictable IPC.
Traditional memory management with support for virtual memory introduces
several sources of unpredictability. Each memory reference is subject to three
possible delays: page fault, TLB loading and TLB translation [NAH92]. Each of
these delays makes it harder to calculate worst-case execution times that are not to
pessimistic. Therefore the Spring memory management unit (MMU) has two
following basic ideas:

1. Avoid page faults by preallocating, at process creation time, a physical
page for every used page in a program’s address space and loading that
page in memory.

1. Explicitly manage the contents of the translation look-aside buffer (TLB)
to ensure that all memory references experience TLB hits.

The first idea eliminates unpredictability due to page faults, and the second
eliminates unpredictability due to TLB misses. Since every memory reference
results in a TLB hit, the MMU influence on memory references time is
predictable. [NAH92] describes how the memory management unit is
implemented.

Spring has memory-management primitives that create various resource segments
that are completely memory-resident, for instance code, stacks, task control
blocks, task descriptors, local data, global data and ports. The kernel allocates all
the required segments when a task begins execution.

Interprocess communication
Due to hard real-time requirements, all communication must be predictable. This
include bounding of execution times of IPC primitives, network protocol
processing and message propagation delay. The Spring IPC system supports both
synchronous and asynchronous message passing through ports, which are kernel-
protected memory objects. Processes can communicate by placing messages into
ports and removing messages from ports. The ports are typed by the kind of
process that uses them (guaranteed hard real-time, soft real-time or non real-time)

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 78

and according to the communication they are used for, namely synchronous and
asynchronous. Ports have bounded capacity and the messages have fixed sizes.
Messages can have deadlines, which determine when they must be delivered to a
port.

Interrupt handling
Peripheral I/O devices are divided into two classes: fast and slow I/O devices. The
system processor handles fast I/O devices, so the application processors are not
affected. Interrupts from fast I/O devices are treated as a new task that is subject
to the guarantee routine like any other task in the system. Slow I/O devices are
multiplexed through a front-end dedicated processor (I/O processor) controlled by
a commercial operating system. The guarantee algorithm does not affect device
drivers running on the I/O processor, although they can activate critical or
essential tasks.

Conclusions
Predictability is a keyword that come back again and over again when talking
about the Spring system’s design issues. It is obvious that a hard real-time system
with hard timing constraints must be predictable to manage the application’s
timing requirements. In order to achieve predictability, all levels of the system
must be predictable, i.e. a predictable architecture facilitates the construction of a
predictable operating system, which is necessary to build predictable application
software.
A distinguishing feature with Spring in comparison with other multiprocessor
real-time systems is the system processor, which only executes scheduling and
system tasks. The application tasks execute on application processors. The
advantage with a physical separation between system activities and application
activities is that the system overhead on the application processors is reduced. It
also removes unpredictable delays since the application processors are not
affected by external interrupts. It is certainly a powerful feature to achieve
predictability in a real-time system. Another solution to achieve predictability is
to eliminate some or all interrupts, instead of separating system activities from
application activities.
Spring is a distributed real-time system for large complex applications with hard
timing constraints, but it does not provide any fault tolerance.

• What will happen if a critical task misses its deadline?
• The task migration may also be a problem. What will happen with

globally rejected tasks, i.e. tasks that cannot be guaranteed?
• What if acknowledgements get lost, i.e. when a task is migrated to

another node? Inconsistent state?

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

Evaluation

Scheduling
• Determinism

All levels of the system have been designed to ensure
predictability. Offline analysis is possible for tasks with
hard deadlines. Tasks that have timing constraints but are
not necessary to the operation of the system are treated
dynamically, with an online guarantee algorithm.
Combined with a hardware implementation, this is a
deterministic solution.

• Inventiveness

Spring supports both multilevel scheduling and task
migration. Again this together with a hardware
implementation aim for the highest grade.

• Usefulness

Spring has all desired task types, and a very high
flexibility. The flexibility is achieved through the
possibility of different scheduling algorithms.

Memory management
• Determinism

The Spring memory management unit (MMU) eliminates
unpredictability due to page faults and TLB misses. So
every memory reference results in a TLB hit, the MMU
influence on memory references time is predictable.

• Inventiveness

Spring supports virtual memory and dynamic memory
allocation.

• Usefulness

Both virtual memory and dynamic memory allocation
make Spring flexible.

Interprocess communication
• Determinism

Spring have bounded execution times of IPC primitives,
network protocol processing and message propagation
delay. The IPC system provides a message passing
mechanism that uses ports, which are kernel-protected
memory objects. The ports can be typed by the kind of
communication they are used for, i.e. guaranteed hard
real-time, soft real-time or non real-time.

 79

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

• Inventiveness

No extraordinary features are provided.

• Usefulness

The system processor handles fast I/O devices, so the
application processors are not affected.

Summary of evaluations
In table 7, a summary containing all the evaluation parts of all reviewed RTOS:es
is presented. As before each of the areas scheduling, memory management and
interprocess communication are graded within the three topics (D)eterminism,
(I)nventiveness and (U)sefulness. A lot of grades give the reader the opportunity
to self create ranking orders focusing on the issue that is the most interesting for
his/hers own purposes.

 Scheduling Memory
management

Interprocess
communication

 D I U D I U D I U
CHAOSarc 2 5 2 2 4 4 3 5 2
Chimera 3 4 4 2 4 3 3 3 4
MARS 5 3 2 5 2 2 5 4 1

MontaVista Linux 2 2 3 1 1 5 1 1 5
OSE 3 2 4 2 4 4 3 3 3

RT-Mach 4 5 5 3 2 4 4 3 4
RTEMS 4 2 4 3 3 3 2 2 4
SARA 4 3 4 4 2 2 4 3 3
Spring 5 5 5 4 4 4 4 2 3

Table 7, Summary of all evaluation parts.

 80

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 81

Conclusions and Future Work
When having reviewed a considerable amount of material related to
multiprocessor RTOS, it is tempting to predict a “silver-bullet” solution that is the
best solution for all real-time multiprocessor systems. Unfortunately, as with
many other issues about computer science, an RTOS that always performs best,
when used with different hardware platforms and in different purposes, does not
exist. I.e. a RTOS must be designed (both software and hardware) considering the
real-world requirements. For instance, safety critical real-time systems have to be
predictable so that we are able to guarantee all timing constraints. While some
other real-time systems are allowed to have deadline-misses. These real-time
applications are often referred to, as applications with soft real-time demands. In
these systems many ordinary operating system constructs optimized for
throughput and processor utilization can be suitable. This is obvious since we
always want to use the processor to its maximum, but algorithms developed for
hard real-time systems often limits the utilization, because the focus is on
completing all temporal constraints whatever it costs.

When designing an RTOS, there are many trade-offs that have to be considered.
Concentrating the focus on real-time, one important trade-off is determinism and
flexibility/high average performance. But we cannot say that one solution is better
than the other, it is application dependent. In this survey, MARS is the most
deterministic operating system, and therefore most suitable for safety critical
applications. MARS is completely offline scheduled, even the communication is
offline scheduled. This feature makes MARS totally predictable and
deterministic, but it is not flexible at all, since the applications behavior must be
known before runtime, in order to schedule execution and communication. The
RTOS:es found among the most flexible are more suitable for applications with
soft demands. The application can be faster developed, we do not have to analyze
the whole behavior before runtime and we can use more advanced system calls.
We can also potentially achieve higher processor utilization with more released
and throughput oriented algorithms for scheduling, communication and memory
management.

