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Abstract—Nowadays, there are many embedded systems with
different architectures that have incorporated GPUs. However,
it is difficult to develop CPU-GPU embedded systems using
component-based development (CBD), since existing CBD ap-
proaches have no support for GPU development. In this context,
when targeting a particular CPU-GPU platform, the component
developer is forced to construct hardware-specific components,
which are problematic to (re-)use in different contexts. More-
over, hard-coding specific GPU-usage characteristics (e.g., the
number of utilized GPU threads) inside the component is not
possible without making detailed assumptions about the system
in which the component is used, which conflicts with separation-
of-concerns CBD principle.

The paper presents a solution to allow component-based
development of platform-agnostic CPU-GPU embedded systems
through: i) high-level API, ii) adapters, and iii) code template.
The API abstracts the specifics of the different platforms,
while the adapters externalize hardware-specific activities outside
components. We also raise the decision regarding the GPU-
usage specifications, from the component to the system level.
Furthermore, to minimize the development effort, we provide a
code template that contains ready-made code fragments required
for GPU development. As a case study, we examine the feasibility
of our solution applied on a component-based vision system of
an underwater robot.

I. INTRODUCTION

One of the challenges of many modern embedded systems
is to process, with sufficient performance, the huge amount
of data originated from the interaction with the environment.
One solution to this problem comes from the usage of
general-purpose Graphics Processing Units (GPUs), that have
a parallel execution model and can process data in a parallel
manner. Today, various embedded platforms with GPUs are
available with very different architecture characteristics in
terms of physical resources (e.g., computation threads), size,
support and energy consumption. For example, systems with
very high processing demands might use a Condor GR2
GPU that provides huge computation power, but comes with
a high energy consumption (i.e., up to 69.3 Watt), while
battery-powered devices might have to settle for the reduced
computation power of a Mali-470 GPU due to its much lower
energy consumption (i.e., 1 Watt).

One way to develop embedded systems is the usage of
component-based development [1]. CBD advocates the ef-
ficient development of applications by composing already
existing software units called components. A benefit of the
CBD is the ability to (re-)use the same component for different

applications and contexts, thus boosting the development effi-
ciency. The CBD methodology is successfully adopted by in-
dustry through various component models such as AUTOSAR,
IEC 61131 and Rubus.

When it comes to development of CPU-GPU embedded
systems, the existing CBD approaches have no GPU support.
Using these approaches, the component developer needs to
encapsulate hardware-specific activities inside the components
to address a single CPU-GPU platform. For example, a com-
ponent needs to encapsulate different memory access mech-
anisms when executed on GPU Condor GR2 and Mali-G71
due to their different physical construction. This way of con-
structing platform-specific components reduces the component
ability to be (re-)used in other contexts. Moreover, the com-
ponent developer needs to encapsulate inside the components,
GPU-usage settings (e.g., number of utilized GPU threads)
which is problematic without information about the rest of the
system (e.g., how many other components utilize the GPU).
Encapsulating aspects that require system-level knowledge,
conflicts with the separation-of-concerns CBD principle.

In this paper, we introduce a solution that allows the com-
ponent developer to construct lightweight platform-agnostic
CPU-GPU systems, by using: i) a high-level API, ii) adapters,
and iii) a code template. The API abstracts the different
characteristics of CPU-GPU platforms allowing development
of platform-agnostic components. The decision regarding the
GPU-usage settings (e.g., GPU threads utilization) is raised
from the component to system level which improves important
component properties, such as reusability and maintainabil-
ity. Furthermore, we allow the development of lightweight
components by automatically generating efficient memory
management activities between communicating components,
encapsulated inside adapters. Additionally, we minimize the
development effort through a code template that provides
ready-made code-snippets necessary for GPU development.

II. BACKGROUND

Today, the technological improvements allow the GPU
integration onto embedded platforms. There are two types of
platforms: i) discrete GPU (dGPU), and ii) integrated GPU
(iGPU). A dGPU has its private memory systems and data,
in order to be processed, needs to be copied on it (with
additional overhead) via e.g., a PCIexpress bus. An iGPUs
shares the same physical chip with a CPU. There are several



variation of iGPUs. Some systems with iGPU may have their
memories divided into two distinct parts, one for GPU and
another for CPU. In this case, there is still need for data
transfer activities but the copy overhead is minimized due to
the physical location (i.e., on the same memory chip). A more
advanced iGPU architecture offers concurrent access to the
same memory to both the CPU and GPU, without the need of
data copies.

