
Assuring Degradation Cascades of Car Platoons
via Contracts

Irfan Sljivo1, Barbara Gallina1, and Bernhard Kaiser2

1 Mälardalen University, Väster̊as, Sweden
{irfan.sljivo,barbara.gallina}@mdh.se

2 Berner&Mattner Systemtechnik GmbH, Germany
bernhard.kaiser@berner-mattner.com

Abstract. Automated cooperation is arriving in practice, for instance in
vehicular automation like platoon driving. The development and safety
assurance of those systems poses new challenges, as the participating
nodes are not known at design time; they engage in communication at
runtime and the system behaviour can be distorted at any time by fail-
ures in some participant or in the communication itself. When running
on a highway, simply switching off the function is not an option, as this
would also result in hazardous situations. Graceful degradation offer a
systematic approach to define a partial-order of less and less acceptable
operation modes, of which the best achievable is selected in presence of
failures. In this work we propose an approach for assurance of the degra-
dation cascades based on mode-specific assertions, captured by assump-
tion/guarantee contracts. More specifically, we share our experiences and
methodology for specifying the contracts for both the nominal safe be-
haviour as well as the less safe but acceptable behaviour in presence of
failures. Furthermore, we present an argument pattern for adequacy of
the degradation cascades for meeting the global safety goals based on
the contracts. We illustrate our approach by a car platooning case study.

1 Introduction

Cooperative systems represent the cornerstone of the fourth industrial revolu-
tion [1]. A typical example are vehicle platoons, where an automated fleet of ve-
hicles join via Car2Car connection to achieve a cooperative function such as Co-
operative Automated Cruise Control (CACC). Many of such systems are safety-
critical. Accordingly, a technical safety concept is mandatory for discussing tech-
nical design solutions for all potential failure modes and their tolerance through
detection and reaction mechanisms. When releasing the individual vehicle for
road usage, an argument (called safety case) must be provided that the system
is actually safe to the safety integrity level that has been claimed. The number of
operation modes and of failure possibilities of the cooperative system as a whole
explodes due to the combinatorics of operation and failure modes of all individ-
ual participants, plus failure modes of the communication link that can occur at
any time. A safety argument must be designed at design time for each possible

configuration at runtime, and onboard-mechanisms must execute corresponding
failure mode detection and reaction in every configuration. As the number of
combinations would make this unmanageable, usage of abstraction techniques is
necessary, focusing only on the relevant assertions on black-box-level.

Moreover, these systems are often safe-operational systems (e.g. a car platoon
on a highway, driving automatically without the drivers being ready to react at
short notice), which means that the reaction on failures cannot be as primitive
as just switching off the function in one of the participating cars, but its partial
functioning should be ensured instead. Dynamic system adaptation [2] is an
approach to reconfigure the system to the best achievable operation mode in
case of failures, thereby trading off between safety, availability and functionality
provided. Which operation mode is the best can be determined by ordering
the operation modes in a degradation cascade [3, 4]. An ordered set of rules
determines when a certain operation mode or system configuration should be
activated, triggered by failure detection, typically issued by model-based health
monitors for sensors and other critical system parts.

Contract-based approaches have been frequently used for compositional ver-
ification and also offer means to specify and verify the reconfiguration rules in
terms of contracts. They allow both checking of valid system configurations and
checking refinement between the different hierarchical levels. A contract is a pair
of assertions in form of assumptions and guarantees, where a component guar-
antees its own behaviour provided that the environment fulfils the assumptions.
As reconfigurable components are characterised with different behaviours, we
distinguish between strong and weak contracts [5]. A strong contract must hold
in every environment, while a weak one is not required to hold in every envi-
ronment. Only when, besides the strong assumptions, the weak assumptions are
also met, the component offers the behaviour in the weak guarantees.

