
Modeling Product-Line Legacy Assets using Multi-Level Theory
Damir Nešić

Royal Institute of Technology

Brinellvägen 85

Stockholm, Sweden 100-44

damirn@kth.se

Mattias Nyberg

Royal Institute of Technology

Brinellvägen 85

Stockholm, Sweden 100-44

matny@kth.se

Barbara Gallina

Mälardalen University

Högskoleplan 1

Västerås, Sweden 721 23

barbara.gallina@mdh.se

ABSTRACT
The use of non-systematic reuse techniques in Systems Engineering

(SE) leads to the creation of legacy products comprised of legacy

assets like software, hardware, and mechanical parts coupled with

associated traceability links to requirements, testing artifacts, archi-

tectural fragments etc. The sheer number of di�erent legacy assets

and di�erent technologies used to engineer such legacy products

makes reverse engineering of PLs in this context a daunting task.

One of the prerequisites for reverse engineering of PLs is to create a

family model that captures implementation aspects of all the legacy

products. In this paper, we evaluate the applicability of a modeling

paradigm called Multi-Level Modeling, which is based on the class-
instance relation, for the creation of a family model that captures

all the implementation concerns in an SE PL. More speci�cally, we

evaluate an approach called Multi-Level conceptual Theory (MLT)

for capturing di�erent legacy assets, their mutual relations and

related variability information. Moreover, we map PL concepts like

variants, presence conditions and product con�gurations to MLT

concepts and provide formal interpretation of their semantics in

the MLT framework. The illustrative example used throughout the

paper comes from a real case from the automotive domain.

CCS CONCEPTS
• Theory of computation → Data modeling; • Software and
its engineering → Software product lines;

KEYWORDS
Multi-Level Modeling, Legacy systems, Reverse engineering

ACM Reference format:
Damir Nešić, Mattias Nyberg, and Barbara Gallina. 2017. Modeling Product-

Line Legacy Assets using Multi-Level Theory. In Proceedings of SPLC ’17,
Sevilla, Spain, September 25-29, 2017, 8 pages.

DOI: 10.1145/3109729.3109738

1 INTRODUCTION
Product Line Engineering (PLE) has been praised as the development

approach ensuring systematic reuse of engineered assets, increase

in product quality, and reduction of development costs and time

to market [37]. However, proactively adopting PLE in the area of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC ’17, Sevilla, Spain
© 2017 ACM. 978-1-4503-5119-5/17/09. . . $15.00

DOI: 10.1145/3109729.3109738

Systems Engineering (SE) is challenging because of organizational is-

sues, high investments in legacy products, and ultimately because of

product complexity. Each legacy product in an SE Product Line (PL)

is a composition of several types of di�erent assets, e.g. software,

hardware, and mechanical parts, with the accompanying documen-

tation, e.g. requirements, architecture models, test artifacts, and

corresponding traceability links. Consequently, reverse engineer-
ing [14] a model that captures all of the above information is a

challenging task [5, 28].

Reverse engineering PLs has been the goal of many contributions

in recent years, see surveys in [1, 38]. As noted in [1], "reverse engi-
neering is concerned with understanding the systems", i.e. obtaining a

di�erent or a more abstract representation of the system compared

to the existing one. Understanding legacy products usually entails

the creation of a family model [37], which is the superimposition

of the implementation of all product variants. Unlike pure soft-

ware PLs where the family model is a code-base, in SE PLs such

a model should contain di�erent types of legacy assets and di�er-

ent relations among them, e.g. one part contains another part or

an embedded system implements a function. Moreover, the model

should contain traceability links to the accompanying documenta-

tion assets and if available, variability information. Such a model

could then be used to reengineer the legacy assets but it can also

ful�ll numerous other use cases across the PL. Some examples of

the use cases are: change impact analysis, integration testing design

and con�guration [36], generation of assurance cases [26], and in

general better decision making and safer PL evolution.

There are two main challenges for the creation of such a family

model in an SE PL. Firstly, di�erent assets originate from di�erent

engineering domains that refer to di�erent concepts and use di�er-

ent data formats, all of which makes the modeling process a manual,

human-intensive task. Secondly, although there are some recom-

mendations for the appropriate process of building such a model

[5, 28] there is no standard modeling framework that supports the

modeling of di�erent concepts induced by the heterogeneity of

legacy assets.