Embedded systems with iGPUs are the predominant plat-
forms used in industry due to their reduced cost, size and
energy usage. On the other side, dGPUs, with a large physical
size that incorporates more (GPU) resources, are used by
systems that require higher performance.

Nowadays, various programming models allow the develop-
ment of GPU applications. The two most prominent models
are CUDA and OpenCL. They are designed to work with
programming languages such as C and C++. Being developed
by NVIDIA, CUDA only targets NVIDIA GPUs. On the other
hand, OpenCL is a general framework that supports different
types of computational units such as CPUs, GPUs and field-
programmable gate arrays (FPGAs). In this work, we focus on
OpenCL as it is supported by multiple platforms and vendors
(e.g., ARM, AMD, Altera, IBM, INTEL, Samsung, Xilinx).

Depending on their construction, different embedded plat-
forms support distinctive OpenCL versions. Until today, there
are six existing OpenCL versions (i.e., 1.0, 1.1, 1.2, 2.0, 2.1
and 2.2). Different technological improvements are handled by
different OpenCL versions. For example, while the 1.1 version
supports only distinct address spaces, the 2.0 version supports
different memory architectures. However, even if OpenCL
2.0 supports shared memory, not all platforms (with OpenCL
2.0 support) are physical equipped with shared memory. For
example, ARM Mali-G71 architecture supports only shared
virtual memory and distinct address spaces, but does not
support shared memory due to its physical construction.

III. THE OVERALL CHALLENGE

Nowadays, no existing component model provides explicit
support for GPUs. Because component models are at the
core of CBD, this issue hinders appropriately using CBD
for the development of CPU-GPU embedded systems. As
a consequence, when using the currently existing CBD ap-
proaches, the component developer is required to develop and
encapsulate inside components, besides the functionality, a
GPU environment through which the GPU can be accessed. In
order to set up the GPU environment, the developer needs to
have information about: i) the target platform, e.g., hardware
capabilities; and ii) the system in which the component will
be used, e.g., software architecture.

To address the different characteristics of various CPU-
GPU architectures, the developer needs to build hardware-
specific components. For example, a component that would
be executed on a dGPU must have means to perform transfer
data (through specific operations) between the distinct (CPU
and GPU) address spaces of the platform, while another
component that targets platforms with iGPUs (with a full

address space shared with the CPU), does not require any
data transfer activities. Moreover, the developer encapsulates
particular settings regarding the usage of the GPU platform, by
making assumptions about the system in which the component
will be used. For example, it is challenging to set up inside the
component the number of computational threads to be used by
the GPU without system informations such as the total amount
of available GPU threads, the overall system architecture and
which other components use the GPU.

The existing GPU-related component development practice
is a complex process, error-prone and time consuming. It
decreases the component maintainability and makes it difficult
to (re-)use a component on different CPU-GPU hardware
architectures. Moreover, the existing practice brakes the CBD
separation of concerns principle between component and sys-
tem development.

To make the use of GPU compatible with a CBD approach,
the main following challenges must be addressed: i) the
platform-dependency; ii) the GPU configuration done at the
component level; and iii) unrelated code w.r.t. the component
functionality (e.g., GPU environment code).

IV. DEVELOPMENT OF PLATFORM-AGNOSTIC CPU-GPU
EMBEDDED SYSTEMS

In this work, we consider white-box components (e.g.,
Rubus and IEC 61131 components), that are units of source
code, readable and directly modifiable by the component
developer. Moreover, due to the embedded systems targeted in
this work (e.g., real-time, control-type systems), we place our
work in the context of pipe-and-filter architecture style due to
its feasibility for this embedded environment. In this context,
through our proposed solution, we: i) allow the developer to
build generic components with GPU functionality; ii) raise the
component GPU configuration activity to the system level; and
iii) minimize the code manually introduced by the component
developer.

We introduce a high-level API to conceal the differences
in the characteristics of the existing CPU-GPU architectures.
The API contains a set of functions that allows development
of generic components with GPU functionality, that can target
any of the existing CPU-GPU platforms. For example, one
aspect that the high-level API handles is to abstract the
different data transfer operations used by different platforms.

We also externalize outside components, specific settings
required by the GPU functionality. In this way, the decisions
regarding component GPU resource utilization, are taken at the
system level by the component integrator which may improve
the overall system efficiency, and different properties such
as reusability and maintainability. Furthermore, to minimize
the hand-written GPU code of the developer, we provide a
component code template. The template consists of ready-
made code fragments that are necessary when developing GPU
functionality.

