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ABSTRACT
Modern software should satisfy multiple goals simultaneously: it
should provide predictable performance, be robust to failures, han-
dle peak loads and deal seamlessly with unexpected conditions and
changes in the execution environment. For this to happen, software
designs should account for the possibility of runtime changes and
provide formal guarantees of the software’s behavior. Control the-
ory is one of the possible design drivers for runtime adaptation,
but adopting control theoretic principles often requires additional,
specialized knowledge. To overcome this limitation, automated
methodologies have been proposed to extract the necessary infor-
mation from experimental data and design a control system for
runtime adaptation. These proposals, however, only process one
goal at a time, creating a chain of controllers. In this paper, we
propose and evaluate the first automated strategy that takes into
account multiple goals without separating them into multiple con-
trol strategies. Avoiding the separation allows us to tackle a larger
class of problems and provide stronger guarantees. We test our
methodology’s generality with three case studies that demonstrate
its broad applicability in meeting performance, reliability, quality,
security, and energy goals despite environmental or requirements
changes.
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1 INTRODUCTION
The growing complexity and dynamic unpredictability of computer
systems has motivated the design and implementation of a new
class of self-adaptive software systems [49]. Such software auto-
matically reacts to changes in both the operating environment and
application behavior to ensure that certain high-level goals are met.
The development of self-adaptive software creates, however, a huge
challenge: designing software systems that are robust in the face of
dynamic behaviors we are not aware of at design-time. To face the
challenge, software systems are often highly configurable [58], and
can often modify their behavior during runtime.

Control theory provides a vast array of tools for designing ro-
bust adaptive systems that operate with formal guarantees [3, 5].
This combination of robustness and formal grounding has led to
increased interest in developing self-adaptive software based on
control theoretic techniques [46]. While several ad hoc approaches
to control design have arisen, recent work proposes a general, au-
tomated methodology for creating formally robust software con-
trol [15]. However, this first approach can handle only a single,
measurable goal (e.g., performance or reliability, but not both).

Modern software, however, must meet multiple, often conflicting,
goals. For example, software for cyber-physical systems must meet
performance, energy, and security requirements simultaneously.
Very little research has addressed automating the design of self-
adaptive software that meets multiple goals. A first step proposes
a hierarchy of single-goal controllers [16, 24]. In this approach,
goals are ordered. Higher priority goals are met first using one
set of actuators (or tunable software parameters), and then those
actuators are removed from consideration for the controllers that
manage lower priority goals. Priorities can be set based on user
preference. The actuators are partitioned into disjoint sets, with
fewer actuators available to meet lower priority goals.

Despite being one of the first solutions to offer multidimen-
sional control, this hierarchical approach has two limitations. First,
due to the partitioning of actuators, the controller may not reach
low-priority goals even when they are feasible. A combined ap-
proach that considers the effects of concurrent actuation, however,
should reach any set of feasible goals. Second, the hierarchical ap-
proach only provides formal guarantees for the highest priority
goal, others are not guaranteed. Thus, there is a need for a formally
verifiable methodology to automate the design of self-adaptive soft-
ware that meets multiple goals using multiple actuators. Finally,
the approach in [16, 24] requires actuators to assume only a finite
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number of values. While continuous actuators can be automatically
discretized [16], the complexity of control may grow exponentially,
limiting its applicability when timely decisions are required or
when the available computational capacity is limited (e.g., IoT).

We therefore propose a novel automated strategy—based on mul-
tivariable control—that simultaneously uses all available actuators
to meet all goals. Unlike prior work, our approach allows users to:
• Reach sets of goals that are unreachable with the prior hierar-
chical approach, and in fact, to reach any set of feasible goals.
• Identify the largest subset of goals that are reachable with the
available actuators. Additionally, users can express desires like
controlling the largest subset of goals that contains specific non-
deniable objectives; e.g., finding the largest set of reachable goals
where request latency is below 0.1 seconds.
• Shape the software’s dynamic behavior by specifying a cost
function to be optimized, while prioritizing the goals based on
their relevance. For example, users may prefer upgrading an
existing virtual machine instead of starting up a new one.
• Provide faster convergence to goals after system perturbation.
The cascaded approach determines an actuator setting for each
goal, waits for that goal to be reached, and then addresses
the next goal. In contrast, the multivariable controller sets all
actuators simultaneously, offering much faster convergence to
the goals and response to environmental fluctuation.
• Model and exploit the mutual dependencies that exist among
the actuators and goals. Instead of considering partitions of
actuators one-by-one, we model all the combined effects and
exploit them to obtain more precise and efficient control.
• Limit the identification time needed for the system design. In-
stead of testing all possible values for different actuators during
the learning phase, we only need to test random switches from
the minimum to maximum value for each actuator. The length
of the initial model identification phase is then greatly reduced,
becoming proportional to the number of actuators and not to
the number of permutations of all the possible actuator values.
• Tune the tradeoff between control overhead and optimality of
the actuator settings with respect to the cost function. This
tunability allows users to construct solutions with acceptable
overhead, whereas no prior control synthesis approach supports
user adjustable overhead.

We demonstrate the advantages of the proposed approach through
three case studies developing self-adaptive software including: a
video encoder, a secure radar system, and a dynamic service binder.
We use case studies from prior work to highlight the additional
capabilities proposed in this paper. The remainder of this paper is
organized as follows. Section 2 compares the approach presented
in this paper to other automated methodologies for automated
multi-concern control. Section 3 presents the technical details of
the proposed approach and the Section 4 discusses the formal guar-
antees that can be given using the proposed strategy. Section 5
shows experimental evidence of how the proposed strategy works
and Section 6 concludes the paper.

To foster future research and enable comparison with our ap-
proach, we published the source code for our experiments and to
generate the control strategies used in the remaining of this paper1.

