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Self-adaptive software systems monitor their operation and adapt when their requirements fail due to un-

expected phenomena in their environment. This paper examines the case where the environment changes

dynamically over time and the chosen adaptation has to take into account such changes. In control the-

ory, this type of adaptation is known as Model Predictive Control and comes with a well-developed theory

and myriads of successful applications. The paper focuses on modelling the dynamic relationship between

requirements and possible adaptations. It then proposes a controller that exploits this relationship to opti-

mize the satisfaction of requirements relative to a cost-function. This is accomplished through a model-based

framework for designing self-adaptive software systems that can guarantee a certain level of requirements

satisfaction over time, by dynamically composing adaptation strategies when necessary. The proposed frame-

work is illustrated and evaluated through two simulated systems, namely the Meeting-Scheduling exemplar

and an E-Shop.

CCS Concepts: rSoftware and its engineering → Software design engineering; Requirements anal-

ysis; rComputing methodologies → Modeling methodologies;
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1. INTRODUCTION

Self-adaptive systems are expected to operate in highly dynamic environments and ful-
fil multiple goals. When a failure is detected (i.e. a goal is not achieved) due to external
disturbances (e.g. high workload or unexpected user behaviour), a new configuration
is adopted. Unfortunately, composing an adaptation plan to overcome changes in the
environment is a challenging task. The main obstacle is unsolicited interference from
other goals. Therefore, an adaptation strategy A could restore the satisfaction of goal
G but fail or worsen goal G′.

Control Theory offers well-developed theoretical and practical frameworks for deal-
ing with systems with multiple parameters (inputs) and assigned with multiple goals
(outputs). Some approaches for developing self-adaptive software deal with each goal
individually without taking into account interferences [Brun et al. 2009; Filieri et al.
2011; Filieri et al. 2014; Souza et al. 2012]. Some others perform reactive adaptation
when the failure has already taken place without any provision for the future [An-
gelopoulos et al. 2014; Cheng et al. 2006; Filieri et al. 2015; Zoghi et al. 2014; Klein
et al. 2014], or attempt to anticipate failure. For instance, when the workload grows
and a goal fails, additional resources are disposed to the system to overcome the fail-
ure. However, if the workload is continuously increasing, it would be wise to dispose
more resources than those required for satisfying the goal, in anticipation of future
failures. Other approaches [Gaggero and Caviglione 2015; Ghanbari et al. 2014; Kusic
et al. 2009; Roy et al. 2011] apply predictive control in the domain of cloud computing
to guarantee non-functional properties. To our knowledge, despite its effectiveness,
software engineers have been reluctant to adopt predictive control for other domains,
given the lack of tools and methodologies to model, in a control theoretic context, soft-
ware requirements (functional and non-functional) and parameters.

In [Angelopoulos et al. 2016] we introduced the basic components of Model Predic-
tive Control (MPC) for software systems, how these are related to the requirements
of the system-to-be, and also proposed a framework that supports the elicitation of
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the analytical models required for MPC. Next, we integrated MPC with previous work
on requirements engineering for software adaptation in a framework named CobRA.1

Finally, we evaluated our work with a simulation of the Meeting Scheduler exemplar.
This article extends our previous work by applying CobRA to a system where the

goals are not constrained by clear-cut thresholds, but need to be optimized. The ab-
sence of thresholds contradicts the principle that a controller continuously performs
adaptations in order to ensure that the system’s output converges to specific values.
Therefore, in this work : a) we extend our requirements monitoring mechanism in
order to capture optimization goals of certain attributes of our target system, e.g. max-
imize revenue; b) we propose a systematic approach for representing such goals in the
analytical models of the MPC; c) we enhance our evaluation by applying CobRA to the
simulation of an E-Shop in order to demonstrate that our approach can also handle
optimization goals.

The rest of the paper is structured as follows. Section 2 presents the research base-
line for this work. Section 3 describes the basic components of MPC. Section 4 describes
the CobRA framework. In Section 5 we evaluate CobRA using a simulation of the Meet-
ing Scheduler and we compare the results with those of Zanshin [Souza et al. 2012],
another requirements-based adaptation framework. Finally, in Section 6 we compare
related work with our proposal, and Section 7 concludes the paper and discusses future
directions of this thread of research..

2. BASELINE

Our proposal adopts concepts from both software and systems engineering. The follow-
ing provides an overview of the baseline from each of these areas.

2.1. Goal Modeling

Goal-Oriented Requirements Engineering (GORE) models elicited requirements as
goals and analyzes them accordingly. Each goal is iteratively AND/OR-refined to more
detailed ones following Boolean semantics, until we reach goals that are detailed
enough to be operationalized (usually by tasks). For the Meeting-Scheduler exemplar,
the root goal Schedule Meeting (see Figure 1) is refined into three sub-goals: Collect
Timetables (goal G1), Book Meeting (G2) and Manage Meeting (G3). Goal G1 is ful-
filled by either contacting the invited participants by phone (task t1), by email (t2) or
let the system collect their timetables automatically from the system’s calendar (t3).
However, the last option is available only if the domain assumption that the partic-
ipants use the system’s calendar to register their appointments holds. Next, for goal
G2 to be satisfied, goal G4: Find Room must be satisfied either by letting the meet-
ing organizer select a room from the list (t4) or from those suggested by the system
(t5). Finally, the meeting organizer should manage the meeting (G3) by confirming its
occurrence or cancellation (t7 and t8 respectively), by sending reminders to the par-
ticipants (t9) and notifying them about any change concerning the scheduled meeting
(t10).

While goals and tasks represent the functional requirements of the system, soft-
goals capture desired non-functional properties. Each of the elicited soft-goals is quan-
tified by a quality constraint that allows reasoning about their fulfillment at runtime.
For instance, soft-goal Low Cost is satisfied when less than 500 euros is spent weekly
for organizing meetings. Good Participation is yet another soft-goal, satisfied when
80% of the invitees show up for a meeting.

Monitoring and evaluating requirements satisfaction is critical for self-adaptive sys-
tems. Following the same line of work as in [Angelopoulos et al. 2014] we use Aware-

1Control-based Requirements-oriented Adaptation
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Fig. 1: Meeting Scheduler goal model.
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ness Requirements (AwReqs) to monitor the success of other requirements. An AwReq
defines a constraint which triggers adaptation when violated. For example, during an
attempt to schedule a meeting, if G4 or t8 fail, a new configuration must be applied
(AR2). In the same context, if participation is lower than what stakeholders requested
more than 25% of the times, a new adaptation is selected (AR4).

AwReqs can refer to any element of the goal model. When referring to tasks, they
determine if the system has performed a specific set of actions successfully. When
monitoring a quality constraint, they determine if the system abides by quality re-
quirements. Pointing to goals/softgoals determines if the system has satisfied a re-
quirement. Finally, AwReqs that refer to domain assumptions determine if things that
were assumed to be true in the environment indeed are true during system operation.
AwReqs can also refer to other AwReqs (meta-AwReqs), creating hierarchical feedback
loops for adaptation.