Concerning multiprocessor support in RTOS, it is possible to distinguish between
RTOS:es constructed for multiprocessor platforms and RTOS:es constructed for
single processor machines, with lately added multiprocessor support. As with all
attempts to generalize exceptions exists, but the scheduling algorithms and IPC
routines can be treated as some kind of indication. A RTOS originally constructed
for multiprocessor platforms, should through the scheduling algorithm take
advantage of the possibilities with multiprocessor platforms, or all the IPC
routines should be constructed for communication between different nodes. While
many of the RTOS:es originally aimed for single processor machines does not
bother about the number of processors in the scheduling procedures, and have
different IPC routines for tasks that resides on the same node and tasks
communicating across node boundaries.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 82

As future work, an operating system will be designed and implemented, with the
survey as a preparatory study. The operating system will be implemented in
software with the same interface as the hardware implemented RTU, and operate
on the SARA system. Both described in the case studies section. A fair
benchmark between the two operating systems should be easy to achieve, since
the same interface is used.

Acknowledgements
Thanks goes to Peter Nygren and Johan Stärner, both currently PhD students at
the department of computer science and engineering at Mälardalen University, for
their supportive work as supervisors and fruitful comments on how to improve the
survey.

References
[ACC86] M. Accetta et al., Mach: A new kernel foundation for unix development, In

Proceedings of the Usenix Summer Conference, July, 1986.
[ACH91] S, Acharya et al., Overview of Real-Time Kernels at the Superconducting Super

Collider Laboratory, Particle Accelerator Conference, 1991.
[ADO96] J. Adomat et al., Real-Time Kernel in Hardware RTU: A step towards

deterministic and high performance real-time systems, In 8th Euromicro Workshop on
Real-Time Systems, June 1996.

[ALT98] P. Altenbernd and H. Hansson, The Slack Method: A New Method for Static
Allocation of Hard Real-Time Tasks. Kluwer Journal on Real-Time Systems, 1998.

[ARA93] H. Arakawa et al., Modeling and Validation of the Real-Time Mach Scheduler,
Proceedings of the ACM SIGMETRICS conference on Measurement and modeling of
computer systems, June 1993.

[BAR92] L. Barroca and J. McDermid, Formal Methods: Use and Relevance for
Development of Safety-Critical Systems, The Computer Journal, 1992.

[BEN01] M. Bennet and N Audsley, Predictable and Efficient Virtual Addressing for
Safety-Critical Real-Time Systems, 2001.

[BUR93] W. Burleson et al., The Spring Scheduling Co-Processor: A Scheduling
Accelerator, In Proceedings of IEEE International Conference on Computer Design:
VLSI in Computers and Processors, 1993.

[BUT93] G. Butazzo, RED: A Robust Earliest deadline scheduling algorithm, Proc. of 3rd
International Workshop on Responsive Computing Systems, 1993.

[BUT94] G. Butazzo and M. Spuri, Efficient aperiodic service under earliest deadline
scheduling, In proc. 15th Real-Time Systems Synposium, Dec. 1994.

[BUT97] G. Buttazzo, Hard Real-Time Computing Systems – Predictable Scheduling
Algorithms and Applications, Kluwer Academic Publishers, ISBN 0-7923-9994-3, 1997.

[BWE01]B. Weinberg, Open Availability Architecture: Building Highly Available Systems
with Linux and CompactPCI, MontaVista Software White Paper, 2001.

[CAL98] J. Calvez, Performance Monitoring and Assessment of Embedded Hw/Sw
Systems, In Journal “Design Automation for Embedded Systems”, Kluwer Academic
Publishers, 1998.

[CHI02] Chimera homepage: www-2.cs.cmu.edu/~aml/chimera/chimera.html
[CRO85] Crowther W et al., The Butterfly parallel processor, IEEE Computer Architecture

Technical Committee Newsl., December., 1985.
[CUR76] H. J. Curnow and B.A. Wichmann, A synthetic benchmark, Computer Journal,

January 1976.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 83

[DAM89] A. Damm et al., The Real-Time Operating System of MARS, Operating Systems
Review, July 1989.

[DEZ74] M. Dertouzos, Control robotics: The procedural control of physical process, in
proceedings of IFIP congress, 1974.

[ENE1] Enea OSE Systems, User’s Guide / R1.0.0 (Chapter 2 OSE Concepts).
[ENE2] Enea OSE Systems, The Direct Message Passing RTOS – A Better Way!, White

Paper.
[ENE3] Enea OSE Systems, Safety Critical Applications.
[FLE89] B. Fleisch and G. Popek, Mirage: A Coherent Distributed Shared Memory Design,

1989.
[FOH94] G. Fohler, Flexibility in Statically Scheduled Hard Real-Time Systems,

Dissertation Technische Universität Wien, April 1994.
[FOH95] G. Fohler, Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic

Tasks in Statically Scheduled Systems, In Proceedings of the IEEE Real-Time Systems
Symposium, December 1995.

[FOH97] G. Fohler and K. Ramamritham, Static scheduling of pipelined periodic tasks in
distributed real-time systems, In Proceedings of 9th Euromicro Workshop on Real Time
Systems, 1997.

[FUR95] J. Furunäs, RTU94 – Real Time Unit 1994, Bachelor Thesis, department of
Computer Engineering, University of Mälardalen, 1995.

[FUR99] J. Furunäs et al., Flexible Multiprocessor computer Systems, In CAD & Computer
Graphics, December 1999.

[FUR00] J. Furunäs, Benchmarking of a Real-Time System that utilises a booster,
International Conference on Parallel and Distributed Processing Techniques and
Application, 2000.

[FUR01] J. Furunäs, Interprocess Communication Utilising Special Purpose Hardware,
Licentiate thesis, Mälardalen University Press and Department of Information
Technology, Uppsala University, December 2001.

[GBU93] G. Buttazzo, Hartik: A real-time kernel for robotics applications, In proc. IEEE
Real-Time Systems Symposium, December 1993.

[GHE93] A. Gheith and K. Schwan, CHAOSarc: Kernel Support for Multiweight Objects,
Invocations, and Atomicity in Real-Time Multiprocessor Applications, ACM
Transactions on Computer Engineering, February 1993.

[GOP93] P. Gopinath et al., A Survey of Multiprocessor Operating System Kernels
(DRAFT), Technical report, Georgia Institute of Technology, College of Computing,
November 1993.

[HOF89] R. Hoffman et al., CHIMERA: A Real-Time Programming Environment, for
Manipulator Control, In Proceedings of IEEE International Conference on Robotics and
Automation, May 1989.

[JXU93] J. Xu, Multiprocessor Scheduling of Processes with release Times, Deadlines,
Precedence, and Exclusion Relations, IEEE Transaction on software engineering,
February 1993.

[KAL] D. Kalinsky, Direct Message Passing for High Availability Software Design, OSE
Systems, Inc.

[KAM91] N. Kamenoff and N. H. Weiderman, Hartstone distributed benchmark:
requirements and definitions, in Proceedings of the 12th IEEE Real-Time Systems
Symposium, IEEE Computer Society Press, 1991.

[KAM96] N. Kamenoff, One Approach for Generalization of Real-Time Distributed
Systems Benchmarking, Proceedings of the 4th WPDRTS, 1996.

[KAR89] R. Kar and K. Porter, Rhealstone - a Real-Time Benchmarking Proposal, Dr.
Dobbs’ Journal, February 1989.