In order to allow components with GPU functionality to be
used with no changes on different platforms, we build upon



our previous work [2] [3] and introduce automatically gen-
erated adapters. Instead of encapsulating inside components,
different (data transfer) operations that are characteristic to
different CPU-GPU platforms, we automatically externalize
and encapsulate them inside transparent adapters.

More details about the platform-agnostic component solu-
tion are presented in the following subsections.

A. High-Level API

To facilitate the platform-agnostic development of compo-
nents with GPU functionality, we provide a high-level API
that abstracts the different characteristics of existent hardware
platforms. The API is composed of functions that transparently
call the OpenCL mechanisms that correspond to the utilized
platform. We introduce four functions provided by the API,
as they are the minimum required for building an OpenCL
application that can target various platforms:

• apiCreateBuffer to allocate GPU memory;
• apiReleaseBuffer to deallocate GPU memory;
• apiTransferBuffer to transfer data; and
• apiSetKernelArg to set up the parameters for GPU func-

tions.
To illustrate the construction of the API, we present in
Listing 1, the apiCreateBuffer function. The function inspects
the current OpenCL version (existing on the platform) to
determine which mechanism to request. For the 1.1 and 1.2
OpenCL versions (line 3) that correspond to a platform with
distinct CPU and GPU address spaces, the clCreateBuffer
mechanism is utilized to create an object directly in the
GPU address space (line 4). For more technological advanced
platforms that support 2.0 and 2.1 OpenCL versions (line 8),
it verifies the hardware capabilities, i.e., if it has a full shared
address space or shared virtual memory. Based on the finding,
it invokes the right mechanism (i.e., malloc or clSVMAlloc).

All other API functions are developed in the same manner,
i.e., inspecting the OpenCL version existing and platform
characteristics, and calling the corresponding mechanisms.

Listing 1: The apiCreateBuffer function
1 void *apiCreateBuffer(cl_context context, cl_mem_flags flags,

size_t size, void *host_ptr, cl_int *errcode_ret)
2 {
3 #if !defined(CL_VERSION_2_1) && !defined(CL_VERSION_2_0) && (

defined(CL_VERSION_1_2) || defined(CL_VERSION_1_1) )
4 return (void *)clCreateBuffer(context, flags, size, host_ptr,

errcode_ret);
5 #endif
6
7 #if defined(CL_VERSION_2_0) && defined(CL_VERSION_2_1)
8 cl_device_svm_capabilities caps;
9 cl_int svm=clGetDeviceInfo(deviceID,CL_DEVICE_SVM_CAPABILITIES,

sizeof(cl_device_svm_capabilities),&caps,0);
10
11 if (svm==CL_SUCCESS && (caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM))
12 return malloc(size);
13 else if (svm==CL_SUCCESS && (caps & CL_DEVICE_SVM_COARSE_GRAIN))
14 return clSVMAlloc(context, flags, size, unsigned int alignment);
15 else if (svm == CL_INVALID_VALUE )
16 return clCreateBuffer(context,flags,size,host_ptr,errcode_ret);
17 #endif
18 }

B. Code Template and GPU Settings

When developing a component with GPU functionality, the
component developer needs to build the GPU environment

of the component. In more details, the component developer
creates a GPU context to manage the platform resources,
and a software mechanism (known as the command queue)
to send commands to the GPU. Once the component’s GPU
functionality (known as the kernel) is constructed, the compo-
nent developer decides how many GPU threads to use when
executing the functionality. After dispatching the kernel to be
executed by the GPU, the resources are released.

To decrease the developer load, allowing to focus on the
important parts of the component development, that is, the
functionality, we provide a code template that is illustrated in
Listing 2. The template provides ready-made code fragments
regarding the GPU environment of the component. The up-
percase bold texts pinpoint the locations where the developer
needs to provide code. For example, the developer needs to
introduce the component GPU functionality at line 2. The
developer needs also to provide specifications for different
variables, such as the size of the allocated memory (line 4)
and the pointer to a variable to be released (line 24).

Listing 2: Template for components with GPU functionality
1 /* define the GPU functionality*/
2 const char *source = "<GPU FUNCTIONALITY>";
3 /* Create memory buffer to hold the result */
4 void *result = apiCreateBuffer(settings->contex,

CL_MEM_WRITE_ONLY, <SIZE> ,NULL,NULL);
5 /* Create a program from the kernel source */
6 cl_program program = clCreateProgramWithSource(settings->contex,

1, (const char **)&source,NULL,NULL);
7 /* Build the program */
8 clBuildProgram(program,1,&(settings->device_id),NULL,NULL,NULL);
9 /* Create the OpenCL kernel */

10 cl_kernel kernel = clCreateKernel(program,<NAME OF GPU
KERNEL>,NULL);