1http://www.martinamaggio.com/papers/fse17/

2 RELATEDWORK
Modern software systems must be robust to frequent, unpredictable
changes to their execution environment, users, and requirements.
Self-adaptive software adjusts its behavior at runtime, withstand-
ing external changes as they are detected, or even proactively
avoiding critical situations [5, 9, 33, 51]. One great challenge of
self-adaptation is ensuring its effectiveness and dependability [13,
19, 57]. Control theory has defined a variety of techniques for
controlling the behavior of physical plants, and its formal frame-
work serves as a basis for a variety of software adaptation mecha-
nisms [8, 12, 17, 18, 23].
Control of software systems. Recent surveys capture the cur-
rent state-of-the-art applying control-theory to software applica-
tions [17, 46, 59]—from controlling web server delays [38], to data
service management [10], resource allocation [2, 26, 27, 35, 47], op-
erating systems tuning [30, 40, 45], and energymanagement [25, 41].
Some of these systems use automata-based formalisms to abstract
software’s behavior and temporal logic to specify some of its re-
quirements [9, 51], while we focus here on discrete-time control,
where equation-based models are used to satisfy quantitative soft-
ware properties.

Most discrete-time control approaches satisfy quantitative, non-
functional requirements: controlling tunable actuators identified
either by the designer or automatically [22] and whose value af-
fects the software behavior. The majority of software controllers
belong to the family of Proportional-Integral-Derivative (PID) con-
trollers [36]. PIDs are computationally inexpensive and support
formal analysis of their dynamics. They are, however, limited to
linear (or linearized) systemmodels and mostly control a single goal
(e.g., the response time) using a single actuator (e.g., the number of
VMs). This approach is known as single-input, single-output (SISO).
In contrast, multiple-input, multiple-output (MIMO) controllers are
more complex, managing conflicting goals and contending actua-
tors.
Model predictive control (MPC). MPC is an effective, flexible
solution for MIMO problems [39]. MPC design incorporates the
different actuators’ higher-order dynamics; i.e., it captures how each
actuator affects each goal and interferes with the other actuators.

MPC controllers decide the control signals for the next time
step by optimizing a utility function that accounts for both the
current operating point and all possible trajectories up to a given
horizon [20, 34]. Reasoning based on predictions of future behavior
has proven effective in other self-adaptation approaches [12, 44, 61],
though with reasoning techniques mostly ad-hoc and tailored to
user-defined models. In contrast, MPC provides a more general
analysis framework and the ability to refine and compensate for
model inaccuracies by exploiting a feedback loop. MPC-based adap-
tation mechanisms have been used to define controllers for a class
of goal models [1] and resource provisioning in cloud environments
under uncertainty [54]. These MPC solutions, however, requires
the developer to explicitly provide a system model and are tied
to specific problems; in turn, they require the developer to mas-
ter modeling techniques and do not generalize beyond the models
manually defined by the developer.
Automated controller synthesis. Automated controller synthe-
sis eases the integration of control-theoretical adaptation into soft-
ware systems. Abstracting specific views of the software system
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into equation-based models and defining adequate control strate-
gies are open problems for current development processes [17, 18].

The first automated modeling and controller synthesis approach
has been proposed in [15]. It builds a locally linearized model of
a SISO system collecting input-output measurements during sys-
tem execution. Then, a tunable controller is continuously adjusted
around the current operation point to provide computationally ef-
ficient and robust adaptation decisions, under mild assumptions
on the smoothness of the – possibly non-linear – system behavior.
This approach cannot deal with general MIMO systems, however.

Recent work automatically synthesizes MIMO controllers for
discrete systems by chaining multiple SISO controllers (one for
each goal) together in a hierarchy [16]. The hierarchy reflects goal
prioritization, and each controller produces a continuous refer-
ence signal that is converted into a mixture of the discrete input
configurations using Pulse Width Modulation [36]. The two main
limitations of this solution are the use of disjoint sets of actuators
along the hierarchy of SISO controllers and the need for actuators
to assume values from a finite domain. Actuators that are used to
reach a higher priority goal cannot be changed to meet the lower
priority ones, limiting the controller’s ability to achieve all goals
optimally at the same time (see also the experimental comparison in
Section 5.3). The need for finite domains for the actuators requires
the discretization of continuous control inputs; while this can be
done automatically, as in [16], the complexity of the control law
may grow exponentially, limiting the practical applicability of the
approach when timely decisions are required or the controller has
to run on low-power devices, like embedded systems. The approach
in [50] extends [16], formulating the conversion of the continuous
references into discrete settings as a linear optimization problem.
This approach avoids partitioning actuators into disjoint sets and
allows actuation to minimize a cost function (e.g., considering the
priority of different actuators), but it does not provide an explicit
means for handling conflicting goals when the satisfaction of one
makes others infeasible.
This paper’s contribution. This paper proposes automatedmodel
construction and controller synthesis for MIMO controllers. Unlike
prior work [16, 50], it does not require the input space to be finite,
requires less observation to build a comprehensive equation-based
model of the system, and produces optimal control decisions con-
sidering not only the current situation but also future predicted
system evolutions.

3 METHODOLOGY
AMIMO system hasmultiple actuators that influencemultiple goals.
Our methodology makes two assumptions: 1) the user knows all
available actuators and their limits; i.e., the maximum andminimum
values they can assume; and 2) design-time tests can be performed
that measure the effects actuator changes have on goals. The pro-
posed methodology minimizes the number of tests to be performed
– a big improvement with respect to prior work [15, 16, 50] – but
some experimental data collection is required to build a model and
synthesize the controller.

The methodology has five steps, illustrated in Figure 1. It re-
quires several inputs from the user, but is otherwise completely
automated, requiring no control expertise. The fifth step outputs
code implementing the controller. The framework collects user in-
puts (Step 1) and then collects data by running experiments (Step

2). This data is used to estimate a model relating actuator changes
to changes in system behavior (Step 3). A controllability test is then
performed to ensure the provided actuators can reach the specified
goals (Step 4). If the system is controllable, the methodology syn-
thesizes a controller and generates the resulting code (Step 5). The
user then selects the desired values for the goals and complements
the generated code with calls to the sensors (to obtain the current
values of the goals), and to the actuators (to effectively perform
the action chosen by the controller). These user-defined functions
for sensing and actuating are system-dependent and represent the
interfaces to the rest of the software.
Step 1: user input. The user specifies a sampling time ∆t , a set of
v actuators A = {a1,a2, . . . av }, and a set of p goals. For example,
a1 might be the clock speed of the execution environment, while a2
might be the probability of using one service provider over another.
The values assumed by the set A at time k are denoted with the
vectora(k ). The user provides the values ofai,min andai,max, which
are the minimum and maximum values for the i-th actuator.

