
Towards Execution Time Prediction for Manual Test Cases from Test Specification

Sahar Tahvili∗†, Mehrdad Saadatmand∗, Markus Bohlin∗, Wasif Afzal†, Sharvathul Hasan Ameerjan†

∗Research Institutes of Sweden (RISE) RISE ICT/SICS Västerås, Sweden
†Mälardalen University, Västerås, Sweden

Email: {sahar.tahvili, mehrdad.saadatmand, markus.bohlin}@ri.se
† wasif.afzal@mdh.se, san15014@student.mdh.se

Abstract—Knowing the execution time of test cases is impor-
tant to perform test scheduling, prioritization and progress
monitoring. This work in progress paper presents a novel
approach for predicting the execution time of test cases based
on test specifications and available historical data on previ-
ously executed test cases. Our approach works by extracting
timing information (measured and maximum execution time)
for various steps in manual test cases. This information is then
used to estimate the maximum time for test steps that have not
previously been executed, but for which textual specifications
exist. As part of our approach, natural language parsing of
the specifications is performed to identify word combinations
to check whether existing timing information on various test
activities is already available or not. Finally, linear regression
is used to predict the actual execution time for test cases.
A proof-of-concept use case at Bombardier Transportation
serves to evaluate the proposed approach.

Index Terms—Software Testing, Execution time, Linear Re-
gression, NLP, Optimization, Test Specification, Estimation

1. Introduction

The main objective of software testing is detecting as
many critical bugs in the system under test as possible.
Since software testing is a time consuming and a costly
process, it is possible that the planned time and budget
for testing are not sufficient for executing all designed test
cases [1]. In such a case, we need to prioritize test cases
ensuring that the most important test cases are executed
first.

The criteria for test case selection and prioritization
are dependent on many factors such as the application,
requirements and customers’ perspective. In our previous
work, some of the important criteria used in scheduling
the order of test execution are analyzed [2], [3]. One such
criterion is the test case execution time, which can enable
efficient usage of testing resources [4]. The test case execu-
tion time is one factor contributing to the overall software
test effort [5]. Through knowing the execution time for each
test case, we can measure the required time for testing a
system [6].

Since execution time measurement is not an easy task,
a number of assumptions need to be made first. Most of

the existing methods focus only on automated testing via
analysis of executable code, in order to construct predic-
tors or select important features [6]. However, the lack of
automated testing in some contexts, such as when to test
certain aspects of a system (e.g., safety), forces tester to
perform manual testing [7].

In this work in progress paper, we propose an approach
for measuring the required execution time for manual test
cases. We have structured our approach into two main ter-
minologies of execution time: maximum and actual execu-
tion time. Thereby, two algorithms are designed: estimation
and prediction algorithms which will compute maximum
and actual execution time respectively. The estimation al-
gorithm takes test specifications written in natural language
and identifies key elements, such as verbs and objective
arguments, and stores them in a database. By analyzing
the test records and matching the set of extracted elements
against previously executed test steps of test cases, an
execution time can be assigned to each activity in the test
specification. In case there is no match, a baseline time
which represents the response time that a particular system
takes to react to a given input, is assigned. The predic-
tion algorithm is based on linear regression to predict the
required execution time for newly created test cases.

The remainder of this paper is organized as follow:
Section 2 presents background and motivation of the initial
problem, Section 3 describes the proposed approach. A
proof of concept has been summarized in Section 4 through
analyzing an industrial test example and finally Section 5
concludes the paper.

2. Background and Motivation

A manual test case generally consists of several steps
written in a natural language. These steps describe actions,
input data and the expected reactions (output) from the
object under test, and checks if a particular test condition
is satisfied or not. Before the steps of a test case can start,
there are also, in general, certain pre-conditions that need
to be met to put the system in a testable state.

Moreover, to allow the system to react, it is common
that waiting activities are specified. We therefore assume
a generic model of test cases with four different elements:
pre-conditions, waiting times, actions and reactions.