[KAR90] R. Kar, Implementing the Rhealstone Real-Time Benchmark, Dr. Dobbs’ Journal,
April 1990.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 84

[KHO92] P. Khosla et al., The Chimera II Real-Time Operating System for Advanced
Sensor-Based Control Applications, IEEE Transactions on Systems, Man and
Cybernetics, 1992.

[KOP85] H. Kopetz and W. Merker, The Architechture Of MARS, Proceedings of 15th
Fault-tolerant Computing Symposium, June 1985.

[KOP87] H. Kopetz and W. Oshenreiter, Clock Synchronization in Distributed Real-Time
Systems, IEEE Transactions on Computer Engineering, August 1987.

[KOP89] H. Kopetz et al., Distributed Fault-Tolerant real-Time Systems: The MARS
Approach, IEEE micro, February 1989.

[LAY73] J. Layland and C Liu, Scheduling algorithms for multiprogramming in hard real-
time environments, Journal of the ACM, January 1973.

[LEB92) T. LeBlanc and E. Markatos, Shared Memory vs. Message Passing in Shared
Memory Multiprocessors, 1992.

[LEE88] I. Lee et al., Rk: A real-time kernel for a distributed system with predictable
response, Dept. of Computer Science, Univesity of Pennsylvania, October 1988.

[LEH90] J. Lehoczky et al., Priority inheritance protocols: An approach to real-time
synchronization, IEEE Transactions on Computers, September 1990.

[LEH93] J. Lehoczky et al., On line scheduling for Hard-Real-Time Systems, The Journal
of Real-Time Systems 1, 1993.

[MEN02] Mentor Graphics homepage, http://www.mentor.com.
[MOK83] A. MOK, Fundamental design problem of distributed systems for the hard real-

time environment, Dissertation Camebridge, May 1983.
[MOL90] L. Molesky et al., Implementing a Predictable Real-Time Multiprocessor Kernel –

The Spring Kernel, May 1990.
[NAH92] E. Nahum et al., Architecture and OS Support for Predictable Real-Time Systems,

March 1992.
[NAK90] T. Nakajima et al., Real-Time Mach: Towards a Predictable Real-Time System,

In Proceedings of USENIX 1st Mach Workshop, October 1990.
[NAK93] T. Nakajima et al., RT-IPC: An IPC Extension for Real-Time Mach, In

Proceedings of the 2nd Microkernel and Other kernel Architectures, USENIX, 1993
[NIE93] D. Niehaus et al., The Spring Scheduling Co-Processor: Design, Use, and

Performance, In proceedings of Real-Time Systems Symposium, 1993.
[NOR00] Christer Norström et al., Robusta realtidssystem, version: rts-bok00-11, August

2000.
[NYG00] P. Nygren and L. Lindh, Virtual Communication Bus with Hardware and

Software Tasks in Real-Time System, In Proceedings for the work in progress and
industrial experience sessions, 12th Euromicro conference on Real-time systems, June
2000.

[OAR00] On-Line Applications Research Corporation (OAR), RTEMS C User’s Guide,
Edition 1 for RTEMS 4.5.0, 2000.

[QNX02] QNX homepage, http://www.qnx.com.
[RAM90] K. Ramamritham, Allocation and scheduling of complex periodic tasks, in

proceedings of the 10th International Conference on Distributed Computing Systems,
1990.

[RAM91] K. Ramamritham and J. A. Stankovic, The Spring Kernel: A new paradigm for
Real-Time Systems, IEEE Software, May 1991.

[RED02] Red Hat homepage, http://www.redhat.com.
[RTU00] Real-Time Unit, A New Concept to Design Real-Time Systems with Standard

Components, RF RealFast AB, Dragverksg 138, S-724 74 Västerås, Sweden, E-mail:
realfast@realfast.se, 2000.

[SCH87] K. Schwan et al., Chaos – kernel support for objects in the real-time domain, IEEE
Transactions on Computer Engineering, July 1987.

mailto:realfast@realfast.se

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 85

[SCH90] K. Schwan et al., From CHAOSmin to CHAOSarc: A family of Real-time Kernels,
In Proceedings of the IEEE Real-Time Systems Symposium, December 1990.

[SCH89] K. Schwan and H. Zhou, Optimum preemptive scheduling for hard real-time
system: Toward real-time threads, Technical report, GIT, July 1989.

[SHO01] M. El Shobaki and Lennart Lindh, A Hardware and Software Monitor for High-
Level System-on-Chip Verification, Proceedings of the IEEE International Symposium on
Quality Electronic Design (IEEE), San Jose, CA, USA 2001.

[SRI00] W. Srisa-an et al., Active Memory: Garbage-Collected Memory for Embedded
Systems, the second Annual Workshop on Hardware Support for Objects and
Microarchitechtures for Java, September 2000.

[STA00] J. Stankovic, A Special issue on: Ubiquitous Computing, volume 1, issue 4,
November 2000.

[STA98] J. Stankovic et al., Deadline scheduling for real-time systems: EDF and related
algorithms, Kluwer international series in engineering and computer science, ISBN 0-
7923-8269-2, 1998.

[TAN92] A. Tanenbaum, Modern Operating Systems, Prentice Hall, Inc, ISBN 0-13-
595752-4, 1992.

[THA00] H. Thane, Monitoring, Testing and Debugging of Distributed Real-Time Systems,
Doctoral Thesis, KTH, Stockholm, Sweden, May 2000.

[THA01] H. Thane et al., The Asterix Real-Time Kernel, 13th Euromicro International
Conference on Real-Time Systems, 2001.

[TIN94]K. Tindell and J. Clark, Holistic Schedulability Analysis for Distributed Real-Time
Systems, Real-Time Systems Journal 9, 1995.

[WEI84] R. P. Weicker, Dhrystone: A Synthetic Systems Programming Benchmark,
Communications of the ACM, 1984.

[WEI90] N. H. Weiderman, Hartstone: Synthetic Benchmark Requirements for Hard Real-
Time Applications, Proceedings of the working group on Ada performance issues, 1990.

[WEI01] B. Weinberg and C. Lundholm, Embedded Linux – Ready for Real-Time,
MontaVista Software White Paper, 2001.

[WIN02] WindRiver homepage, http://www.windriver.com.
[YAN97] L. Yanbing et al., Real-time operating systems for embedded computing, In proc.

Of IEEE International Conference on Computer Design: VLSI in Computers and
Processors, 1997.

[YOD97] Victor Yodaiken, The RT-Linux Approach to Real-Time, A short position paper,
1997.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 86

Introduction and Benchmarking of

Competitive Real-Time Multiprocessor
Kernels

Mikael Åkerholm and Tobias Samuelsson,

Masters’ thesis project

ABSTRACT
As the demands on real-time applications increase and they become more
complex every year, the demands of real-time platforms also grow larger every
year. Today both good performance and correct timing are to be desired in a
real-time system. The motivations for using multiprocessor systems are
scalability, robustness and performance. No single processor solution is able to
provide more computing power than a multiprocessor system built of the same
processors. The operating system is without hesitation the most important
software of all system programs in a real-time multiprocessor system. A real-time
system must be predictable in order to offer correct timing. One way to achieve
both performance and determinism is to implement the kernel in hardware.