The present paper approaches the latter challenge and proposes

the emerging Multi-Level Modeling (MLM) [2, 24] paradigm as a

framework for the creation of a family model in an SE PL. The

MLM paradigm emerged in order to threat the well-known de�cien-

cies [3, 34] of MOF-compliant frameworks [35]. Speci�cally, MLM

approaches allow an arbitrary number of abstraction levels and

several di�erent types of relations between adjacent abstraction

levels compared to the MOF framework with �xed four levels of

abstraction with only instanceOf relation between them. Reported

bene�ts [15, 19, 29] of using an approach belonging to the MLM

paradigm are: simpler models when capturing complex domains,

greater separation of concerns, more maintainable models etc.

SPLC ’17, September 25-29, 2017, Sevilla, Spain Damir Nešić, Ma�ias Nyberg, and Barbara Gallina

More speci�cally, the present paper evaluates a particular MLM

approach called Multi-Level conceptual Theory (MLT) [11] which is

chosen for several reasons. Firstly, the foundation of MLT is formal

logic which guarantees the creation of unambiguous models. Sec-

ondly, MLT de�nes several di�erent relations between types on the

adjacent levels of abstraction. These relations capture the re�ne-

ment of more abstract concepts into more speci�c ones, similar to

the relations between domain and application engineering in PLE

[41]. Finally, MLT uses similar concepts as the widely-known UML

class-diagram [42], which should facilitate industrial acceptance.

The evaluation of the MLT framework is driven by the question

whether the concepts of the MLM paradigm are applicable for legacy

asset modeling in the SE PL context, and if there is a bene�t in doing

so. The contributions of the present paper are: (i) embedding PL

concepts into MLT framework and showing how legacy assets from

a SE PL can be modeled in MLT (ii) a formal semantic interpretation

of PL concepts inside the MLT framework (iii) an initial evaluation

of MLT applicability for modeling of legacy assets and their mutual

relations. The evaluation shows that main bene�ts of using the MLT

framework is its ability to capture all types of legacy assets and

their relations in the same model with a uni�ed formal semantics,

thus acting as a uni�ed target modeling framework for di�erent

extraction tasks.

Applicability of MLM-based approaches for modeling PL re-

lated issues has not been explored in previous literature. However,

there is a single contribution [25] discussing the similarities be-

tween PL concepts and MLM concepts. The need to model di�erent

types of legacy assets has been recognized by the PLE community

[16, 33]. Some of the existing approaches aim at capturing the as-

set data together with corresponding variability information, e.g.

Clafer language [6, 30, 32], UML-based approaches [8, 20] and other

approaches [17, 18]. However, the majority of these approaches

focuses on a single type of assets and corresponding variability

information with the goal of generating possible con�gurations of

the modeled assets. In contrast, we employ MLT for simultaneous

modeling of di�erent types of assets at di�erent abstraction lev-

els with the goal of creating a family model and enabling much

broader set of use cases. Solutions presented in [17, 18] follow a

similar idea like the present paper but the used modeling language

is not publicly available. A more detailed discussion on the com-

parison between the MLT framework and other used approaches

can be found in Section 5, which surveys related work.

The rest of the paper is organized as follows. Section 2 introduces

the MLM modeling paradigm and the MLT framework, which is

then used to model the legacy assets from an illustrative industrial

example. In Section 3, PL concepts of variants, presence conditions,

and product con�gurations are mapped to MLT concepts and con-

�guration dependent relations receive a formal treatment. Section 4

evaluates the properties of the MLT framework and its applicability

as a target framework for reverse engineering family models in SE

PLs. Section 5 surveys the related work and is followed by Section 6

where we summarize the present paper and outline future work.

