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Abstract— This paper presents the platooning research within the 
Safe Cooperating Cyber-Physical Systems using Wireless 
Communication (SafeCOP) project. Cooperating Cyber-Physical 
Systems (CO-CPS) using wireless communication and having 
multiple stakeholders, dynamic system definitions (openness), 
and unpredictable operating environments, are the main 
application of SafeCOP. In addition to safety assurance methods 
and tools, SafeCOP devises a runtime manager architecture that 
detects irregular operation, hence, prompting a safe degraded 
mode in case of need.  

SafeCOP lays a safety and security umbrella over the usage of 
current wireless technologies, contributes to new standards and 
regulations by providing scientifically validated solutions to 
establish standards which also addresses cooperation and system-
of-systems issues. SafeCOP addresses several use cases that solve 
customer related problems. However, in this paper we will 
present a use case that extract generic principles from the 
combination of the previous use cases to stimulate the European 
collaboration around the project objectives, and to collect general 
requirements for the SafeCOP solution, applicable across all the 
areas considered. We consider a CO-CPS composed of two or 
more systems moving in a platoon while cooperating in a safe 
function. 
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I.  INTRODUCTION 
SafeCOP targets safety-critical systems that are required to 

provide a “safety case” – a well-documented body of evidence 
in form of a clear argument assuring that the system is 
acceptably safe. Building the safety case requires gathering the 
safety evidence during system development to ensure not only 
that identified failures have been addressed, but also that any 
unwanted interactions between the system parts as well as the 
environment have been managed. Such task is lengthy and 
generally not straightforward and leads tangible cost (time and 
money) increase in the order of at least 25% up to 1000% [1]. 
In CO-CPS this task is even more challenging as the system 
boundary (all the cooperating systems performing the safe 
function) and the environment are development [2]. Hence, 
SafeCOP aims to decrease cost and improve efficiency for 

crafting safety evidence for CO-CPS by developing safety 
assurance methods and tools combined with a runtime 
manager. SafeCOP seeks also global acceptance of these 
methodologies by contributing to the standardisation and 
regulation committees. 

The SafeCOP ECSEL project was presented in [3] where 
the concept for safety assurance of CO-CPS is detailed together 
with the runtime manager function. Also, five use cases (UC)s, 
which are to solve customers concrete problems, were also 
presented. These UCs are briefly explained here: 

• UC1: Cooperative moving of empty hospital beds. A 
two-robot autonomous bed mover would wheel 
smoothly through the densely occupied corridors of a 
hospital. The system will insure that the bed and the 
robots do not collide with the surrounding physical 
environment. Both the system failures and the system 
interactions with external emergencies are treated in 
the safety insurance case.    

• UC2: Cooperative bathymetry w/boat platoons. 
This project develops a proof-of concept system 
(method and tools) for semi-autonomous boats and 
other vehicles cooperating to conduct bathymetry 
measurements for a portion of a port.  

• UC3: Vehicle control loss warning. A Control Loss 
Warning system for a vehicle platoon is developed 
where the vehicles and road infrastructures are notified 
in case a vehicle in the platoon looses some 
functionality that affects the platoon. 

• UC4: Vehicles and roadside units interaction. The 
roadside weather (RSW) is a device that collects 
measurements parameters for weather and traffic. 
Generally, these parameters are sent to a road 
administrator that further sends them to TV and radio 
station. SafeCOP will add the feature of the RWS 
sending the information directly to the passing 
vehicles. Also, the vehicles will collect the same data 
parameters and deliver them to the RWS. The runtime 
manager will monitor sequential measurements and 
checks.  

The research leading to these results has been performed in the SafeCOP-
project, that received funding from the ECSEL Joint Undertaking under grant 
agreements n°692529, and from National funding. 



• UC5: Vehicle to Infrastructure cooperation for 
traffic management. In this use case the focus is laid 
on Intelligent Transport Systems (ITS) in order to 
improve the efficiency and safety of transportation.  

A. Contributions 
In this paper we present our initial results for the SafeCOP 

approach to continuous safety assurance using the notion of 
runtime manager. We detail the role of the runtime manager 
and identify which conditions it should monitor during 
runtime. Furthermore, we present how the data gathered by the 
runtime manager can be used for continuous safety assurance. 
We illustrate the continuous safety assurance with such runtime 
manager on the SafeCOP platooning use case. 