In this paper we introduce MPSWOS, which is a multiprocessor operating system
kernel implemented in software. With the purpose to find out the differences
between kernels implemented in hardware and kernels implemented in software,
we compare MPSWOS with an existing kernel in hardware. The kernels
operatates on the same hardware architecture and have the same application
interface, so the only difference is the kernel implementation. This paper mainly
contain a practical comparison between the different kernels, in the form of a
benchmark.

The Department of Computer Science and Engineering,
Mälardalen University, June 2002.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 88

Table of contents
Introduction ___ 89
Design of MPSWOS___ 90

Scheduling __ 90
Memory management___ 93
Interprocess communication ___ 94

Clockmanagement___ 95
Benchmarking ___ 96

Create task__ 96
Method ___ 96
Result __ 96

Task switch ___ 98
Method ___ 98
Result __ 98

RTOS overhead__ 99
Method __ 100
Result ___ 100

Communication bandwidth ___ 101
Method __ 101
Result ___ 102

Communication latency __ 104
Method __ 104
Result ___ 104

Message priorities ___ 106
Method __ 106
Result ___ 107

Conclusions and future work __ 109
Acknowledgements___ 110
References ___ 111

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 89

Introduction
This paper is the second part of our masters’ thesis project presented to the
department of computer science and engineering at Mälardalen University. The
first part of this thesis evaluates and compares different selected multiprocessor
real-time operating system kernels as a prepearatory study. The preparatory study
for this thesis has been used as base for this the second part, which assignment
was to design and develop a real-time operating system in software with the same
application interface (API) as the RTU [RTU00] and then benchmark and
compare it with the existing SARA system [FUR99] equipped with a RTU. The
RTU is a RTOS co-processor, developed at Mälardalen University.

As real-time applications become larger and therefore more complex every year,
the demands on performance and timing correctness increase. The fact that no
single processor solution is able to provide more computing power than a
multiprocessor system built of the same processors is one motivation to use
multiprocessors. The performance of multiple processors may be limited by the
hardware architecture. For instance, in a shared bus multiprocessor system,
accessing the bus may limit the performance of the system. One solution to obtain
more performance is to decrease the administration of the system e.g. scheduling,
clock-tick management and so on, by utilizing special purpose hardware. The
RTU is an example of such solution. Not only the performance is increased, by
utilizing parallel hardware the determinism is also better.

The new software OS introduced in this paper utilizes the same hardware
architecture and has the same application interface (API) as the existing SARA
system with RTU. The name of the new software OS is MPSWOS, which is a
shortening for Multiprocessor SoftWare Operating System. The motivation to this
paper is to show the differences between utilizing a co-processor and utilizing a
standard processor.

A similar comparison has been made in [FUR00], but the differences are the
software operating system and the benchmark programs. In [RIZ01], a
comparison between a software kernel and a hardware kernel on a single
processor system has been done.

The outline of this paper is as follows. First we introduce the design of MPSWOS
and the motivations behind the selection of the design. In that section we will also
explain the differences between the RTU and MPSWOS. The next section is
benchmark, which contains a practical comparison between the different kernels.
Different benchmarks have been performed, in order to achieve values for
communication bandwidth, communication latency, OS-overhead and so on. Both
the results and the motivation to them are presented. The final section concludes
the paper with conclusions and future work suggestions.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Design of MPSWOS
The hardware architecture MPSWOS run on is a SARA system without RTU. The
SARA system is divided into local CPU board, bus arbitrator, global RAM and
I/O. The processor boards are connected to each other with a Compact PCI bus
(CPCI). The CPCI bus offers eight slots for CPU boards, however in a CPCI
system there is always one special “system-slot”. This slot has a special CPU-
board (system board) that handles the arbitration, clock-distribution, etc on the
back plane. An overview of the SARA-system that MPSWOS runs on is shown in
figure 1.

Figure 1, block diagram of the SARA system (without RTU)

Scheduling
A central part of a multiprocessor RTOS is the placement of the processor
schedulers and different task queues. It is a choice between schedulers residing on
the different processors, a centralized scheduler, perhaps with dedicated
application and system processors or any combined approach.

Unlike the SARA system equipped with an RTU, MPSWOS consists of several
schedulers. The system board has a complete scheduler while the slave boards
have simpler schedulers. The idea with several different schedulers can for
instance be found in the Spring system [RAM91]. In general it is possible to
compare the non-system boards (slaves) in the SARA system with the application
processors in Spring. The main difference is that the scheduler on the slave boards

 90

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 91

in the MPSWOS system has some more functionality than the dispatchers in the
Spring system. Since the system board has a different scheduler than the slave
boards, they do have different versions of the operating system.

The different operating systems are communicating by sending interrupts to each
other. Parameters are passed through the global memory. Each CPU board has
one parameter area in the global memory to use when sending interrupt to the
system board. This implies that some kind of protection is needed; i.e. only one
task per board is allowed to use the parameter area at the same time. The lock we
have chosen is a load-locked/store-conditional (LL-SC) lock provided by the
hardware. The first instruction (load-locked) loads a synchronization variable into
a register. It may be followed by arbitrary instructions that modify the value in the
register. The last instruction (store-conditional) tries to write the register back to
memory location, if and if only no other process has written to that location. In
other words, these instructions allow us to implement a range of atomic read-
modify-write operations. The task placement is offline scheduled and the tasks
can only execute on one node. For instance when a task is placed on the system
board, it can only execute on the system board.
The task management and scheduling algorithm are the same as in the original
SARA system, i.e. pre-emptive priority-driven scheduler, which guarantees that
the task with highest priority is executing (at any instance of time).

Each slave board has a local ready queue and blocked queue, while the system
board has semaphore-blocked queues, a waiting queue, a local ready queue and a
blocked queue, see figure 2. In order to avoid clock-synchronization, the master
node (system board) handles all timing, i.e. the master node is the only node that
has clock interrupts. The waiting queue contains both master and slave tasks. On
each clock interrupt, the master checks the waiting queue, i.e. is there any task
that becomes ready to execute? If a slave-task becomes ready, an interrupt to the
slave is sent. When a slave-task makes a delay, an interrupt to the master is sent
and the first task in the ready queue is dispatched.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Blocked Queue Blocked Queue Blocked Queue

Semaphore-Blocked
Queues

Ready Queue Ready Queue Ready Queue

Clock interrupts

Blocked Queue
Waiting Queue

Figure 2, Placement of Scheduling queues

The state transition diagram for tasks are shown in figure 3. The different states
are ready, executing, waiting, blocked and semaphore-blocked. The OS text in
figure 3 means that this event is caused by the operating system.

 92

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

BlockedReady

Waiting

Executing

Semaphore
Blocked

get_sem

OS

OS

OS

OS

OS

get_message

delay

Figure 3, state transition diagram for tasks

Memory management
Communication and synchronization between different processes in the system is
performed through the global memory that resides on the system board. Global
memory areas can be defined on any CPU board. As shown in figure 1, there are
two kinds of PCI buses in the system. All boards have a local PCI bus that is
connected to the CPCI bus through a PCI-PCI bridge. The system board has a
transparent bridge, while the other boards have bridges that remap addresses on
one bus to another address on the other bus. With this non-transparent bridges,
address collisions on the CPCI bus can be avoided and all boards can use its full
address range on the local PCI bus.

