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Abstract. It is well known that systems that have been evolving over a long 
period of time become costly to maintain, i.e., the productivity when adding 
new functionality and fixing bugs is low. In this paper we present a non-
intrusive method for increasing the maintainability of complex industrial real-
time systems. This method aims to create a formal model of an existing system 
and using that model for analyzing the effect of changes. The challenge of this 
approach is to develop a valid model with a minimum of complexity and to 
show that the model is valid for use. The method focuses on analyzing timing 
and synchronization properties.  

1 Introduction 

In this paper we give an introduction to a non-intrusive method for increasing the 
maintenance of complex industrial real-time systems, such as process control systems, 
industrial robot control systems, automotive systems, and tele communication 
systems. By complex industrial real-time systems we mean systems that have a high 
and increasing maintenance cost. These systems typically  

• have been in operation for at least some years,  

• have evolved considerably since their first release,  

• were initially developed by a small group of people that understood the system in 
detail. 

• have a staff today were the major part was not involved in the first development of 
the system,  

• require a substantial amount of maintenance, 

• have no formal model or formal analysis. 



 

 

It is well known that systems that have been evolving over a long period of time 
become costly to maintain, i.e., the productivity when adding new functionality and 
fixing bugs is low. The basic reasons for that are  

• the increased system complexity that depends on that the system has grown (more 
functionality has been added) and it has become almost impossible to understand 
the full impact of a change for any single person,  

• the architecture has degenerated and that the original architects (key persons) that 
really understood the design rationale behind the system have left the company or 
got new challenges. The architecture degeneration depends on that the system most 
often has been extended with features that was not foreseen when the system was 
initially designed. When such a feature is added it has to be forced in to the system, 
i.e., a lot of design rules are broken. Further, the degeneration also depends on the 
misuse of the system design principles due to time pressure or bad competence or 
bad documentation.  

The systems we consider are normally built from a limited set of subsystems. Each 
subsystem is quite well known and under control. The major problem is to get control 
of the behavior of the complete system and especially to predict the behavior at 
design time, since a faulty design that is  detected late is much more costly to correct 
compared to if it had been detected at an early stage. The basic approach to handle 
this problem from a technical1 point of view is to introduce a formal model, which can 
be used to analyze dynamic system properties such as timing, synchronization and 
communication at an early phase of a project. 

A formal model can be used for design, analysis, test and code generation, but also for 
system education, which we will not elaborate more on in this paper.  

We see in principle two different approaches to increase productivity:  

1. Intrusive methods which aims to change the code or redesign the complete system 
to increase the maintenance.  

2. Non-intrusive methods which introduce analyzability without changing the code.  

The intrusive methods are risky in the meaning that we will change the code and they 
will require a much higher investment in time. An illustration of the risk is for 
example during code improvement projects (called quality improvement projects) that 
aims to fix a lot of bugs new bugs are introduced. The statistics from industrial 
systems tell us that for each five bugs that are corrected a new one is introduced. A 
non-intrusive method does not change the code and consequently there is no risk of 
introducing new bugs. Therefore, we will consider the most common case: a system 
that can neither be re-designed and nor be remodeled due to cost and too high risk of 
introducing new bugs. The approach we present in this paper is to reintroduce 
analyzability by developing a model of the particular system, which is later used for 

                                                                 
1 In this paper we do not consider process, documentation and management related 

improvements for increasing the productivity. 



 

 

impact analysis of a change (maintenance operation). However, the outcome of this 
method is often input to a redesign activity of the code.  

Our approach is based on a framework for initially verifying dynamic properties of 
the system such as timing and synchronization. The framework includes: 

• A SW architecture model. This model describes both the static structure of the 
system, i.e. tasks, message queues, semaphores, etc. and the behavior of each task 
in the system on an abstract level. 

• A HW architecture model. This model describes the used HW architecture, 
processors, I/O and communication links.  

• Requirements property definitions. All requirements of interest are described as 
formulas.  

• An analysis method. The analysis method verifies that the stated properties are 
fulfilled by the modeled system. The analysis can be either mathematical or 
simulation based, or both.  

In this short paper we will present one instance of this framework and particularly the 
method and the model validation problem of using this method. As mention earlier we 
focus on dynamic properties such as timing and synchronization. This instance of the 
framework was developed for system that utilize priority based real-time operating 
systems such as VxWorks provided by WindRiver. We will briefly describe the 
modeling language, the analysis technique and the query language, full presentations 
can be found in [1]. The approach has been evaluated on an industrial robot control 
systems containing about 2500 kloc, presented in [1].  