2017 43rd Euromicro Conference on Software Engineering and Advanced Applications

978-1-5386-2141-7/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAA.2017.10

421

TABLE 1: A test specification example from the safety-critical train control management system.

Initial state:
No active cab
Step Action Reaction
1 Login at the IDU as “ Maintainer not driving” in A1 cab Check that: Cab A1, MIO-S “ Head light half-beam on left=FALSE”

Cab A2: MIO-S “ Head light half-beam on right=FALSE”

2 Log out in cab by removing key card in cab A1 Check that: Cab A1, MIO-S “ Head light half-beam on left=TRUE”

Login at the IDU as driver in A1 cab Cab A2, MIO-S “ Head light half-beam on right=TRUE”

3 Log out in cab removing key card in cab A1 Check that:
MIO-S “ Head light half-beam on left=TRUE”
MIO-S “ Head light half-beam on right=TRUE”

4 Wait 20 seconds

Given the above context, we investigate the following
research question:

RQ: How to compute the test case execution time based
on different elements of a manually written test
case?

Table 1 shows a part of a real, industrial test specifica-
tion from a safety-critical train control management system,
where the description of steps are outlined. The required
time for performing some of the activities in Table 1 is
available before execution, for instance, the waiting time in
Step 4 of the test case (Table 1).

A test specification can also have several properties such
as:

• Test case size: total number of test steps, which
describe the execution sequence. Each test step
consists of an action and a reaction. Each step is
marked as either pass or fail based on the compar-
ison between the expected and actual outcome [8].

• Total activities: a test step consists of at least one
test activity, which represents the goal of the test
step. The total test activities for a test case can be
denoted as at.

• Total waiting: a wait for time step enables a test
case to pause for a specified time before continuing
execution. This helps synchronize multiple asyn-
chronous calls in a single test case. It also enables
testers to test more complex scenarios, such as those
involving a long-running process that requires mul-
tiple interactions [8]. The total waiting time for a
test case is simply the sum of waiting times written
as test steps, denoted as wt.

• Total pre-conditions: the total number of pre-
conditions in a test case is denoted by ct.

Let t1, t2, . . . , tn be the required time for executing at,
wt and ct, then the total execution time (Tn) for a test case
TC (which has n steps) of a given size is:

Tn =

n∑

j=1

tj (1)

Since the required time for performing the above men-
tioned activities is variable, we propose an estimation al-
gorithm (Section 3.1) for solving it.

3. The Proposed Approach

This section describes our proposed approach, based
on two main algorithms, for computing execution time for
manual test cases. To achieve this target, several sources
such as test specification, test script and test records will
be analyzed. Before describing the proposed algorithms,
we define our concept of test execution time as two main
terminologies:

• Maximum Execution Time (MT): is the maximum
time for testing an object successfully. In other
words, MT is the maximum time that a test step (or
test case) is allowed to take for testing an object.
Suppose the maximum execution time for a test
step is t seconds; if the system takes more time
than t for testing an object, testing process need
to be stopped and the test step is considered as a
failure. MT is independent from the system proper-
ties. Automatic generation of test scripts from test
specifications is another place where the concept of
MT is useful. Thus, the testers are able to assign the
upper boundary (test item timeout) of the required
time for execution per test step.

• Actual Execution Time (AT): is the real time (t′)
taken by the system executing a test activity, which
is dependent on the system properties. We need
to consider that the actual execution time per test
activity is equal or less than maximum execution
time (t′ ≤ t).

Moreover, we introduce mt as the system baseline re-
action time, which represents the response time that system
unit takes to react to a given input. The baseline time would
be assigned as a required execution time for the steps of
newly designed test cases which have never been executed
before and there exists no similar and matching activity for
the steps of such test cases. By measuring AT in several
systems, we have this chance to have a better value for mt.

The remainder of this section explains the structures
of estimation and prediction algorithms which will compute
maximum and actual execution time respectively. Since AT
is a machine dependent parameter, we utilize the prediction,
as a suitable term for the proposed algorithm. Furthermore,
an overview of the proposed approach has been illustrated
in Figure 1.