MPSWOS has the same memory settings as the original SARA system, i.e. global
memory is residing on the system board. With this solution, all communication
between tasks goes through the system board, even if two tasks that are
communicating reside on slave boards. We have an idea to relieve the pressure on
the system board. But due to lack of time, we have implemented the simpler

 93

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 94

solution that has the same memory settings as the original SARA system. The
idea was to define global memory areas on each CPU board. We wanted 16 MB
physically on each node, starting at adress 0x1000000 and ending at 0x1FFFFFF.
That will result in a 48 MB continous memory, when using three CPU boards.
Since the slave boards have non-transparent bridges, they are able to translate an
address on one bus to another address on another bus. By setting the non-
transparent bridges, this solution is feasible. The idea is shortly described in the
Future Work section.

Interprocess communication
A Virtual Communication Bus (VCB) that uses the global memory on the system
board is used for inter process communication and synchronization between tasks
in the system [NYG00]. As the name says, the VCB is just a virtual bus that uses
the physical CPCI bus and the global memory on the system board. The VCB
provides a message passing mechanism that allows task-to-task communication
locally on one CPU as well as between several different CPUs. The logical
architecture of a system with a VCB bus is shown in figure 4. The VCB bus is
divided in two layers. The lower hardware layer consists of base primitives and is
implemented and integrated in a FPGA (Field Programmable Gate Array). The
upper layer is implemented in software and it provides different types of
functionality from the bus. When a task wants to communicate on the VCB bus, it
has to connect to the virtual bus. This is done by allocating a VCB-slot. The
sender of a message has to set a priority to the message. VCB provides support for
both synchronous and asynchronous communication. A task that is connected to a
VCB-slot can communicate with all the other tasks in the system. The functions
this bus supports are for instance: send, receive, broadcast, send and wait,
multicast and subscribe. It is the hardware layer that performs the job, when a call
to the VCB is made. This feature speeds up the message passing compared to
similar implementations in software [RTU00].

In MPSWOS, the lower hardware layer has been replaced by a software layer.
This means that the VCB interface to the user has not been changed, see figure X.
Only the most important methods have been implemented, such as send, receive
and so on.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

Figure 4, the VCB communication model

The message-queues are placed in the global memory on the system board. Each
slot has a message-queue. To protect the message-queues, i.e. guarantee mutual
exclusion, a semaphore-protocol has been implemented. The system board
handles the semaphores. Each message-queue (slot) has a semaphore, and each
semaphore has a semaphore blocked-queue residing in the global memory. A task
that tries to take a semaphore that is occupied, is placed in the semaphore
blocked-queue. The semaphore blocked-queues are sorted by priority.

Clockmanagement
Since the system board handles the waiting-queue, the non-system boards need no
clock interrupts, i.e. no clock-synchronization or distribution is needed. Clock-
tick interrupts is taken when decrementer exception occurs, i.e. when the
decrementer register is equal to zero and no exception with higher priority exists.
The decrementer register is decremented at 16.75MHz, one fourth of the bus
clock rate. When a decrementer exception is taken, instruction fetching resumes at
offset 0x0000_0900, from the base 0x0000_0000 or 0xFFFF_0000 configurable
in the processor machine state-register.

The system board has a time base facility (TB), which is a 64-bit structure that
consists of two 32-bit registers, time base upper (TBU) and time base lower
(TBL).

 95

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 96

Benchmarking
The benchmark presented here is aimed to serve as comparison between a
software and a hardware operating system. The software operating system is the
MPSWOS described earlier in this paper; the hardware operating system is the
SARAOS or the RTU [RTU00]. Both operating systems have the same
programming interface, although the software operating system has a slightly
reduced version.

The benchmark series is built with own ideas and parts from several well-known
benchmarks: Rhealstone [KAR89], SSU [ACH91] and Distributed Hartstone
[KAM91]. It was the most suitable solution to create an own benchmark series
that gives the freedom of measuring what we feel are important, if using another
benchmark we would have to port the benchmark to our operating system and that
would require almost the same amount of work. The different test cases that are
used are first explained both the idea and the implementation, at the end of each
test case the results are presented.

All tests have been executed five times in order to compute the average result.
Worth to notice is that all times expressed in the results is expressed in the one
fourth of the processor bus clock speed. To transform the times to seconds one
should multiply the time with 1/16,7 MHz, since the processor bus clock speed is
67 MHz on all nodes in the system.

Create task
This test case is taken from the SSU benchmark and the time it takes to create a
task is measured. The timekeeping starts when a task is going to be created and
stops when the task has been created. All tasks in both operating systems are
created at the system start-up, so this test is classified as non real-time and it is not
critical to the system. The reason to this measurement is the comparison between
the hardware and software implementation that is desirable. Conditions that may
affect the task creation time are the number of already created tasks and where in
the system the task is located.

Method
The practical part of this benchmark is pretty straightforward, just measure the
time for the system call representing create task. The number of already created
tasks is varied between 0 and 16 and the test is performed on both the master and
a slave node independently.

Result
The results are presented with the two graphs below. As we can see the software
operating system is faster on both the master node in figure 5, and the slave node
in figure 6. That is an expected result, since the tasks are created locally and we
do not need any communication with PCI devices. The hardware operating system

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

on the other hand is a PCI device with enclosed latencies. Also as predicted the
software operating system has longer latencies with increasing number of already
created tasks. That is because of the list management latencies that increase with
increasing number of tasks. The cache memory effects are also visible in the test,
since the first task create call take more time than the second.

It is confusing that both the hardware and the software operating system is faster
on the slave node than the master node, which is a result we cannot explain. The
hardware operating system should be slower on the slave node, since it is
physically longer distance between the slave processor and the operating system
than between the master node and the operating system. We have verified the
result with repeated measurements and we have also used the MAMON [SHO01]
monitoring device, which indicates the same result. Appendix 1 contains tables
with listings of the results from this benchmark.

0

200

400

600

800

1000

1200

0 5 10 15 20
Number of already created tasks

Ti
m

e

softw are

hardw are

Fig 5, Create task benchmarks on the master node for both operating systems.

 97

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

0

100

200

300

400

500

600

700

800

0 5 10 15 20
Number of already created tasks

Ti
m

e

softw are

hardw are

Fig 6, Create task benchmarks on the slave node for both operating systems.

Task switch
This test case has been influenced by the Rhealstone benchmark and it measures
the time the system takes to switch between two independent and active tasks
with equal priority. The task switch time is crucial to the performance in a real-
time system. In this test the terms for variation are the number of simultaneously
active tasks and the placement of tasks, i.e. on master or slave node.

Method
Measuring the time between that a task calls for a manual task switch, until the
next task becomes executing is a reasonable method of measurement. The number
of active tasks is varied between 2 and 16, and the tests are performed on both the
master and a slave node independently.

Result
In this test the software operating system is faster than the hardware operating
system, that is because of the task switches that can be handled locally on a node.
Each node manages its own queue of active tasks. But in the hardware case the
operating system queues are managed centrally in the operating system core,
residing as a PCI device, which causes access latencies to the queues. Notice that
the software operating system is not affected by the number of tasks in this test,
which is because of the two tasks that are involved in the switch, has the highest
priority in the system. In figure 7, the result from the test on the master node is
compared and figure 8 summaries the result from the slave node. In appendix 1
tables with complete result listings are presented.

 98

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20
Number of tasks

Ti
m

e

softw are

hardw are

Fig 7, Task switch benchmarks on the master node for both operating systems.

0

100

200

300

400

500

600

700

800

0 5 10 15 20
Number of tasks

Ti
m

e

softw are

hardw are

Fig 8, Task switch benchmarks on a slave node for both operating systems.

