

Increasing maintainability in complex
industrial real-time systems by employing a

non-intrusive method
Christer Norström1, Anders Wall2, Johan Andersson1 and Kristian Sandström2

1 ABB Robotics, Västerås, Sweden
Christer.Norstrom@mdh.se

2 Mälardalen University, Department of Computer Science and Engineering,
Västerås, Sweden

Abstract. It is well known that systems that have been evolving over a long
period of time become costly to maintain, i.e., the productivity when adding
new functionality and fixing bugs is low. In this paper we present a non-
intrusive method for increasing the maintainability of complex industrial real-
time systems. This method aims to create a formal model of an existing system
and using that model for analyzing the effect of changes. The challenge of this
approach is to develop a valid model with a minimum of complexity and to
show that the model is valid for use. The method focuses on analyzing timing
and synchronization properties.

1 Introduction

In this paper we give an introduction to a non-intrusive method for increasing the
maintenance of complex industrial real-time systems, such as process control systems,
industrial robot control systems, automotive systems, and tele communication
systems. By complex industrial real-time systems we mean systems that have a high
and increasing maintenance cost. These systems typically

• have been in operation for at least some years,

• have evolved considerably since their first release,

• were initially developed by a small group of people that understood the system in
detail.

• have a staff today were the major part was not involved in the first development of
the system,

• require a substantial amount of maintenance,

• have no formal model or formal analysis.

It is well known that systems that have been evolving over a long period of time
become costly to maintain, i.e., the productivity when adding new functionality and
fixing bugs is low. The basic reasons for that are

• the increased system complexity that depends on that the system has grown (more
functionality has been added) and it has become almost impossible to understand
the full impact of a change for any single person,

• the architecture has degenerated and that the original architects (key persons) that
really understood the design rationale behind the system have left the company or
got new challenges. The architecture degeneration depends on that the system most
often has been extended with features that was not foreseen when the system was
initially designed. When such a feature is added it has to be forced in to the system,
i.e., a lot of design rules are broken. Further, the degeneration also depends on the
misuse of the system design principles due to time pressure or bad competence or
bad documentation.

The systems we consider are normally built from a limited set of subsystems. Each
subsystem is quite well known and under control. The major problem is to get control
of the behavior of the complete system and especially to predict the behavior at
design time, since a faulty design that is detected late is much more costly to correct
compared to if it had been detected at an early stage. The basic approach to handle
this problem from a technical1 point of view is to introduce a formal model, which can
be used to analyze dynamic system properties such as timing, synchronization and
communication at an early phase of a project.

A formal model can be used for design, analysis, test and code generation, but also for
system education, which we will not elaborate more on in this paper.

We see in principle two different approaches to increase productivity:

1. Intrusive methods which aims to change the code or redesign the complete system
to increase the maintenance.

2. Non-intrusive methods which introduce analyzability without changing the code.

The intrusive methods are risky in the meaning that we will change the code and they
will require a much higher investment in time. An illustration of the risk is for
example during code improvement projects (called quality improvement projects) that
aims to fix a lot of bugs new bugs are introduced. The statistics from industrial
systems tell us that for each five bugs that are corrected a new one is introduced. A
non-intrusive method does not change the code and consequently there is no risk of
introducing new bugs. Therefore, we will consider the most common case: a system
that can neither be re-designed and nor be remodeled due to cost and too high risk of
introducing new bugs. The approach we present in this paper is to reintroduce
analyzability by developing a model of the particular system, which is later used for

1 In this paper we do not consider process, documentation and management related

improvements for increasing the productivity.

impact analysis of a change (maintenance operation). However, the outcome of this
method is often input to a redesign activity of the code.

Our approach is based on a framework for initially verifying dynamic properties of
the system such as timing and synchronization. The framework includes:

• A SW architecture model. This model describes both the static structure of the
system, i.e. tasks, message queues, semaphores, etc. and the behavior of each task
in the system on an abstract level.

• A HW architecture model. This model describes the used HW architecture,
processors, I/O and communication links.

• Requirements property definitions. All requirements of interest are described as
formulas.

• An analysis method. The analysis method verifies that the stated properties are
fulfilled by the modeled system. The analysis can be either mathematical or
simulation based, or both.

In this short paper we will present one instance of this framework and particularly the
method and the model validation problem of using this method. As mention earlier we
focus on dynamic properties such as timing and synchronization. This instance of the
framework was developed for system that utilize priority based real-time operating
systems such as VxWorks provided by WindRiver. We will briefly describe the
modeling language, the analysis technique and the query language, full presentations
can be found in [1]. The approach has been evaluated on an industrial robot control
systems containing about 2500 kloc, presented in [1].