422

Parse Test Steps

Is there any
scripted

version for
this step?

Is this test
step

executed
before?

Extract actual time
from test records

Does the parsed
elements match any
previous test records?

Utilize mt for reaction

Apply linear regression
to predict the actual time

Calculate total actual
execution time

Utilize the
matched time
for this step

Utilize the Max time from
scripted version for this step

Yes Yes

NoNo

Yes

No

Figure 1: The steps of the proposed approach

3.1. Estimation Algorithm

Since the specifications of manual test cases are written
in English natural language, we need to apply some NLP
(natural language processing) methods for analyzing test
cases. As Table 1 represents, a step in a test case consists
of several test activities. To identify and distinguish the
activities, there are some keywords per test step that we
need to first analyze. Therefore, we utilize NLTK Python
platform for parsing various elements of each test step first.
We classify Verb and Objective Argument as the most criti-
cal elements per test step distinguishing different activities.

The parsed elements are then saved in a database. Thus
a unit of time will be assigned as MT for each parsed
element. In the present work and use-case, as we observed,
a subset of manual test cases have been scripted by the
testers, therefore the value of MT is available for some
of the parsed elements from their scripted version. In the
next step, the estimation algorithm searches for matching
between the parsed elements extracted from a test step and
the set of elements from the steps of previously executed
test cases to determine and assign the required execution
time for test activities. In any case, if there exist no matched
data for the parsed elements in the test step, we assign
the baseline execution time mt for those elements. As
mentioned earlier, the value of mt is the system’s baseline
response time and should be determined by analyzing the
historical data, testing environment and system properties.

Furthermore, the value of MT and AT would be com-
pared by the estimation algorithm continuously. As the last
step, the estimation algorithm calculates the total waiting
times between the steps and adds the values for the parsed
elements to them. As the result, an MT value is determined
for the each step of newly parsed test cases (and also AT,
if a matching activity is executed before).

3.2. Prediction Algorithm

As explained before, the actual execution time (AT) is
system dependent and shows the real time that a system
under test takes to respond to an activity. Assume a set

of test cases will be executed in system A. By applying
the estimation algorithm on the test cases we are able to
estimate the maximum execution time as described above.
Via analyzing the historical data of previous executed test
cases on system A and comparing them with the maximum
execution time, we can predict the actual time that system
A needs for execution. Through re-defining Equation 1 we
calculate the total actual execution time (T ′

n) for test case
TC.

Let t′1, t
′
2, . . . , t

′
n represent the actual execution time

(also t1, t2, . . . , tn represent the maximum execution time)
for performing various test activities in test case TC, then:

T ′
n =

n∑

j=1

t′j (2)

where t′1 ≤ t1, t
′
2 ≤ t2, . . . , t

′
n ≤ tn and also T ′

n ≤ Tn.
Suppose (t1, t

′
1), (t2, t

′
2) . . . (tn, t

′
n) represents MT and AT

for test steps in test case TC which has been executed in
system A, then:

t′ = mt+ h (3)

where n is number of test steps, m is the slope of the
linear regression line and h is the t′-intercept and can be
calculated by utilizing Equations 4, 5 as follow:

m =
n
∑n

i=1 tit
′
i − (

∑n
i=1 ti)(

∑n
i=1 t

′
i)

n
∑n

i=1 t
2
i − (

∑n
i=1 ti)

2
(4)

h =
(
∑n

i=1 t
2
i)(

∑n
i=1 t

′
i)− (

∑n
i=1 ti)(

∑n
i=1 tit

′
i)

n
∑n

i=1 t
2
i − (

∑n
i=1 ti)

2
(5)

To fulfill the conditions in Equations 3, the test cases
should have at least 3 steps with at least one distinct values
of t.