In our previous work we presented FLAR2SAF (Failure Logic Analysis Re-
sults to Safety Argument-Fragments) [6] – a partially tool-supported method
that uses CHESS-FLA [7] to derive contracts and generate safety case argument-
fragments. The basis for the argument generation is the connection of a contract
with the corresponding safety requirement. Specifying requirements by stating
“X shall always happen” is inadequate for degradation cascades where the re-
quirements should describe a cascade stating what shall happen if for example X
is not always possible [8]. We see weak contracts as a way to capture behaviour
described in these complex safety requirements for degradation cascades.

In this work we propose systematic design and pattern-based safety assur-
ance of degradation cascades using contracts. To derive contracts, we examine
potential failures of initial system architecture using standard approaches, define
failure detection mechanisms and the resulting operation mode changes through
degradation cascade requirements. Based on the specified degradation cascade
requirements and domain knowledge we derive degradation cascade contracts,
which can be used to build an argument for assuring adequacy of degradation
cascade to address the corresponding hazard. Finally, we illustrate the usage of
the approach in a CACC case study.

The rest of the paper is organised as follows: In Section 2 we present back-
ground information. We present the assurance of degradation cascades using
contracts in Section 3. In Section 4 we present the CACC case study. We present
the related work in Section 5, and conclusions and future work in Section 6.

2 Background

In this section, we briefly recall the basic notions regarding component contracts
and degradation cascades.

2.1 Assumption Guarantee Component Contracts

A traditional component contract C = 〈A,G〉 is composed of assumptions (A)
on the environment of the component and guarantees (G) that are offered by
the component if the assumptions are met. Strong 〈A,G〉 and weak 〈B,H〉 con-
tracts [5] provide support for capturing variable behaviour of reusable compo-
nents. The strong contract assumptions (A) are required to be satisfied in all
contexts in which the component is used, hence the corresponding strong guar-
antees (G) are offered in all contexts in which the component can be used. The
weak contract guarantees (H) are offered only when in addition to the strong
assumptions, the corresponding weak assumptions (B) are satisfied as well.

Contracts can be used to (semi)-automatically instantiate existing safety case
argument-patterns based on the SEooCMM metamodel [6] that captures the re-
lations between the contracts, the supporting evidence and the safety require-
ments allocated on the component. Every contract is supported by one or more
evidence items and every allocated safety requirement is addressed by at least
one contract such that satisfaction and confidence in the associated contracts
supports satisfaction of the corresponding requirement. We use Goal Structur-
ing Notation (GSN) [9] – a graphical argumentation notation – to represent the
argument-fragments. The GSN elements used in this paper are shown in Fig. 1.

2.2 Degradation cascades

Graceful degradation is seen as a way to improve dependability of a system by
degrading its performance proportionally to the failures of its components [4].
Degradation cascades represent a partial order over a labelled set of operation
modes where system degrades its performance based on the presence of certain
failures, while always choosing the most convenient available mode at any time.
As an ordering scheme, existing classifications like the SIL or ASIL (Automotive
Safety Integrity Level) according to safety standards such as ISO 26262 or the
Severity factor (S) known from Failure Mode and Effects Analysis (FMEA)may
be used for labelling the operation modes in terms of safety criticality. The
labelling can be denoted graphically by different colours ranging, for instance,
from green (fully functional and safe) over yellow (degraded function, but still
safe) and orange (emergency function, hazard of low severity) to red (hazardous).

Representing degradation cascades in terms of safety requirements is not as
straightforward as stating “The system shall do X”. Rather, if X is not available,
system should do something else by going to a degraded state. Furthermore, if
that degraded state cannot be maintained, the system should further degrade
its performance, until the final state is the uncontrollable failure that should
be sufficiently unlikely to occur. Hence complex requirement structuring mech-
anisms are proposed for capturing degradation cascades where each degrada-
tion mode is represented by an if-else style “sub-requirement” [3]. Each of these
“sub-requirements” addresses a single degradation mode by listing under which
conditions should the particular degradation mode become active. For example,
for a simple Lane Keeping Assist (LKA) system [3], the nominal requirement
would be that RQ1:“When active and no input failures the LKA system shall
guide the vehicle in the middle of the lane with allowed tolerance of 0.5m”. And
its alternative requirement RQ2:“If the system cannot achieve that (e.g., because
it cannot detect the lane borders), then the vehicle shall keep in the middle of
the neighbouring vehicles and issue an urgent take over”.

