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Abstract—Testing is an important activity in engineering of in-
dustrial software. For such software, testing is usually performed
manually by handcrafting test suites based on specific design
techniques and domain-specific experience. To support developers
in testing, different approaches for producing good test suites
have been proposed. In the last couple of years combinatorial
testing has been explored with the goal of automatically combin-
ing the input values of the software based on a certain strategy.
Pairwise testing is a combinatorial technique used to generate test
suites by varying the values of each pair of input parameters to
a system until all possible combinations of those parameters are
created. There is some evidence suggesting that these kinds of
techniques are efficient and relatively good at detecting software
faults. Unfortunately, there is little experimental evidence on the
comparison of these combinatorial testing techniques with, what
is perceived as, rigorous manually handcrafted testing. In this
study we compare pairwise test suites with test suites created
manually by engineers for 45 industrial programs. The test suites
were evaluated in terms of fault detection, code coverage and
number of tests. The results of this study show that pairwise
testing, while useful for achieving high code coverage and fault
detection for the majority of the programs, is almost as effective
in terms of fault detection as manual testing. The results also
suggest that pairwise testing is just as good as manual testing at
fault detection for 64% of the programs.

Index Terms—combinatorial testing, manual testing, industrial
control software, fault detection, code coverage, PLC.

I. INTRODUCTION

Software testing [1] is an important activity used for ver-
ification and validation by observing the software, executed
using a set of test inputs. In practice, engineers are creating
these inputs based on different test goals and test design
techniques (e.g., specification-based, random, combinatorial,
code coverage-based). These techniques have so far been
performed manually or semi-automatically with respect to dis-
tinct software development activities (i.e, unit and integration
testing). With the emerging use of large complex software
products, the traditional way of testing software has changed;
engineers need to deliver high-quality software while devoting
less time for properly testing the software.

In practice, test suites are still created manually by
handcrafting them using specific test design techniques and
domain-specific experience. Although the automatic or semi-
automatic creation of test suites has been the focus of a great
deal of research, manual testing is still widely used [2], [3] in
the software development industry. However, over the past few
decades, several test design techniques [1] have been proposed

for the creation of test suites with less effort. Combinatorial
testing [4] is a technique that creates test inputs based on
combinations among the input values. Pairwise testing is an
approach to combinatorial testing that generates a test suite
which covers each combination of value pairs at least once.
There is some evidence [5], [6] suggesting that pairwise
testing is efficient and effective at detecting software faults.
However, even if pairwise techniques have been found useful
and applicable in industrial applications, the experimental
evidence regarding its effectiveness in practice is still limited.

In this paper we compare pairwise testing and manual test-
ing performed by industrial engineers on industrial software
created using the IEC 61131-3 programming language [7]
that runs on Programmable Logic Controllers (PLCs). The
paper makes the following contributions:

• Empirical evidence showing that pairwise testing achieves
marginally lower levels of code coverage while in the
same time using more tests cases on average than manual
testing performed by industrial engineers.

• Results showing that manual testing is not significantly
better at finding faults than pairwise testing. Our paper
suggests that pairwise testing is just as good in fault
detection as manual testing for 64% of the programs
considered.

• A discussion of the implications of these results for test
engineers and researchers.

II. BACKGROUND

This paper describes a case study evaluating pairwise testing
when used on PLC industrial programs implemented in the
IEC 61131-3 FBD language. In this section, we provide a
background on PLC industrial software and pairwise testing.
According to Ammann and Offutt [1], a test case is a set of
inputs, expected outputs and actual outputs executed on the
specified program. A test suite is a set of ordered test cases.
Throughout the paper, we will use the terms test case and test
suite in this way.

A. Programmable Logic Controllers

A Programmable Logic Controller (PLC) is a computer sys-
tem containing a processor, a memory, and a communication
bus. PLCs [8] have a programmable memory for storing the
software used for expressing logical behaviour, timing and
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Fig. 1. A PLC program with seven inputs and three outputs written using
the FBD IEC 61131-3 programming language.

input/output control, networking and data processing. Safety-
critical industrial systems implemented using PLCs are used in
many applications [9] such as transportation, robotics, nuclear
and pharmaceutical. Software running on a PLC execute
in a loop called scan cycle, in which the iteration follows
the “read-execute-write” semantics. The PLC reads the input
signals, computes the logical behaviour without interruption
and updates its output signals [10].