2 MULTI-LEVEL MODELING
In the recent years, a new modeling paradigm known as Multi-
Level Modeling (MLM) has been emerging [2, 24]. MLM approaches

are based on the notion of classes and instances but contrary to

well-established MOF framework [35] with four abstraction lev-

els, MLM approaches allow an arbitrary number of abstraction

levels. The consequence is that an entity in a single model can

simultaneously be a class and an instance which softens the line

between models and meta-models. Some of the reported advantages

[15, 19, 29] of using MLM approaches over the standard MOF-like

approaches are: capturing complex domains with simpler models

than MOF-compliant models, separation of concerns, �exible and

more-maintainable models etc. In [13], the Multi-Level conceptual
Theory (MLT) framework is introduced, which is a particular in-

stance of the MLM paradigm. The following section presents the

characteristics of MLT on an illustrating example from a real PL in

the automotive domain, Scania CV AB.

2.1 MLT: A Theory for Multi-Level Conceptual
Modeling

An example MLT model is shown in Figure 1. Because MLT does

not have a de�ned graphical syntax, an adaptation of the graphical

representation from [12] is used and a proposal for an MLT-UML

pro�le can be found in [13].

Two central notions in MLT are the notions of type and individ-
ual and they are jointly referred to as entities. A type represents

a set of entities and therefore it corresponds to the notion of class
in UML class diagram [42]. Entities that cannot be instantiated are

individuals. Types and individuals are related with the instanceOf
relation, denoted as iof. For example, iof(:ems2,EMS2) states that

the legacy asset :ems2 is an instance of type EMS2 which stands

for the second generation of the Engine Management System. Being

an MLM approach, MLT allows a type to simultaneously be a type

and an instance of another type. This leads to multiple abstraction

levels. For example, besides stating iof(:ems2,EMS2), MLT model

in Figure 1 also states iof(EMS2,ECUgeneration), i.e. EMS2 is an

instance of type ECUgeneration which is the type of all Electronic
Control Unit (ECU) generations. On an even higher level of abstrac-

tion, there is a type ArchitecturalElement whose instances are

types ECUfamily and ECUgeneration. In order to reduce clutter,

entities which are instances of the same type are encompassed by

a dashed line rectangle and only one instanceOf relation is drawn,

e.g. both EMS1 and EMS2 are instances of the type ECUgeneration.

In the interest of distinguishing between multiple levels of ab-

straction, MLT introduces type orders between which instantiation

relation holds. There can be an arbitrary number of type orders but

for the purpose of the present paper only 3rd Order Type (3rdOT)

2nd Order Type (2ndOT), 1st Order Type (1stOT), and Individual Or-
der Type (IndividualOT) are considered. It should be noted that the

IndividualOT represents types whose instances cannot be further

instantiated. Types de�ned on one order type, e.g. IndividualOT,

are always instances of a type on the adjacent higher order type, e.g.

1stOT, except the highest order type, i.e. 3rdOT, which is an instance

of itself. On a single order level, the order type is the super-type of

all other entities on this level.

Types in MLT can have attributes, which are denoted using a

ternary predicate typeHasAttribute(A, at, B) where A is the type

that has the attribute, at is the attribute name, and B is the type

of the attribute value, typically an integer, string etc. If an entity

Modeling Product-Line Legacy Assets using Multi-Level Theory SPLC ’17, September 25-29, 2017, Sevilla, Spain

Figure 1: MLT model of the illustrating example

e assigns a speci�c value v to an attribute at , this is denoted by

the predicate hasValue(e, at, v). In Figure 1, the attribute SN is de-

noted by typeHasAttribute(Truck,SN,Integer) and the indi-

vidual :truck assigns it a speci�c value expressed by the predicate

formula hasValue(:truck,SN,123). Attributes can have other

value types besides integers, strings etc. For example, ECUfamily
has an attribute conforms of the type CodingStd which means that

each instance of the type ECUfamily can have a speci�c value for

this attribute, for example MISRA C.