3 Car Platooning Degradation Assurance via Contracts

In this section we first sketch a contract-based approach for design of degradation
cascades for car platooning. Then we present the argumentation pattern for
degradation modes based on the captured degradation mode contracts.

3.1 Contract-based Design of Degradation Cascades

Unlike for traditional cars, the term failure comprises for cooperative systems:

1. Technical Failures in the local car (e.g. sensor failures, actuator failures,
controller failures);

2. Technical Failures in another participating car (remote failures), impairing
the integrity of any information provided by this car;

3. Failures in the communication between any cars (e.g. message loss, message
delay, message corruption).

The safety case will have to show that for any combination (!) of platoon configu-
rations, environmental situations (listed and classified before) and failure modes
(neglecting multiple failures, at first) the safety goal is not violated.

Combining our previous works on contract-based design [10], structured de-
sign of degradation cascades [8] and contract-based safety case argument gen-
eration [6], we propose a combined design and safety assurance of degradation
cascades using component contracts. Just as in our previous works [10, 6], we
follow the same generic safety assurance process using component contracts. We
model the fault-free architecture, perform safety analysis to identify the needed
extensions in terms of safety measures, and then derive contracts from results of
such analyses. Finally we use the contracts to instantiate the corresponding ar-
gumentation pattern. We detail the process for the case of deriving the contracts
for car platooning degradation cascades:

1. Model the local controller chain and the local operation state machine of
each car for the failure-free case, using SysML and, if applicable, contracts
(strong contracts for now), in a similar way as described in Section 3.3 of [10].
Validate the platoon use cases (e.g., join platoon) by simulation (building
the product state-space would be unmanageable for humans, but could in
the future offer the possibility for model checking);

2. Examine potential failures (local/remote/communication) and their conse-
quences using standard approaches such as Failure Mode and Effects Analy-
sis (FMEA) and define detection mechanisms (e.g. range checks for sensors,
timeout and CRC checks for communication link). Failure classes can be used
to structure this, and failures can be interpreted as violations of the initial
contracts, as shown in Section 4 of [10]. Note: technically, this is implemented
by observers or monitors as separate Simulink blocks, and captured by sep-
arate sub-state machines that report a Boolean failure state. Define safety
mechanisms that change the operation mode (and therefore, the controller
structure and/or the controller parameters, e.g. distance-to-predecessor set-
point) in case of detected failures. When doing so, try to fall back to the best
performing, but yet safe operation mode, leading to a degradation cascade
(denoted as a partial order of colours ranging from green to red, with which
the operation modes are labelled, as shown for a local system in [8];

3. Collect degradation mode contracts for each local operation mode and adjust
the parameters and controller configurations for each mode (and, thereby,
the resulting guarantees) so that for each valid operation mode, the overall
safety goal is implied.

3.2 Degradation Cascades Safety Argument Pattern

We use the degradation mode contracts to assure that the safety of the degrada-
tion cascade is adequate. We define the degradation cascades argument pattern
(Fig. 1) that can be instantiated from such contracts using the technique from
our previous work [6]. The argument assures that the degradation cascade has
adequately addressed the causes leading to the corresponding hazards (DegCas-
cade goal in Fig. 1). This means that the unreasonable risk of the hazard should
be absent in each operation mode, both during nominal behaviour ({DMx}-
nomBeh) and in presence of failures ({DMx}-Str). Hence, we develop the argu-
ment for each operation mode specified in the degradation cascade by looking
into the identified failure combinations relevant for that particular mode. First,
we assure that the mode is adequately safe under nominal conditions (when the
identified relevant causes are absent). Then, we assure that increasing the system
availability by switching to a degraded mode keeps the system acceptably safe
when a relevant failure combination occurs ({DMx}-{failCombN}). In particular,
we need to argue not only that the condition triggering the degradation (as de-
scribed in the corresponding contract) is adequate ({failCombNContract}Adeq),
but also that the target operation mode is adequate in presence of the particu-
lar failure combination ({DMy}Acceptable). We develop the lower-level parts of