Programming a PLC differs from general-purpose comput-
ers; the PLC software follows a standardized programming
paradigm: the IEC (International Electronical Commission)
61131-3 standard [7]. IEC 61131-3 is a popular programming
language standard for PLCs used in industrial practice. As
shown in Figure 1, computational blocks in an IEC 61131-
3 program can be represented in a Function Block Diagram
(FBD). This program contains predefined logical and/or state-
ful blocks (i.e., OR, RS, TOF, GE, AND and TON in Figure 1)
and signals (i.e., connections) between blocks representing the
whole behavior of an FBD program. PLC software contains a
particular type of blocks named timers that are used to activate
or deactivate an output signal after a specific time interval [8].
A timer block (e.g., TON and TOF in Figure 1) keeps track of
the number of times its input is either true or false and outputs
different signals. The IEC 61131-3 standard contains four
other programming languages: Instruction List (IL), Structured
Text (ST), Ladder Diagram (LD) and Sequential Function
Chart (SFC) [11]. For more details on PLC programming and
FBDs we refer the reader to the work of John et al. [12].

B. Pairwise Testing

The process of test generation is that of finding suitable
test inputs using a certain test goal that guides the search in
an algorithmic way [1]. Many algorithms and techniques [13]
for test generation have been proposed. One such technique
is combinatorial testing which is used to reveal faults caused
by interactions between input parameters inside a software
program. Such techniques design test cases by combining
different input parameters based on a combinatorial strat-
egy. Grindal et al. [14] surveyed several strategies used for

combinatorial testing (e.g., each-used, pair-wise, t-wise, base
choice). One of the most commonly used strategy is pairwise
(also known as two-way) testing in which each combination
for all possible pairs of input parameters are covered by at
least one test case. Several empirical studies [5], [6], [14],
[15] on the use of combinatorial testing for industrial software
have been reported and showed that pairwise testing is a very
effective technique. In this paper we seek to investigate the use
of pairwise testing for industrial control software and compare
this technique with manual testing performed by industrial
engineers.

III. RELATED WORK

Most studies concerning pairwise testing and related to the
work included in this paper have focused on how to generate
tests as quickly as possible, measure the code coverage score
and/or compare with other combinatorial criteria [14] or with
random tests [16], [17]. For example, Cohen et al. [4] found
that pairwise generated test suites can achieve 90% block code
coverage. These test suites where generated by the AETG tool.
The same tool was used by Burr and Young [18] in a different
study. In this paper, pairwise testing achieved 93% block
coverage on average. In addition, Vilkomir and Anderson [19]
showed that pairwise test suites could achieve 77% MC/DC
code coverage.

Other studies [20]–[22] have reported the use of pairwise
testing on real systems and how it can help in the detection
of additional bugs when compared to standard test techniques.
On the other hand, a few other studies compared manual with
pairwise testing [23], [24] and the results suggest that pairwise
testing is not able to detect more faults than manually created
tests. These results encouraged our interest in investigating on
a larger case study how manual testing performed by industrial
engineers compares to pairwise testing for industrial software
systems. Is there any compelling evidence on how pairwise
test suites compare with rigorously handcrafted test suites in
terms of test effectiveness?

IV. METHOD

The goal of this paper is to study the comparison between
manual test suites created by industrial engineers and automat-
ically generated test suites using a generation tool for pairwise
testing in terms of efficiency and effectiveness of testing.
To achieve this goal, we designed a case study (mirrored in
Figure 2) using industrial software programs from an already
developed train control management system to answer the
following research questions:

• RQ1: Are pairwise generated test suites able to cover
more code than test suites manually created by industrial
engineers?

• RQ2: Are pairwise generated test suites able to detect
more faults than test suites manually created by industrial
engineers?