The set of goals is G = {д1,д2, . . .дp }. For example, д1 might
be the 95-th percentile response latency, and д2 might be power
consumption. The goals’ values at time k are denoted with the
vector д(k ). д(k ) is a function of time as goals may change while
the software is running. The user should also provide a way to
measure the current value of the goals. We denote with the set
Gm = {дm1,дm2, . . .дmp } the measured values corresponding to
the goals — in the example дm1 is the current 95-th percentile of the
response time and дm2 the current power consumed by the embed-
ded device. Again, the vector дm (k ) is the measurements at time k .
We assume thatp ≤ v , i.e. there cannot bemore goals than actuators,
an inherent limitation of any control approach. For each goal дj , the
user specifies a weightw j , resulting in a setW = {w1,w2, . . .wp }.
Goal weighting specifies a proportional disparity between goals’
importance when goals aren’t simultaneously satisfiable. Equally
weighted goals imply their errors are treated equally and the con-
troller balances between them. Optionally, the user can specify
additional weights for the actuators, D = {d1,d2, . . .dp }, where a
lower weight indicates changing the corresponding actuator is pre-
ferred to a higher weight actuator. The controller tries to minimize
the sum of the products of actuators and weights. Because of this,
a lower weight would favor the use of the corresponding actuator,
while a higher weight would make the controller try to avoid the
use of the corresponding actuator unless it is really necessary. As
seen in Figure 1a, the results of this phase are the input quantities
that the controller synthesis needs.
Step 2: data collection. For 100 · v uniformly spaced time inter-
vals (each ∆t apart) our methodology selects values for the vector
a(k ) and records дm (k ). For each ai ∈ A, we choose either the
minimum value ai,min or the maximum value ai,max. As seen in
Figure 1b, this phase is the first step towards closing the feedback
loop. Considering that k belongs to the interval [1, 100 · v], this
data collection lasts for 100 ·v ·∆t time, which is O (v ), a strong im-
provement over previous methods that sweep the entire parameter
space [15, 16]. Compared to prior work, the resulting models have
less fidelity, but the synthesized MPC is robust to these modeling
inaccuracies. As in prior work [15], we update the model at runtime
to capture variations.
Step 3: model identification.We use subspace identification [52,
53] to build a linear model based on the data. We build the lowest
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Controller
(∆t ,W)

So�ware
System

AG Gm

(a) End result of step 1 (user input)

Controller
(∆t ,W)

So�ware
System

AG Gm

(b) End result of step 2 (data collection)

Controller
(∆t ,W) S (Model)AG Gm

(c) End result of step 3 (model identification)

Controller
(∆t ,W) S (Model)AG Gm

(d) End result of step 4 (controllability test)

Controller
(∆t ,W) S (Model)AG Gm

(e) End result of step 5 (MIMO controller synthesis)
Figure 1: Controller synthesis phases. Dashed elements are not yet introduced or exploited at the corresponding stage. For
example, the measurement of Gm are used in Step 2 for the model building phase (Step 3). At the end of Step 3, the Software
System is replaced with its corresponding model S. In Step 4, the methodology verifies that the controller can be built and
Step 5 produces the end result and allow the software engineer to close the loop.

possible order model that fits the data. Selecting a higher order
increases the model’s accuracy but also increases the chance of
overfitting. On the contrary, a lower order model is less accurate,
but also increases the probability that the resulting models capture
fundamental behavior rather than noise. This noise derives, for
example, from the presence of the operating system routines and
from other applications running at the same time on the hardware.

At this point we have a model of order n. In such a model, the
dynamic system has n states and a state vector x = [x1,x2, . . . xn].
Notice that x is not a measurable quantity, and not even some
quantity that has a meaningful interpretation for the user, but an
abstract variable that links the inputs to the outputs, and thus,
describes the system’s dynamics in a compact form. The values of
x may not correspond to anything measurable in the system.

The subspace identification procedure returns a model S in the
difference equation form

S :



x (k + 1) = A · x (k ) + B · a(k )
дm (k ) = C · x (k ) , (1)

using ∆t as sampling interval (the distance in time between two
subsequent measurements). The time is represented with the letter
k , that denotes the sampling instants and assumes values in the set
of integers where a number k is the instant t = ∆t · k in time. The
following steps use S as a model of the system we want to control.
Figure 1c shows that from here on, in the controller synthesis
procedure, the real software is substituted with its model. The
identification procedure is completely automatic and no input is
required from the user, if not for the collected data.
Step 4: controllability test. From control theory [21], a system is
controllable if the n × (p · n) matrix

Co =
[
B A · B · · · An−1 · B

]
(2)

has rank n, which means thatCo has n independent columns among
the n ·p total columns2. If this condition holds, a controller can drive
2Recall that n is the number of model states and p the number of goals.