11 /* Set the arguments of the kernel */
12 apiSetKernelArg(kernel,0, <SIZE>, <POINTER>);
13 apiSetKernelArg(kernel,1, <SIZE>, <POINTER>);
14 /* settings - GPU threads usage */
15 size_t global[2] = {(settings->global1), (settings->global2)};
16 size_t local[2] = {(settings->local1), (settings->local2)};
17 /* Execute the OpenCL kernel */
18 clEnqueueNDRangeKernel(settings->cmd_queue, kernel, 2, NULL,

global, local, 0, NULL, NULL);
19 /* Clean up */
20 clFlush(settings->cmd_queue);
21 clFinish(settings->cmd_queue);
22 clReleaseKernel(kernel);
23 clReleaseProgram(program);
24 apiReleaseBuffer(<POINTER>);

Moreover, being common to all components with GPU
functionality, we extracted the parts that create the context
and command queue mechanisms, and generate them auto-
matically, outside the components. We provide the means to
access these mechanisms through specific settings that are
automatically provided by the template. Listing 2 presents,
with lowercase bold texts, the settings->context and
settings->cmd_queue settings that are automatically
provided by the template. In the same way, we externalized
outside the component, the decision of how many GPU
threads should be utilized. Settings that contain informa-
tion on resource utilization are provided to each component
with GPU functionality. These are depicted in the listing by
the e.g., settings->global1 and settings->local1
settings (lines 15 and 16). The global[2] variable, called
as the global work size, specifies through its two-dimensional
capacity, the total number of utilized GPU threads, while



local[2], known as the local work size, describes the thread
capacity of working (thread) groups.

C. Generated Adapters

We increase the support provided to the component devel-
oper by decreasing even more the code required to be manually
written. In this sense, we capture hardware-specific memory
management operations that characterize a component with
GPU functionality, and externalize them outside the compo-
nent. The externalized operations are encapsulated in artifacts
called adapters.

When components are integrated to construct a system, the
adapters are automatically generated in a transparent manner.
Adapters are generated whenever different data ports (i.e.,
CPU and GPU data ports) of different components are con-
nected [2] [3]. Depending on the hardware architecture, there
are different cases when adapters are employed, as follows. For
hardware platforms with distinct address spaces, the adapters
contain specific memory operations that copy data between
the address spaces. For more advanced platforms that support
shared virtual memory, there is a need of a CPU-to-GPU
adapter to specifically target (i.e., allocate and copy data onto)
the SVM space. There is no need for a GPU-to-CPU adapter
because all components can access directly data from the SVM
space. For platforms with full shared memory, there is no need
to utilize adapters, as all components (with or without GPU
functionality) can access directly the shared memory.

V. EVALUATION

This section presents the feasibility evaluation of the vi-
sion system of an underwater robot case study. The robot
autonomously navigates under water with the purpose to
fulfill various missions such as identifying red buoys [4]. The
hardware platform contains of an electronic board with a CPU-
GPU architecture that is connected to various sensors (e.g., two
cameras) and actuators (e.g., thrusters). The continuous flow
of data produced by the cameras, is processed by the robot’s
vision system using the GPU.
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Fig. 1: Platform-agnostic vision system

Fig. 1 shows a simplified version of the component-based
vision system that is designed using the Rubus component
model. Two Camera components fetch data from physical
camera sensors and forward them to ImageMerger that merges
and reduces the noise of the two received frames using the
GPU. The resulted frame is red-color filtered (using the GPU)

by ColorFilter that provides a black-and-white image. The
VisionManager takes appropriate actions based on the findings
(e.g., shape and position of the detected object) from the
frame. To record the robot’s underwater journey e.g., for
debugging purposes, the Logger component registers all the
filtered frames.

The system is automatically populated with adapters that
transfer data between address spaces. They are represented
as dash-line artifacts as: i) they are automatically generated
in a transparent manner, and ii) depending on the platform
characteristics, they (or some of them) are not required (i.e.,
generated).

Using our solution, we implemented the ImageMerger and
ColorFilter as generic components with GPU functionality.
Regarding the development effort, Table I presents the size of
the developed vision system. Besides the characters contained
by the template (i.e., 736 characters for each component),
the developer needs to manually introduce (including the
GPU functionality) 1195 characters for ImageMerger and 859
characters for ColorFilter. The table describes also the number
of characters automatically generated through the adapters. In
Case 1, i.e., platforms with distinct address spaces, there are
generated a number of three adapters (see Fig. 1) using 1110
characters. For platforms with shared virtual memory (Case 2)
where there is only need of CPU-to-GPU adapters, there are
generated two adapters using 584 characters. For Case 3 (i.e.,
platforms with shared memory) there is no need to generate
adapters.