N = number of failure combination

IdentifiedCauses
Known failure combinations

causing {hazard x}

Goal

Strategy

Context
Uninstantiated

Element

Solution

Undeveloped
Goal

SupportedBy

InContextOf
DC-Str

Argument over each mode

{DMx}-acceptable
{DMx} sufficiently addresses contributions to {hazard x} both in
absence and in presence of relevant failure combinations

x = number of degradation mode

{DMy} acceptable
{DMy} is adequately safe in
presence of {failCombN}

{failCombNContract} contract
{failCombNContract} is adequate to address
the occurance of {failCombN} in {DMx}

nomContAdeq
{nomContract} is adequate to address the
corresponding nominal behaviour requirement

{DMx}-nomBeh
{DMx} sufficiently addresses contributions to {hazard x}
in absence of relevant failure combinations

{DMx}-{failCombN}
The degradation from {DMx} to {DMy} after occurance of {failCombN}
increases system availability to maintain sufficient levels of safety

RelevantCauses
Relevant failure combinations

causing {hazard x} in {DMx}

DCSpec
Specification of the degradation

cascade

DegCascade
The Degradation Cascade has reduced the occurance
or propagation of {hazard x} causes

{DMx}-Str
Argument over addressing occurance of
relevant failure combinations in {DMx}

Fig. 1. Degradation Cascades (DC) Argument Pattern in GSN

the argument (nomContAdeq and {failCombNContract}Contract) related to the
confidence in such contracts based on the contract satisfaction pattern [11].

4 CACC and Platooning Case Study

In this case study we use degradation cascade contracts on a CACC system. We
first describe the system, and then apply the process described in Section 3.1.

4.1 CACC and Car Platooning

A typical example of a cooperative safety-critical system is CACC – smart cruise
control guided by a predecessor vehicle via a Car2Car link, as well as vehicle
platooning as an extension of CACC, where additional Car2Car connection is
established to the leader vehicle (the first vehicle of the platoon) that coordinates
the whole platoon. Fig. 2 explains the different operation modes. As a case study
in the AMASS research project [12], we have built up a fleet of autonomous model
cars in the scale 1:8 that can run autonomously and sense the road and any other
cars or obstacles by means of camera and ultrasonic sensors. Additionally, the
cars can establish a WIFI connection to one another at runtime to exchange
Car2Car messages. When doing so, several cars can transit to CACC mode, and
in a next step form a platoon where other cars can join in, thereby forming a
system-of-systems (SoS). Several use cases have been modelled and implemented,
such as “create platoon”, “join platoon”, “leave platoon” etc. Apart from manual
driving (for model cars, this means: operated by a radio remote controller),
there are the operation modes CC (cruise control, i.e. running alone with fixed
speed), ACC (adaptive CC, i.e. perceiving the predecessor car with local distance
sensors and adjusting speed accordingly), CACC (cooperative ACC, i.e. with

Fig. 2. Explanation of CACC and Platoon Driving

radio connection established to the predecessor car, which informs about its
position, speed and manoeuvre intentions), and platoon (same as CACC, but all
participants being informed via radio by the platoon leader vehicle, not just the
immediate predecessor).

4.2 Safety Aspects of CACC and Platoon Driving

The SoS such as CACC and car platooning come with different hazards. We
choose the rear collision as our running example. Note that, in contrast to to-
day’s road vehicles, safety standards such as ISO 26262 cannot be applied directly
to vehicle platoons, because this standard allocates the overall safety responsi-
bility to the system manufacturer, but a platoon has no manufacturer, as the
participating cars come from different carmakers. However, global safety goals
can be stated in a similar way as in traditional safety engineering, such as ”Any
two cars shall always maintain a front-rear-distance of at least 2m to each other”
(of course, the scaling has to be adapted from real world to model cars). It has
to be proven that the safety condition holds for each mode of operation, and
for each expectable environmental situation (e.g. sudden strong braking of the
leading vehicle, which can be constrained by an assumption about physically
reasonable deceleration values), even in presence of failures.