all states to any feasible value, in the absence of actuator saturations.
Recall that the output values are linked to the state values by the
second equation in (Eq. 1). Thus, if the states can assume any desired
value, then the output can assume any desired value in the feasible
region. In practical terms, if the goal values in G can be reached,
a controller can be constructed that will set the actuators in A to
reach them. In the presence of saturations, the goals may not be
reached, but the controller will drive the measurements as close as
possible to the goal. For example, if the user specifies a maximum
number of virtual machines that can be spawned to improve the
response time of a cloud application, and more than the maximum
number would be necessary to serve all the requests, the goal is
not reached despite the system being controllable, but the controller
will decrease the response time as much as possible with the given
resources. If the system is controllable, the controller we synthesize
in Step 5 will reach all the goals whenever possible [32]. If the
system is not controllable, we are able to detect it and warn the
user. To solve this problem, one may add other actuators or reduce
the set of goals and re-run the previous steps.
Step 5: MIMO controller synthesis. Based on the model from
Step 3 and on the controllability test from Step 4, we automati-
cally synthesize a Model Predictive Controller (MPC) [4, 32, 39].
This controller is complemented with a Kalman Filter (KF) [37] to
update the system model as the controller runs. MPC is a control
technique that formulates an optimization problem to use the setA
of actuators to achieve the set G of goals. At every control instant
k , the problem becomes the minimization of a loss function ℓk ,
subject to given constraints. A common approach to guarantee the
removal of the steady state error is to introduce integral action
into the controller [32]. This can be done simply by rewriting the
identified model (Eq. 1) in the augmented velocity form. Letting
∆x (k ) := x (k ) − x (k − 1), ξ (k ) :=

[
∆x (k )⊤ дm (k − 1)⊤

]⊤, and

A :=
[
A 0n×p
C Ip×p

]
, B :=

[
B

0p×v

]
, C :=

[
C Ip×p

]
,
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the augmented velocity form is expressed as:

Sa :



ξ (k + 1) = Aξ (k ) + B∆a(k )

дm (k ) = Cξ (k )
(3)

The augmented velocity form is typically used for the formula-
tion of the MPC, since it allows integral action in the loop; i.e., in
practical terms, it guarantees that the controlled system reaches all
the goals when kept constant over time. The system output дm (k )
is unchanged but now expressed with respect to the state variations
∆x (k ) and not with respect to the state values x (k ). The new model
(Eq. 3) predicts future state values with a time horizon of L steps;
i.e., L discrete time steps from now. The MPC then minimizes the
following cost function

ℓk =

L∑
i=1

p∑
j=1

qj
(
дm, j,k+i − дj,k+i

)2
+

m∑
j=1

r j
(
∆aj,k+i−1

)2
, (4)

where qj and r j are positive weights, that respectively represent the
importance of the distance between the j-th goal and the current
value, and the inertia to changing the j-th actuator. The values of
the weights can be chosen asW given by the user in Step 1. When
one or more goal is infeasible (for example because one conflicts
with the other), the controller favors the goals with the higher
weights. The values r j indicate preferences on actuators, and is
chosen either as one or the elements of D.

The resulting MPC optimization problem can written as follows.

minimize∆ak+i−1 ℓk (5)
subject to amin ≤ ak+i−1 ≤ amax

∆amin ≤ ∆ak+i−1 ≤ ∆amax
дm,min ≤ дm,k+i−1 ≤ дm,max

ξk+i = Aξk+i−1 + B∆ak+i−1
дm,k+i−1 = Cξk+i−1
i = 1, . . . ,L.

This formulation is equivalent to a convex Quadratic Programming
(QP) problem [32]. The solution of the QP problem has time com-
plexity of O (L3v3) [55]. The solution is an optimal plan for the
future ∆a⋆k+i−1, i = 1, . . . ,L, but typically a receding horizon ap-
proach is adopted, and only the first action of the plan, i.e. ∆a⋆k , is
applied. The new control signal is then obtained as

a(k ) = a(k − 1) + ∆a⋆k . (6)

The receding horizon principle is particularly important, since the
model (Eq. 1) will never capture all environmental phenomena.
Therefore, the plan needs to be recomputed every time new infor-
mation is available. In case of real-time constraints on finding a
solution, it is possible to store the past planned control trajectory
that would have been disregarded, and use it if the solver does not
converge in time.

The MPC strategy assumes that the process state is measurable,
but in many cases this is not possible — recall that the system
state has a non-trivial interpretation. Indeed, it is impossible to
measure x (k ) directly and so it must be estimated based on дm (k ).
To accomplish this, we use a KF that computes an estimate x̂ (k + 1)

Controller

MPC
(Eq. 5) (Eq. 6) Software

System
д (k ) ∆a⋆ (k ) a (k ) дm (k )

KF
(Eqs. 7–12)x̂ (k )

Figure 2: Control scheme.

of the state x (k + 1), as

M (k ) = P (k )C⊤
(
CP (k )C⊤ + Rn

)−1 (7)
e (k ) = дm (k ) −Cx̂ (k ) (8)
x (k ) = x̂ (k ) +M (k )e (k ) (9)

P (k ) = (I −M (k )C ) P (k ) (10)
x̂ (k + 1) = Ax (k ) + Ba(k ) (11)

P (k + 1) = AP (k )A⊤ + BQnB
⊤ (12)

where (Eqs.7–10) update the KF with the new information from the
prediction error e (k ) in (Eq.8), and (Eqs.11–12) compute a predic-
tion of the system’s state and of the covariance matrix P .M (k ) is
also called Kalman gain, and adapts over time depending on the
magnitude of the prediction error e [37]. The estimate x̂ (k ) can be
used, in place of ξ (k ), to solve the optimization problem in (Eq. 5).