• RQ3: Is the size of pairwise generated test suites smaller
than those manually created by industrial engineers?
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Fig. 2. Overview of the experimental method used to perform the case study. For each program in the Train Control Management System (TCMS), test suites
are created manually by industrial engineers, generated by SEAFOX for pairwise testing, and executed on both the original and the mutated programs in order
to collect scores for code coverage, mutation and number of tests.

For each selected program, we executed the test suites
produced by both manual testing and pairwise testing and
collected the following measures: branch coverage in terms
of achieved code coverage, the number of generated test cases
and the mutation score as a proxy for fault detection. In order
to calculate the mutation score, each test suite was executed
on the mutated versions of the original program to determine
whether it detects the injected fault. This section describes the
design of our case study, including the subject programs, the
evaluation metrics and the test generation and selection.

A. Subject Programs

Our case study uses an industrial safety-critical system
developed by Bombardier Transportation Sweden AB, a large-
scale company developing and manufacturing railway equip-
ment. The system is a train control management software
(TCMS) that has been in development for several years and
is tested according to safety standards and regulations. TCMS
is a control system containing both software and hardware
components in charge of the safety-related functionality of the
train and is used by Bombardier Transportation Sweden AB
for the control and communication functions in high speed
trains. These functions are developed as software programs for
PLCs using the Function Block Diagram (FBD) IEC 61131-3
graphical programming language [7]. Programs in TCMS are
developed in a graphical development environment, compiled
into PLC code and saved in standardized PLCOpen XML 1

containing structural and behavioural declarations.
We selected the subject programs for our case study by

investigating the TCMS programs provided by Bombardier
Transportation Sweden AB. We identified 53 programs and
excluded eight programs due to the following reasons: one
program contained only one input parameter, for another pro-
gram the test generation got a memory exception, while for the
six remaining programs the test execution failed due to wrong
parameter ranges that resulted in an execution exception. Our
final set of subjects contains 45 programs. These programs
contain nine input parameters and 1076 Lines of XML Source

1http://www.plcopen.org/

Code (LOC) on average per program. The studied programs
were already thoroughly manually tested and are currently
used in an operational train.

B. Test Case Creation

We used manual test suites created by industrial engineers
working at Bombardier Transportation Sweden AB. These
manual test suites were obtained by using a post-mortem anal-
ysis of the data provided. In testing these programs, engineers
perform testing according to specific safety standards and
regulations. Specification-based testing is used by engineers to
manually create test suites as this is mandated by the EN50128
standard [25]. The test suites collected in this study were based
on functional requirement specifications written in a natural
language.

In addition, we generate pairwise test suites using
SEAFOX [26]. SEAFOX is the only available combinatorial
test suite generation tool for IEC 61131-3 control soft-
ware. SEAFOX is open source software and is available at
https://github.com/CharByte/SEAFOX 2.

SEAFOX supports the generation of test suites using pair-
wise, base choice and random strategies. For pairwise gen-
eration, SEAFOX uses the IPOG algorithm as well as a first
pick tie breaker [28]. SEAFOX was used in this study as it
supports as input a standard PLCOpen XML implementation
of the programs. A developer using SEAFOX can automatically
generate test suites needed for a given IEC 61131-3 program
after manually providing the input parameter range informa-
tion based on the defined behaviour written in the specification.

In order to collect realistic data, we asked one test engineer
from Bombardier Transportation, responsible for testing IEC
61131-3 software used in this study, to identify the range
values for each input parameters and constraints. We used
these predetermined input parameter ranges for each program
variable for generating pairwise test suites using SEAFOX in
order to maintain the same input model as the one used to
create manual test suites.

2For more details on the SEAFOX tool we refer the reader to the work of
Charbachi and Eklund [27].



C. Evaluation Measurements

In this section, we present how the case study is conducted
with respect to each research question. We first discuss the
evaluation measurements used for efficiency and effectiveness
of testing.