RTOS overhead
The method used in this benchmark is for instance used in [FUR00]. The paper
presents a performance comparison between systems that utilises hardware
operating systems and ordinary operating systems. The comparison is based on
executing an application. In this test case two different kinds of applications are

 99

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 100

going to be used as variation to the measurement, one application that
communicates heavily and another that does not any exchange messages.

Method
Practically this measurement should be possible by comparing execution times
between the hardware implemented and the software implemented RTOS, and it
is not really necessary to know the exact utilisation of the application. As
applications the classic problems Nqueens and Travelling Salesman was chosen.

Nqueens is the problem to find all the positions of n queens on an n*n chessboard
so that no two queens attack each other (not on the same column or diagonal).
The base algorithm to solve the problem is a recursive algorithm that finds all
solutions, by trying all solutions.

The Travelling Salesman Problem (TSP) is a classic combinatorial problem. It is
also practical since it is the basics for things like scheduling planes and personnel
at an airplane company. Given are n cities and a symmetric matrix dist[1:n,1:n].
The value in dist[i,j] is the distance from city i to j. A salesman starts in city 1 and
wishes to visit every city exactly once, ending back in city 1. The problem is to
determine a path that minimizes the distance the salesman must travel. The
algorithm to solve the problem is based on a work pool that resides on the master
node, while the two slaves fetches pieces of work and report results back to the
master. In this test the whole system is exercised.

Result
In figure 9, we can see that for Nqueens the result is essentially the same for both
the hardware and the software operating system. But when running the TSP
application and exercising the whole system with messages as synchronisation,
the hardware operating system is faster. In appendix 1, the complete result listings
are included.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

140000000

145000000

150000000

155000000

160000000

165000000

170000000

175000000

180000000

softw are Nqueens

hardw are Nqueens

softw are TSP

hardw are TSP

Figure 9, an application benchmark between the two operating systems.

Communication bandwidth
Variants of this measurement are included in Rhealstone and Distributed
Hartstone. This measurement aims to measure the number of kilobytes per second
one task can send to another. Included in this metric is not only the limitation of
the physical communication medium, but also the operating system overhead
required for sending messages. The communication bandwidth may be different
for tasks hosted by different processors and tasks hosted by the same processor.
For this reason the result will be reported by the communication bandwidth
between:

• Two tasks hosted by the master node
• Two tasks hosted by a slave node
• The sender on a slave node, and the receiver on the master node

The bandwidth is also in most systems depending of the message size. The
message size is therefore a target for variation.

Method
Practically the measure can be carried out by measuring the time it takes to send a
fixed amount of raw data between two tasks, with no other communication
present. The time is from which the first message is sent by the sending task, until
the last message is received by the receiving task. The number of messages the
data is dived into is varied between 10 and 640, and the amount of data is 10240
bytes. This gives message sizes varying between 16 and 1024 bytes. The
communicating tasks placement is also varied in independent tests.

 101

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

Result
This benchmark shows that the bandwidth between tasks hosted by the same node
is greater with the software operating system, but when communicating across
node boundaries the bandwidth is greater with the hardware operating system.
The result is probably depending of the rather complicated message semantics
with priority boosting of the receiving task. When that priority change is taking
place on the same node, i.e the sender and the receiver are on the same node. The
software operating system is more efficient, since the enclosed latencies with PCI
accesses can be avoided. But when communicating across node boundaries the
hardware implementation is more efficient. The priority boosting occurs inside
the hardware without any processor involvement, while the software operating
system processors must communicate and synchronize with each other to achieve
the priority boosting.

The three figures 10, 11 and 12 summarises the bandwidth benchmarks. In figure
10 the bandwidth between tasks on the master node is compared. In figure 11 the
bandwidth between two tasks on a slave node is compared, notice that the
bandwidth in this test is lower than when both tasks are residing on the master
node. The explanation is that the communication is implanted through a shared
memory that resides on the master node; this gives the master node shorter access
times. Finally figure 12 compares the bandwidth between tasks communicating
across node boundaries. Complete results are presented in appendix 1.

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700
Number of messages

B
an

dw
id

th
 (

kb
\s

)

softw are

hardw are

Figure 10, bandwidth between two tasks hosted by the master node for both operating
systems.

 102

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700
Number of messages

B
an

dw
id

th
 (

kb
\s

)

softw are

hardw are

Figure 11, bandwidth between two tasks hosted by a slave node for both operating
systems.

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700
Number of messages

B
an

dw
id

th
 (

kb
\s

)

softw are

hardw are

Figure 12, bandwidth between a sending task on a slave node and a receiving task on the
master node.

 103

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 104

Communication latency
The end-to-end communication latency is also measured in distributed Hartstone.
This is an important metric in real-time systems, since many of the calculations
used for guaranteeing deadlines use the end-to-end communication latency. A
RTOS suitable for hard real-time systems should also be able to provide a
bounded worst-case end-to-end delay for messages independent on other traffic.

The effect other traffic have on messages are tested by the message priorities
measure also included in this benchmark. Using different message sizes with
regular intervals between the two extremes tests the effect of message size. The
effect of task placement will be taken care of by three different cases; the end-to-
end delay will be reported by the delay between:

• Two tasks hosted by the master node.
• Two tasks hosted by a slave node.
• Sender and receiver on different nodes

Method
This measure simply consists of measuring the end-to-end delay, i.e. the time
from which the message is sent by the sending task until it is received by the
receiving task. In the case with the software operating system and communication
across node boundaries, it is most suitable to measure the roundtrip delay. Since
we have no accurate external clock and no clock synchronization between nodes,
it is easiest to achieve an accurate result by taking the two necessary timestamps
on the same node. The first timestamp is taken when a message is sent and the
second timestamp when the receiver returns the message. The message sizes are
varied between 1 and 128 bytes. The test is divided into three different
independent measures, with sender and receivers placed as described above.

Result
This test shows that the end-to-end delay, also referred to, as the transmission
latency is shorter with the hardware operating system. How come that the
bandwidth and latency not follows each other, is an immediate reaction. The
problem with the software operating system is that the scheduling routines are
executed in a speculative manner, with the purpose to find out if we should switch
task. A speculation takes place in association with many system calls, such as
send and receive. These speculations surely take place in the hardware operating
system too, but they do not steal any execution time on the systems processors.
However, when the speculations are successful the software operating system also
is successful. Such a case seems to be when a send and receive pattern is repeated,
as in the bandwidth test.

The communication latency on the master node is compared in figure 13. Figure
14 shows a comparison of the latency on a slave node. Figure 15 shows the
latency between tasks hosted by different nodes. Finally appendix 1 presents the

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

exact results. We can see that the differences are smallest on the master node,
because that the software operating system routes the semaphore calls to the
master node.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140
Messages size (bytes)

Ti
m

e

softw are

hardw are

Figure 13, the communication latency between tasks residing on the master node for both
operating systems.

0

1000

2000

3000

4000

5000

6000

0 50 100 150
Messages size (bytes)

Ti
m

e

softw are

hardw are

Figure 14, the communication latency between tasks residing a slave node for both
operating systems.

 105

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

0

1000

2000

3000

4000

5000

6000

0 50 100 150
Messages size (bytes)

Ti
m

e

softw are

hardw are

Figure 15, the communication latency between the sender residing on a slave node and a
receiver residing on the master node for both operating systems.