Each AwReq is associated with variables named indicators that measure the de-
gree of fulfilment for a monitored requirement. Indicator values are influenced by two
kinds of parameters: a) environmental parameters that are determined by the envi-
ronment and can’t be manipulated by the system and b)control parameters that can
be adjusted at runtime by the system [Angelopoulos et al. 2015]. Examples of environ-
mental parameters include the number of meeting requests received by the system,
also participant availability and punctuality. When the number of meeting requests
increases significantly, the value of indicator I2 assigned to AR2 decreases, since it is
harder to find a room. Analogously, when participant punctuality or availability de-
creases, participation is lower and consequently the value of I4 drops. On the other
hand, control parameters are tuned by the adaptation mechanism to correct indica-
tor values that are out of range of prescribed thresholds. For instance, the number of
participants from whom timetables are collected (FhM ) has an impact on how quickly
meetings are scheduled (AR5) and how good participation is going to be (AR4). In the
same context, the maximum number of timetable conflicts allowed MCA, the number
of reminders sent to the invitees NoR, V P1 (collecting timetables by phone, e-mail
or automatically), V P2 (choosing to find room from a list or use a system suggestion)
and the numbers of local and hotel rooms, RfM and HfM respectively, are control
parameters the values of which affect the outcome of monitored indicators.

Formal goal modelling approaches such as KAOS [Dardenne et al. 1993] associate
goals with objective functions in order to reason about their satisfaction [Letier and
van Lamsweerde 2004]. Such objective functions are related to attributes of the sys-
tem that determine to what level a goal is achieved. In Figure 1 we assume that stake-
holders are able to provide clear-cut criteria on whenever a softgoal is satisfied or not.
However, it is often the case that stakeholders propose goals that dictate minimization
or maximization of certain variables (hereafter optimization goals), e.g. cost, revenue,
time etc. We adopt the term quality attribute from [Li et al. 2014] to refer to such
variables or equations of them. In Figure 2 the optimization goal ‘Maximize Participa-
tion’ is associated with the quality attribute average participation (avg participation)
in meetings whereas the optimization goal ‘Minimize Scheduling Time’ is associ-
ated to the quality attribute total scheduling time = collection time + booking time
which captures the sum of required time to collect timetables and book a room.
Next, we define a new type of AwReq, an Optimization AwReq which is defined as
Optimize(quality attribute, optimization type [min,max] ). The first argument refers to
the associated quality attribute and the second defines if this attribute should be min-
imized or maximized. The value of an indicator of an Optimization AwReq is equal to
its quality attribute and must continuously be optimized. In the following sections we
demonstrate how to use all types of AwReqs in order to formulate the requirements
satisfaction problem as an optimization problem which is solved with MPC.
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Fig. 2: Examples of Optimization AwReqs

In contrast to other kinds of AwReqs, the thresholds for the satisfaction of optimiza-
tion AwReqs are not explicit. For minimization goals we set as threshold the minimum
possible value of the associated quality attribute. For example, the minimum value of
cost is set to zero. Similarly, for maximization goals the threshold is set to the max-
imum possible value of the associated quality attribute. However, if there is no up-
per limit, the indicator measures the reciprocal value of the quality attribute and the
threshold is set to zero. In most cases the system will never reach these thresholds
although it will continuously search for a configuration to reach as close as possible to
them. This behaviour complies with the self-optimization property according to which
self-adaptive systems must ‘continually seek opportunities to improve their own perfor-
mance and efficiency’ [Kephart and Chess 2003].

Another kind of requirement included in our approach is an Evolution Requirement
(EvoReq) [Souza et al. 2013]. These apply when certain conditions hold and replace
temporarily or permanently other requirements. These changes are applied through
actions named EvoReq operations. For example, if AR1 constantly fails, probably be-
cause the success rate threshold is set too high, it is replaced with a new AwReq where
the threshold is 75% instead of 85%.

Apart from requirements for the system-to-be, constraints are also imposed on
the adaptation process itself, in the form of Adaptation Requirements (AdReqs) [An-
gelopoulos et al. 2014]. Examples of such constraints include how much time it should
take to restore fulfilment of a failed requirement, or how much is a control parameter
allowed to change when its value is modified.

2.2. Dynamic System Modelling

In our previous work [Angelopoulos et al. 2014; Souza et al. 2011], qualitative relations
have been used to model the relation between control parameters and indicators. Of-
ten, using qualitative adaptation is a necessity, given the lack of quantitative models
for software systems. However, in many cases, a sufficiently accurate quantitative dy-
namic model, can be obtained through system identification techniques [Ljung 1999],
and can be used for control design. Letting u(t) ∈ R

m be the vector of control parame-
ter values at time t, and y(t) ∈ R

p be the vector of indicators, their respective dynamic
relation is described as:

yi(t) =

p
∑

j=1

ny∑

k=1

αijkyj(t− k) +

m∑

j=1

nu∑

k=1

βijkuj(t− k) (1)

for all i = 1, . . . , p, and with αijk ∈ R, βijk ∈ R. The quantitative dynamic model (1)
relates the values of the indicator yi at time t with past values of all the indicators
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— accounting for possible mutual influences of the indicators — and with past values
of control parameters. For example, I1 might achieve a high value because of good
management of hotel room assignments or because of the constant failure of I2. The
reason is that if meetings fail to be scheduled, no rooms are reserved and consequently
the cost of meetings remains low. Such implicit relationships among indicators can
be captured by model (1) to guide the adaptation process. Notice that if some of the
mentioned variables are not influencing the value of the indicator yi(t), then the corre-
sponding parameters are simply zero. An equivalent and more compact representation
of this relation is the discrete-time state-space dynamic model:

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t),
(2)

where x(·) is a vector named dynamic state of the model. While for physical systems,
the state x(·) is typically associated with meaningful physical quantities, in general
the state can be just an abstract representation of the system, and it is not neces-
sarily measurable. The values of the matrices (A,B,C) fully describe how the inputs
dynamically affect the outputs of the system, and these matrices are the outcome of
the System Identification process.

The analytical model of Equation (1) shows that the system’s output might be related
to past outputs and control inputs. Indicators related to aggregate AwReqs [Souza et al.
2011] express success rates over time about the satisfaction of an associated goal and,
therefore, their current values are naturally bound to their past values and to the
values of AwReqs that produced them. These are dynamic systems in Control Theory.
In case no relation with past behaviour of the indicators and of the control inputs is
present, A is a matrix with all zero elements, and the system is just mapping inputs
to outputs with the static relation:

y(t) = CBu(t− 1).

Therefore, the model of Equation (2) accounts for both dynamic and static systems.
Equation (2) can be used to design a control system able to adjust the values of every

control parameter, in order to make each indicator converge to the value prescribed by
an AwReq threshold — under the assumption that the set of chosen control parameters
is able to drive the system to the prescribed goals. In contrast to qualitative adaptation,
such quantitative models allow one to handle conflicts with precision. For example, an
increase of the control parameter MCA results in an increase of I3, as it becomes eas-
ier to find a commonly agreed timeslot for the meeting, but the participation might
drop and consequently I4 is decreased. The analytical model can prevent the adapta-
tion mechanism from decreasing I4 excessively. Performing such trade-offs on a daily
basis while taking into account priorities among indicators based on their business
value (higher priority indicators should converge faster than less important ones), and
preferences among control parameters (e.g. increasing RfM is preferred to increasing
HfM ) is a complex process. In the next section we present a control-theoretic approach
in order to efficiently implement this process and maintain an equilibrium among con-
flicting goals.