The modeling language is called ART-ML (Architecture and Real Time behavior
Modeling Language). ART-ML allows the designer to model both the static structure
and the dynamic behavior of the system and then use a simulator to analyze the
model. The static structure includes such entities as tasks, message queues, and
semaphores. The dynamic behavior of tasks can be modeled on any level of
abstraction, in the most abstract case only the execution-time distribution and priority
is used, but very detailed descriptions of the task behavior is also possible. An ART-
ML model can also include semantic relations between tasks, i.e. when a specific
behavior in one task leads to a specific set of behaviors in another task.

We have decided to initially focus on temporal properties of a system to grasp the
dynamic behavior of the system. Thus, temporal requirements are specified in a query
language PPL, the probabilistic requirement property language. The objective of this
language is to provide the possibility to state the requirements that are of interest to be
checked when the system is changed. The language supports specification of hard and
soft real-time requirements, task execution order issues, message queues
requirements, and complex compound expressions. For example we can state that a
specific tasks response time on incoming messages shall be less than 10 time units in
75% of the cases.

The analysis shall verify that the requirements are fulfilled. In our current approach
we use simulation for analyzing that the requirements are fulfilled. The basic reason

for that was that the current model and analysis available could not be used for the
complex system we have studied. The current analysis is basically not expressive
enough, i.e. can not express the semantics of the studied applications in a meaningful
way. For example using Fixed Priority Scheduling (FPS) [2] on the robot control
system studied will only yield that the system is unschedulable, but the system works
properly in reality. The basic reason for not using FPS is that the semantic
dependencies such as if one task executes its worst-case execution time another task
will not cannot be expressed. ART-ML supports the description of such dependencies.

The rest of the paper is organized as follows. Section 2 presents the method of
creating a valid model and Section 3 concludes the paper.

2 The method of creating a valid model

The introduction of an analyzable model of a system brings a continuous activity of
maintaining the model. The model has to be consistent with the current
implementation of the system, i.e. the implementation should be a true refinement of
the model. Consequently, our method must be integrated in the company’s
development process. We will briefly describe the activities associated with creating a
formal model. Figure 1 depicts the general activities required in our method.

Yes No

Initial step
Create a system model
(depicted in fig. 2)

Feedback to feature
designers/engineers

For each added feature:
Add feature design to
main system model

Analyze the altered
model using simulator
and query-language

Is the altered
model meeting its

requirements?

Implement feature in
target system

Do measurements of
the implementation.

Update model

A correct model exists!

Fig. 1. The process of constructing and maintaining an analyzable system.

Note that the process described here only concerns the method we are proposing.
Important activities such as verification and validation of the implementation are
omitted. The first activity in making an existing system analyzable with respect to its
temporal behavior is the re-engineering of the system. Typically, the re-engineering
activity includes identifying the structure of the system, measuring data such as
execution times and populating the mo del. By comparing the result from analyzing
the system using the formal model with the temporal behavior of the real system

confidence in the model can be established. This is exact the same procedure as used
in developing models for any kind of systems. As the system evolves, each new
feature should be modeled and the impact of adding it to the existing system should
be analyzed. This enables early analysis, i.e. before actually integrating the new
feature into the system. Note, that this approach requires a modeling language that
support models on different level of abstractions. ART-ML has this property.
Modeling of new features should be part of the company’s design phase. Finally,
when the new feature has been implemented and integrated into the system we need
to feed back information from the implementation into the model so it can be refined.
Hence, a more precise model is implemented. This activity is typically performed in
conjunction with the verification phase of a company’s development process.

2.1 The model creation process

When creating an initial model, M0 of an existing system S0, several distinct activities
which are depicted in Figure 2 are required.

U0

V0

M0

Populate the model

Tune the model

Sensitivity analysis

S0

T0

Structural modeling

Fig. 2. The model creation process

First, the structure has to be identified and modeled, i.e. the tasks in the system and
synchronization and communication among them. In the next step we measure the
system and populate the structural model with data about the temporal behavior.
Moreover, information needed in the validation phase is collected e.g. response times.
When tuning the model we simulate the initial model and compare the results with the
validation data collected in the previous step. In this step we may have to introduce
more details about the tasks behavior in order to capture the systems behavior more
accurately. There is a potential risk that we cannot model the systems behavior
without introducing too many details. For instance when there are so many implicit
relations among the tasks that we cannot make a valid model without modeling the
complete behavior of the tasks involved. This, however, unveils the complexity of the
existing architecture. Consequently, the solution is rather to redesign the complex
architecture. Up until this point, the work of making a model is quite straightforward.
To validate the usefulness of the model we have to perform a sensitivity analysis. The
sensitivity analysis should be based on foreseen potential changes in the particular
system. In the systems we have studied the following typical changes were identified

• Change existing behavior of a task which results in changes in the execution time
distribution.