II. SAFECOP CONTINUOUS SAFETY ASSURANCE 
APPROACH 

In this section we first present the general SafeCOP safety 
assurance concept (Figure 1) and then we present the SafeCOP 
continuous safety assurance approach using runtime manager. 

A. SafeCOP Safety Assurance Concept 
Assumption/guarantee contracts facilitate compositional 

verification and allow for independent development of 
components. The distinction on the strong and weak contracts 
is introduced to support specification of globally accepted and 
context/situation specific behaviours. This is especially 
relevant for reusable components that exhibit different 
behaviours in different systems, and there are some behaviours 
that should be enforced in every system. The strong contracts 
would be used for such behaviours for all systems, while the 
weak ones would be specific to only systems that satisfy the 
weak assumptions [4]. As the contracts capture safety-relevant 
behaviours, they are used during system development for 
generating system-specific safety case arguments that can be 
represented using Goal Structuring Notation (GSN) [5]. Just as 
the systems nowadays are rarely built from scratch but from 
pre-developed components, development of the safety case 
follows the same pattern. Research on safety cases in [6] 
focused on developing modular certification approaches, where 
a modular safety certificate is given to an individual subsystem 
(module) and thereafter these certificates are manually 
composed into a system certificate. When preparing a safety 
case for a traditional safety-critical system by composing it 
from pre-developed parts, the first condition we come across is 
whether the safety evidence is relevant for the particular 
environment and can it be reused or not.  

Figure 1 shows two CPS systems whose behaviour is 
captured using assumption/guarantee contracts based on the 
allocated system and safety requirements. Each system has a 
cooperative subsystem responsible for forming a cooperative 
safety function. This cooperative system includes for example 
standardised cooperation protocol and runtime manager. As 
part of the traditional system safety case required by the 
standards, SafeCOP safety assurance concept includes a safety 
case module for the cooperative function. The static part of this 
module is decided during design time, but the dynamic safety 

case module is where the continuous safety assurance should 
take place. 

B. Continuous Safety Assurance Using Runtime Manager 
In open systems such as CO-CPS, it is not possible to fully 

assure a system before deployment, but due to the unknown 
environment, constant assurance is needed to maintain the 
confidence in the system. This means that the first condition in 
building a safety case is exhibited during design-time, when we 
compose the system from different components, and the second 
condition is during runtime, where the system comes in contact 
with unknown environments. The second condition in assuring 
the system relates to the runtime assurance claim whether the 
system is still sufficiently safe (whether the contracts are 
violated) in the current environment or not. We use the runtime 
manager to continuously assure the runtime assurance claim.  

We include the runtime manager in SafeCOP architecture 
to evaluate contracts during runtime to achieve the adaptability 
of both the system behaviour and the safety case. We use 
strong and weak contract paradigm to facilitate checking of the 
second condition when building the assurance case. Continuous 
runtime manager checking of contract violations generates 
diagnostic data. We use this data derive either supporting 
evidence in the completeness of the contracts or to provide 
counter examples in their completeness, which can be resolved 
through update of the system and the corresponding contracts 
that have been invalidated at runtime. 

The main role of the runtime manager for supporting 
runtime assurance is checking for contract violations. As 
contracts are specifications of behaviour of the system, then 
contract violations are the system failures. Since strong 
contracts must be satisfied always and by all environments, 
then their violation during runtime indicates that there was a 
failure in the environment, i.e., the behaviour guaranteed at 
design-time has been broken. On the other hand, if the strong 
contract assumptions are not violated, then the runtime 
manager should check if the system offers the promised 

 
Figure 1: SafeCOP Safety Assurance Concept 

 



guaranteed behaviour. If the guaranteed behaviour is not 
provided, then an internal failure exists. Pinpointing the cause 
of the broken guarantees can be done by looking at the 
violations of the weak contracts. A weak contract is violated if 
provided the assumptions; it fails to offer the guaranteed 
behaviour.   

The dual role of the runtime manager is on the one hand to 
report the failures of the real components compared to the 
modelled contract behaviour, and on the other hand to log all 
violations, and contribute to estimating the confidence in the 
specified contracts under the different environments the open 
system is exposed to.   

III. PLATOONING UC 
The UCs outlined in Section I come form specific customer 

requirements and aims to solve the problems encountered by 
these customers. The UC6 combines the experience and tools 
gained from the previous UCs to develop a cooperative safe 
critical communication and control system for platooning 
applications.  