Figure 2 shows the block diagram for the resulting control scheme.
The controller is then executed every ∆t time units. Summarizing,
the control design is performed by using the identified matrices of
the model (Eq. 1), and by choosing appropriate weights for the cost
function, i.e., qj and r j . The Kalman filter is designed on the basis of
the identified model and keeps said model updated during runtime.
Step 5 produces the python code for the MPC, which should be
complemented with the code used to obtain the measured values
of the goals and apply the actuators values.
Discussion. To apply this methodology, users must provide sen-
sors that measure behavior for any goals the controller should meet.
These sensors usually take the form of methods that return some
system property; e.g., performance or power. Users must also pro-
vide a list of actuators and their minimum and maximum values.
These actuators are, again, usually methods that changes some key
parameter; e.g., the strength of a filter. For the methodology to work,
the number of goals (and thus sensors) must, in general, be less
than or equal to the number of actuators. Similarly, if the actuators
cannot be used to meet the goals (i.e., the controllability test fails),
our methodology reports this to the users who must either add
actuators or change goals. The methodology assumes that actua-
tor settings are continuous between the minimum and maximum
settings. If the actuators are discrete, then users can either choose
the closest discrete setting or approximate the continuous value
by time averaging different actuators settings. Our experiments
include examples of both approaches (Sections 5.2 and 5.3). Im-
portantly, we note that this methodology does not assume linear
functions mapping actuator settings to goals. The Kalman filter is
added specifically to account for complex actuation mechanisms: it
continually computes an optimal estimate of the underlying system
state, as measurable by the sensors. This process of continual state
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estimation makes the controller robust to inaccuracies in the system
identification process. To demonstrate this robustness, all three case
studies in the evaluation section include actuators with complex,
non-linear interactions. Additional stress tests that evaluate more
complex actuation functions (including cosine and higher-order
polynomials, which we have never observed in real software) are
available with our code release.
Implementation.We provide an implementation that automati-
cally generates the controller code in Python and C++, which we
use for our case studies. The user does not need to provide more
than the weights, the bounds on the actuators and the actuate and
sense functions that interact with the software. We implemented
Step 3, 4 and 5 in Matlab. The subspace identification procedure
relies on the Matlab function n4sid, using as parameters the given
data and the keyword best for the model order. In this way, the
model’s order is the one that best approximate the data obtained
during the experimental phase in the range between one and ten.

4 FORMAL ASSESSMENT
Applying control theory in software systems provides a set of formal
guarantees about the software’s response to dynamic changes [17].
The MPC presented in this work belongs to the class of optimal
controllers, since control decisions are based on the solution of an
optimization problem [32]. In particular, adopting the model predic-
tive approach allows us to provide a number of formal guarantees.
Convergence to the objectives.MPCs generated by our method-
ology ensure that all goals are reached, when they are reachable [32];
i.e., if there are actuator settings that achieve the goals within the
given constraints (Eq. 5), then the MPCwill find them. Convergence
is proven by observing that whenever there exists a feasible actu-
ator configuration, the MPC optimization problem is equivalent
to the unconstrained optimization problem that minimizes ℓk [32].
The values for the actuators’ variation are ∆a⋆k = argmina ℓk .
Considering the gradient of (Eq. 4), the closed-form solution is
∇aℓk = 2H∆a + 2Fξ , where H and F are functions of qj , r j and
the dynamic matrices of the system (Eq. 3). The gradient has a
minimum for ∇aℓk = 0, which corresponds to ∆a⋆ = −H−1Fξ (k ),
where ∆a⋆ is a vector containing the optimal plan for the future
∆a⋆k+i−1, i = 1, . . . ,L. In the MPC case, only the first element of
the plan is applied.

The controller can thus be expressed as a matrix multiplied by
the current state value ξ (k ) as a(k ) = Γξ (k ). Thus, the closed-loop
system dynamics (Eq. 3) can be rewritten as follows.

ξ (k + 1) = (A + Γ)ξ (k )

дm (k ) = Cξ (k )

Assume, without loss of generality, that all goals are zero, д(k ) =
0. A well known result says that the steady-state error converges
to zero if and only if all eigenvalues of A + Γ have magnitudes
less than unity [32]. If qj in (Eq. 4) are all positive (required by
our methodology), the eigenvalues of A + Γ always lie in the unit
circle in the complex plane. This property guarantees stability and
convergence to the objective when it is reachable with the actuators
supplied by the user.
Minimum distance for infeasible cases. If the goals are not
reachable, the MPC finds actuator settings that minimize the overall
steady state error. The definition of “closeness” depends on the
weights for each term of the cost function (Eq. 4) – a solution is

closer to the desired one when it minimizes the cost function [32].
The minimum distance depends on qj . Since different values of qj
yield different quantitative solutions, the choice of qj is used to
enforce the prioritization of the goals.
Minimum convergence time. The dynamic model in (Eq. 1) re-
lates control parameters and outputs to time. The optimization
problem finds the best trajectory converging to the goals, according
to the selected cost function ℓk . By construction, the cost function
penalizes all the time instants when дm is not equal to the goal д,
therefore the MPC leads to a minimum settling time solution.
Real-Time Computation. Since the proposed solution solves an
optimization problem at each control instant, it is critical to discuss
timing issues that could prolong the controller’s execution. In some
cases, the time required for computing the next control action
might be longer than the time between two subsequent control
actions. To address this issue, there is a vast literature in the control
community on how to implement fast solvers (e.g., [29, 48]). The
area has been explored especially when these solvers are part of
embedded systems [28, 31]. For an overview on the matter see [60].

Often, such advanced algorithms are not required when deal-
ing with software components. For example, one can set ∆ak+1 =
∆ak+2 = . . . = ∆ak+L−1 = 0 and solve the optimization problem
for ∆ak , which is the only one that will actually be applied at time
k . This modification reduces the complexity to be just O (v3). An-
other approach exploits interior point algorithms, which iteratively
update a feasible, but sub-optimal, solution to the constraints. If the
iteration did not converge before a new control action is required,
it can be forced to stop and return the current sub-optimal solution.
Finally, another possibility to deal with real-time deadlines is ex-
ploiting the MPC’s proactive nature. At each time step, the MPC
computes a plan of future actions ∆ak+i−1, i = 1, . . . ,L. Accord-
ing to the receding horizon principle, only the first one is applied;
i.e., ∆a(k ) = ∆a⋆k . Assuming that at the next control instant the
solver takes more time to converge and that a new control action
is required before the optimal solution is found, one can store the
previously computed plan and apply the second control action; i.e.,
∆a(k + 1) = ∆a⋆k+1. Doing so is obviously sub-optimal, but fulfills
real-time deadlines and execution constraints.

5 EXPERIMENTAL EVALUATION
In this section we present the application of the proposed method-
ology to three different case studies: the first case study is based on
a video encoder, the second on a radar positioning system and the
third one on a dynamic binder. Finally, we also show some results
about the real-time computation and the overhead of the control
signal generation.

