
Cooperative Safety Critical CPS Platooning in
SafeCOP

Samer Medawar, Detlef Scholle
Embeded Systems

Alten AB
Kista, Sweden

{samer.medawar,detlef.scholle}@alten.se

Irfan Šljivo
School of Innovation, Design, and Engineering

Mälardalen University
Västerås, Sweden

irfan.sljivo@mdh.se

Abstract— This paper presents the platooning research within the
Safe Cooperating Cyber-Physical Systems using Wireless
Communication (SafeCOP) project. Cooperating Cyber-Physical
Systems (CO-CPS) using wireless communication and having
multiple stakeholders, dynamic system definitions (openness),
and unpredictable operating environments, are the main
application of SafeCOP. In addition to safety assurance methods
and tools, SafeCOP devises a runtime manager architecture that
detects irregular operation, hence, prompting a safe degraded
mode in case of need.

SafeCOP lays a safety and security umbrella over the usage of
current wireless technologies, contributes to new standards and
regulations by providing scientifically validated solutions to
establish standards which also addresses cooperation and system-
of-systems issues. SafeCOP addresses several use cases that solve
customer related problems. However, in this paper we will
present a use case that extract generic principles from the
combination of the previous use cases to stimulate the European
collaboration around the project objectives, and to collect general
requirements for the SafeCOP solution, applicable across all the
areas considered. We consider a CO-CPS composed of two or
more systems moving in a platoon while cooperating in a safe
function.

Keywords-component; cyber-physical systems; systems-of-
systems; safety-assurance; wireless communication; platooning

I. INTRODUCTION
SafeCOP targets safety-critical systems that are required to

provide a “safety case” – a well-documented body of evidence
in form of a clear argument assuring that the system is
acceptably safe. Building the safety case requires gathering the
safety evidence during system development to ensure not only
that identified failures have been addressed, but also that any
unwanted interactions between the system parts as well as the
environment have been managed. Such task is lengthy and
generally not straightforward and leads tangible cost (time and
money) increase in the order of at least 25% up to 1000% [1].
In CO-CPS this task is even more challenging as the system
boundary (all the cooperating systems performing the safe
function) and the environment are development [2]. Hence,
SafeCOP aims to decrease cost and improve efficiency for

crafting safety evidence for CO-CPS by developing safety
assurance methods and tools combined with a runtime
manager. SafeCOP seeks also global acceptance of these
methodologies by contributing to the standardisation and
regulation committees.

The SafeCOP ECSEL project was presented in [3] where
the concept for safety assurance of CO-CPS is detailed together
with the runtime manager function. Also, five use cases (UC)s,
which are to solve customers concrete problems, were also
presented. These UCs are briefly explained here:

• UC1: Cooperative moving of empty hospital beds. A
two-robot autonomous bed mover would wheel
smoothly through the densely occupied corridors of a
hospital. The system will insure that the bed and the
robots do not collide with the surrounding physical
environment. Both the system failures and the system
interactions with external emergencies are treated in
the safety insurance case.

• UC2: Cooperative bathymetry w/boat platoons.
This project develops a proof-of concept system
(method and tools) for semi-autonomous boats and
other vehicles cooperating to conduct bathymetry
measurements for a portion of a port.

• UC3: Vehicle control loss warning. A Control Loss
Warning system for a vehicle platoon is developed
where the vehicles and road infrastructures are notified
in case a vehicle in the platoon looses some
functionality that affects the platoon.

• UC4: Vehicles and roadside units interaction. The
roadside weather (RSW) is a device that collects
measurements parameters for weather and traffic.
Generally, these parameters are sent to a road
administrator that further sends them to TV and radio
station. SafeCOP will add the feature of the RWS
sending the information directly to the passing
vehicles. Also, the vehicles will collect the same data
parameters and deliver them to the RWS. The runtime
manager will monitor sequential measurements and
checks.

The research leading to these results has been performed in the SafeCOP-
project, that received funding from the ECSEL Joint Undertaking under grant
agreements n°692529, and from National funding.

• UC5: Vehicle to Infrastructure cooperation for
traffic management. In this use case the focus is laid
on Intelligent Transport Systems (ITS) in order to
improve the efficiency and safety of transportation.

A. Contributions
In this paper we present our initial results for the SafeCOP

approach to continuous safety assurance using the notion of
runtime manager. We detail the role of the runtime manager
and identify which conditions it should monitor during
runtime. Furthermore, we present how the data gathered by the
runtime manager can be used for continuous safety assurance.
We illustrate the continuous safety assurance with such runtime
manager on the SafeCOP platooning use case.