In addition the percentage of predictions error (ε) can
be calculated as:

ε =
|Predicted time−Actual time|

Actual time
× 100 (6)

423

4. Proof of Concept

This section contains an evaluation of the feasibility of
our proposed method by applying it on one manual test case
from the safety critical train control management system
from our industrial partner. Table 2 presents the parsed
elements in the analyzed test case, maximum execution time
(MT) and also waiting time between steps (WT) which
have been estimated by the estimation algorithm through
searching in our database.

However, the estimation algorithm maps the parsed
element in the test case with some similar test activities
in other test cases. Moreover, for some activities which do
not exist in our database, we set the baseline time value
as mt = 3 seconds, which was set in consultation with
our industrial partner. The parsed elements (activities) are
meant to be executed in a sequence per test step.

TABLE 2: Feasibility results of our approach.

TC Name Exterior Light Function
TC ID TC-ExtLights-008

Step Verb Objective Argument MT WT
1 Login IDU, “ maintainer no driving”, A1 4 0
2 Logout removing key card, cab A1 23 0
3 Login IDU, driver, cab A1 42 0
4 Login IDU, driver, cab A2 42 0
5 Logout cab, removing key card, A2 5 0
6 Login, wait IDU driver, cab A1 57 20
7 Press full beam, button, driver, desk 9 0
8 Press button, complete driving 13 0
9 Press emergency, stop button 6 0
10 Restore emergency, stop button, cab A1 mt = 3 0
11 Wait 23 seconds 23 23

Step number 10 in Table 2 is an activity which was not
accessible in our database, which implies that this activity
never executed before, therefore, the baseline time value
(mt = 3) has been assigned for this step. However, step 11
consists of just 23 seconds waiting time. All other test
activities in Table 2 have been matched by the estimation al-
gorithm in our database, which implies that those activities
have been executed before in other test cases. For instance,
step 3 in Table 2 is equal to step 8 in another test case
(Route cycle A1), which has been executed earlier than this
test case. As the second part of our approach, we are going
to predict the actual execution time (AT) for this test case.

Since, AT is a system dependent time, we need to check
some log files for the previous execution in the same system
that the test case in Table 2 would be executed. By running
the regression analysis method on MATLAB and through
analyzing the log files, we predict the actual time that the
test case would take.

Moreover, this test case has been executed two times on
the same system. We also analyzed the log files for the test
case after both executions. The result for the executions
and also our prediction values has been summarized in
Table 3. Step number 10 in Table 2 is an activity which
was not accessible in our database, which implies that this
activity never executed before, therefore, the baseline time
value (mt = 3) has been assigned for this step. However,
step 11 consists of just 23 seconds waiting time. All other
test activities in Table 2 have been matched by the esti-
mation algorithm in our database, which implies that those

activities have been executed before in other test cases. For
instance, step 3 in Table 2 is equal to step 8 in another
test case (Route cycle A1), which has been executed earlier
than this test case. As the second part of our approach, we
are going to predict the actual execution time (AT) for this
test case. Since, AT is a system dependent time, we need to
check some log files for the previous execution in the same
system that the test case in Table 2 would be executed.

By running the regression analysis method on MAT-
LAB and through analyzing the log files, we predict the
actual time that the test case would take. Moreover, this
test case has been executed two times on the same system.
We also analyzed the log files for the test case after both
executions. The result for the executions and also our
prediction values has been summarized in Table 3.

TABLE 3: Actual and Predicted Execution Time

Actual Time
Step Execution 1 Execution 2 Predicted Time
1 2 2 3.14
2 22 21 20.6
3 40 39 38
4 40 39 38
5 3 5 4.6
6 40 49 51.8
7 5 6 7.73
8 11 11 11.4
9 4 4 4.98
10 1 2 2.23
11 23 20 20.6

Total 191 198 203.8
ε 6.70 % 2.92 %

As we can see in Table 3, the values for AT are different
in execution 1 and 2 on the same system. Moreover the
values of AT (in both executions) and also the predicted
time are less than or equal to MT values in Table 2. Further,
the percentage of prediction error (ε) has be calculated by
applying Equation 6, which can be used to compare the
accuracy of the predicted time in execution 1, 2. As can be
observed, the predicted times calculated by our approach
which have been confirmed as good enough, very useful by
our industrial partner, and with low prediction error are even
closer to the actual values in execution 2 (lower prediction
error).