To explain the process of failure analysis and degradation chain creation, we
show in Fig. 3 a simplified excerpt of the application state machine of one partic-
ular vehicle (reduced to the case that this vehicle is not the platoon leader, but
any of the follower cars). The abstraction (in comparison to the technically im-
plemented state machine) leaves out technically necessary states (such as waiting
for WLAN connection) and directs the attention to the overall operation modes,
which form a degradation cascade (marked by the different colours). This ab-
straction is adequate for safety considerations, and also the reduction to the
state machine of one single vehicle is appropriate for the hazard of rear collision.

In this state machine we can see some external events (operator commands,
presence of another vehicles) as trigger events for operation mode transitions,
but also some failure events (cf. Section 4 of [8]). For instance, the transition
from manual drive to ACC is triggered by a user intervention (activation button
pressed), the transition from ACC to CACC by Car2X engaged, i.e. a connection
has been established and both vehicles have agreed upon who is preceding and
who is following vehicle. The transitions back are the complementary events (e.g.
deactivation button pressed), but also some failure events: When, for instance,

CACC Platoon
Manual

Drive

ACC
Platoon_establishCar2X_engaged

activate_ACC

deactivate_ACC

Car2X_disengaged

|| com_fail

Platoon_leave ||

leader lost

Distance: Middle Distance: CloseDistance: Far

Failed (decelerate to standstill)

local_control_failure

timeout ||

local_control_failure local_control_failure
local_control_failure

Wait for

manual

takeover

dist_sensor_fail

local_control_failure

com_fail

deactivate_ACC deactivate_ACC deactivate_ACC

Fig. 3. Simplified Application State Machine Including Degradation

the communication by radio gets lost in CACC or platoon mode, the fall-back is
ACC (just using the front distance sensor to adjust oneself with respect to the
vehicle in front). As we will see, this includes in this case not so much a change
of the speed and distance controller structure, but rather of some parameter (the
distance setpoint), because the simultaneous information that the vehicle in front
is about to brake is no longer available. The front distance sensor (ultrasonic
based in case of the model car) also allows recognising the effect of a braking
manoeuvre, but with a great deal of a delay, leading to a rear collision without
sufficient safety distance. If the communication does not break down, but the
predecessor or platoon leading vehicle reports an error via Car2X, a similar
transition happens. When, as another example, the front sensor fails in ACC
mode, the only remaining degradation level (above failed) is a manual takeover,
so the vehicle goes into a transition state (orange coloured, because hazardous if
pertaining too long) and prompts for takeover. If the takeover (user intervention)
occurs in time, the car is back in manual mode (yellow, because safe, but not
really a state of preference), but if a timeout occurs, the car changes to failed
(red), which means that the car carefully decelerates to standstill. Of course,
there are many other faults (all of them local faults) that lead to an immediate
transition to the failed state, e.g. sensor problems with the wheel encoders or
motor sensors, or any other kind of controller or actuator failures. In this case,
no reasonable degradation is possible any more. Note that, for the purpose of
safety analysis by simulation as described in [8], it may be useful to model more
discrete states as shown in the figure (reflecting the technical implementation):
when a mode change due to a failure occurs, there is a short time interval where
the distance setpoint has already been increased, but the controller takes some
time to increase the actual distance between the cars. Technically, this is not
an extra state, just the setting time that every controller exhibits. For safety
analysis, this is a state that must be considered (and coloured in orange, i.e.
hazardous to some degree), because a braking manoeuvre of the predecessor
car in this situation could lead to a rear crash. Therefore, an estimate for the
frequency and duration of these states must be derived and compared to the
acceptable hazard rates. Of course, the shown simplification to a single car does
not consider effects like the chain-stability of the whole platoon (e.g., one car
avoids the accident, but only by strong braking, which causes subsequent cars
to crash). A part of these questions has been investigated by simulation in [13].