Relations between entities in MLT are graphically represented as

a directed line between types and we say that a relation has a source
type and an end type. Relations in MLT can be divided in two groups,

structural relations and basic relations. Structural relations are the

relations that hold between types. De�nitions of structural relations

in natural language and the corresponding MLT predicates can be

found in Table 1 while the formalization in �rst-order logic can be

found in [11]. Because MLT is formalized in many-sorted �rst-order
logic [31], the variables e,at , and v appearing in the de�nition of

predicates in Table 1 are quanti�ed over three disjoint sets: E is

the set of all declared entities in an MLT model, A is the set of all

declared attributes, andV is the set of all attribute values where

V = P (E). The original MLT work in [11] contains the fourth set

W which is the set of all possible worlds but in the present paper,

we assume that there exists only one world.

MLT de�nes the following structural relations:

(1) specialization, proper specialization, and subordination. These

structural relations are called intra-level structural rela-

tions because they can exist only between types of the

same order level.

(2) instantiation, power type, categorization, complete catego-
rization, disjoint categorization, and partitioning. These

structural relations are called cross-level structural relations

because they can exist only between types on di�erent but

adjacent order levels.

2.1.1 Intra-level structural relations. The model in Figure 1 states

that properSpecializes(EMS,ECU) which means that there are

other instances of type ECU which are not instances of type EMS,

i.e. other ECUs exist. Contrary to proper specialization, the special-
ization relation, e.g. specializes(Truck,Vehicle), means that

instances of two types can be the same. Both specialization rela-

tions imply attribute inheritance between types and therefore any

specialization of type ECU has an attribute SN of type Integer.

The subordination relation can hold only between two types

on two distinct but adjacent order levels. The meaning of rela-

tion isSubordinateTo(ECUgeneration,ECUfamily) is that every

instance of type ECUgeneration is a proper specialization of an

instance of type ECUfamily. The relevance of the subordination
relation is that it can be used as a modeling construct that enforces

certain structure of types on adjacent lower order level without

explicitly stating these types.

2.1.2 Cross-level relations. MLT de�nes �ve di�erent cross-level

relations that are based on the pattern of powertypes [21]. An exam-

ple of a cross-level relations is the partitions relation and the state-

ment partitions(ECUfamily,ECU) means that every instance of

type ECUfamily is a proper specialization of the type ECU. Further-

more, all instances of type ECUfamily are types that are pair-wise

disjoint, i.e. they do not have common instances. The partitions
relation exists also between types ECUgeneration and type ECU
but because of the previously mentioned subordination relation

between ECUgeneration and ECUfamily, each instance of type

ECUgeneration is a proper specialization of an instance of the type

ECUfamily.

2.1.3 Basic relations. Basic relations capture relations between

instances of types, e.g. hasPart or createdBy, that represent con-

tainment, traceability, and other relations between di�erent assets.

As can be seen in Figure 1, basic relations can appear on any ab-

straction level, e.g. hasECU on IndividualOT level and specifiedBy
on the 1stOT level. MLT treats all basic relations in the same way

as attributes and it uses the same predicates to denote basic re-

lations. The only di�erence is that the type of a basic relation

value is usually not a type like string but instead one of the types

declared in the MLT model. The example in Figure 1 shows the ba-

sic relation hasEMS2 which is expressed by a predicate formula

typeHasAttribute(Truck,hasEMS2,EMS2) where the arrow at

SPLC ’17, September 25-29, 2017, Sevilla, Spain Damir Nešić, Ma�ias Nyberg, and Barbara Gallina

Table 1: MLT de�nitions related to structural relations and attributes

Relation Predicate Semantics

Intra-level structural relations

specialization specializes(A,B) Type A specializes type B i� all instances of type A are also instances of type B.

proper specialization properSpecializes(A,B) Type A proper specializes type B i� A specializes B and A is di�erent from B.

subordination isSubordinateTo(A,B) Type A is subordinate to type B i� every instance of A proper specializes an instance of B.

Cross-level structural relations

powertype isPowertypeOf(A,B) Type A is powertype of type B i� all instances of A are specializations of B and every possible specialization of B is an instance of A.

categorization categorizes(A,B) Type A categorizes type B i� all instances of A are specializations of B.

complete categorization completelyCategorizes(A,B) Type A completely categorizes type B i� A categorizes B and every instance of B is instance of at least one instance of A.

disjoint categorization disjointlyCategorizes(A,B) Type A disjointly categorizes type B i� A categorizes B and every instance of B is instance of at most one instance of A.

partitioning partitions(A,B) Type A partitions type B i� each instance of B is an instance of exactly one instance of A.