Code Coverage: We use code coverage criteria to assess the
test suites thoroughness [1] and answer RQ1. These coverage
criteria are used to evaluate the extent to which the program
has been exercised by a certain test suite. In this study,
code coverage is directly measured using the branch coverage
criterion. For the programs selected in this study the EN50128
safety standard [25] involves achieving high branch coverage.
A test suite achieves 100% branch coverage if executing the
program causes each branch in the IEC 61131-3 program to
have the value true and false at least once. A branch coverage
score was obtained for each generated test suite using our own
tool implementation based on the PLC execution framework
provided by Bombardier Transportation Sweden AB.

Fault Detection: Ideally, in order to measure fault detection,
real faulty versions of the programs are required. In our case,
the data provided did not contain any information about what
faults occurred during the testing of these programs. To over-
come this issue and answer RQ2, we used mutation analysis by
generating faulty versions of the original programs. Mutation
analysis is a method of automatically creating artificial faulty
versions of a program in order to examine the fault detection
ability of a test suite [1]. A mutant is a different version of the
original program containing a small syntactical change. For
example, in an IEC 61131-3 program, a mutant is created
by replacing a constant value with another one, negating a
signal or changing the type of a computational block. If the
execution of the resulting mutant on a test is producing a
different output as the execution of the original program, the
test suite detects the mutant. The mutation score is computed
using an output-only verdict (i.e., using the expected values
for all of the program outputs) against the set of mutants. The
fault detection capability of each test suite was calculated as
the ratio of mutants detected to the total number of mutants.
Just et al. [29] provided compelling experimental evidence that
the mutation score is a proxy for real fault detection.

In the creation of mutants we used common type of faults
in IEC 61131-3 software [30] as a basis for establishing the
following mutation operators:

• Logic Block Replacement. Replacing a logical block with
another block from the same category (e.g., an OR block
is replaced by an AND block).

• Comparison Block Replacement. Replacing a comparison
block with another block from the same category (e.g.,
a Greater-Or-Equal (GE) block is replaced by a Greater-
Than (GT) block).

• Arithmetic Block Replacement. Replacing an arithmetic
block with another block from the same category (e.g.,
replacing a maximum calculation block (MAX) with a
minimum calculation block (MIN)).

• Negation Insertion. Negating an input or output connec-
tion (e.g., an output boolean connection is negated).

• Value Replacement. Replacing a value of a constant
variable connected to a block (e.g., a constant variable
is replaced by its boundary values).

• Timer Block Replacement. Replacing a timer block with
another block from the same function category (e.g., a
Timer-On (TON) block is replaced by a Timer-Off (TOF)
block).

Each of the mutation operators were applied to each program
element. In total, for all of the selected programs, 1597
mutants were generated (i.e., 35 mutants on average per
program). A mutant was considered detected by a test suite
if the output from the mutated program differed from that of
the original program. A mutation score was obtained for each
generated test using our own tool implementation.

Number of Tests: In an ideal situation, the cost of testing
is measured by taking into account direct and indirect type of
cost, by measuring directly the test suite creation, the test suite
execution and the checking of test suite results. However, since
this is a case study using programs for which the development
was performed a few years back, this kind of cost data was not
available. To answer RQ3, we used the number of created test
cases as a proxy for efficiency as we assume that all human
costs are depended on the number of tests. The higher the
number of tests, the higher are the respective testing costs.
For example, a complex program will require more effort for
test creation, execution and checking of the results.

V. EXPERIMENTAL RESULTS

In this section, we quantitatively answer the three research
questions posed in Section IV. We collected the data to answer
these research questions by generating test suites for pairwise
testing using SEAFOX; collecting manual test suites created by
experienced industrial engineers; measuring their code cover-
age; and measuring their effectiveness in terms of mutation
score. The overall results of this study are summarized in the
form of boxplots in Figure 3. In Tables I, II and III we present
the code coverage scores, mutation scores and the number of
tests in each test suite by listing the standard deviation, mean,
median, minimum and maximum values. In addition, statistical
analysis was performed using the R statistical software 3. We
assume that the collected data is drawn from an unknown
distribution. In order to evaluate if there is any statistical differ-
ence between manual and pairwise testing we use a Wilcoxon-
Man-Whitney U-test [31], a non-parametric hypothesis test
used for checking if two data samples are randomly obtained
from identical populations. We also use the Vargha-Delaney
test (also known as the standardized effect size) to calculate
the statistical significance. The Vargha-Delaney Â-measure is
also ”a measure of stochastic superiority” [32] and is used
to measure the difference between two populations. The test
result is denoted as Â, and simply specifies the amount of
times population A is expected to be better than population