TABLE I: Manually written and generated characters

Characters

Component Template Manually Automatic generated adapters

name written Case 1 Case 2 Case 3

DAS SVM SM

ImageMerger 736 1195 756 584 0

ColorFilter 736 859 354 0 0

DAS - Distinct Address Spaces platform
SVM - Shared Virtual Memory platform
SM - Shared Memory platform

We notice that, for platforms with distinct address space,
the developer needs to construct 45% of (GPU-related part
of) the vision system, while our solution provides the rest of
the 55%. For platforms with shared memory (i.e., no need for
adapters), the developer constructs 60% of the system, while
our solution provides 40%.

VI. RELATED WORK

In a race to satisfy the stringed demands of modern appli-
cations, embedded systems embraced heterogeneity. The PEP-
PHER framework proposes a component model that allows
efficient hardware utilization [5]. A PEPPHER component
(i.e., annotated software module) can have several variant, each
with its own set of properties (e.g., performance, execution
platform). A suitable variant is chosen at runtime. To increase
programmability for GPUs, the framework allows component
developer to use SkePU [6] skeletons (e.g., map, reduce).



Moreover, SkePU uses special artifacts (i.e., smart contain-
ers) to e.g., optimize communication and perform memory
management between CPU and GPU distinct memories. In
our work, we improve component aspects (e.g., reusability) by
allowing the developer to use an API, a similar idea to SkePU
skeletons. Much alike to smart containers, our adapters can
be considered high-level memory management elements. The
PEPPHER framework is limited in considering only systems
where GPUs have their own private memory.

Using model-driven engineering (MDE), Rodrigues et al.
provide resources to non-specialists to develop applications
for GPU-based systems [7]. Basically, the developer models
GPU functionality where all the GPU data resides on the GPU
address space. Being developed in 2013, the work conforms
with the functionality provided by the OpenCL 1.0 version.
Due to the latest development evolution both in hardware and
software terms, the work is limited in covering the recent
(hardware and software) advancements. In the same MDE
context, we want to mention the framework proposed by
Gamatie et al. [8] that uses the MARTE profile to design
SoC systems, and allows automatically generation of code (for
e.g., formal verification, simulations). Similarly to our adapters
purpose, the authors use connector elements (i.e., tilers) to
adapt exchanged data size (e.g., modify a 2-dimension to a
scalar array) between linked components.

We also mention several works that construct APIs to
decrease the programming complexity of GPUs. FU et al.
introduces a simple API that, encapsulating the complexity
of GPU architectures, allows optimization of different graph
algorithms [9]. Built on top of CUDA, the API targets only
NVIDIA-based GPU platforms. OpenVIDIA [10], an API that
provides function calls to run common vision algorithms,
abstracts OpenGL calls needed for vision processing.

There are existing technologies that support development
of data-parallel applications for heterogeneous platforms, and
some of them facilitate the development of applications by
e.g., abstracting hardware characteristics. We mention the C++
AMP library1 that accelerates execution of C++ code. It may,
however, only be employed by a limited class of embedded
systems due to its prerequisites (e.g., Windows 8 OS). AMD
Bolt2 is a C++ template library that supports only specific
AMD processing units, thus limiting its usage by embedded
systems with hardware from other vendors. Moreover, for
particular embedded system types (e.g., real-time and safety-
critical) where resources are carefully distributed, Bolt may
not be an appropriate alternative due to its way of request-
ing system resources at runtime. Sycl is an open standard
from Khronos, that builds on top of OpenCL and allows

1https://msdn.microsoft.com/en-us/library/hh265136.aspx
2https://github.com/HSA-Libraries/Bolt
3https://www.khronos.org/sycl

development of C++ applications for heterogeneous systems3.
Although these technologies do not provide CBD support,
they may be employed in our solution by, e.g., replacing the
introduced API.

VII. CONCLUSIONS

This work provides a way to develop platform-agnostic
component-based CPU-GPU systems. We introduce a high-
level API that abstracts the distinct hardware characteristics;
using it, the developer constructs generic components that
can target any CPU-GPU platforms. In addition, we lift
component GPU-usage information, from the component to
the system level, which improves the component maintainabil-
ity and reusability. Moreover, we introduce a code template
that provides ready-made code fragments required for GPU
development.

As there are no developed mechanisms to allow components
to be executed in parallel onto GPU, we aim to address this
concern as future work.
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