Attribute related de�nitions

attribute de�nition typeHasAttribute(A,at,B) at is de�ned as an attribute of type A and the value of the attribute is an instance of type B

attribute value assignment hasValue(e,at ,v) The predicate holds if an entity e assigns a value v to an attribute at .
mandatory attribute isMandatoryAttribute(at) An attribute at is mandatory i� each instance of the type that has the attribute at assigns a value to at
mono-valued attribute isMonoValuedAttribute(at) An attribute at is mono-valued i� each instance of the type that has the attribute at assigns the same type of value to at

the end of the line connecting type Truck and type EMS2 repre-

sents the relation end type. The meaning of relation hasEMS2 is

that it is a more speci�c relation than the hasEMS but MLT does not

provide the concept of relation specialization. Basic relations have

a dedicated graphical representation in order to visually indicate

that basic relations exist between instances of declared types but

in general, basic relations can be visually represented as attributes

and vice versa, e.g. the type of the conforms attribute can be repre-

sented as an MLT type. MLT allows expressing that a basic relation,

i.e. an attribute, is a mandatory relation. This is denoted using the

predicate isMandatoryAttribute(at) or graphically by the relation

cardinality that is at least one, e.g. [1..∗], at the relation end type.

The meaning of a mandatory relation is that each instance of a

type that has a mandatory relation must have a speci�c value for

the mandatory relation. A basic relation can also be mono-valued,

which is denoted by the predicate isMonoValuedAttribute(at). The

meaning of a mono-valued relation is that the instances that as-

sign values to the mono-valued attribute are always of the same

type. For example, relation hasEMS is both mandatory and mono-

valued, which is captured by isMandatoryAttribute(hasEMS)
and isMonoValuedAttribute(hasEMS). Other cardinalities of ba-

sic relations in MLT are possible, e.g. [0..∗] or [2..5], but there are

no predicates assigning them a speci�c meaning, and they are in-

terpreted in the standard way. It should be noted that despite the

graphical representation, an MLT model is just a set of predicate

formulas.

2.2 Summary of MLT applicability
Belonging to the MLM paradigm, MLT framework o�ers general

modeling constructs and expressiveness needed to create models

capturing heterogeneous assets on di�erent abstraction levels with

corresponding relations. In a full scale model with hundreds of

types, Figure 1 would have to include types like the SW and HW

of an ECU that have further sub-components and that are speci-

�ed by di�erent speci�cation documents. A particular strength of

the MLT framework are the various structural relations. For exam-

ple, expressing the structural relations isSubordinateTo and two

partitions relations in Figure 1, implies the structuring of all in-

stances of types ECUfamily and ECUgeneration into specialization

hierarchies and in the case of our industrial partner the number of

such assets exceeds three hundred.

Nonetheless, applying MLT for modeling in PL context requires

establishing a mapping between the general MLT concepts and

more speci�c PL concepts, e.g. variants, versions, product con�gu-

rations etc. Additionally, in order to support the previosly outlined

use cases, the semantics of the models should be unambigous and

preferably formaly de�ned. Furthermore, depending on the assets

and their relations, there will be di�erent cardinalities of relations

in the MLT model. For example, Figure 1 shows two individuals

called :truck1 and :truck2 and each of them is in a relation with

a distinct individual of EMS-ECUs, i.e. :ems1 is an instance of type

EMS1 and :ems2 is an instance of the type EMS2. It can be concluded

that the cardinality of basic relations hasEMS1 and hasEMS2 is [0..1]

and that the end types of these basic relations are optional legacy

assets. In MLT terminology, basic relations hasEMS1 and hasEMS2
are not mandatory basic relations. Because basic relations with

cardinality [0..1] imply that these basic relations exist only in some

product con�gurations, from hereon they will be referred to as

Product-Con�guration Dependent (PCD) relations. Often in PLE,

presence conditions [43] specify when a certain asset belongs to a

product con�guration, i.e. presence conditions are the information

that complements PCD relations.