The modeling language is called ART-ML (Architecture and Real Time behavior 
Modeling Language). ART-ML allows the designer to model both the static structure 
and the dynamic behavior of the system and then use a simulator to analyze the 
model. The static structure includes such entities as tasks, message queues, and 
semaphores. The dynamic behavior of tasks can be modeled on any level of 
abstraction, in the most abstract case only the execution-time distribution and priority 
is used, but very detailed descriptions of the task behavior is also possible. An ART-
ML model can also include semantic relations between tasks, i.e. when a specific 
behavior in one task leads to a specific set of behaviors in another task.  

We have decided to initially focus on temporal properties of a system to grasp the 
dynamic behavior of the system. Thus, temporal requirements are specified in a query 
language PPL, the probabilistic requirement property language. The objective of this 
language is to provide the possibility to state the requirements that are of interest to be 
checked when the system is changed. The language supports specification of hard and 
soft real-time requirements, task execution order issues, message queues 
requirements, and complex compound expressions. For example we can state that a 
specific tasks response time on incoming messages shall be less than 10 time units in 
75% of the cases. 

The analysis shall verify that the requirements are fulfilled. In our current approach 
we use simulation for analyzing that the requirements are fulfilled. The basic reason 



 

 

for that was that the current model and analysis available could not be used for the 
complex system we have studied. The current analysis is basically not expressive 
enough, i.e. can not express the semantics of the studied applications in a meaningful 
way. For example using Fixed Priority Scheduling (FPS) [2] on the robot control 
system studied will only yield that the system is unschedulable, but the system works 
properly in reality. The basic reason for not using FPS is that the semantic 
dependencies such as if one task executes its worst-case execution time another task 
will not cannot be expressed. ART-ML supports the description of such dependencies. 

The rest of the paper is organized as follows. Section 2 presents the method of 
creating a valid model and Section 3 concludes the paper.  

2 The method of creating a valid model 

The introduction of an analyzable model of a system brings a continuous activity of 
maintaining the model. The model has to be consistent with the current 
implementation of the system, i.e. the implementation should be a true refinement of 
the model. Consequently, our method must be integrated in the company’s 
development process. We will briefly describe the activities associated with creating a 
formal model. Figure 1 depicts the general activities required in our method.  

 

Yes No 
 

Initial step 
Create a system model  
(depicted in fig. 2) 

Feedback to feature 
designers/engineers 

 

For each added feature:  
Add feature design to 
main system model  

Analyze the altered 
model using simulator 
and query-language  
 

Is the altered 
model meeting its 

requirements? 
 

Implement feature in 
target system  

 

Do measurements of 
the implementation. 

Update model 
 

A correct model exists! 

 
Fig. 1. The process of constructing and maintaining an analyzable system. 

 

Note that the process described here only concerns the method we are proposing. 
Important activities such as verification and validation of the implementation are 
omitted. The first activity in making an existing system analyzable with respect to its 
temporal behavior is the re-engineering of the system. Typically, the re-engineering 
activity includes identifying the structure of the system, measuring data such as 
execution times and populating the mo del. By comparing the result from analyzing 
the system using the formal model with the temporal behavior of the real system 



 

 

confidence in the model can be established. This is exact the same procedure as used 
in developing models for any kind of systems. As the system evolves, each new 
feature should be modeled and the impact of adding it to the existing system should 
be analyzed. This enables early analysis, i.e. before actually integrating the new 
feature into the system. Note, that this approach requires a modeling language that 
support models on different level of abstractions. ART-ML has this property. 
Modeling of new features should be part of the company’s design phase. Finally, 
when the new feature has been implemented and integrated into the system we need 
to feed back information from the implementation into the model so it can be refined. 
Hence, a more precise model is implemented. This activity is typically performed in 
conjunction with the verification phase of a company’s development process. 

2.1 The model creation process 

When creating an initial model, M0 of an existing system S0, several distinct activities 
which are depicted in Figure 2 are required.  