Notice that software systems are often nonlinear, non-smooth, or even discontinu-
ous [Papadopoulos et al. 2015], and the linear dynamics that are identified are just
an approximation of the actual dynamics of the system. Linearizing nonlinear dynam-

ics, is common practice in most control applications [Åström and Murray 2010], and
if the control design is carried out correctly, the feedback loop, possibly jointly with
some learning strategies, are in charge of handling model inaccuracies, and neglected
dynamics in a robust way (see, e.g., [Kothare et al. 1996]). The main challenge when
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dealing with computing systems is that obtaining reliable dynamic models is really
complicated, since there are no laws of physics, and it is application dependent [Pa-
padopoulos et al. 2015]. This work is part of a long term research line which aim is
to automatize the decision making policy design from the elicitation of the system re-
quirements to the actual implementation. The use of model identification techniques
ease the construction of the dynamic model, and could be easily included in an auto-
mated tool.

3. MODEL PREDICTIVE CONTROL

Based on the dynamic model of Equation (2), different control strategies can be de-
signed. We here extend our previous work [Angelopoulos et al. 2015] and present a
receding horizon MPC [Camacho and Bordons 2004; Maciejowski 2002] that is able to
manage the achievement of multiple conflicting goals by means of multiple control pa-
rameters. When the controller is complemented with a Kalman Filter [Ljung 1999], it
can learn online how to adapt the controller to the system’s behaviour, overcoming in-
evitable inaccuracies coming from dynamics not captured from model (2) and unknown
disturbances acting on the system.

MPC is a control technique that formulates an optimization problem to use a set
u(·) of control parameters (actuators) to make a set of indicators y(·) achieve a set of
goals y◦(·) over a prediction horizon H . At every control instant t, the values of the
control parameters u⋆ are obtained by minimizing a cost function Jt, subject to given
constraints. The optimization problem includes a prediction of the future behaviour
of the system based on the dynamic model (2). An obtained solution is therefore a
plan of the future control parameter values u⋆ =

[
u⋆
t , u

⋆
t+1, . . . , u

⋆
t+H−1

]
over the pre-

diction horizon. This planning is especially needed in the case of delay in the effects of
changes of control parameters. For example, increasing the number of hotel rooms re-
quires approval by the administration council that meets only every 2 days. Hence, the
adaptation mechanism must be aware of when changes to control parameters impact
on the indicators and make look-ahead plans.

According to the receding horizon principle, only the first computed value u⋆
t is ap-

plied to the system, i.e. u(t) = u⋆
t . The reason is that for real-world systems, it is im-

possible to derive perfect models that describe their dynamic behaviour. Therefore, the
plan must be corrected at each step and the horizon recedes by one unit. Another rea-
son the plan might fail is a change in the external disturbances (e.g. system workload).
In other words, the plan would have been followed as is only if a perfect model were
available and no disturbances were present, which in practice is impossible. To tackle
this obstacle, at the next control instant, a new plan is computed according to the
new measured values of the indicators. This accounts for modelling uncertainties, and
possible unpredictable behaviours of the system that are not captured by model (2).

3.1. Formal description

In order to present the underlying rationale of the MPC, it is convenient to rewrite
dynamic model (2) in an “augmented velocity form”:

x̃(t+1)
︷ ︸︸ ︷
[
∆x(t+ 1)

y(t)

]

=

Ã
︷ ︸︸ ︷
[
A 0n×p

C Ip×p

]

x̃(t)
︷ ︸︸ ︷
[
∆x(t)
y(t− 1)

]

+

B̃
︷ ︸︸ ︷
[

B
0p×m

]

∆u(t)

y(t) =

C̃
︷ ︸︸ ︷

[C Ip×p]

x̃(t)
︷ ︸︸ ︷
[
∆x(t)
y(t− 1)

]

(3)
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Here, ∆x(t) = x(t) − x(t − 1) is the state variation and ∆u(t) = u(t) − u(t − 1) is the
control increment. The output of the system y(t) is unchanged, but is now expressed
with respect to the state variations ∆x(t) and not with respect to the state values x(t).
The new dynamic model (3) is used as a prediction model over a finite horizon H . This
means that the controller will use it to predict what values of the states and of the
indicators are going to be after H time steps from the current one. The MPC controller
minimizes the cost function

Jt =

H∑

i=1

([
y◦t+i − yt+i

]T
Qi

[
y◦t+i − yt+i

]
+ [∆ut+i−1]

T
Pi [∆ut+i−1]

)

,

where Qi ∈ R
p×p and Pi ∈ R

m×m are symmetric positive semi-definite weighting ma-
trices, that respectively represent the importance of the distance between the goals
and the current values and the “inertia” in changing the values of the actuators.
In particular, Qi is a diagonal matrix that contains the values of the set of weights
that can be obtained by applying Analytical Hierarchy Process (AHP) [Karlsson and
Ryan 1997], in which the stakeholders perform pairwise comparisons to prioritize the
elicited goals. This means that when not all the goals are simultaneously feasible (for
example because one conflicts with another), the controller will favour the satisfac-
tion of the goals with the higher weights. The matrix Pi captures preferences over
control parameters. When a control parameter is requested not to change its value
frequently, the assigned weight must be relatively smaller than most of the weights of
the other control parameters. In the following we will consider the weight matrix Q as
Q := Q1 = Q2 = . . . = QH , and the weight matrix P as P := P1 = P2 = . . . = PH , i.e.,
the weight matrices are considered to be constant along the prediction horizon.

The resulting MPC optimization problem can written as follows:

minimize∆ut+i−1
Jt (4)

subject to umin ≤ ut+i−1 ≤ umax,

∆umin ≤ ∆ut+i−1 ≤ ∆umax,

x̃t+i = Ã · x̃t+i−1 + B̃ ·∆ut+i−1,

yt+i−1 = C̃ · x̃t+i−1,

i = 1, . . . , H,

xt = x(t).

This formulation is equivalent to a convex Quadratic Programming (QP) problem [Ma-
ciejowski 2002]. The problem has time complexity O(H3m3) [Wang and Boyd 2010]. A
solution to the problem consists of a plan of optimal future ∆u⋆

t+i−1, i = 1, . . . , H , but
only the first one is applied, i.e., ∆u(t) = ∆u⋆

t , as we explained earlier. The new control
signal is then:

u(t) = u(t− 1) + ∆u(t). (5)

The MPC strategy assumes that the state of the system is measurable, but in many
cases this is not possible. Indeed, since there is often no correlation with physical quan-
tities, it is impossible to give a meaningful interpretation to x(t), hence it is impossible
to measure. However, based on the dynamic model (2), it is possible to estimate its
value measuring the values of y(t) and u(t). To accomplish this, we here use a Kalman
Filter (KF) that finds an estimate x̂(t + 1) of the state x(t + 1), measuring the applied
control signal u(t) and the output y(t).
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ŷ(t) = Cx̂(t)

x̂(t+ 1) = Ax̂(t) +Bu(t) +K (y(t)− ŷ(t))
(6)

Note that the variables of the KF are commonly denoted by a “hat”, i.e., x̂(k) and ŷ(k),
to distinguish them from the variables of the dynamic model (2). Based on the state
estimate x̂(t), the KF shown in (6) computes an estimate of the output ŷ(t), to measure
the difference between the predicted value ŷ(t) and the real value y(t). The value of K,
called Kalman gain, weights the discrepancy between the predicted value ŷ(t) and the
real value y(t), adjusting the dynamics of the KF [Ljung 1999]. The estimate x̂(t) can
be used, in place of x(t), to solve the optimization problem (4).