3 MAPPING PL CONCEPTS TO MLT
CONCEPTS

Because MLT framework support only concepts of types, relations,

and attributes, mapping PL concepts like variants, presence condi-

tion, product con�guration to MLT concepts is not straightforward.

Mapping concepts of presence conditions, which are propositional

formulas, and product con�gurations, which are sets of product

features, require some interpretation of the MLT framework seman-

tics because the MLT de�nitions and axioms primarily capture the

syntactical constraints of MLT models.

3.1 Mapping variants and versions
The �rst two concepts that we map to the MLT framework are the

concepts of variant and version. Whenever a type is specialized by

another type, we say that the latter is a variant type, hereinafter

only variant. For example, type EMS is a variant of type ECU. As

Modeling Product-Line Legacy Assets using Multi-Level Theory SPLC ’17, September 25-29, 2017, Sevilla, Spain

can be seen in Figure 1, variants are organized into a specialization

hierarchy and in general specialization hierarchies can be arbitrarily

deep, i.e. an asset can have an arbitrary number of variants. The leaf

variants represent versions of assets and are referred to as version
types, hereinafter only versions. For example, types EMS1 and EMS2
are versions of the type ECU.

3.2 Model-Theoretic Semantics of MLT
In the original MLT framework, the setV which contains all value

types that can be assigned to attributes is de�ned as the powerset of

the set E,V = P (E), in order to accommodate attributes that are

assigned with several di�erent values simultaneously, i.e. composite

types. For the purpose of the present paper, this is not required and

from hereon all attributes are considered to be mono-valued.

We interpret the semantics of MLT concepts in a model-theoretic

fashion based on concepts of sets and relation similar to Description
Logic (DL) [4]. We de�ne the semantics of types, individuals, and at-

tributes through an interpretationI which is a tuple {J·KI , E,A,V}
that consists of an interpretation function denoted as J·KI , and the

already introduced sets E,A,V . The interpretation of a type T ,

denoted as JT KI assigns a subset of the set of all entities in E to the

type T , JT KI ⊆ E, i.e. a type corresponds to the set of its instances.

The interpretation of an individual i , denoted as JiK, assigns an

element of the set of all entities to the individual i , JiKI ∈ E. The

interpretation of an attribute at , denoted as JatKI , assigns a binary

relation to the attribute at , JatKI ⊆ E ×V , where the relation is

possibly an empty relation. When an attribute at represents a basic

relation it will be denoted as R instead of at .
The specialization relation, denoted as specializes(T1, T2),

semantically corresponds to the subset relation JT1KI ⊆ JT2KI . The

proper specialization relation, denoted as properSpecializes(T1,

T2) semantically corresponds to the proper subset relation JT1KI ⊂
JT2KI . If types T2 and T3 specialize type T1, and if types T2 and T3
are declared as disjoint and complete with respect to type T3, then

the disjointness constraint corresponds to JT2KI ∩ JT3KI = ∅, and

the completeness constraint corresponds to JT1KI = JT2KI ∪JT3KI .

Besides model-theoretic semantics, in Section 2 the lack of a con-

struct expressing relation specialization was identi�ed. In order to

overcome this issue, a predicate specializesBasicRelation(R1,R2) is

introduced and semantically it corresponds to JR1KI ⊆ JR2KI . For

example, in Figure 1, basic relation specialization captures the fact

that the hasEMS2 basic relation is a specialization of the hasECU ba-

sic relation, i.e specializesBasicRelation(hasEMS2,hasECU).

3.3 Mapping presence conditions
Issues regarding PCD relations were identi�ed and discussed in Sec-

tion 2.2. The example of the PCD relations in Figure 1, is indicated

by the [0..1] cardinality of basic relations. However, in order to

formally relate PCD relations with other PL concepts, we explicitly

de�ne the PCD relation.

De�nition 3.1 (PCD Relation). : A relation R from the source type

T1 to the end type T2 is Product-Con�guration Dependent if JRKI ⊆
JT1KI × JT2KI and ∃t1 ∈ JT1KI ∀t2 ∈ JT2KI .

(
(t1, t2) < JRKI

)
.