Message priorities
In Distributed Hartstone, the message priority test is performed as a special real-
time test. It is the scheduling of messages that is tested; in ordinary systems it is
often First In First Out (FIFO) queues that handle the messages. But in a real-time
system this is often not a suitable solution, since a high frequency or fast activity
cannot be delayed by an arbitrary number of other activities. This test is aimed to
test if the message passing algorithms can avoid priority inversions and how
successful the algorithm is on handling message priorities. In the distributed
Hartstone test, this benchmark has a result of yes or no type. To associate a
number and thereby make the two solutions comparable, we aim to measure the
time it takes to send a high-prioritised message, when the receiver have a huge
number of low-prioritised messages pending.

Method
Practically an applicable method should be to let a task send as many low
prioritised messages as possible. Simultaneously let another task send a high-
prioritised message and compare the time it took with the ideal case, when no
other traffic takes place. The message size is varied between 1 and 128 bytes. The
placement of the sender and receiver is varied between, both on the master node,
both on a slave node and the sender on a slave node and the receiver hosted by the
master node. The task that sends low prioritised messages as fast as possible is
always placed on an idle node. To achieve as much disturbing messages as
possible it is important that this task never is interrupted.

 106

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

Result
This test shows that the hardware operating system is much more successful than
the software operating system in handling these situations. The problem with the
software operating system seems to be that interrupts following message sends are
queued in the interrupt handlers. Even if the message-passing algorithm itself is
clearly priority driven, the messages are not delivered in correct order since the
interrupts indicating message deliveries are routed in the sent order. Another
problem is that all bridges between busses in the system are FIFO-driven and this
may result in unpredictability’s in both operating systems.

In figure 16 the results from the master node is shown. In the case with both the
sender and the receiver on the slave node visualised in figure 17, the hardware
operating system also shows an example of un-deterministic behaviour and the
curve is a bit swingy. Figure 18 presents a comparison in the case with sender and
receiver on different nodes. In appendix 1, the complete results are presented.

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140
Messages size (bytes)

Ti
m

e

softw are

hardw are

Figure 16, the message priority benchmark when the master node hosts both sender and
receiver. A slave node sends the disturbing messages.

 107

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 140
Messages size (bytes)

Ti
m

e

softw are

hardw are

Figure 17, the message priority benchmark when a slave node hosts both sender and
receiver. The master node sends the disturbing messages.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150
Messages size (bytes)

Ti
m

e

softw are

hardw are

Figure 18, the message priority benchmark when the master node hosts the receiving task
and a slave node hosts the sender. An idle slave node sends the disturbing messages.

 108

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 109

Conclusions and future work
As summary and conclusion we end up with our opinions of advantages and
disadvantages with the two operating systems.

The software operating system MPSWOS main advantage in comparison with the
hardware operating system RTU is that some system calls can be executed in
parallel. Intelligence has been moved from a centralized source to the system
nodes, this implies that some decisions can be made faster and we can utilize the
natural locality of data close to each node. An example is for instance the
processor dispatch queues that has been moved to the respective node. It should
also be easier to make small changes in the kernel since it is implemented in
software instead of hardware.

The hardware operating system RTU has a great advantage over all software
implementations, the execution of scheduling decisions and other operating
system functionality does not load the systems processors. A hardware
implementation also makes it easier to create bounded execution times for system
calls, which is desired in real-time systems when guaranteeing deadlines of
events. As we could see in our benchmarks, the main advantage with using the
hardware implememantion in the SARA system today is that it is more
deterministic than the software version. But notice that since scheduling decisions
and many other system calls does not load the processors, the gain with a
hardware implemenation becomes greater with more complicated algorithms and
more tasks.

As a future work section we present some suggestions to improve the SARA and
RTU implementations. The first and biggest proposal is to implement global
memory areas on all nodes. Global memory areas on all CPU boards will relieve
the pressure on the system board. As it works today, all communication goes
through the system board, even when tasks that are located on slave boards are
communicating with each other. Secondly since the scheduling algorithm does not
load the application processors, make use of a really fancy and effective algorithm
that hardly cannot be used in software implementations. Finally we think that an
improvement of the interface between processors and the RTU should be useful, it
is often big latencies in communicating across the PCI busses. As for example the
dispatch queues could be moved to the processors, as in the software operating
system.

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 110

Acknowledgements
Thanks goes to Peter Nygren and Johan Stärner, both currently PhD students at
the department of computer science and engineering at Mälardalen University, for
their supportive work as supervisors. A special thanks goes to Leif Enblom, for
many fruitful discussions of ideas.

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 111

References
[ACH91] S, Acharya et al., Overview of Real-Time Kernels at the Superconducting Super

Collider Laboratory, Particle Accelerator Conference, 1991.
[FUR99] J. Furunäs et al, Flexible Multiprocessor computer Systems, In CAD & Computer

Graphics, December 1999.
[FUR00] J. Furunäs, Benchmarking of a Real-Time System that utilises a booster,

International Conference on Parallel and Distributed Processing Techniques and
Application, 2000.

[KAM91] N. Kamenoff and N. H. Weiderman, Hartstone distributed benchmark:
requirements and definitions, in Proceedings of the 12th IEEE Real-Time Systems
Symposium, IEEE Computer Society Press, 1991.

[KAR89] R. Kar and K. Porter, Rhealstone - a Real-Time Benchmarking Proposal, Dr.
Dobbs’ Journal, February 1989.

[NYG00] P. Nygren and L. Lindh, Virtual Communication Bus with Hardware and
Software Tasks in Real-Time System, In Proceedings for the work in progress and
industrial experience sessions, 12th Euromicro conference on Real-time systems, June
2000.

[RAM91] K. Ramamritham and J. A. Stankovic, The Spring Kernel: A new paradigm for
Real-Time Systems, IEEE Software, May 1991.

[RIZ01] L. Rizvanovic, Comparison between Real time Operative systems in hardware and
software, Masters’ thesis presented at Mälardalen University, Västerås, Sweden 2001.

[RTU00] Real-Time Unit, A New Concept to Design Real-Time Systems with Standard
Components, RF RealFast AB, Dragverksg 138, S-724 74 Västerås, Sweden, E-mail:
realfast@realfast.se, 2000.

[SHO01] M. El Shobaki and Lennart Lindh, A Hardware and Software Monitor for High-
Level System-on-Chip Verification, Proceedings of the IEEE International Symposium on
Quality Electronic Design (IEEE), San Jose, CA, USA 2001.

mailto:realfast@realfast.se

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 112

Appendix 1

Task create software master
Number of

tasks min max average
0 563 567 564,2
2 437 439 438
4 497 502 500,8
6 519 522 520
8 550 552 551,2
12 612 622 616,2
16 675 686 681,4

Task create software slave

Number of
tasks min max average

0 363 374 365,4
2 312 322 314,6
4 351 362 357,6
6 371 380 372,8
8 395 404 397,4
12 439 448 443,6
16 486 497 490,4

Task create hardware master

Number of
tasks min max average

0 996 1010 1002,4
2 822 833 828,2
4 831 844 835
6 828 831 829,6
8 831 839 835,6
12 825 838 829,6
16 822 841 832,4

Task create hardware slave

Number of
tasks min max average

0 703 711 706
2 627 649 636,8
4 633 646 638,4
6 629 640 636
8 627 631 627,8
12 625 634 627
16 624 626 624,6

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 113

Task switch software master

Number of
tasks min max average

2 834 845 836,6
4 834 844 837,8
6 834 845 840,8
8 835 845 839,2
12 834 843 838,2
16 834 846 840