As we can see in Table 3, the values for AT are different
in execution 1 and 2 on the same system. Moreover the
values of AT (in both execution) and also the predicted
time are less than or equal to MT values in Table 2. Further,
the percentage of prediction error (ε) has be calculated by
applying Equation 6, which can be used to compare the
accuracy of the predicted time in execution 1, 2. As can be
observed, the predicted times calculated by our approach
which have been confirmed as good enough, very useful
by our industrial partner, and with low prediction error,
are even closer to the actual values in execution 2 (lower
prediction error).

5. Conclusion and Future Work

In this work in progress paper, we introduced an ap-
proach for estimating and predicting execution time of
test cases. We have analyzed the specification structure of

424

manual test cases and also explained the operating steps
and algorithms constituting the approach. The concept of
maximum execution time (MT) has been proposed in our
approach as an independent variable to help with predicting
the required time for executing manual test cases using
linear regression. Furthermore, we also introduced the per-
centage of predictions error (ε) as a means to measure the
accuracy of the proposed approach.

As a future work, we investigate the use of this param-
eter in fine-tuning the approach and to further improve the
closeness of the predictions to reality. In order to minimize
the prediction error (ε), other interpolation methods such
as polynomial and spline interpolation may also be applied
in the prediction algorithm.

We need to consider that the required time for run-
ning a test case by testers manually depends on both the
system characteristics and testers’ skills. For instance, the
required time that an inexperienced tester needs to perform
an activity (e.g., finding a signal value) is more than an
experienced tester. In this paper, we just focused on the
required time that a system takes to perform test activities
through analyzing test specifications to enable scheduling
of manual test cases before execution.

Moreover, by utilizing MT, we are able to prioritize test
case for execution. Since, the execution cost of test cases
is a function of the execution time, we are also able to
estimate the total required cost for performing test activities
by using this study. We have already started evaluating our
approach on a large set of test cases at our case organization
(Bombardier Transportation).

6. Acknowledgements
This work was supported by ECSEL & VINNOVA

through H2020 ECSEL Project MegaM@RT2 (No.737494)
and the Swedish Knowledge Foundation (KKS) through
the TOCSYC (20130085) and the TestMine (20160139)
projects.

References
[1] P. Pocatilu, “Automated Software Testing Process,” Economy Infor-

matics, vol. 1, 2002.
[2] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and

D. Sundmark, Cost-Benefit Analysis of Using Dependency Knowledge
at Integration Testing. Springer International Publishing, 2016, pp.
268–284.

[3] S. Tahvili, A Decision Support System for Integration Test Selection,
October 2016, Licentiate Thesis Dissertation, Mälardalen University,
Sweden.

[4] F. Pop, C. Dobre, and V. Cristea, “Genetic Algorithm for DAG
Scheduling in Grid Environments,” in IEEE 5th International Confer-
ence on Intelligent Computer Communication and Processing, 2009.

[5] R. Torkar, N. Awan, A. Alvi, and W. Afzal, “Predicting Software Test
Effort in Iterative Development using a Dynamic Bayesian Network,”
in Proceedings of the 21st International Symposium on Software
Reliability Engineering – Industry Track, 2010.

[6] E. Aranha and P. Borba, “An Estimation Model for Test Execution
Effort,” in 1st International Symposium on Empirical Software Engi-
neering and Measurement, 2007.

[7] E. Nikolaropoulos, “Testing Safety-Critical Software,” Hewlett-
Packard Journal, vol. 3, p. 48, 1997.

[8] R. Craig and S. Jaskiel, Systematic Software Testing, ser. Artech House
ITS library. Artech House, 2002.

425