The de�nition of the PCD relation includes empty relations, i.e.

JRKI = ∅, but in the remainder of the paper it is considered that

no relation is empty. As mentioned in Section 2.2, in PLE a PCD

relation is usually complemented with a presence condition that

determines in which product con�gurations does this relation hold.

Based on the De�nition 3.1, a PCD relation R from type T1 to

T2, can be specialized by two types T ′
1

and T ′′
1

that are disjoint

and complete. Type T ′
1

is such that each instance of it is in a

relation R with an instance of the type T2 and type T ′′
1

is such

that there is no instance of it which is in the relation R with

an instance of the type T2. For example, type Truck from Fig-

ure 1 can be disjointly and completely specialized by two types,

Truck_with_EMS2 and Truck_without_EMS2. Then, the PCD rela-

tion hasEMS2 can be expressed as a mandatory basic relation that al-

ways exists for the set of product individuals Truck_with_EMS2, i.e

typeHasAttribute(Truck_with_EMS2,hasEMS2,EMS2) and also

isMandatoryAttribute(hasEMS2). Furthermore, the type called

Truck_with_EMS2 can now be annotated with the presence condi-

tion of the PCD relation hasEMS2 because type Truck_with_EMS2
represents all the instances that satisfy the presence condition.

In order to avoid having presence conditions only as syntacti-

cal annotations in the model, in the next section we interpret the

semantics of the presence conditions.

3.3.1 Semantics of Presence Conditions. In order to characterize

each product individual in the MLT framework, the notion of a

con�guration must be de�ned. Let S be a non-empty and �nite set

of unique product-describing symbols S = {s1, s2, ..., sn }, hereinafter

referred to as symbols, such that each symbol represents some

characteristic of a product individual. Symbols in S can represent

characteristics like features, time of production etc. A product con-
�gurationC , hereinafter referred to as con�guration, is a subset of S ,

C ⊆ S , and it characterizes a set of product individuals. The set of

all con�gurations is the powerset of the set of symbols, C = P (S).
Because each product individual is realized or described by a

subset of all assets, we assume that each asset, represented by a type

being the end type of a PCD relation, has a presence condition. A

presence condition is a logical expression ϕ over the set of symbols

S and it is formed using the logical operators ∧,∨,¬. A product

individual characterized by a con�guration C is in a relation with

an asset if and only if the presence condition ϕ of the asset is entailed

by the symbols in con�guration C , denoted as C |= ϕ. For example,

if the asset EMS2 has the presence condition ϕ = s1 ∧ s2 then each

instance of type Truck that is in a relation with an instance of EMS2
must be characterized by a con�guration C such that s1 ∈ C and

s2 ∈ C .

Following the idea from the end of Section 3.3, we proceed to

characterize sets of product individuals in which a particular PCD

relation always exists. Let the type P̂ represent all possible product

individuals. Any type Pj representing a subset of product individu-

als, JPj KI ⊆ JP̂KI , is a specialization of P̂ , i.e. specializes(Pj,P̂).

Because type Pj represents a subset of all product individuals, it

will be refer to as product group type, for short only product group.

Let a function Con�g : P̂ → C be de�ned such that it returns

a con�guration C for each product individual in P̂ . For each asset

with a presence condition ϕ, modeled as type T that is the end

type of a PCD relation R, a type Pj can be de�ned as the set of

all product individuals whose con�gurations entail the presence

SPLC ’17, September 25-29, 2017, Sevilla, Spain Damir Nešić, Ma�ias Nyberg, and Barbara Gallina

Figure 2: Product groups and PCS relations applied to the extended illustrating example

condition ϕ, i.e. JPj K = {x | Con�g(x) |= ϕ}. Then, let R′ be a rela-

tion from the type Pj to type T , i.e. typeHasAttribute(Pj,R
′,T).

Because the con�guration of each product individual in the product

group Pj entails the presence condition of type T , it follows that

each product individual in Pj is in the R′ relation with an instance

of the type T , i.e. relation R′ is a mandatory relation denoted as

isMandatoryAttribute(R′). Due to the fact that relation R′ is

speci�c for the product individuals in Pj , we refer to such relations

as Product-Con�guration Speci�c (PCS) relation.