• Add a task to the system.

• Change the periodicity of an existing task.

• Change the priority of an existing task.

By introducing the exact same change in the model as in the system and then
comparing their behavior we can increase the confidence in the created model. Any
divergence between the behavior of the simulated model and the system indicates that
the model is missing vital information, in which case more details must be introduced
in the model.

Example: The system S contains two tasks, Task A and Task B.
Furthermore, it contains a binary semaphore protecting a shared resource. A
timeout occurs if a task has been waiting on the semaphore for a certain time,
which causes an exception in the system. The timeout is never supposed to
occur. If the execution time of Task A is increased, the timeout can however
occur. If the timeout is left out of the model, the model M and system S will
not behave in the same way anymore if the execution time is increased. This
indicates that the semaphore timeout behavior has to be introduced in the
model as well.

The accuracy of the model is dependent on the quality of the measured data
(probability dis tributions of tasks execution time). The measuring of the data should
affect the system as little as possible. Too big probe effect on the system will result in
an erroneous model and might cause wrong decisions regarding future developments.

When measuring execution times, it is possible to get a quality estimate of the
measurement by studying the effects of changing the size of the overhead caused by
the software probes used for the measuring. If small adjustment in the overhead size
causes large effects in the system behavior, the measurements can not be considered
reliable, since it is likely that the introduction of probes had a large impact on the
system behavior. On the other hand, if only very small effects can be observed, the
measurements can be considered more reliable, but we don’t know anything for sure,
since the probes has a minimum overhead size > 0.

2.2 Model validity

In this section we will discuss how to assure model validity, i.e., the activity of
establish confidence in the constructed model. This is an important and necessary part
of constructing models. Existing analytical methods determines if or not the temporal
behavior of a system is safe given that the formal model is correct, e.g. that the
estimates of the worst case execution time (WCET) of each tasks is safe [3][4]. In
order to be safe, the WCET is assigned a value that is as tight as possible but slightly
larger than the actual WCET. Such a method however tends to over-constrain the

system as the worst-case always is considered. An analytical approach is pessimistic
but safe and simulation is realistic but not necessarily safe. Analytical models and
analyses found in conventional scheduling theories are often too simple and therefore
a real system cannot always be modeled and analyzed using such methods. Simulation
is better from that point of view. By simulating the system with realistic distributions
of the execution times we can demonstrate that the system meets its requirements. It is
also possible to use fixed, worst case, values in the simulation instead of the measured
distributions. This will result in a worst-case analysis similar to the fixed priority
analysis introduced in [7], but with the advantage of knowing semantic relations
between the tasks, thereby excluding “impossible” execution scenarios and thus
lowering the pessimism. However, finding a safe but not overly pessimistic worst
case execution time is hard, but that is not in the scope of this paper.

There may be many valid models of one single system. Observing and measuring a
systems behavior may give a system model that is valid given that the assumptions do
not change. We will exemplify the phenomenon with a small physical experiment.

Experiment . The experiment aims at deciding an equation (a model) for
calculating how high a ball bounces of the ground after being dropped from a
certain height. Repeatedly dropping the ball from different heights and
measuring the height of the bounce determine the equation. The resulting
equation could relate the bounce proportionally to the height from which the
ball is dropped. This is a completely valid model as long as nothing is
changed. We can even change the size of the ball without making the model
invalid. However that model is too simple for capturing changes in e.g. the
material of the ball or the material in the ground for that matter. We can
transfer the physical experiment onto our method for analyzing the temporal
behavior of a complex system. We can convince ourselves that the model is
valid by comparing the output from the simulator with the values measured
in the system. However by changing the model in order to analyze the
impact of adding new features to a system can potentially invalidate the
model. Whether or not the model is completely valid becomes evident only
after implementing the new feature, i.e., when we have something to
compare with. However, the more confidence we have in the model the more
confident can we be in the simulation results, i.e., before implementing the
new feature. Continuously maintaining and validating the model as part of
the development process is the way in which the model is iteratively refined
and kept consistent.