A. Relation to Other SafeCOP Demonstrators 
We consider a CO-CPS composed of two or more systems 

that have to cooperate to perform a safety function. The 
cooperation relies on the wireless communication to reach a 
common goal. The cooperative safety function considered is 
that the systems move in a platoon and that they stop if one of 
the safety requirements is violated, e.g., the systems get too 
close to an obstacle or the wireless link brakes down.  We 
consider two fall-back functions: the first function is a 
SafeCOP function, where the runtime manager detects a safety 
requirements violation and stops all the cooperating systems, 
and a more interesting and potentially useful fall-back function 
consisting of a safe park, where the CO-CPS systems, once a 
particular safety violation is detected, would independently go 
to a specified parking location, while keeping a safe distance 
from each other. The communication is based on 802.11p and 
the use case requires high integrity from the wireless 
communication. 

Positive and negative experiences gained from integrating 
SafeCOP in the respective UCs' demonstrators are fed back 
into the technical work packages (WP)s to aid the iterative 
development of the SafeCOP system. This information will be 
used to evaluate the ease of integration of SafeCOP into the 
various types of systems used in our demonstrators. 
Conclusions drawn from this will be used to improve the 
integration-friendliness of SafeCOP components, with the goal 
of improving adoption of the SafeCOP system. 

B. Platoon functionality architecture 
Platooning functionality allows vehicles to cooperate by 

communicating with each other while in the platoon mode. The 
safety-criticality of these systems cannot be constrained to only 
a single vehicle, as each vehicle in the platoon depends on 
other vehicles. Hence, for a single vehicle to be sufficiently 
safe, the behaviour of the platoon as a multi-vehicle 
functionality should be sufficiently safe as well. In this UC we 

focus on the specific type of platooning intended for trucks. 
The advantage of being in the platoon is that the trucks would 
drive with an optimal distance between each other, which 
significantly improve the platoon fuel efficiency [7]. The 
information about the speed, position and acceleration of the 
nearby vehicles is faster and more accurate to receive directly 
from those vehicles than to use local sensors to identify the 
information. Hence, by using the remote data, platooning 
allows for closer gap between the vehicles. 

Figure 2 illustrates the software architecture model of 
platoonManager in a single vehicle. It takes as inputs 
remoteData received from the nearby vehicles, 
sensorDataOwn received from the local sensors with its own 
information, and sensorDataOther received from the local 
sensors about the nearby vehicles. The ownData is transmitted 
to other vehicles, while the accelerationCMD instructs the 
corresponding actuators to increase or lower the vehicles 
acceleration. Each non-lead vehicle is equipped with a similar 
platoonManager. 

The platoonManager system controls the motion of the 
vehicle based on the inter vehicle distance from the leader and 
the proceeding vehicle. The commManager is the software 
component in charge of collecting and sharing the motion 
information with other platoon members. The information from 
the other vehicles is received by the commManager, and 
together with the local sensor data, is forwarded to the 
rajectoryModeller component that calculates the current gap 
from the lead and proceeding vehicle as well as their estimated 
data, and forwards this information to longitudinalControl 
component. The longitudinalControl then decides the 
appropriate (de)acceleration command to keep the desired gap. 

C. Safety Analyses and Contract Derivation 
The failure logic analysis of the platoonManager system 

shows that when the information from the other vehicles is late, 
then subtle value failures are exhibited on the acceleration 
command output. If the information from other vehicles is 
completely lost, then greater coarse value failures are 
exhibited. To define what late and what omission means for 
our platoon, we consider a fixed messages scheduling policy 
form each vehicle. A soft deadline can be 50ms for each 
vehicle to provide data and hard deadline would be 100ms. We 
refer to missing a soft deadline as late failure and missing a 
hard deadline as omission failure. A runtime contract in such 
scenario may say, assuming there is no more than 2 omissions 
within 1 second, the system guarantees that it can maintain a 
safe distance at 5 meters. Safe distance may mean that if the 
front vehicle starts full braking when it dropped two messages 
that the following vehicle can after third message still safely 
stop without causing an accident. Such contract is inherently 
incomplete as it depends on the accuracy of the information 
received, different physical properties of the unknown vehicle, 
the weather conditions, road conditions etc. While the contract 
can be tested under many conditions, it cannot be tested under 
all possible conditions as new collaborating vehicles may be 
coming to market all the time. To maintain the safety assurance 
of such systems, we need to constantly check for validity of the 



contracts against the different environments and evaluate the 
confidence in the contracts in the assurance case. 