The adopted KF has a twofold functionality. First, as we just described, based on the
dynamic model (2), it computes a state estimate x̂(t) that the MPC uses to compute the
next control action. Second, it is adapting the state estimate to the actual behaviour
of the system. This is relevant for a number of reasons: the controlled system may
change its behaviour over time, there might be unpredictable disturbances acting on
the system, or the system is not following the linear dynamics of the dynamic model (2).
In all cases, the KF is adapting online the choice of the estimate x̂(t), returning a value
that is compatible with the input-output behaviour of the running system, as if it was
described exactly by the dynamic model (2) [Ljung 1999].

The block diagram for the resulting control scheme is represented in Figure 3.

MPC Eq. (5) System

KF

y◦(t) ∆u(t) u(t) y(t)

x̂(t)

Fig. 3: Reference control scheme for CobRA.

3.2. Formal guarantees

Applying Control Theory to software systems provides a set of formal guarantees about
the quality of the adaptation process [Filieri et al. 2017]. The MPC adopted in this
work belongs to a class of controllers named optimal controllers, since the computation
of control decisions is based on the solution of an optimization problem. In particular,
the MPC accounts for model predictions in order to make optimal adaptation plans
with respect to system requirements, and compliance to the requirements about the
adaptation process itself [Angelopoulos et al. 2014].

The formal guarantees for the MPC are as follows. First, it is possible to ensure that
all the goals are reached, subject to actuators constraints, i.e. there exists a value of the
actuators within the given constraints specified in the optimization problem (4) that
allow the system to reach its goals. If this is not the case, due to the optimal nature
of the controller, the MPC finds a configuration for the actuators that minimizes the
distance between the indicators and the goals. Such a distance depends on the chosen
weights for each indicator in the cost function of the optimization problem (4).

Furthermore, since the cost function accounts for a time horizon, it is possible to
guarantee that the convergence time is minimal. The dynamic model (2) relates control
parameters and indicators including the dimension of time. Therefore, the adaptation
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mechanism is able to drive the system to the goals as soon as possible, as specified
by the cost function of the optimization problem (4). Moreover, the optimization prob-
lem (4) can be easily extended in order to account for additional constraints, such as,
for example, constraints on the indicators [Camacho and Bordons 2004]. AwReqs and
AdReqs impose such constraints over the elicited goals and the adaptation process
respectively which must be taken into consideration when a new adaptation plan is
produced.

The MPC formulation is well suited for addressing also real-time issues and have
been applied to various domains, such as aircraft control [Qin and Badgwell 2003;
Hartley et al. 2014a]. Since the proposed solution requires a solution to an optimization
problem at each control instant, it is critical to discuss possible such real-time issues.
In many cases, in fact, the time required for computing the value of the next control
action might be longer than the time between two subsequent control actions. In order
to overcome this challenge, there is significant literature in the control community
on how to implement fast solvers [Jerez et al. 2012; Giselsson 2014], especially for
embedded systems [Jerez et al. 2014], possibly co-designing also a dedicated hardware
for the solution in case of time-critical systems [Hartley et al. 2014b]. An overview on
the matter can be found in [Zeilinger et al. 2014].

In many cases, such advanced algorithms are not required when dealing with soft-
ware components, and for the most time-critical applications some modification to the
control problem can help in reducing the complexity. For example, one way to reduce
the complexity is to set ∆ut+1 = ∆ut+2 = . . . = ∆ut+H−1 = 0, and let the optimization
problem decide only the value for ∆ut, i.e., the one that will be actually applied to the
system. This modification reduces the complexity to O(m3).

Another way to deal with real-time issues is to exploit simple properties of interior
point algorithms. In fact, the solution is obtained in a fixed amount of steps with an
iterative method. The current solution is always a suboptimal, yet feasible solution to
the optimization problem. This means that if the iterative method did not converge
before a new control action is required, it can be forced to stop and return the current
sub-optimal solution. This allows the controller to fulfil real-time deadlines.

Finally, another possibility to deal with real-time deadlines is exploiting the proac-
tive nature of the MPC. As we mentioned earlier, the MPC is computing at each itera-
tion step a plan of future actions ∆ut+i−1, i = 1, . . . , H , then according to the receding
horizon principle, only the first one is applied, i.e., ∆u(t) = ∆u⋆

t . Assuming that at the
next control instant, the solver takes more time to converge and that a new control
action is required before the optimal solution is found, one can store the previously
computed plan and apply the second control action, i.e., ∆u(t+ 1) = ∆u⋆

t+1. This is ob-
viously suboptimal, since it neglects the last information about the measured output,
but it is able to fulfil the real-time deadlines.

4. APPROACH

Our approach involves two phases: design and runtime. During the first phase all
models required for the MPC controller’s synthesis and tuning are elicited, whereas
during the second phase the controller is deployed in our adaptation framework and
adjusts the control parameters of the target system when required.

4.1. Design phase

Our approach starts with the elicitation of all kinds of requirements about the target
system. When all goals are refined, AwReqs are assigned to those that are considered
most critical and prone to failure. An AwReq ARi defines a reference goal y◦i (·) for the
system’s output. For instance, Table I enlists all the reference goals for the Meeting-
Scheduler exemplar.
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Table I: Reference goals

AwReq y◦(·)
AR1 y◦1(·) = 85
AR2 y◦2(·) = 100
AR3 y◦3(·) = 100
AR4 y◦4(·) = 75
AR5 y◦5(·) = 2
AR6 y◦6(·) = 90
AR7 y◦7(·) = 90

As we mentioned earlier, the constraints imposed by AwReqs are not always feasi-
ble or might become infeasible in the future. For instance, prices of hotel rooms rise
every year and consequently I1 will fail more often as time passes. In addition, during
summer prices are usually higher. Hence, stakeholders could accept a lower success
for I1 (in other words y◦1(·) < 85). At this step of the design phase, the domain ex-
perts, along with the stakeholders, analyze and evaluate such conditions and specify
EvoReqs for the system-to-be. The EvoReqs operations defined for the AwReqs of the
Meeting-Scheduler are presented in Table II.