5.1 Video Compression
Prior work demonstrated automatic synthesis of a single-input,
single-output controller for lossy video compression [15]. We ex-
tended this case study to achieve multiple goals using multiple
actuators and made it available for comparison with other tech-
niques [42, 43].

The actuators A are:
• a1, the same quality parameter used in [15] to specify the
compression density. It ranges between a1,min = 1 and a1,max =
100, where 100 preserves all frame details and 1 produces the
highest compression. We specify a weight d1 = 1000.
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(a) д1 = 0.7 and д2 = 8000
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(b) д1 = 0.8 and д2 = 8000
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(c) д1 = 0.9 and д2 = 8000
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(d) д1 = 0.7 and д2 = 15000
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(e) д1 = 0.8 and д2 = 15000
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(f) д1 = 0.9 and д2 = 15000
Figure 3: Results for the video experiment.

• a2, the sharpen parameter, which specifies the size of a sharp-
ening filter to be applied to the image. The size ranges between
a2,min = 0 and a5,max = 5 where 0 indicates no sharpening. We
select a weight d2 = 100000 for this actuator. Given its reduced
range compared to a1, we would like to use it less.
• a3, noise, which specifies the size of a noise reduction filter,
which also varies between a3,min = 0 and a3,max = 5. We
specify a weight d3 = 100000, equivalent to sharpen.
The goals G include:
• д1, the SSIM [56] that quantifies the similarity between the
original and compressed frames. SSIM is a unitless metric that
ranges from 0 to 1, with near 1 indicating similar images. As
SSIM is between 0 and 1, we use weight w1 = 1000 so that
the corresponding component of the cost function J is in the
hundreds;
• д2, the frame size (in kilobytes). We use a weightw2 = 0.0001 so
this second goal is considered slightly more important than the

first. When the controller can reach only one goal, we prefer to
hit the size target, making communication predictable.

Clearly, these two goals conflict with one another. When a specific
frame size is set, this will correspond to a specific value for the
SSIM on the frame. Similarly, if a specific SSIM is reached, the
corresponding frame will have a prescribed size. We conduct this
test to show how the controller trades off a goal for the other to
achieve the optimal value for the cost function.

We run the video compression example using the Obama Victory
Speech video3 with a resolution of 854×480 pixels andwith different
combinations of goals д1 and д2, using a prediction horizon of
L = 4. Specifically, we run all possible combinations where д1 ∈
{0.7, 0.8, 0.9} and д2 ∈ {8000, 15000}. Notice that this is a stress
test. In fact, even setting the values of quality, sharpen and noise
that would achieve the lowest possible SSIM, this value hardly ever
3https://www.youtube.com/watch?v=nv9NwKAjmt0
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becomes lower than 0.75, therefore the 0.7 setpoint is not feasible.
Also, the goals’ conflicting nature makes it impossible to reach most
goal combinations simultaneously. For example, when д1 = 0.9, the
frame size often exceeds 15000.

Figure 3 shows the six different experiments with the different
values ofд1 andд2. In these experiments, there are only two feasible
values for the setpoints: (1) д1 = 0.8 and д2 = 8000 (Figure 3b) and
(2) д1 = 0.9 and д2 = 15000 (Figure 3f). In all others it is impossible
to achieve both the SSIM and frame size setpoints. Therefore, as
shown in the figures, the controller opts to reach д2, which has an
higher relevance: w2 × д2. In the first row, Figure 3a shows that
д2 and дm2 are basically equal, while the achieved SSIM дm1 is
higher than desired. The encoding quality a1 is kept low and there
is no active noise compensation, while the sharpen value a2 varies
during the execution. Figure 3b shows that both the SSIM and the
size setpoint are achieved using some sharpening, a small amount of
noise reduction, and a quality similar to that used for the previous
combination of setpoints. When the SSIM goal is increased – so,
information loss should be diminished – even more noise correction
and sharpening is added, as shown in Figure 3c. The setpoint д1 is
reached for some frames, but overall the size limit (and its heavier
weight in the cost function) leads to SSIM below the setpoint.

Figures 3d, 3e and 3f show the goal д1 = 0.9 and д2 = 15000
can be achieved by selecting the values of a1, a2 and a3 and the
controller therefore selects appropriate values to achieve both the
setpoints. In the opposite case ( Figures 3d and 3e) the size setpoint
is achieved, while the similarity index is kept as close as possible.

5.2 Secure Radar System
This second case study features a cyber-physical system: a secure
radar. The radar moves on a mobile platform, possibly a drone, and
detects small boats that may be pirates [11]. Once the radar has
compiled a list of possible pirates, it encrypts it using the Advanced
Encryption Standard (AES) [6], and sends it to a centralized location
where multiple lists are merged. Encryption is necessary to avoid
providing information on whether pirates have been detected.

The secure radar must meet performance goals for both the radar
and the encryption. The first goal is to ensure that the software
processes frames at the same rate as the sensor produces them, the
second is to ensure timely delivery to the central entity that merges
the lists. We meet these goals with two actuators: the number of
cores allocated to the radar system (all additional cores can be used
by encryption) and the processor’s clockspeed.