Task switch software slave

Number of
tasks min max average

2 562 569 565,2
4 562 570 566
6 560 570 564,8
8 567 569 568
12 560 568 562,6
16 559 569 564,4

Task switch hardware master

Number of
tasks min max average

2 931 943 936,6
4 921 946 936,2
6 937 943 939
8 930 943 938,8
12 919 945 932,2
16 930 941 937

Task switch hardware slave

Number of
tasks min max average

2 696 707 700,4
4 692 719 701,8
6 695 706 701,4
8 686 715 699,8
12 694 702 698,6
16 694 701 696,8

RTOS overhead software

Application min max average
Nqueuens 145611618 145612170 145611973,2

TSP 176728413 176732478 176730136,2

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 114

RTOS overhead hardware

Application min max average
Nqueuens 145605961 145606827 145606411,8

TSP 170350982 170359110 170353193

Bandwidth software master/master
Number of
messages min max average

10 2313,294735 2313,576405 2313,413661
20 1475,160664 1475,415211 1475,234479
40 851,8286062 852,0068556 851,9117848
80 461,6884046 461,7295417 461,701618

160 241,0366063 241,048158 241,0419744
320 123,1760355 123,1793184 123,177189
640 62,29388882 62,30896001 62,30290881

Bandwidth software slave/slave

Number of
messages min max average

10 1196,044147 1197,199664 1196,648542
20 821,7074378 822,7590487 822,3121268
40 504,3293618 504,8027819 504,6273603
80 284,5831385 284,8206047 284,703793

160 152,2172386 152,2448838 152,2314403
320 78,86757002 78,93058219 78,89431595
640 40,14321302 40,16127638 40,15112246

Bandwidth software slave/master

Number of
messages min max average

10 5205,247618 5210,402035 5208,212697
20 3305,939781 3307,28245 3306,630227
40 1851,046442 1851,778057 1851,228832
80 957,3334752 957,4889208 957,4095879

160 572,105316 572,5123243 572,2755495
320 296,4313759 298,7456763 297,5183925
640 153,7723493 154,200667 153,9889073

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 115

Bandwidth hardware master/master

Number of
messages min max average

10 1726,655897 1728,278776 1727,741162
20 1456,180388 1457,495952 1456,843002
40 133,5179073 133,5260391 133,5215561
80 68,06516118 68,06860198 68,06696013

160 34,59892716 34,60068429 34,59995062
320 15,5208208 15,52104055 15,52096956
640 7,377148613 7,377244724 7,377214235

Bandwidth hardware slave/slave

Number of
messages min max average

10 786,0449082 786,3629884 786,1526099
20 724,3646222 724,8220878 724,5868699
40 131,0706438 131,0796858 131,07629
80 67,42353602 67,42699201 67,42496625

160 34,43009879 34,43144366 34,43079202
320 15,50346835 15,50370449 15,50356365
640 7,375079968 7,375148035 7,375110121

Bandwidth hardware slave/master

Number of
messages min max average

10 5122,300434 5253,863406 5224,245917
20 4292,854364 4565,814065 4409,570644
40 4038,016978 4063,781754 4048,15388
80 2620,691769 2647,633498 2635,179051

160 1423,429722 1426,760945 1424,821782
320 812,4435829 815,3216079 813,9432077
640 425,3533563 426,6932818 425,8482222

Latency software master/master

Size of
messages min max average

1 2871 2881 2876,2
2 2529 2533 2531,2
4 2551 2560 2555,4
8 2602 2611 2606
16 2560 2572 2565,2
32 2603 2617 2609,2
64 2705 2716 2711,2

128 2911 2913 2912,6

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 116

Latency software slave/slave

Size of
messages min max average

1 4390 4432 4408,4
2 4185 4233 4207,8
4 4239 4272 4260,8
8 4370 4390 4380
16 4238 4297 4267,8
32 4388 4406 4395
64 4623 4661 4650,4

128 5136 5175 5147

Latency software slave/master
Size of

messages min max Average
1 4800,5 4825 4809,3
2 4406 4440 4423,9
4 4445 4481 4461,1
8 4556 4562 4558,9
16 4460 4491,5 4472,5
32 4552,5 4578,5 4566,3
64 4717,5 4749 4733,4

128 5076,5 5091 5085,2

Latency hardware master/master
Size of

messages min max Average
1 2970 3004 2992,4
2 2592 2609 2601,4
4 2597 2625 2610,4
8 2641 2662 2652,4
16 2591 2611 2604,2
32 2643 2660 2649,6
64 2713 2739 2725

128 2902 2911 2905,4

Latency hardware slave/slave
Size of

messages min max Average
1 2736 2743 2739,2
2 2558 2583 2572,2
4 2609 2633 2623
8 2737 2759 2747,6
16 2628 2649 2639,2
32 2733 2753 2745,8
64 2977 3002 2989,2

128 3469 3488 3475,6

Mikael Åkerholm and Tobias Samuelsson, Mälardalen University, June 2002

 117

Latency hardware slave/master
Size of

messages min max Average
1 2633 2687 2650,1
2 2392 2405 2398,1
4 2406,5 2434,5 2422,8
8 2478,5 2515,5 2505,9
16 2421 2439,5 2428,1
32 2495,5 2522 2507,7
64 2655,5 2687 2672,2

128 2998,5 3021 3006,3

Message priorities software master/master
Size of

messages min max Average
1 7100 14002 12615,4
2 9064 9513 9401,4
4 5195 9540 8629,4
8 5229 13159 7946,8
16 5203 13130 8468
32 5274 9535 7481,4
64 5379 9485 6939,6

128 5664 10667 8235,4

Message priorities software slave/slave
Size of

messages min max Average
1 6142 6589 6270,4
2 7664 57593 27616,2
4 8817 57851 28411,2
8 6276 6604 6360,6
16 7727 57835 37706
32 7804 57887 47748,2
64 6449 6595 6498

128 8502 58490 28497,2

Message priorities software slave/master
Size of

messages min Max Average
1 7147 19078,5 10218,2
2 7211 29961,5 16926,4
4 7055 21772,5 12314,8
8 4093,5 135553,5 32344,7
16 3597 9527,5 6571,5
32 4139 7104,5 6098,6
64 3722,5 16848 9985,3

128 5648,5 135579,5 36679

Design and Benchmarking of Real-Time Multiprocessor Operating System Kernels

 118

Message priorities hardware master/master
Size of

messages min Max Average
1 4709 5708 5016,8
2 4261 4612 4429,2
4 4294 4588 4479,6
8 4367 4800 4586,8
16 4485 4677 4551,2
32 4466 4627 4536
64 4383 4665 4522,6

128 4577 4779 4704,8

Message priorities hardware slave/slave
Size of

messages min max Average
1 4775 5015 4879,8
2 3851 4771 4325,8
4 3897 4926 4617,6
8 4636 4848 4698
16 4370 4979 4603,8
32 4315 5105 4797,8
64 5216 7270 5781,8

128 5509 60301 16736,2

Message priorities hardware slave/master
Size of

messages min max Average
1 2581,5 3530 2965,3
2 2376,5 2988 2710,2
4 2420,5 2967,5 2596,5
8 2590 3314 3000,2
16 2764,5 3157,5 2929
32 2908 3411 3168,8
64 2750,5 4067 3095

128 3644 4664,5 4083,1