Table 1. The strong contract representing the overall safety goal

A1:
No car can decelerate with more than 8m/s2 AND
A nominally performing car can decelerate with at least 5m/s2;

G1:
Maximum deceleration is within [5m/s2,8m/s2] AND (Platooning, CACC or
ACC mode active) → The distance between the considered car and its prede-
cessor car is always greater than 2m;

Table 2. A subset of the degradation cascade contracts for platoon and CACC modes

BP1:
Platoon active AND no local control failure AND no distance sensor failure
AND no car2x failure AND Braking of the predecessor vehicle is recognised
within 30ms;

HP1:
The distance to the predecessor vehicle is always greater than 20m AND
A sudden braking manoeuvre of the preceding vehicle does never lead to a
resulting distance of less than 2m;

BP2:
Platoon active AND no local control failure AND no distance sensor failure
AND no car2prec failure AND car2leader failure;

HP2: Transition to CACC mode within 10ms;

BP3:
Platoon active AND no local control failure AND no distance sensor failure
AND car2x failure;

HP3: Transition to ACC mode within 10ms;

BCACC1:
CACC active AND no local control failure AND no distance sensor fail-
ure AND no car2pred failure AND Braking of the predecessor vehicle is
recognised within 60ms;

HCACC1:
The distance to the predecessor vehicle is always greater than 30m AND
A sudden braking manoeuvre of the preceding vehicle does never lead to a
resulting distance of less than 2m;

BCACC2: CACC active AND no local control failure AND distance sensor failure;
HCACC2: Transition to ACC mode within 10ms;

4.3 Specifying Degradation Cascade Contracts

Before specifying the degradation cascade contracts, we first state the overall
degradation cascade safety goal in terms of a strong contract presented in Ta-
ble 1. The overall safety goal contract guarantee should be implied by each mode.
While the stated strong assumptions are the basis for calculations done when es-
tablishing the thresholds for each of the degradation modes. The safety goal here
is a simplification, as the original Safety Goal deals with the distance between
any two cars, may they be part of a platoon or not.

For the individual degradation modes, we have then collected sets of weak
assumptions and guarantees. We have not formally proven the guarantees, but
validated them by simulation. The parameters depend on the performance (ac-
curacy and dead time, in particular) of the local sensors or the information
transfer via Car2X, respectively, and could only be estimated conservatively. We
present some simplified examples of the degradation mode contracts based on
our domain knowledge regarding the controller structure in Table 2. A part of

DCSpec
-In platoon mode the distance to predecessor shall be minimum 20m.
-The vehicle shall receive predecessor braking command within 30ms.

-If communication with the leader vehicle fails, but link with the predecessor
remains, the vehicle will degrade to CACC mode. Otherwise if the link with the

predecessor fails also, the vehicle will go to ACC mode.
-If in ACC mode the distance sensor fails, the vehicle shall go to manual mode.

-If in any mode local control fails, the vehicle shall go to standstill.

Platoon mode -Str
Argument over addressing occurance of

relevant failure combinations in Platoon mode

DegCascade
The Degradation Cascade
has reduced the occurance
or propagation of ”rear
collision” causes

IdentifiedCauses
Known failure combinations

causing ”rear collision”: car2x
failure, distance sensor failure,

local control failure

Platoon Mode -acceptable
Platoon Mode sufficiently addresses contributions to ”rear collision”
both in absence and in presence of relevant failure combinations

CACC- acceptable
CACC mode is adequately safe
in presence of car2leader failure

<BP2,HP2> contract
<BP2,HP2> contract is adequate to address the
occurance of car2leader failure in Platoon mode

Platoon Mode-nomBeh
Platoon Mode sufficiently addresses contributions to rear
collision in absence of relevant failure combinations

Platoon Mode-car2leader failure
The degradation from Platoon to CACC after occurance of car2leader
increases system availability to maintain sufficient levels of safety

RelevantCauses
Relevant failure combinations

causing ”rear collision” in Platoon
mode: car2x failure (leader and
predecessor), distance sensor

failure, local control failure

....