Specifically, the set of actuators A consists of:
• a1 is the number of cores assigned to the radar signal processing
application. We measure this as a percentage of the available
cores, and our test platform has 12. We assume a minimum
of one core must be assigned to the radar. We therefore set
a1,min = 1/12 and a1,max = 1, any cores not used by the radar
processing can be used by encryption. We assign d1 = 1.
• a2 is a single clock speed to be used for the processor. Our
platform, in fact, does not allow us to set a clock speed per core.
We measure this value as a percentage, where the hardware
supports a minimum speed of 1.6 GHz and a maximum speed
of 3.201 GHz4, a2,min = 0.499 and a2,max = 1. We assign d2 = 1,

4Technically, setting the maximum speed turns frequency control over to hardware
which can use Intel’s TurboBoost to occasionally increase speed beyond the listed
maximum for brief periods of time.
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Figure 4: Results for the radar experiment.

since we do not want to enforce any actuators precedence.
The set of goals G includes:
• д1, the Radar Performance (RP) measured in radar pulses pro-
cessed per second. We use an existing radar benchmark [11],
which can operate in many different processing modes. For this
case study we configure the radar so that it needs to process 10
pulses per second to keep pace with the sensor. Also,w1 = 1.
• д2, the Encryption Rate (ER) of the AES software. We use Ope-
nAES5 for encryption and we measure its rate in MB/s. For each
possible pirate in each pulse we need to maintain an encryption
rate of approximately 0.8 MB/s. To keep up with the radar, we
need 8 MB/s per target; i.e. the required encryption rate will
vary as the number of targets changes. Our control system
treats this as a change in setpoint and handles it automatically.
Finally, we setw2 = 1 to not privilege any goal.
The combination of actuators and goals used in this case study

demonstrates one of the key benefits of the proposed approach.
Prior work presented a similar case study of a secure radar system
[16]. That case study used a hierarchical control scheme to imple-
ment MIMO control and required that both cores and clockspeed
be used to manage the radar’s performance. This policy leaves no
system-level actuators for encryption, which instead is required to
switch to a shorter, and less secure, key length to meet encryption
performance requirements. In contrast, the technique presented
in this paper allows actuators to be used to meet multiple goals.
Specifically, clockspeed will be used to meet both goals, meaning
that we do not need to reduce security to maintain encryption
performance using the proposed technique.

We run the secure radar with the specified goals and actuators
and a prediction horizon of L = 5. It must maintain a radar perfor-
mance of 10 pulses/s. Initially, the radar detects a single possible
pirate, which requires an encryption performance of 8 MB/s. After
100 control periods, a second possible pirate is detected. This addi-
tional target does not affect the radar performance (the same signal
processing algorithms are used), but it requires the encryption
performance to rise to 16 MB/s.

Figure 4 shows the results of this case study. There are four
charts, the top shows the radar performance, the second shows
AES performance, the third shows the percentage of cores assigned
5http://nalramli.com/OpenAES/
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to the radar, and the final chart shows the percentage of the maxi-
mum clockspeed used. Solid red horizontal lines show the д1 and д2
for each of the radar and AES; д1 is a constant and д2 changes when
the second target is detected. As shown in the figure, the controller
meets both goals, quickly pulling performance down to the desired
level for each goal. When the second possible pirate appears, the
controller reacts by both increasing clockspeed (which increases
performance for both applications) and removing one core from
the radar, making it available to AES. As noted above, this use
of actuators that affect both goals simultaneously is not possible
with prior approaches like [16, 50]. This demonstrated ability to
meet multiple goals simultaneously with multiple actuators is a
unique contribution of our approach. We note that there is some
small amount of oscillatory behavior here due to our use of discrete
actuators in this example. There are 12 cores and 12 clockspeeds in
the system and when the controller produces a continuous actua-
tion value, we select the highest discrete setting above that value.
Therefore, this example also demonstrates the methodology works
even with discrete actuators.

5.3 Multi-Objective Dynamic Binding
Dynamic binding is a critical means of adapting Service Oriented
Applications (SOAs) [7]. The binding mechanism selects a service
to process an incoming request from a set of functionally equivalent
alternatives, based on quality criteria. In this experiment, we adopt
the same settings of [16]; i.e., the controller has three goals in
different, conflicting, dimensions: reliability, performance, and cost.

The controller binds each request to one of three services, and
for each service it decides among five different service levels. A
higher service level reduces the response time (performance) at a
higher cost. Also, we use this case study to show how the solution
scales with the size of the problem. The controller uses a prediction
horizon of L = 100. Given the prediction horizon and the size of
the involved matrices, we expect the overhead of the controller
execution to be quite high. Because of that, we also executed the
controller with the real-time optimization mentioned in Section 4
(setting ∆ak+1 = ∆ak+2 = . . . = ∆ak+L−1 = 0), to show the
difference in the resulting trace. In the following we distinguish
between the MPC solution and the MPC fast solution, which uses
the real-time optimization.

More precisely, the set of actuators A is specified as follows.
• a1 is the fraction of requests to be served by Service 1. a1,min =
0.0, a1,max = 1.0, d1 = 100 (MPC) and d1 = 2000 (MPC fast).
• a2 is the fraction of requests to be served by service 2, among
those not served by implementation 1; i.e., Service 2 will serve
a fraction a2 · (1 − a1) of the incoming requests. a2,min = 0.0,
a2,max = 1.0, d2 = 100 and d1 = 2000 for MPC fast. Service 3
will serve (1 − a2) · (1 − a1) requests. While a linear selection
model can be defined, we deliberately used this more complex
selection model (from [16]) to demonstrate how the controller
handles nonlinear transfer functions by automatic, higher-order
linear approximations.
• a3 is the service level requested to Service 1.a3,min = 1,a3,max =
5, d3 = 1 for the MPC solution and d3 = 20 for MPC fast. The
service levels are integer numbers. The controller computes
a real value; this value is approximated using a pulse width
modulation [36] over an actuation window of 4 time steps. For
example, if the reference is 3.73, the actuator will hold level 4

for three steps and level 3 for one step, obtaining an average of
3.75 over the actuation window, which is the closest achievable
approximation. The feedback mechanism will take care of the
approximation error automatically. The same approximation is
used also for a4 and a5.
• a4 is the service level requested to Service 2a4,min = 1,a4,max =
5, d4 = 1 for the MPC solution and d4 = 20 for MPC fast.
• a5 is the service level requested to Service 3a5,min = 1,a5,max =
5, d5 = 1 for the MPC solution and d5 = 20 for MPC fast.
The goals in [16] are prioritized: the controller achieves the