Table II: EvoReqs operations

AwReq EvoReq operation

AR1
1. Relax(AR1,AR1′ 75)
2. Strengthen(AR1,AR1′ 85)

AR2 Relax(AR2,AR2′ 90)
AR3 Relax(AR3,AR3′ 90)

AR4
1. wait(3 days)
2. Relax(AR4,AR4′ 75)

AR5 Replace(AR5,AR5′ 3)
AR6 wait(3 days)
AR7 wait(2 days)

When summer season begins and hotel prices are higher, the first EvoReq operation
is triggered, relaxing the reference goal from 85% to 75%. The second EvoReq operation
is triggered when summer season ends and the threshold is restored to its previous
value. Similarly, when AR2 and AR3 fail for more than 2 days in a row, the reference
goals are relaxed for a week2. In case of AR5, when goal G1 tends to fail more than
2 times/week, the constraint is permanently replaced by 3 times/week. Finally, when
AR6 and AR7 fail for more than 2 days the adaptation mechanism ignores them for 3
and 2 days respectively.

Next, by applying AHP, weights are elicited for each indicator to capture their rel-
ative importance. As a rule of thumb, indicators assigned to functional requirements
have higher priority compared to non-functional ones. These weights are the values of
matrix Q of the cost function. The controller, through the optimization function, finds
an equilibrium for every goal, putting more effort on fixing the most important ones.
As for the control parameters, their weights are empirically elicited assigning lower
weights to the control parameters we want to be tuned less often. These weights are
the values of matrix P of the cost function. In our exemplar, for instance, increasing

2The relaxation duration and the triggering condition are prescribed by the stakeholders.
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the number of rooms RfM is preferred over HfM since it is a less costly solution, does
not require any authorization and, therefore, takes effect immediately. The elicited pri-
orities for the indicators of Meeting-Scheduler and the weights for control parameters
as shown in Table III and Table IV, respectively.

Table III: Indicator Priorities

Indicator Priority
I1 0.15
I2 0.3
I3 0.3
I4 0.06
I5 0.2
I6 0.05
I7 0.04

Table IV: Control Parameter weights

Control Parameter Weight
FhM 1
MCA 1
RfM 1.2
HfM 0.6
NoR 1.2
V P1 0.8
V P2 1.4

The last set of requirements to be elicited are the AdReqs. These requirements im-
pose constraints to the adaptation process itself. For the particular case of MPC, an
AdReq specifies the receding horizon of the controller and, consequently, how far in
the future the adaptation plan should target. Other AdReqs might refer to the magni-
tude of allowed change of control parameters. For instance, HfM cannot be increased
more than 5 units each time.

Finally, a quantitative model such as the one in Equation 2 must be derived. Given
the absence of laws of nature over this particular domain, we ran a long simulation
of the meeting scheduler system during which the control parameters change often
and both control input and output are recorded. With the aid of Matlab and System
Identification toolbox3 we estimate the analytical model of the system. Even if the
system-to-be cannot be simulated accurately, the model can be improved later on, when
the real system is deployed, by means of a learning mechanism during the runtime
phase.

4.2. Runtime phase

When the design phase is completed and the system is implemented, the CobRA
(Control-based Requirements-oriented Adaptation) framework can be deployed and
play the role of the adaptation mechanism. CobRA, depicted in Figure 4, has five main
components. The monitors and the actuators that integrate CobRA with the target sys-
tem are application specific and must be implemented by the designers of the system.

3http://it.mathworks.com/products/sysid/?requestedDomain=www.mathworks.com
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Fig. 4: Scheme of the CobRA framework.

Requirements repository. This repository stores all the models produced during
the design phase and provides information to the other components of the framework
when requested.

Evolution manager. This component analyzes the logs provided by the monitors
in order to identify conditions that would trigger EvoReq operations. If a requirement
is replaced either permanently or temporarily, it updates the requirements repository.

Adaptation manager. This component translates AdReqs to constraints for the
optimization problem of Equation 4. Such constraints are related to maximum allowed
decrease or increase of a control parameter in a single step and the weights of all
indicators and control parameters (matrices Q and P ).

Learning component. Black-box system identification does not always provide
precise models about the system’s behaviour. Therefore, we include in our framework
a learning component that, based on the applied changes and the outcome values of
indicator that occurred as a result of these changes, revises the control law to adapt to
changes of the behaviour of the system. More specifically, this component is an imple-
mentation of the Kalman Filter as described in the previous section.

MPC controller. The details of this component have been discussed in the previ-
ous section. Summarizing its functionalities, the MPC controller requests the require-
ments repository for the reference goal y◦(·) of each indicator monitored. It then cal-
culates the distance of each indicator from its respective reference goal and composes
an adaptation plan that minimize every distance taking into account the indicator pri-
orities in order to restore equilibrium, subject to the given constraints on the control
parameters. The plan includes changes to control parameters in a predefined horizon.
For example, the indicators of the Meeting-Scheduler are evaluated daily and the plan
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includes values for control parameters so that indicators minimize their distance from
y◦(·) for the next three days. If two days after the plan is applied the result is not what
was expected, e.g., because the number of meetings constantly grows, the controller
produces a new plan which tries to anticipate future failures in a receding horizon
fashion.

The iterative adaptation process with CobRA includes the following steps:

— Step 1: The monitors collect the measurements of all the indicators of the system;
— Step 2: The Evolution Manager examines if any event that would trigger an EvoReq

operation is present and, in that case, updates the evolved requirement in the Re-
quirements Repository;

— Step 3: The Adaptation Manager provides the MPC controller with the weights for
the indicators and control parameters, as well as constraints for the optimization
problem;

— Step 4: The Learning Component provides the MPC with a corrected model of the
system based on the recent measurements;

— Step 5: The MPC controller given the current reference goals provided by the Re-
quirements Repository, and the corrected model produces a revised adaptation plan
with the target each indicator value to converge to the reference goal within the pre-
diction horizon;

— Step 6: The actuators apply the first step of the plan to the system.

It is important to mention that if an a new requirement is introduced or an older
one is removed the design phase must be repeated in order to derive a new analytical
model.

5. EVALUATION

In the previous sections, we provided the basic background for the structure and func-
tionalities of an MPC controller. We also presented the CobRA framework, which ex-
ploits stakeholder goals and uses an MPC controller to compose dynamically adapta-
tion plans when requirements are not met. In this section we evaluate and compare
CobRA with Zanshin [Souza et al. 2012], which also has stakeholder requirements as
its baseline for adaptation and adopts concepts from Control Theory.

5.1. Methodology

We have conducted our experiments with a simulation of the Meeting-Scheduler ex-
emplar4 another for the E-Shop exemplar5, both implemented in Python and ran on
a computer with an Intel i5 processor at 2.5GHz and 16GB of RAM. We stress tested
both our simulations for long periods while modifying all control parameters in order
to cover all the range of their potential values.The result of this process is a log file
for each application with all the values of the inputs and outputs of the system at
every step. Then, we executed a Matlab procedure from the Matlab System Identifi-
cation Toolbox in order to estimate an analytical model that describes each system’s
behaviour as it is described in Section 2.

After acquiring the system’s quantitative model, we stress-tested the simulation by
modifying various environmental parameters such as the system’s workload. At this
phase, we tune the controller by modifying the weights of the outputs and the inputs.
If an indicator, especially a not very important one, constantly overshoots, its weight
must be reduced. Similarly, there is a control parameter that we do not wish to change
often, such as the number of hotel rooms available, its associated weight is increased.