 

U0 

V0 

M0 

Populate the model  

Tune the model  

Sensitivity analysis   

S0 

T0 

Structural modeling  

 
Fig. 2. The model creation process  

First, the structure has to be identified and modeled, i.e. the tasks in the system and 
synchronization and communication among them. In the next step we measure the 
system and populate the structural model with data about the temporal behavior. 
Moreover, information needed in the validation phase is collected e.g. response times. 
When tuning the model we simulate the initial model and compare the results with the 
validation data collected in the previous step. In this step we may have to introduce 
more details about the tasks behavior in order to capture the systems behavior more 
accurately. There is a potential risk that we cannot model the systems behavior 
without introducing too many details. For instance when there are so many implicit 
relations among the tasks that we cannot make a valid model without modeling the 
complete behavior of the tasks involved. This, however, unveils the complexity of the 
existing architecture. Consequently, the solution is rather to redesign the complex 
architecture. Up until this point, the work of making a model is quite straightforward. 
To validate the usefulness of the model we have to perform a sensitivity analysis. The 
sensitivity analysis should be based on foreseen potential changes in the particular 
system. In the systems we have studied the following typical changes were identified  



 

 

• Change existing behavior of a task which results in changes in the execution time 
distribution. 

• Add a task to the system. 

• Change the periodicity of an existing task. 

• Change the priority of an existing task. 

By introducing the exact same change in the model as in the system and then 
comparing their behavior we can increase the confidence in the created model. Any 
divergence between the behavior of the simulated model and the system indicates that 
the model is missing vital information, in which case more details must be introduced 
in the model.  

Example: The system S contains two tasks, Task A and Task B. 
Furthermore, it contains a binary semaphore protecting a shared resource. A 
timeout occurs if a task has been waiting on the semaphore for a certain time, 
which causes an exception in the system. The timeout is never supposed to 
occur. If the execution time of Task A is increased, the timeout can however 
occur. If the timeout is left out of the model, the model M and system S will 
not behave in the same way anymore if the execution time is increased. This 
indicates that the semaphore timeout behavior has to be introduced in the 
model as well. 

The accuracy of the model is dependent on the quality of the measured data 
(probability dis tributions of tasks execution time). The measuring of the data should 
affect the system as little as possible. Too big probe effect on the system will result in 
an erroneous model and might cause wrong decisions regarding future developments. 

When measuring execution times, it is possible to get a quality estimate of the 
measurement by studying the effects of changing the size of the overhead caused by 
the software probes used for the measuring. If small adjustment in the overhead size 
causes large effects in the system behavior, the measurements can not be considered 
reliable, since it is likely that the introduction of probes had a large impact on the 
system behavior. On the other hand, if only very small effects can be observed, the 
measurements can be considered more reliable, but we don’t know anything for sure, 
since the probes has a minimum overhead size > 0.  

 

2.2 Model validity  

In this section we will discuss how to assure model validity, i.e., the activity of 
establish confidence in the constructed model. This is an important and necessary part 
of constructing models. Existing analytical methods determines if or not the temporal 
behavior of a system is safe given that the formal model is correct, e.g. that the 
estimates of the worst case execution time (WCET) of each tasks is safe [3][4]. In 
order to be safe, the WCET is assigned a value that is as tight as possible but slightly 
larger than the actual WCET. Such a method however tends to over-constrain the 



 

 

system as the worst-case always is considered. An analytical approach is pessimistic 
but safe and simulation is realistic but not necessarily safe. Analytical models and 
analyses found in conventional scheduling theories are often too simple and therefore 
a real system cannot always be modeled and analyzed using such methods. Simulation 
is better from that point of view. By simulating the system with realistic distributions 
of the execution times we can demonstrate that the system meets its requirements. It is 
also possible to use fixed, worst case, values in the simulation instead of the measured 
distributions. This will result in a worst-case analysis similar to the fixed priority 
analysis introduced in [7], but with the advantage of knowing semantic relations 
between the tasks, thereby excluding “impossible” execution scenarios and thus 
lowering the pessimism. However, finding a safe but not overly pessimistic worst 
case execution time is hard, but that is not in the scope of this paper.  

There may be many valid models of one single system. Observing and measuring a 
systems behavior may give a system model that is valid given that the assumptions do 
not change. We will exemplify the phenomenon with a small physical experiment.  