3https://www.r-project.org/
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Fig. 3. Code Coverage, mutation score and number of test cases comparison between manually handcrafted test suites (Manual) and test suites generated
using pairwise testing (Pairwise); boxes span from 1st to 3rd quartile with black middle lines marking the median and the whiskers extending up to 1.5x the
inter-quartile range; the circle symbols represent the outliers.

TABLE I
RESULTS FOR CODE COVERAGE MEASUREMENTS.

Code Coverage SD Mean Median MIN MAX

Pairwise 10.35 93.95 100.00 50.00 100.00

Manual 6.71 97.29 100.00 63.64 100.00

B [33]. Its significance is determined when the effect size is
above 0.7 or below 0.2.

A. Code Coverage

RQ1 asked if pairwise testing achieves better code coverage
scores than manual testing. The coverage scores achieved by
pairwise testing are ranging between 50% and 100% while
for manual testing these are varying between 63% and 100%.
As shown in Table I, the use of manual testing achieves on
average 97% branch coverage (3% on average higher than
pairwise testing). Results for all programs (in Table IV) show
that differences in code coverage between manual and pairwise
testing are statistically significant with a p-value of 0.04 but
their effect is not strong (i.e., an effect size of 0.6).

As seen in Figure 4, for 62% of the programs considered,
pairwise performs equally good as manual testing; for 29%
of the programs manual testing performed better in terms of
achieved code coverage while for 9% of the programs pairwise
testing covers more code than manual testing.

The results for all programs were surprising: test suites
created using pairwise testing achieved relatively high code
coverage (94% on average). This shows that, for the programs
studied in this experiment, pairwise testing achieves high
branch coverage. This is likely due to the complexity of the
studied programs. It is possible that more complex software
would yield a greater code coverage difference between man-
ual and pairwise test suites.

Overall, as shown in Figure 4, we confirm that pairwise
test suites achieve just as good or better code coverage scores
as manual testing for 71% of programs considered in this

TABLE II
RESULTS FOR FAULT DETECTION (MUTATION ANALYSIS) MEASUREMENTS.

Mutation Score SD Mean Median MIN MAX

Pairwise 25.69 81.58 95.24 12.77 100.00

Manual 14.22 88.90 95.00 44.44 100.00

study. This can be explained by the fact that pairwise testing if
properly used is quite good at covering the logical behaviour
of the code.

Answer RQ1: Code coverage scores achieved
by pairwise test suites are slightly lower than
the ones created manually by industrial engi-
neers.

B. Fault Detection

To answer RQ2, we first computed the mutation score of
each manual and pairwise test suites. Figure 3 shows box
plots of our results for fault detection in terms of mutation
score. Table II summarizes statistics for these test suites. For
all programs the fault detection scores obtained by manually
written test suites are higher on average with 7% than those
achieved by pairwise testing. However, there is no statistically
significant difference at 0.05; as the p-value is 0.67 and the
effect size is 0.53 in Table IV. A larger sample size would be
needed to obtain more confidence in our results. Interestingly,
as show in Figure 4, our results suggest that fault detection
scores achieved by manual testing are not significantly better
at finding faults than pairwise testing. It seems that test suites
generated using pairwise testing are just as good in terms of
fault detection as manual test suites for 64% of the cases
considered in this study. For 42% of the programs, pairwise
testing performs as well as manual testing while for 36% of
the programs manual testing performed better in terms of fault
detection.
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TABLE III
RESULTS FOR CODE NUMBER OF TESTS (TEST SUITE SIZE)

MEASUREMENTS.

Number of Tests SD Mean Median MIN MAX

Pairwise 37.05 21.20 6.00 4.00 152.00

Manual 12.26 12.98 7.00 2.00 56.00

The difference in effectiveness between manual and pair-
wise could be due to other factors such as the number of
test cases and the test design techniques used to manually
create test suites (e.g., testing the timed behavior of the PLC
software).