II. SAFECOP CONTINUOUS SAFETY ASSURANCE
APPROACH

In this section we first present the general SafeCOP safety
assurance concept (Figure 1) and then we present the SafeCOP
continuous safety assurance approach using runtime manager.

A. SafeCOP Safety Assurance Concept
Assumption/guarantee contracts facilitate compositional

verification and allow for independent development of
components. The distinction on the strong and weak contracts
is introduced to support specification of globally accepted and
context/situation specific behaviours. This is especially
relevant for reusable components that exhibit different
behaviours in different systems, and there are some behaviours
that should be enforced in every system. The strong contracts
would be used for such behaviours for all systems, while the
weak ones would be specific to only systems that satisfy the
weak assumptions [4]. As the contracts capture safety-relevant
behaviours, they are used during system development for
generating system-specific safety case arguments that can be
represented using Goal Structuring Notation (GSN) [5]. Just as
the systems nowadays are rarely built from scratch but from
pre-developed components, development of the safety case
follows the same pattern. Research on safety cases in [6]
focused on developing modular certification approaches, where
a modular safety certificate is given to an individual subsystem
(module) and thereafter these certificates are manually
composed into a system certificate. When preparing a safety
case for a traditional safety-critical system by composing it
from pre-developed parts, the first condition we come across is
whether the safety evidence is relevant for the particular
environment and can it be reused or not.

Figure 1 shows two CPS systems whose behaviour is
captured using assumption/guarantee contracts based on the
allocated system and safety requirements. Each system has a
cooperative subsystem responsible for forming a cooperative
safety function. This cooperative system includes for example
standardised cooperation protocol and runtime manager. As
part of the traditional system safety case required by the
standards, SafeCOP safety assurance concept includes a safety
case module for the cooperative function. The static part of this
module is decided during design time, but the dynamic safety

case module is where the continuous safety assurance should
take place.

B. Continuous Safety Assurance Using Runtime Manager
In open systems such as CO-CPS, it is not possible to fully

assure a system before deployment, but due to the unknown
environment, constant assurance is needed to maintain the
confidence in the system. This means that the first condition in
building a safety case is exhibited during design-time, when we
compose the system from different components, and the second
condition is during runtime, where the system comes in contact
with unknown environments. The second condition in assuring
the system relates to the runtime assurance claim whether the
system is still sufficiently safe (whether the contracts are
violated) in the current environment or not. We use the runtime
manager to continuously assure the runtime assurance claim.

We include the runtime manager in SafeCOP architecture
to evaluate contracts during runtime to achieve the adaptability
of both the system behaviour and the safety case. We use
strong and weak contract paradigm to facilitate checking of the
second condition when building the assurance case. Continuous
runtime manager checking of contract violations generates
diagnostic data. We use this data derive either supporting
evidence in the completeness of the contracts or to provide
counter examples in their completeness, which can be resolved
through update of the system and the corresponding contracts
that have been invalidated at runtime.

The main role of the runtime manager for supporting
runtime assurance is checking for contract violations. As
contracts are specifications of behaviour of the system, then
contract violations are the system failures. Since strong
contracts must be satisfied always and by all environments,
then their violation during runtime indicates that there was a
failure in the environment, i.e., the behaviour guaranteed at
design-time has been broken. On the other hand, if the strong
contract assumptions are not violated, then the runtime
manager should check if the system offers the promised

Figure 1: SafeCOP Safety Assurance Concept

guaranteed behaviour. If the guaranteed behaviour is not
provided, then an internal failure exists. Pinpointing the cause
of the broken guarantees can be done by looking at the
violations of the weak contracts. A weak contract is violated if
provided the assumptions; it fails to offer the guaranteed
behaviour.

The dual role of the runtime manager is on the one hand to
report the failures of the real components compared to the
modelled contract behaviour, and on the other hand to log all
violations, and contribute to estimating the confidence in the
specified contracts under the different environments the open
system is exposed to.

III. PLATOONING UC
The UCs outlined in Section I come form specific customer

requirements and aims to solve the problems encountered by
these customers. The UC6 combines the experience and tools
gained from the previous UCs to develop a cooperative safe
critical communication and control system for platooning
applications.

A. Relation to Other SafeCOP Demonstrators
We consider a CO-CPS composed of two or more systems

that have to cooperate to perform a safety function. The
cooperation relies on the wireless communication to reach a
common goal. The cooperative safety function considered is
that the systems move in a platoon and that they stop if one of
the safety requirements is violated, e.g., the systems get too
close to an obstacle or the wireless link brakes down. We
consider two fall-back functions: the first function is a
SafeCOP function, where the runtime manager detects a safety
requirements violation and stops all the cooperating systems,
and a more interesting and potentially useful fall-back function
consisting of a safe park, where the CO-CPS systems, once a
particular safety violation is detected, would independently go
to a specified parking location, while keeping a safe distance
from each other. The communication is based on 802.11p and
the use case requires high integrity from the wireless
communication.