Experiment . The experiment aims at deciding an equation (a model) for 
calculating how high a ball bounces of the ground after being dropped from a 
certain height. Repeatedly dropping the ball from different heights and 
measuring the height of the bounce determine the equation. The resulting 
equation could relate the bounce proportionally to the height from which the 
ball is dropped. This is a completely valid model as long as nothing is 
changed. We can even change the size of the ball without making the model 
invalid. However that model is too simple for capturing changes in e.g. the 
material of the ball or the material in the ground for that matter. We can 
transfer the physical experiment onto our method for analyzing the temporal 
behavior of a complex system. We can convince ourselves that the model is 
valid by comparing the output from the simulator with the values measured 
in the system. However by changing the model in order to analyze the 
impact of adding new features to a system can potentially invalidate the 
model. Whether or not the model is completely valid becomes evident only 
after implementing the new feature, i.e., when we have something to 
compare with. However, the more confidence we have in the model the more 
confident can we be in the simulation results, i.e., before implementing the 
new feature. Continuously maintaining and validating the model as part of 
the development process is the way in which the model is iteratively refined 
and kept consistent. 

To exemplify the model validity problem consider a computer system with two tasks 
A and B. Task A sends a message to task B. This message passing is modeled in 
ART-ML. The simulation results indicate that the system is correct. Now task C is 
added to the system which also sends a message to task B. This changes the temporal 
behavior of task B. However, we only model task C as an execution time distribution 
leaving the message passing out. As a consequence the simulations of task B diverge 
from what we can observe in the changed system. The model that initially was correct 
is now incorrect due to lack of details.  



 

 

2.3 System identification  

System identification is a technique used in the domain of control theory [5]. By 
measuring and observing the input-output relationship between signals in the process 
a model can be determined in terms of a transfer function. Validating models based on 
the system identification approach is somewhat related to testing. Typically output 
signals produced by a simulation of the model are compared with the output signals of 
the physical process. Hence, the model is regarded as correct if the simulations and 
the physical process generate approximately the same output. Moreover, a method 
called residual analysis can be applied on models of continuous systems; observing 
weather or not the residual (the error in the prediction) and the input signal are 
independent. If the error depends on the input, it indicates that there are dynamics in 
the system that is not in the model. Testing the model with different input signals and 
comparing the prediction with the signals produced by the actual system is fine if the 
process is continuous in its nature. It is fair to assume that we can interpolate the 
behavior in between the tested signals. However, computer systems are not 
continuous; they are discontinuous systems meaning that the behavior may change 
dramatically as a result of small changes in the system. Our approach to model 
validation is similar to the one proposed in system identification. Our hypothesis is 
that potential discrepancies will be exposed if we introduce changes in the system and 
the corresponding changes in the model. Comparing the simulation results with the 
data measured in the system will give us the possibility to settle the validity of the 
model. The model validation process we propose is depicted in Figure 3.  

 Identification of 
change scenarios  

Model the scenarios 

Implement prototypes 
of the changes in the 
system 

Simulate the model, 
measure the system and 
compare the results 

 
Done 

Modify the 
model 

Model and 
system Similar 

Model and 
system diverge 

Re-validate 

 
Fig. 3. The process of validating the model.  

The first activity is to develop a set of change scenarios which should reflect typical, 
possible, and foreseen changes in the system. This corresponds to the scenario 
elicitation described in [6]. The set of scenarios are system specific, i.e., they are valid 
only for the system for which they were developed. After having selected a suitable 
set of appropriate and concrete change scenarios it is time to implement them in the 
model. By concrete we mean that scenarios such as change the priority of a task has to 
specify exactly what task to alter and what the new priority is supposed to be. 



 

 

Moreover we have to introduce the proposed scenario in the system as a prototype 
that simulates the changes. Hence we do not implement a complete functional change. 
We aim at mimic the temporal behavior of the changes. For instance the scenario 
where the functional behavior of an existing task is changed we only have to inject 
code that simulate an increase or a decrease in execution times. Adding a new task is 
similar; a task containing only the temporal behavior is added to the model. Finally 
we compare the results from simulating the changed model to the behavior measured 
in the changed system. If they both behave the same way for every identified change 
scenario we have established confidence in the model. However if the behavior of the 
simulation and the system diverge we must tune the model. Typically more details 
have to be introduced in the model. Examples of such details are a more detailed 
model of tasks logical behavior and executional dependencies among task such as 
communication. 

3 Conclusion 

In this paper we present a non-intrusive method for increasing the maintainability of 
complex industrial real-time systems. This method aims to create a valid formal 
model of an existing system and using that model for analyzing the effect of changes. 
The challenge of this approach is to develop a valid model with a minimum of 
complexity and to show that the model is valid for use. We have presented our initial 
approach to this problem, which is based on identifying likely changes and 
incorporate the changes both in the model and target system and compare the outcome 
from the simulation and the real system. 
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