4https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting scheduler v2.git
5git@gitlab.com:konangelop/E-Shop-TAAS.git
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As a rule of thumb the user must keep the weight values in the same magnitude. More-
over, the order of the modified weights of the indicators must be compliant to the one
the stakeholders provided. This process is iterative and requires multiple executions
of the simulation. When the MPC controller reaches a desired behaviour, the tuning
phase is completed.

Zanshin, as opposed to CobRA, does not involve any quantitative models, but only
qualitative relations between inputs and outputs based on human expertise. For ex-
ample, it is known by the domain expert that by increasing MCA the value of I3 in-
creases. For our experimentation we used the default adaptation algorithm of Zanshin
as described in [Souza et al. 2012]. When a failure arrives, Zanshin randomly selects
a control parameter that will improve this failure and increases or decreases it by a
predefined amount. Therefore, we provided such qualitative information to Zanshin
based on a previous study of the Meeting-Scheduler [Angelopoulos et al. 2014; Souza
et al. 2011].

For the evaluation and the comparison of the two frameworks, we put the simu-
lated systems under a stress-test and we compare the behaviour of the outputs in
each case. We also compare the values of the the cost-function described in Section 3
through time for both frameworks, comparing which minimizes it most. The selection
of Zanshin for the purposes of our evaluation is based on two reasons. First, it uses the
same requirements-based monitoring mechanism (AwReqs) as CobRA and, therefore,
customization of the adaptation problem was not required. Second, Zanshin decides
adaptation plans based on qualitative information provided by domain experts, while
CobRA uses an automatically derived quantitative model that captures the dynamics
of the system.

5.2. Meeting Scheduler

The Meeting-Scheduler application receives daily a number of meeting requests. Once
the timetables are collected, a date for each meeting must be found. The result of the
finding date process is pseudorandom, given that it depends on control and environ-
mental parameters that change based on stochastic processes we have encoded in the
simulation. For instance, as the availability of the participants drops, the more often
the goal Find Date will fail. Similar pseudorandomness has been encoded for other
goals such as Find Room and High Participation. For our experiment, we run the sim-
ulation for 60 steps (simulation days), during which the number of meeting requests
gradually increases and then decreases along with participants availability. Due to
space limitation, we present the results only for indicators I1–I4.

Figure 5 depicts the values of the indicators at each step of the simulation. In partic-
ular, we run the simulation using multiple different values for the horizon of the MPC.
As the number of meetings grows the cost for the system increases as well, resulting
in a decrease of indicator I1. However, CobRA manages to recover by preferring local
rooms over hotel rooms as can be seen in Figure 6, whereas Zanshin fails to recover
from the failure. Moreover, CobRA adapts faster for higher values of the horizon. This
is also captured by Figure 6, where the pace of decreasing hotel rooms and increasing
local rooms is faster for higher values of the MPC’s horizon. Concerning indicator I2,
CobRA converges almost immediately, whereas Zanshin requires considerably more
time. The reason of the delay is that Zanshin increases its control parameters by a
fixed amount rather than basing it on the magnitude of failure as CobRA does. In the
case of I3, the human expertise provided to Zanshin matched the identified relation
we derived experimentally for CobRA, since the two frameworks achieved almost iden-
tical values. Both frameworks decreased the value of FhM which results in decreasing
the participation if the punctuality of the participants drops. This is what happens the
period between the day 30 and 40 which causes Zanshin to fail reaching the expected
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Fig. 5: Indicator measured values for the meeting scheduler exemplar.
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Fig. 6: Control parameter values for the meeting scheduler exemplar.

threshold for indicator I4. On the other hand CobRA responds to the decrease of punc-
tuality by increasing NoR more than the latter. Finally, for I2–I4 the impact of the
horizon value is not significant since, these indicators are changing at a slower pace
than I1 and therefore, even with a short prediction horizon the system adapts in the
same manner.

CobRA handles the adaptation problem, i.e. continuously search for values for the
system’s control parameters in order to minimize all control errors with respect to the
priority of the associated indicator and the effort required to change these values, as a
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multi-objective optimization problem. Therefore, as a metric to evaluate our approach

we use the the cost-function Ĵ(t) = (y◦(t) − y(t))TQ(y◦(t) − y(t)) + ∆u(t)TP∆u(t). The
value of this cost function is calculated from the measured values of the indicators and
the changes performed over control parameters. In Figure 7 we present the individual
value of the cost function at each step of the simulation, at the top, and the cumulative

cost
∑

t Ĵ(t), at the bottom. Ĵ(t) captures business value loss because of failing indica-
tors and adaptation costs for changing control parameters. CobRA minimizes more at
each step of the cost function and by the end of the simulation it produces more sta-
ble results. On the other hand, Zanshin’s adaptation results in higher losses at most
steps, while the accumulated value of the cost-function is growing monotonically. Fur-
thermore, for higher values of the horizon, CobRA presents better results compared to
short horizons by minimizing more the cost-function. In this example, we can see that
different values of the time horizon provide some differences in the obtained system
behaviour. In particular, we can observe that for higher values of the horizon, the sys-
tem exhibit better performance. Recall, however, that the solution of the optimization
problem for the MPC formulation scales as L3, and very high values of the prediction
horizon might lead to intractable computation times. When tuning the controller one
then needs to find a tradeoff between computation time, and obtained performance,
also considering that the cost associated with the minimized cost function monotoni-
cally decreases while increasing the prediction horizon. The minimization of the cost
over the simulation is highlighted in the cumulative cost showed in the bottom graph
of Figure 7.
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Fig. 7: Adaptation cost for the meeting scheduler exemplar associated with the cost
function J for the considered adaptation strategies. The top graph shows the instanta-
neous cost, while the bottom graph shows the cumulative cost.

5.3. E-Shop

The E-Shop application consists of three simulated components: a) a Load Balancer;
b) a server pool; and c) a traffic generator. The traffic generator produces a trace of ar-
rivals per minute for the entire duration of the simulation, which is decided by the user.
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Every minute the Load Balancer receives new arrivals and distributes them equally
to the active servers of the pool. The purpose of an E-Shop is to sell and advertise
products (G1 and G2 respectively), as depicted in Figure 8. Satisfying G1 requires to
handle requests (G3) for loading the E-Shop’s page, provide a product search function-
ality (t4) that allows customers to better navigate through the catalogue and display
the selected products (G5) either including multimedia information, e.g. videos (t2), or
showing only textual description (t3). Next, the customer orders must be handled (G4)
by receiving the payment (t5), shipping the order (G6) and printing an invoice (t8).
For shipping an order, a courier company must be selected (t5), provide tracking to the
customer (t6) and eventually deliver the order (t7). Finally, the E-Shop also displays
ads (t9) and sends advertisement e-mails to its customers (t10).
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Fig. 8: E-Shop goal model.

We have identified seven AwReqs for the E-Shop application. First, the servers must
never fail to load the websites page (AR1). Next, the system must display products
with multimedia information ten times more than in textual description only form
(AR2) and the order delivery must be successful 98% of the times (AR4). Finally, there
are three Optimization AwReqs: minimize the system’s response time (AR7); maximize
the number of sales (AR5); and minimize the operational cost (AR6). The thresholds
of the reference goals related to these AwReqs are presented in Table V whereas the
priorities of their associated indicators are presented in Table VI.