reliability goal first, then performance, and finally minimizes the
cost in best effort. The proposed MPC controller has no notion
of priority, thus we will set the weight of each goal to practically
approximate the prioritization scheme of [16]. More precisely, the
set of goals G is the following:
• д1 is the user-perceived reliability, defined as the fraction of
requests served successfully over those received since the last
control decision. The weight associated to this goal isw1 = 10
• д2 is the performance, quantified by the end-to-end response
time (in milliseconds). To quantify the error, we measure the av-
erage response time since the last control decision. The weight
of д2 isw2 = 10−1
• д3 is the cost (in 10−2$). In [16], the cost is a free dimension to
be minimized in best effort. To emulate this minimization goal,
we will set д3 close to 0 (non zero to avoid numerical issues);
to approximate the best effort priority, we give the goal a low
weight:w3 = 10−10.
Each service is configured by three parameters: nominal reliabil-

ity ri , performance coefficient ti , and cost coefficient ci . For each
incoming request, the service implementation flips a fair coin to
decide whether to raise an exception or not, according to the nomi-
nal reliability ri . The processing time for each request is sampled
from an exponential distribution with mean ti/(l

2
i ) where li is the

service level at the time of request processing. Notably, the time
required to process the request is an inverse quadratic function of
the service level, introducing another nonlinearity in the transfer
function. The cost of processing an incoming request is ci · li . The
nominal values ri , ti , and ci are not known by the controller, which
can only measure: the time to process a request, howmany requests
are successful or raise an exception, and the cost of each request.

The experimental results are shown in Figure 5. The configura-
tion parameters of the three services are the following: {r1 = .9, t1 =
2, c1 = 15}, {r2 = .65, t2 = 10, c2 = 10}, {r2 = .45, t2 = 20, c2 = 5}.
The experiments last 800 control periods. The setpoints for relia-
bility and performance are changed during the experiment. In the
period 0-300, д1 and д2 are feasible and achieved with minimal cost;
similarly in 300-420, where the reliability setpoint changed. In the
period 420-650, an infeasible goal is requested for reliability and
the controller goes as close as possible to its satisfaction, while
achieving the performance goal. At time 520, the required response
time is reduced; the controller achieves this harder goal, though at
a higher cost. Finally, in the period 650-800 the reliability goal is
also raised; the high reliability and low response time are achieved,
though with an higher cost. Finally, as a comparison between the
MPC and the MPC fast solution, one can see the difference in the
cost (the last plot of Figure 5), around the control period 650, when
the cost for the solution presented in [16] is the highest of the three,
followed bu the non-optimal solution computed by the the MPC
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Figure 5: Results for the multi-objective dynamic binder ex-
periment.

fast solver. The best of the three costs is the one achieved by the
MPC solution presented in this paper.

As a comparison, the performance of the controller from [16] is
also reported in Figure 5. Due to its global optimization capabilities,
the MPC controller achieves the reliability and performance goals
with a minor cost. The total cost for the solution presented in [16]
is 138.49$, for the MPC solution is 124.82$ and for the MPC fast
solution is 130.76$, which corresponds to a save of 1.71 · 10−2$ per
time istant for theMPC solution – 9.87% cheaper – and of 0.97·10−2$
for MPC fast – 5.59% cheaper. Indeed, trying to achieve the three
goals with a cascade schema, according to the prioritization, [16]
cannot guarantee global optimality on all the three dimensions at
the same time. Finally, theMPC controller synthesis requires amuch
smaller learning time, exploring only a small number of system
configurations. Notably, [16] uses an online learning mechanism,
which can detect changes in the services’ performance and adapt
the controller online. While in this paper we focus on a static model
construction, recursive state space identification [37] can be used
to refine the model online, as well as using the measurements from
the running system to train a new state space model in parallel and
switching when a change is detected [14].

5.4 Control Computation Overhead
Finally, we analyze the cost to compute the control signal for the
three given case studies. Figure 6 shows the empirical distribution
of the computation times for 10000 executions of the controller
code and Table 1 reports some statistics. As can be seen, the video
and radar case studies—presented respectively in Section 5.1 and
5.1—are quite fast, with computation times less than 10ms . On the
contrary, the optimal solution for the dynamic binding case study—
presented in Section 5.3—takes a quarter of a second. Indeed, the
dynamic binding problem is costlier because of the longer prediction
horizon. Due to the longer execution times, the dynamic binder is
a good case study for the optimizations discussed in Section 4—in
particular, constraining the solver to find a solution for the current
time only while setting the actuator changes for future time instants
in the prediction horizon to zero. The faster solution is not optimal,
as shown in Figure 5—but it trades optimality for computation
time. In fact, the computation times for the MPC fast algorithm
is comparable with the times obtained for the other case studies,
where the problem size is much smaller.

Table 1: Statistics on Ovehread Data.

Case Study Average [s] Standard Deviation [s]
Video 0.00305 0.00074
Radar 0.00471 0.00091
Dynamic Binder 0.20030 0.02332
Dynamic Binder (fast) 0.00184 0.00036
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Figure 6: Empirical distribution of the duration of the con-
trol signal computation for given case studies.

Whenever a lower computation time is required, the optimiza-
tion can be turned on with a boolean flag in the code for the con-
troller initialization, making our proposal flexible and capable of
accommodating different requirements and execution scenarios.

6 CONCLUSION
We propose a formal method to design self-adaptive software ca-
pable of targeting multiple objectives simultaneously. Unlike prior
work, our approach exploits all the available tuning parameters that
affect the software behavior. Our method is based on system identi-
fication and control theory. Through experimentation, it builds an
equation-based model of the software system and uses that model
to automatically synthesize a model predictive controller. The use of
control theory allows us to distinguish between feasible and infea-
sible objectives, and formally guarantee that the goals are reached
whenever feasible. Compared with the state of the art, this is the
first contribution that simultaneously uses all available actuators
to tackle all objectives.

We combined the theoretical guarantees with tests on different
domains, from dynamic binding to radar positioning and video
compression. In all our case studies, our proposal has shown that
the method is functional and versatile. From the technical stand-
point, this advancement opens new perspective because it formally
exploits the actuators’ inter-dependencies on multiple goals.
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