Positive and negative experiences gained from integrating
SafeCOP in the respective UCs' demonstrators are fed back
into the technical work packages (WP)s to aid the iterative
development of the SafeCOP system. This information will be
used to evaluate the ease of integration of SafeCOP into the
various types of systems used in our demonstrators.
Conclusions drawn from this will be used to improve the
integration-friendliness of SafeCOP components, with the goal
of improving adoption of the SafeCOP system.

B. Platoon functionality architecture
Platooning functionality allows vehicles to cooperate by

communicating with each other while in the platoon mode. The
safety-criticality of these systems cannot be constrained to only
a single vehicle, as each vehicle in the platoon depends on
other vehicles. Hence, for a single vehicle to be sufficiently
safe, the behaviour of the platoon as a multi-vehicle
functionality should be sufficiently safe as well. In this UC we

focus on the specific type of platooning intended for trucks.
The advantage of being in the platoon is that the trucks would
drive with an optimal distance between each other, which
significantly improve the platoon fuel efficiency [7]. The
information about the speed, position and acceleration of the
nearby vehicles is faster and more accurate to receive directly
from those vehicles than to use local sensors to identify the
information. Hence, by using the remote data, platooning
allows for closer gap between the vehicles.

Figure 2 illustrates the software architecture model of
platoonManager in a single vehicle. It takes as inputs
remoteData received from the nearby vehicles,
sensorDataOwn received from the local sensors with its own
information, and sensorDataOther received from the local
sensors about the nearby vehicles. The ownData is transmitted
to other vehicles, while the accelerationCMD instructs the
corresponding actuators to increase or lower the vehicles
acceleration. Each non-lead vehicle is equipped with a similar
platoonManager.

The platoonManager system controls the motion of the
vehicle based on the inter vehicle distance from the leader and
the proceeding vehicle. The commManager is the software
component in charge of collecting and sharing the motion
information with other platoon members. The information from
the other vehicles is received by the commManager, and
together with the local sensor data, is forwarded to the
rajectoryModeller component that calculates the current gap
from the lead and proceeding vehicle as well as their estimated
data, and forwards this information to longitudinalControl
component. The longitudinalControl then decides the
appropriate (de)acceleration command to keep the desired gap.

C. Safety Analyses and Contract Derivation
The failure logic analysis of the platoonManager system

shows that when the information from the other vehicles is late,
then subtle value failures are exhibited on the acceleration
command output. If the information from other vehicles is
completely lost, then greater coarse value failures are
exhibited. To define what late and what omission means for
our platoon, we consider a fixed messages scheduling policy
form each vehicle. A soft deadline can be 50ms for each
vehicle to provide data and hard deadline would be 100ms. We
refer to missing a soft deadline as late failure and missing a
hard deadline as omission failure. A runtime contract in such
scenario may say, assuming there is no more than 2 omissions
within 1 second, the system guarantees that it can maintain a
safe distance at 5 meters. Safe distance may mean that if the
front vehicle starts full braking when it dropped two messages
that the following vehicle can after third message still safely
stop without causing an accident. Such contract is inherently
incomplete as it depends on the accuracy of the information
received, different physical properties of the unknown vehicle,
the weather conditions, road conditions etc. While the contract
can be tested under many conditions, it cannot be tested under
all possible conditions as new collaborating vehicles may be
coming to market all the time. To maintain the safety assurance
of such systems, we need to constantly check for validity of the

contracts against the different environments and evaluate the
confidence in the contracts in the assurance case.

Based on the safety analysis, we specify a subset of the
system contracts (Table 1). The strong contract requires the
environment to provide information about speed, position and
acceleration of the remote vehicle, as well as that every vehicle
in the platoon must have maximum deceleration force between
5 and 8 m/s2. This assumptions is required if the system is to
avoid collision when a vehicle in front would to brake with full
force. Since the time to stop in such case depends also on the
freshness of the information received from other vehicles, then
in the subsequent weak contracts we describe how the quality
of the communication and local sensors affects the system
performance. The distance to the proceeding vehicle is being
adjusted accordingly, and when the remoteData link is
unstable, then the vehicle switches to the Automated Cruise
Control (ACC) mode that uses local sensor data instead of the
data received from the other vehicles.