To control the indicators of our system we elicited five control parameters. The num-
ber of virtual servers (NoS) deployed which host the content of the E-Shop website and
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Table V: Reference goals

AwReq y◦(·)
AR1 y◦1(·) = 100
AR2 y◦2(·) = 10
AR3 y◦3(·) = 0
AR4 y◦4(·) = 98
AR5 y◦5(·) = 0
AR6 y◦6(·) = 0
AR7 y◦7(·) = 0

Table VI: Indicator Priorities

Indicator Priority
I1 0.1
I2 0.05
I3 0.15
I4 0.1
I5 0.05
I6 0.15
I7 0.45

the number of cores (NoC) assigned to each of them are two of these parameters. The
response time, the operational cost and the probability of failing to load the website’s
page are highly influenced by NoS and NoC. The response time is also influenced
by the number of ads (NoAds) that are displayed on the webpage, since they pose a
performance overhead. Another control parameter is the major courier company (Cr)
the E-Shop chooses for assigning the 75% of its orders whereas the remaining 25% is
equally distributed to other companies. In our application we have three courier com-
panies, each of them having a different level of reliability as it concerns the success of
delivery and different cost (the higher the cost, the more reliable the courier is). Our
last control parameter is V P1, i.e., the choice between showing multimedia content or
only textual information for the product description. Using continuously multimedia
content might guarantee the satisfaction of AR2 but when the website is under stress
it has negative impact on the response time. Table VII presents the weights of the con-
trol parameters, derived during the tuning phase of the controller. Finally, we elicited
to EvoReqs, presented in Table VIII for relaxing the threshold of AR4, during holiday
periods, when all courier companies are dealing with high workload and strengthening
it back to its initial value when these periods end.

Table VII: Control Parameter weights.

Control Parameter Weight
NoS 1
NoC 0.8
NoAds 1.2
Cr 0.6
V P1 0.8

For our evaluation we run twice our the E-Shop for 800 simulation minutes with
simulated traffic as presented in Figure 9. The first time we applied CobRA and the
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Table VIII: EvoReqs operations.

AwReq EvoReq operation

AR4
1. Relax(AR4,AR4′ 90)
2. Strengthen(AR1,AR1′ 98)

second Zanshin. We monitored AR6 and AR7 that are related to the optimization goals
Minimize Cost and Maximize Performance respectively. The control parameters used
for optimizing these goals are NoS, NoC, NoAds and V P1 which takes the value zero
if textual mode is selected or the value one if multimedia content is served. In addition,
the virtual servers require two to three minutes for deploying. There are two AdReqs
that constrain our problem a) the NoS > 4 and b) NoC > 8. In Figure 10 are presented
the output results of both frameworks for each goal and in Figure 11 the corresponding
inputs values. The indicator of AR7 is measured through the system’s response time
(milliseconds) whereas the one of AR6 through the operational cost (dollars/minute).
In Table VI it is shown that the system’s performance is more important than the cost
and therefore, CobRA when the traffic increased, reacted immediately by adding more
servers and cores, while removing ads and switching to textual mode. On the other
hand, Zanshin failed to deal with with the increased traffic since it tried interchange-
ably to minimize cost and response time and as a result adaptation actions at each
step cancelled the effect of adaptations in the previous one. Our observations are also
confirmed by Figure 12 where the cost function has considerably lower value in the
case of MPC compared to Zanshin.

During our trials we did not succeed in identifying an accurate model that would
include all the inputs and outputs of our system. The reason is that some goals and
consequently the related output, such the success rate of order deliveries (AR4) and
the maximization of customer satisfaction (AR3) vary much more slowly than response
time and cost. In our future work we plan to deal with this problem by grouping the
goals based on how fast their values change and construct separate controllers for each
group. Each controller of course needs to be aware of the adaptation actions produced
by the others. This type of control is known as Hierarchical Control [Findeisen et al.
1980].
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Fig. 9: Active visitors per minute for the performed experiments.

5.4. Discussion

From the experimental results we can safely claim that CobRA can produce adapta-
tion plans that allow the system to recover faster from failures while maintaining an
equilibrium among conflicting requirements. Moreover, our framework outperforms
the qualitative adaptation of Zanshin in most cases and confirms that Control Theory
can be applied to generic software systems such as the Meeting-Scheduler exemplar.
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Another notable feature of CobRA is that it managed to adapt even if the underlying
system has nonlinear behaviours. The simulators we used, in fact, include also nonlin-
ear relationships between inputs and outputs, to obtain more realistic behaviours. In
practice, most systems have input-output relations that are nonlinear and, therefore, it
is important for an adaptation mechanism to handle model imperfections efficiently. In
particular, the Kalman Filter contributes to correcting the model as the system runs,
allowing MPC to make more accurate predictions.

For both our simulations, a linear model was sufficient for predicting the system’s
behaviour. However, this might not be always the case. For systems with nonlinear
dynamics, either tailored models can be used [Papadopoulos et al. 2015], or more ad-
vanced system identification techniques are available [Ljung 2010; 1999], and nonlin-
ear MPC formulations can be adopted [Allgöwer and Zheng 2000]. As future work, we
intend to evaluate further our approach using more complex systems, identify their
particularities and apply variations of MPC to deal with them.

The experiments conducted that fed the identification procedure, were designed sim-
ilarly to [Filieri et al. 2014], i.e., they required to span the actuator values over their
range. Due to the combinatorial nature, the experiment may take quite long in order
to test all the possible combinations. This issue can be mitigated, since it is sufficient
to select a subset of the values of the control parameters’ domain. In practice, such
an approach provides a viable way to perform experiments in a reasonable amount of
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Fig. 12: Adaptation cost for the E-Shop exemplar associated with the cost function J
for the considered adaptation strategies. The top graph shows the instantaneous cost,
while the bottom graph shows the cumulative cost.

time. Notice that this issue appears only during the offline identification phase, and
not when the decision has to be taken at runtime. The same issue appears in other
adaptation strategies, but at runtime [Moreno et al. 2015; Moreno et al. 2017], where
the presence of discrete variable makes the formulation of the optimization problem
generally NP-hard.

A main drawback of CobRA is that it requires an accurate simulation or historical
data of the system in order to derive the analytical model it needs to operate. This is
not always possible since for software systems there are no methodologies yet, as for
physical systems, to guide system designers as they simulate a model that can produce
data sufficiently similar to those of the real system. It is out of the scope of this paper
to evaluate the accuracy of a simulated system, metrics that will allow designers to
understand how realistic is their simulation are crucial for the applicability of our
framework. Therefore, in our future work we plan to investigate new methodologies
for producing realistic simulations for software systems.