Based on the safety analysis, we specify a subset of the 
system contracts (Table 1). The strong contract requires the 
environment to provide information about speed, position and 
acceleration of the remote vehicle, as well as that every vehicle 
in the platoon must have maximum deceleration force between 
5 and 8 m/s2. This assumptions is required if the system is to 
avoid collision when a vehicle in front would to brake with full 
force. Since the time to stop in such case depends also on the 
freshness of the information received from other vehicles, then 
in the subsequent weak contracts we describe how the quality 
of the communication and local sensors affects the system 
performance. The distance to the proceeding vehicle is being 
adjusted accordingly, and when the remoteData link is 
unstable, then the vehicle switches to the Automated Cruise 
Control (ACC) mode that uses local sensor data instead of the 
data received from the other vehicles. 

The argument-fragment in Figure 3 assures confidence in the 
contract <B1,H1> following the contract assurance pattern [4]. 
We extend the pattern by introducing the runtime manager 
assurance decomposing the contract completeness claim. For 
each of the different platoon contexts the runtime manager 
evaluates the completeness of the contract and feeds the results 
to the assurance argument where the contract completeness is 
either supported in the given context, or the goal serves as the 
counter evidence in contract completeness. Using colouring 

schemes such counter evidence or supports can be highlighted 
in the argument [8]. For example, the counter evidence can be 
highlighted with red indicating that contract is not sufficiently 
complete to be used in the given context, while green would be 
used to indicate support in its completeness in the given 
context. 

Table 1: A subset of the platoonManager contracts 

A1: remoteData contains (speed, position, acceleration) of 
the remote vehicle AND minAcceleration within [-8 
m/s2; -5 m/s2]; 

G1: accelerationCMD ≥ -8m/s2; 
B1: remoteData not late or omitted more than 3 times in 

1sec; 
H1: platoonManager maintains the gap to the proceeding 

vehicle of minimum 5m; 
B2: remoteData late or omitted between 3-6 times in 1sec; 
H2: platoonManager maintains the gap to the proceeding 

vehicle of minimum 10m; 
B3: remoteData late or omitted more than 6 times in 1sec 

AND sensorDataOwn not late or omitted more than 3 
times in 1sec; 

H3: platoonManager degrades to ACC mode and maintains 
the gap to the proceeding vehicle of minimum 20m; 

B4: ACC mode active AND sensorDataOwn late or omitted 
more than 3 times in 1sec; 

H4: platoonManager degrades to CC mode and maintains 
the gap to the proceeding vehicle of minimum 30m; 

 
Figure 2: The platoon functionality architecture within a single (non-lead) vehicle 



IV. CONCLUSIONS 
In this paper we have presented our initial SafeCOP results 

related to the role of the runtime manager in safety assurance of 
the truck platooning use case. To utilise the runtime manager 
we first need to specify contracts based on the safety analysis 
of both the local system as well as the overall cooperative 
safety function. Such contracts are first checked during design-
time to establish and argue their validity. Since the context 
under which we check the contract changes in the cooperating 
cyber-physical systems such as truck platoons, we need to 
continuously check whether the contracts are violated and 
instruct the system how to behave in case of violations. The 
runtime manager plays the role of an advanced diagnostics 
component by checking whether the verified model described 
with contracts is in line with the actual system and its current 
environment. Violations of the contracts or reaching a situation 
not covered by the contracts should be adequately handled in 
the system design. We use the output from the runtime 
manager in the safety case to continuously evaluate the 
confidence in contracts. 

In SafeCOP, we will not only incorporate the individual 
demonstrator evaluations but also we plan to perform a 
combined results analysis, which forms the final evaluation of 
SafeCOP. Some of the demonstrators e.g. the traffic 
management demonstrator will be evaluated in the same way 
with the SafeCOP solution a) included and b) absent. The 
differences in the results of these evaluations will give the 
direct evidence as to the value of SafeCOP in that particular 
instantiation. Furthermore, the hospital bed demonstrator 
develops two rather different perception systems in parallel, 

both of which provide information about the presence of 
people and obstacles in the area of interest. Comparisons 
between them can provide evidence that the SafeCOP safety 
element is relatively independent of the exact implementation 
of the perception system that is providing the information to 
the runtime manager. Other comparisons between individual 
demonstrator results will provide insight both into the actual 
functioning of the SafeCOP components and into the areas 
where improvements need to be made. 
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Figure 3: An argument-fragment assuring confidence in the contract <B1, H1> represented in GSN 

 