Answer RQ2: Pairwise testing is able to pro-
duce comparable results to manual testing
in terms of fault detection. However, manual
testing produced better mutation scores on
average.

C. Number of Tests

This section aims to answer RQ3 regarding the relative
cost of performing manual testing versus pairwise testing.
Analysing the cost in this study is directly related to the
number of test cases giving a picture of the effort needed per
created test suite. Based on the results highlighted in Figure 3,
the use of pairwise testing results in very inconsistent number
of tests created, compared to manual testing which seems to
create tests with more diverse number of steps than pairwise
testing. Examining Table III, we see a different pattern: less
number of tests on average are manually created by industrial
engineers (13 test cases on average in a test suite) than when
using pairwise testing (21 test cases on average in a test suite).
As seen in Figure 4, for 44% of the programs considered,
pairwise test suites produced equally or larger test suites than
the manual ones, leading to 55% where pairwise produced
fewer. Table IV shows an interesting pattern in the statistical
analysis: the standardized effect size being 0.53, with p-value
being higher than the traditional statistical significance limit of

TABLE IV
RESULTS OF THE STATISTICAL ANALYSIS. FOR EACH METRIC WE

CALCULATED THE EFFECT SIZE OF EACH TEST CREATION METHOD
COMPARED TO EACH OTHER. WE ALSO REPORT THE P-VALUES OF A

WILCOXON-MANN-WHITNEY U-TESTS.

Statistics Values Code Coverage Mutation Score Test Suite Size

M vs P Â 0.60 0.53 0.53

p− value 0.04 0.67 0.64

0.05. Results are not strong in terms of effect size and we did
not obtain any statistical difference for the number of tests.

The results for all programs matched our expectations: man-
ual tests are handcrafted by experienced industrial engineers
that can create very diverse tests. It is possible that more com-
plex software would yield greater number of tests differences
between tests written manually and pairwise testing.

Answer RQ3: The use of pairwise testing
results in more number of tests created on
average than the use of manual testing. Even
so, pairwise testing produced more cases with
less tests created compared to manual testing,
resulting in very inconsistent results.

VI. DISCUSSION

The goal of this work was to compare pairwise testing
with manual testing performed by industrial engineers in terms
of code coverage, fault detection and the number of created
test cases. We found out that pairwise testing achieves high
code coverage, but slightly lower scores than manual testing.
In addition, we found the fault detection scores for pairwise
testing to be lower on average than the ones written manually
by industrial engineers. Interestingly, pairwise testing achieves
equally good or better fault detection scores than manual
testing for 64% of the programs considered, which might
indicate that for more than half of the programs the fault
detection scores for pairwise testing are a good predictor of
test effectiveness. This is reinforced by the mutation score box
plot in Figure 3: the median mutation score for pairwise testing



is 95%. This in combination with the achieved high code
coverage, suggests that pairwise testing can cover as much
code as manual testing performed by industrial engineers, but
this is not entirely reflected in its fault detection capability.
The fault detection rate between manual and pairwise testing
was found, in some of the published studies [23], [24] to be
similar to our results. Interestingly enough, our results indicate
that pairwise test suites might be even better in some cases
in terms of fault detection than manual test suites. However,
a larger pool of programs and tests is needed to statistically
confirm this hypothesis.

The mean value for fault detection of 81% for pairwise
testing is right in line with the proportion of 2-way faults seen
in other domains [34]. It is interesting to note here that the
fault distribution for PLC industrial control software is similar
to other types of software.

As part of our study, we used the number of tests to estimate
the test efficiency in terms of creation, execution and result
checking. While the cost of creating and executing a test
for pairwise testing can be low compared to manual testing,
the cost of checking the result is usually human intensive.
Practically, the higher the number of test cases, the higher
the cost of checking the test result. Our study suggests that
pairwise test suites, while inconsistent, are longer on average
in terms of created test steps (number of tests) than manual
test suites. By considering generating optimized or shorter
test suites, one could improve the cost of performing pairwise
testing.