Another challenge of our approach is tuning the Kalman filter noise covariances and
the MPC cost weights which is an empirical process. In the literature of Control The-
ory, this is an open problem as studied by [Tran et al. 2014; Ionescu et al. 2016; Liu and
Wang 2000]. In addition, the automatic tuning of the controller often depends on the
physical laws that describe the model of the system. However, in our work, the model
is identified from data produced by a simulation, thus just an approximation of the
actual dynamics, which is the reason that we apply a Kalman filter. The Kalman filter
covariance matrix is selected just as an initial guess, but it is adapted online on the
basis of the actual behavior of the system. Therefore, the selection of such parameters
affects only the initial transient. As it concerns the weights of the optimization prob-
lem, we use AHP to elicit initial values and then, while performing trials, we refine
them in order to trade off performance and robustness of the controlled system.

Another open challenge for our approach is the automation of the design and imple-
mentation of controllers [Tran et al. 2014; Ionescu et al. 2016; Liu and Wang 2000].
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However, developing methodologies for software engineers, as well as establishing
guidelines for tuning the MPC parameters and facilitating the controller design, are
part of our future research agenda. Another limitation of CobRA is that when not all
goals change at the same pace an accurate analytical model cannot be identified easily
and Hierarchical Control is required.

Finally, it is worth noting that some control parameters of our exemplar, such the
number of rooms, are discrete, but according to Equation 1 control parameters are
continuous variables. In Control Theory this problem is known as the actuation design
problem. There are two different approaches to handle it: a) using rounding of the
continuous variable computed by the MPC; and b) adopting a Pulse Width Modulation-
like policy [Maggio et al. 2012]. The second approach, during the period between two
adaptations, applies interchangeably the rounded-up and the rounded-down value of
the continuous variable, which makes it not suitable for our exemplar and therefore
we adopted the first one.

6. RELATED WORK

In the field of self-adaptive systems, a variety of approaches uses optimization tech-
niques in order to accommodate conflicting requirements during the adaptation pro-
cess. Rainbow [Cheng et al. 2006] uses Utility Theory: the adaptation strategies are
defined at design time based on human expertise and the optimal one is selected at
runtime to maximize the over utility of the system. In the same line of work, [Cámara
et al. 2015] propose the use of Probabilistic Model Checking in order to compose strate-
gies dynamically. Our approach differs to theirs as they require precise knowledge of
how each control parameter of the system influences its output, such as adding one
server improve response time by one second. In systems with dynamic environments
such relations might change over time and are not always linear. CobRA’s MPC uses
the derived analytical model to reason about the impact of changing a control parame-
ter instead of human experience and overcomes non-linearities by applying a Kalman
Filter.

[Zoghi et al. 2014] propose the use of Search Based Optimization. This approach,
similarly to ours, provides a set of control parameters elicited using a goal model. Then,
control parameters that affect non-functional requirements in the same manner are
ranked by the designers of the system and the controller uses a search algorithm to find
a solution that maximizes the total obtained utility. Human expertise can contribute
to improving software adaptation by making optimal selections. However, the use of
analytical models as the one CobRA uses allow better precision and performance of the
adaptation process.

[Sykes et al. 2010] assign utility properties to all components of the system. Then,
based on the component availability, the satisfaction of non-functional requirements
and the component dependencies, the adaptation mechanism selects an architectural
configuration. Compared to our work, the dependencies among control parameters can
be modelled as constraints in the optimization problem that has to be solved by the
MPC controller each time the system must adapt.

Another Requirements-based and control theoretic approach is presented in [Chen
et al. 2014]. In this work, the authors propose the use of a PID controller that finds
a different configuration over a goal model that captures the system requirements.
A SAT-solver is used to find the best configuration based on goal preferences. When
soft-goals are not met, the controller tunes the values of the assigned preferences so
the SAT-solver can find a better configuration. Even though the approach offers an
interesting way of controlling the goal selection process, the output evaluation is lim-
ited to a range of values Satisfied-Denied. In our approach we monitor the success of
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our requirements using AwReqs and indicators that provide measurements of higher
granularity and allow more precise adaptation.

Recently, an automated solution to introduce the use of control for software systems
in a seamless way was proposed in [Filieri et al. 2014]. This solution treats Single In-
put and Single Output (SISO) systems by varying a single input and measuring the
output. The solution builds on a simple and qualitative dynamic model which is iden-
tified online. More precise, yet complicated models can be used at the cost of a higher
overhead at runtime [Aleti et al. 2013]. The solution in [Filieri et al. 2014] works only
for SISO systems, while the case of Multiple Inputs and Multiple Outputs (MIMO)
cannot be addressed within that framework. A possible way to deal with MIMO sys-
tems is treated in [Filieri et al. 2015] where the MIMO control is obtained as an au-
tomated synthesis by composing SISO controllers in a hierarchical way. The approach
presented in [Filieri et al. 2015] is a more modular approach with respect to the one
proposed in this paper. However, it has the limitation that the influence of different
control parameters on the indicators is not included in the model and it is treated only
coupling a single control parameter to a specific indicator. The approach presented in
this paper includes all the mutual influences in the single model used for the control
design. This can be exploited when deciding the values of the control parameters in
order to obtain a better adaptation plan.

Additionally, the authors in [Shevtsov and Weyns 2016] formulate the conversion of
the continuous references into discrete settings as a linear optimization problem. The
proposed approach avoids partitioning actuators into disjoint sets and allows actuation
to minimize a cost function (e.g., considering the priority of different actuators), but it
does not provide an explicit means for handling conflicting goals when the satisfaction
of one makes others infeasible.

Finally, in the domain of Cloud Computing, variations of MPC have been applied
extensively. In [Gaggero and Caviglione 2015; Kusic et al. 2009; Lakew et al. 2017] the
authors apply look-ahead control to improve the energy consumption and the perfor-
mance of the cloud. Similarly, in [Ghanbari et al. 2014] MPC is applied to improve the
replica placement mechanism and deal with multiple Service Level Objectives. These
approaches offer significant improvements to their respective applications, although
are highly customized to the specific problem they are solving. On the other hand, our
approach is more generic and therefore easier for software engineers that have no ex-
pertise on Control Theory to use it. Moreover, in our work we integrate control design
and Requirements Engineering in order to provide a guideline on how to integrate
MPC with the development of self-adaptive software.

7. CONCLUSIONS

The main contribution of this paper is to adopt the concept of MPC for the design of
self-adaptive software systems. To accomplish this, we propose a framework, named
CobRA, that integrates MPC components with previous work on software engineering
for self-adaptive systems. We also provide guidelines on how to tune the variables of
the MPC controller for better results during the adaptation process.

The distinct feature of CobRA compared to other approaches is the use of an analyt-
ical model to capture the relationship between the control parameters and the output
of the system. This model can accurately predict the system’s behaviour and allows
CobRA to react to environmental changes and dynamically compose adaptation plans.
The analytical model is the product of an automated system identification process, cap-
turing relations that human experts might not be aware of. We evaluated CobRA us-
ing two simulations one for the Meeting-Scheduler exemplar and one for an E-Shop to
compare our the Zanshin framework. The results of our evaluation show that control-
theoretic concepts can be very effective in producing adaptation plans for software
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systems and most of the times provides better results than human experience-based
approaches.

Our approach needs to be further evaluated with more and larger case-studies and
compared with more adaptation frameworks other than Zanshin. Moreover, we plan
to apply Hierarchical Control in order to overcome difficulties of controlling goals that
their level of satisfaction changes at a different rate.
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