The argument-fragment in Figure 3 assures confidence in the
contract <B1,H1> following the contract assurance pattern [4].
We extend the pattern by introducing the runtime manager
assurance decomposing the contract completeness claim. For
each of the different platoon contexts the runtime manager
evaluates the completeness of the contract and feeds the results
to the assurance argument where the contract completeness is
either supported in the given context, or the goal serves as the
counter evidence in contract completeness. Using colouring

schemes such counter evidence or supports can be highlighted
in the argument [8]. For example, the counter evidence can be
highlighted with red indicating that contract is not sufficiently
complete to be used in the given context, while green would be
used to indicate support in its completeness in the given
context.

Table 1: A subset of the platoonManager contracts

A1: remoteData contains (speed, position, acceleration) of
the remote vehicle AND minAcceleration within [-8
m/s2; -5 m/s2];

G1: accelerationCMD ≥ -8m/s2;
B1: remoteData not late or omitted more than 3 times in

1sec;
H1: platoonManager maintains the gap to the proceeding

vehicle of minimum 5m;
B2: remoteData late or omitted between 3-6 times in 1sec;
H2: platoonManager maintains the gap to the proceeding

vehicle of minimum 10m;
B3: remoteData late or omitted more than 6 times in 1sec

AND sensorDataOwn not late or omitted more than 3
times in 1sec;

H3: platoonManager degrades to ACC mode and maintains
the gap to the proceeding vehicle of minimum 20m;

B4: ACC mode active AND sensorDataOwn late or omitted
more than 3 times in 1sec;

H4: platoonManager degrades to CC mode and maintains
the gap to the proceeding vehicle of minimum 30m;

Figure 2: The platoon functionality architecture within a single (non-lead) vehicle

IV. CONCLUSIONS
In this paper we have presented our initial SafeCOP results

related to the role of the runtime manager in safety assurance of
the truck platooning use case. To utilise the runtime manager
we first need to specify contracts based on the safety analysis
of both the local system as well as the overall cooperative
safety function. Such contracts are first checked during design-
time to establish and argue their validity. Since the context
under which we check the contract changes in the cooperating
cyber-physical systems such as truck platoons, we need to
continuously check whether the contracts are violated and
instruct the system how to behave in case of violations. The
runtime manager plays the role of an advanced diagnostics
component by checking whether the verified model described
with contracts is in line with the actual system and its current
environment. Violations of the contracts or reaching a situation
not covered by the contracts should be adequately handled in
the system design. We use the output from the runtime
manager in the safety case to continuously evaluate the
confidence in contracts.

In SafeCOP, we will not only incorporate the individual
demonstrator evaluations but also we plan to perform a
combined results analysis, which forms the final evaluation of
SafeCOP. Some of the demonstrators e.g. the traffic
management demonstrator will be evaluated in the same way
with the SafeCOP solution a) included and b) absent. The
differences in the results of these evaluations will give the
direct evidence as to the value of SafeCOP in that particular
instantiation. Furthermore, the hospital bed demonstrator
develops two rather different perception systems in parallel,

both of which provide information about the presence of
people and obstacles in the area of interest. Comparisons
between them can provide evidence that the SafeCOP safety
element is relatively independent of the exact implementation
of the perception system that is providing the information to
the runtime manager. Other comparisons between individual
demonstrator results will provide insight both into the actual
functioning of the SafeCOP components and into the areas
where improvements need to be made.

REFERENCES
[1] K. Nilsen, “Certification requirements for safety-critical software”, RTC

Magazine, 2004.
[2] D. Schneider and M. Trapp. “Conditional safety certification of open

adaptive systems”, TAAS, 8(2):8:1–8:20, 2013.
[3] P. Pop, D. Scholle, H. Hansson, G. Widforss, and M. Rosqvist, “The

SafeCOP ECSEL project: Safe cooperating cyber-physical systems
using wireless communication”, In 2016 Euromicro Conference on
Digital System Design (DSD), pages 532–538, Aug 2016.

[4] I. Sljivo, B. Gallina, J. Carlson and H. Hansson, “Generation of Safety
Case Argument-Fragments from Safety Contracts”, In 33rd International
Conference on Computer Safety, Reliability, and Security, vol. 8666 of
LNCS, pages 170–185. Springer, September 2014.

[5] GSN Community Standard Version 1. Origin Consulting (York)
Limited, 2011.

[6] John Rushby and Paul S. Miner. “Modular Certification”, Technical
report, NASA Langley Research Center, US, 2002.

[7] A. Davila, “Report on fuel consumption, revision 13.0”, SARTRE,
Deliverable 4.3, January 2013.

[8] E. Denney, G. Pai and J. Pohl, “AdvoCATE: An Assurance Case
Automation Toolset”, in SafeComp Workshops, Vol. 7613 of LNCS,
pages 8–21, Springer. September 2012.

Figure 3: An argument-fragment assuring confidence in the contract <B1, H1> represented in GSN