The idea of using pairwise testing in practice stands as
a significant progress in the development of automatic test
generation approaches. This progress implies, to some extent,
that pairwise testing should be at least as effective and more
efficient than manual testing for it to be considered ready to
be used as a replacement to the manual effort of creating tests.
The overall result, from this case study, is that pairwise testing
alone is not better than manual testing. However, pairwise
testing or stronger combinatorial criteria are capable of at
least aiding an engineer in testing of industrial software. Our
observations showed that experienced engineers are very effec-
tive at generating the right choice of values and considering
the timing of the input parameters. Industrial PLC software
typically have a complex and time-dependent behaviour. This
behaviour require inputs to retain and change a sequence of
inputs for some time in order to trigger a certain logical
event. Several manual test suites collected in this case study
contained that kind of test cases. The engineers creating these
test suites had years of experience in developing and testing
this type of software, including good knowledge of what
combinatorial interactions are needed to cover the code and
detect faults. As it turns out, pairwise testing is not particularly
useful for some of the programs considered in this study. By
considering generating more complex (stronger t-wise) and
time-depended tests, one could improve both the achieved code
coverage as well as the fault detection capability.

VII. THREATS TO VALIDITY

There are many tools (e.g., ACTS [35], AETG [36], TCG
[37]) for automatically generating tests using pairwise testing
and these may produce different results. The use of these
tools in this study is complicated by the modelling of the
input space for a PLC program. Hence, we choose a tool
specifically developed for testing PLC industrial programs. For
more details on the comparison between SEAFOX and ACTS,
we refer the reader to the work of Charbachi and Eklund
[27]. SEAFOX is using the IPOG algorithm. This algorithm
continually expands the test suite to fit the input parameters
with the use of vertical and horizontal extension. SEAFOX
currently uses a first element tie breaker which was chosen
when a clean-cut best choice for tie breaking was absent [38].
This choice of a tie breaker might affect the effectiveness of
the generated tests.

Another threat to the validity of this study is also related to
the use of the SEAFOX tool. Vertical extension [39] is a step
which adds new tests, if needed, to the test set produced by
horizontal growth when there are no modifiable test cases to
cover a specific pair. The IPOG algorithm, in this case, creates
a new test case, thus expanding the size of the test suite by
making the test case to cover the specific pair and keeping all
the other parameters modifiable. This is done to reduce the
need of further vertical extensions and can be used to avoid
creating a new test case. However, when trying to execute a
test suite, these values are syntactically illegal and need to be
changed. SEAFOX currently handles this by randomising the
modifiable values to a default option for each parameter. A
more accurate option for each parameter would be needed to
obtain more confidence in the test suite effectiveness.

The data collected is based on a study in one company using
one industrial system containing 45 programs and manual
test suites created by industrial engineers. We argue that
even if the number of programs can be considered relatively
small, reporting a case study using industrial artefacts can be
representative.

Since this case study was performed post-mortem, the cost
information was not available. We used the number of test
cases as a valid proxy measure and a more detailed cost model
should be used to obtain more accurate results.

VIII. CONCLUSION

In this paper, we studied the comparison between pairwise
testing and manual testing in terms of branch coverage,
mutation score and number of created test cases. From the 45
PLC industrial programs we studied, we drew the following
conclusions:

• The use of pairwise testing results in high branch cover-
age and mutation scores for the majority of the programs
considered.

• The results of this paper support the claim that pairwise
testing is not quite as effective (i.e., achieved branch
coverage and fault detection) and efficient (in terms of
number of tests created) as manual testing.



• The use of pairwise testing results in similar or better
fault detection scores than the use of manual testing for
64% of the programs.

The results imply that pairwise testing can achieve high
branch coverage, but slightly lower scores than manual testing.
In summary, our results suggests that pairwise testing can per-
form in some cases comparably with manual testing performed
by industrial engineers. This is a significant experimental
evidence on the progress of pairwise testing that needs to be
further studied; we need to consider the cost of using pairwise
testing in practice. In addition, pairwise testing is only one
type of combination strategy and we would need to evaluate
the use of stronger criteria such as t-wise (with t > 2) testing.
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