Nominal Contracts
 <A1,G1> AND <BP1,HP1>

nomContAdeq
Nominal behaviour contracts are
adequate to address the corresponding
nominal behaviour requirement

....

DC-Str
Argument over each mode

Fig. 4. Car Platooning Degradation Cascades Argument-fragment

the instantiated argument based on the presented pattern is shown in Fig. 4.
The example covers only a portion of the platoon mode argument.

5 Related Work

Shelton et al. [4] present a framework for graceful degradation of distributed em-
bedded systems based on the idea of configuration space that forms a product
family architecture. Instead of specifying and designing degradation for every
possible combination of failures individually, they propose a framework for fo-
cusing only on valid component configurations to reduce the number of failure
combinations to examine. Similarly, in our work we use contracts to focus and
specify only the valid configurations of the cooperative SoS and not all possi-
ble states. Schneider et al. [14] introduce Conditional Safety Certificates (Con-
Serts) specified by directed acyclic graphs that besides demands and guarantees
also contain runtime evidence, gates and directed edges. To move part of assur-
ance at runtime with ConSerts, it is important to formulate different ConSert
variants at development-time such that the ConSert conditions can be resolved
at runtime and the corresponding safety requirements in terms of guarantees
established. Strong and weak contracts associated with requirements and the
supporting evidence work in a similar way. In our work, we focus on the degra-
dation cascades and propose how such conditional assurance can be achieved
using contracts. Assumption/guarantee contracts that support specification of
variable behaviour [15, 5] have been used to promote reuse of assurance arte-
facts. In this work, we utilise the possibility of specifying not design-time, but
runtime variable behaviour such as behaviour exhibited by different degradation
modes. Iliasov et al. [16] formally define notions of modes and their refinement
in Event-B state-based formalism. These notions allow for describing system op-
eration modes using assumptions to capture system conditions and guarantees

to express the behaviour expressed under those conditions. We define the con-
tracts for degradation cascade in a similar fashion and use them as the basis for
degradation cascade assurance.

6 Conclusion and Future Work

In this paper we have sketched a design and safety assurance approach for cooper-
ative SoS exhibiting degradation cascades. More than traditional non-distributed
systems, cooperative systems need to cope with not just the local failures, but
also ones in other peers that are announced by the communication link, and
in the communication link itself. Many of such systems can cause hazards and
therefore need safety properties to be ensured, which involves the introduction
of safety mechanisms. A total shutdown in case of any failure is often not ac-
ceptable, so a structured way of defining degradation cascades is mandatory,
but hard to verify. To address these challenges, we have combined and extended
some recent research contributions: the argument-fragment generation technique
FLAR2SAF, a structured design approach for degradation cascades, and an ap-
proach of contract-based design. The particular thing about using contracts in
our approach is that we use weak contract - originally proposed for facilitating
the reuse of components in new environments - at runtime to define contract for
different levels of degradation. Thereby, the process of selecting the best strategy
to fulfil a given guarantee under varying assumptions is shifted from design time
to runtime. Yet we can prepare the safety argument at design time by itera-
tion over all possible degradation levels and arguing by assumption/guarantee
matching that the guaranteed behaviour is acceptably safe. We have applied
our approach to a fleet of autonomous model cars that perform CACC and pla-
toon driving and successfully validated it by experiments. It should be noted
that the approach is not only applicable to vehicle systems, but to any kind of
cooperating cyber-physical systems, e.g., sensor networks or distributed automa-
tion systems. As a next step plan to formalise the contracts in OCRA language
to prove the safety properties and the correct decomposition and allocation of
contracts. To address verification of the atomic components (i.e. the implemen-
tation) and properties in the environment (e.g. that a certain distance between
cars is sufficient to prevent collisions under all conditions), we plan to integrate
other verification approaches such as model checking or simulation. To make our
approach applicable to industries, we will need to build a tool chain that helps
evaluating the possible configurations and their global guarantees at design time
and to create software code for safety arbiters that evaluate the contracts at
runtime on board the vehicle and select the appropriate degradation mode.