To exemplify the model validity problem consider a computer system with two tasks
A and B. Task A sends a message to task B. This message passing is modeled in
ART-ML. The simulation results indicate that the system is correct. Now task C is
added to the system which also sends a message to task B. This changes the temporal
behavior of task B. However, we only model task C as an execution time distribution
leaving the message passing out. As a consequence the simulations of task B diverge
from what we can observe in the changed system. The model that initially was correct
is now incorrect due to lack of details.

2.3 System identification

System identification is a technique used in the domain of control theory [5]. By
measuring and observing the input-output relationship between signals in the process
a model can be determined in terms of a transfer function. Validating models based on
the system identification approach is somewhat related to testing. Typically output
signals produced by a simulation of the model are compared with the output signals of
the physical process. Hence, the model is regarded as correct if the simulations and
the physical process generate approximately the same output. Moreover, a method
called residual analysis can be applied on models of continuous systems; observing
weather or not the residual (the error in the prediction) and the input signal are
independent. If the error depends on the input, it indicates that there are dynamics in
the system that is not in the model. Testing the model with different input signals and
comparing the prediction with the signals produced by the actual system is fine if the
process is continuous in its nature. It is fair to assume that we can interpolate the
behavior in between the tested signals. However, computer systems are not
continuous; they are discontinuous systems meaning that the behavior may change
dramatically as a result of small changes in the system. Our approach to model
validation is similar to the one proposed in system identification. Our hypothesis is
that potential discrepancies will be exposed if we introduce changes in the system and
the corresponding changes in the model. Comparing the simulation results with the
data measured in the system will give us the possibility to settle the validity of the
model. The model validation process we propose is depicted in Figure 3.

 Identification of
change scenarios

Model the scenarios

Implement prototypes
of the changes in the
system

Simulate the model,
measure the system and
compare the results

Done

Modify the
model

Model and
system Similar

Model and
system diverge

Re-validate

Fig. 3. The process of validating the model.

The first activity is to develop a set of change scenarios which should reflect typical,
possible, and foreseen changes in the system. This corresponds to the scenario
elicitation described in [6]. The set of scenarios are system specific, i.e., they are valid
only for the system for which they were developed. After having selected a suitable
set of appropriate and concrete change scenarios it is time to implement them in the
model. By concrete we mean that scenarios such as change the priority of a task has to
specify exactly what task to alter and what the new priority is supposed to be.

Moreover we have to introduce the proposed scenario in the system as a prototype
that simulates the changes. Hence we do not implement a complete functional change.
We aim at mimic the temporal behavior of the changes. For instance the scenario
where the functional behavior of an existing task is changed we only have to inject
code that simulate an increase or a decrease in execution times. Adding a new task is
similar; a task containing only the temporal behavior is added to the model. Finally
we compare the results from simulating the changed model to the behavior measured
in the changed system. If they both behave the same way for every identified change
scenario we have established confidence in the model. However if the behavior of the
simulation and the system diverge we must tune the model. Typically more details
have to be introduced in the model. Examples of such details are a more detailed
model of tasks logical behavior and executional dependencies among task such as
communication.

3 Conclusion

In this paper we present a non-intrusive method for increasing the maintainability of
complex industrial real-time systems. This method aims to create a valid formal
model of an existing system and using that model for analyzing the effect of changes.
The challenge of this approach is to develop a valid model with a minimum of
complexity and to show that the model is valid for use. We have presented our initial
approach to this problem, which is based on identifying likely changes and
incorporate the changes both in the model and target system and compare the outcome
from the simulation and the real system.

4 References

[1] A. Wall, J. Andersson and C. Norström. Probabilistic Simulation-based Analysis of
Complex Real-Time Systems. In proceedings of the 6th IEEE International Symposium on
Object-oriented Real-time distributed Computing, May 14-16 2003, Hakodate, Hokkaido,
Japan.

[2] N. C. Audsley and A. Burns and R. I. Davis and K. W. Tindell and and A. J. Wellings,
Fixed priority pre-emptive scheduling: An historical perspective, Real-Time Systems
Journal, vol 8, no 2/3, 1995.

[3] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications, Kluwer Academic Publisher, ISBN 0-7923-9994-3, 1997.

[4] C. L. Liu and J. W. Layland, Scheduling Algorithms for Multiprogramming in hard-real-
time environment, JACM, vol 20, no 1, pp 46--61, 1973.

[5] R. Johansson, System Modeling Identification ISBN 0-13-482308-7 Prentice Hall.
[6] P O Bengtsson, Architectural Level Modiability Analysis PhD thesis Blekinge Institute of

Technology. Sweden 2001.
[7] M. Joseph, P. K. Pandya, Finding Response Times in a Real-Time System, The Computer

Journal 29(5): 390-395, 1986.