Acknowledgements. This work is supported by EU and VINNOVA via the
ECSEL Joint Undertaking project AMASS (No 692474).

References

[1] Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for
Implementing the strategic initiative INDUSTRIE 4.0: Securing the future of
German manufacturing industry. Forschungsunion (2013)

[2] Adler, R., Schaefer, I., Trapp, M., Poetzsch-Heffter, A.: Component-based Model-
ing and Verification of Dynamic Adaptation in Safety-critical Embedded Systems.
ACM Transactions on Embedded Computing Systems 10(2) (2011) 1–39

[3] Kaiser, B.: From “Safe State” to “Degradation Cascades” – Structured and Quan-
tified Requirements for Automated Driving Systems. Presentation at VDA Auto-
motive SYS. Berlin, Germany (2016)

[4] Shelton, C.P., Koopman, P., Nace, W.: A framework for scalable analysis and
design of system-wide graceful degradation in distributed embedded systems. In:
8th International Workshop on Object-Oriented Real-Time Dependable Systems,
IEEE (2003) 156–163

[5] Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Strong and Weak Contract For-
malism for Third-Party Component Reuse. In: 3rd International Workshop on
Software Certification, IEEE (November 2013) 359–364

[6] Sljivo, I., Gallina, B., Carlson, J., Hansson, H., Puri, S.: A method to gener-
ate reusable safety case argument-fragments from compositional safety analysis.
Journal of Systems and Software: Special Issue on Software Reuse (July 2016)

[7] Gallina, B., Javed, M., Muram, F., Punnekkat, S.: Model-driven Dependability
Analysis Method for Component-based Architectures. In: 38th Euromicro Con-
ference on Software Engineering and Advanced Applications, IEEE (September
2012) 233–240

[8] Kaiser, B., Nejad, B.M., Kusche, D., Schulte, H.: Systematic Design and Valida-
tion of Degradation Cascades for Safety-Relevant Systems. In: To Appear in The
annual European Safety and Reliability Conference ESREL. (June 2017)

[9] Goal Structuring Notation Working Group: GSN Community Standard Version
1. Origin Consulting (York) Limited (2011)

[10] Kaiser, B., Weber, R., Oertel, M., Böde, E., Nejad, B.M., Zander, J.: Contract-
Based Design of Embedded Systems Integrating Nominal Behavior and Safety.
Complex Systems Informatics and Modeling Quarterly 4 (October 2015) 66–91

[11] Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Generation of Safety Case
Argument-Fragments from Safety Contracts. In: 33rd International Conference
on Computer Safety, Reliability, and Security. Volume 8666 of Lecture Notes in
Computer Science., Springer (September 2014) 170–185

[12] ECSEL-JU-692474: AMASS – Architecture-driven, Multi-concern and Seam-
less Assurance and Certification of Cyber-Physical Systems. http://www.amass-
ecsel.eu/

[13] Ghodratbaki, A.: Modellierung lose gekoppelter System-of-Systems am Beispiel
eines Cooperative Adaptive Cruise Control (CACC) Fahrerassistenzsystems. Mas-
ter’s thesis (2017)

[14] Schneider, D., Trapp, M.: Conditional safety certification of open adaptive sys-
tems. TAAS 8(2) (2013) 8:1–8:20

[15] Oertel, M., Schulze, M., Peikenkamp, T.: Reusing a Functional Safety Concept in
Variable System Architectures. In: 7th International Workshop on Model-based
Architecting and Construction of Embedded Systems. (September 2014) 16–25

[16] Iliasov, A., Romanovsky, A., Dotti, F.L.: Structuring specifications with modes.
In: LADC, IEEE Computer Society (2009) 81–88