De�nition 3.2 (PCS Relation). A relation R′, from product group

P to type T , interpreted as JR′KI ⊆ JPKI × JT KI , is Product-
Con�guration Speci�c if it holds that JR′KI = JRKI where R is

a PCD relation from type P̂ to type T .

It follows from De�nition 3.2 that each PCD relation can be

replaced by a PCS relation which is a stronger construct, i.e. it is

a mandatory basic relation. Moreover each presence condition of

each asset induces the creation of a product group, i.e. presence

conditions are represented using concepts that are �rst-class citizens
in the MLT framework and they have a semantic interpretation in

contrast to being purely syntactic constructs.

Next section introduces an extension of the illustrating example

and shows how products groups, presence conditions, and PCS

relations can be modeled in MLT framework.

3.4 Expressing PL concepts in MLT
Figure 2 shows the extended illustrating example from Figure 1 with

added product groups and product-con�guration speci�c relations

instead of product-con�guration dependent relations.

Each presence condition is represented as an attribute of the

product group that represents product individuals whose con�g-

urations entail the presence condition. Presence conditions are

mandatory attributes with the value type being a singleton set

whose only member is the logical expression capturing the pres-

ence condition. For example, the presence condition of the as-

set EMS2 is ϕ = s1 ∧ s3, and in MLT terms it is represented as

typeHasAttribute(Truck.EMS2,p_cond,{s1∧ s3}) and addition-

ally isMandatoryAttribute(p_cond). The existence of product

groups on IndividualOT type order, implies that there is a type on

the 1stOT type order, here called Truck.config that represents all

product con�gurations, i.e. each product group is an instance of

the type Truck.config. Furthermore, the hasPart relation between

type Truck.config and types ECUfamily and ECUgenerationmod-

els all PCS relations that exist between assets on the IndividualOT

order level.

Each presence condition associated with an asset is interpreted

as a product group that are shaded in light gray. The meaning of

product-describing symbols that form the presence conditions of

assets are shown in the bottom right of Figure 2. The extended

example omits individuals in order to reduce clutter but introduces

some additional assets in order to highlight a consequence of in-

troducing product groups. The assets on the right side of Figure 2

represent another ECU, called Gearbox Management system (GMS),

besides the previously mentioned engine management system.

A consequence of introducing product groups in MLT is that

depending on the presence conditions entailed by the con�gura-

tions of product group instances, specialization relations appear

between product groups. As can be seen in Figure 2, product groups

Truck.GMS1 and Truck.GMS2 are specializing the product group

Truck.GMS. These particular specialization relations re�ect the fact

that the presence conditions of types GMS1 and GMS2 entail the pres-

ence condition of the ECU variant GMS. For a large number of assets,

specialization relations might not be as obvious as in Figure 2 and

because of that, Proposition 3.3 formalizes the relations between

the presence condition attributes of product groups that are in a

specialization relation.

Proposition 3.3. Let P and P1, ..., Pn be product groups with
presence-condition attributes ϕ and ϕ1, ...,ϕn , respectively. Then:
a) product group P specializes product groups P1, ..., Pn , i.e. it holds

that JPKI ⊆
⋂n
j=1JPj K

I , if and only if ϕ |= ϕ1, ...,ϕn .
b) product group P1, ..., Pn specialize product group P , i.e. for each Pj

it holds that JPj KI ⊆ JPKI , if and only if ϕ1 |= ϕ ∧ · · · ∧ϕn |= ϕ.

Making the relations between presence conditions explicit in the

MLT model allows their further mining or just visualization, which

can be particularly useful in large PL in SE [10].

Modeling Product-Line Legacy Assets using Multi-Level Theory SPLC ’17, September 25-29, 2017, Sevilla, Spain

4 EVALUATION OF THE MLT FRAMEWORK
Evaluation of modeling frameworks can be conducted using di�er-

ent methodologies, e.g. case studies, experiments, analysis of syntax

and semantics etc. In this paper, we discuss di�erent aspects of the

MLT framework followed by a discussion on potential applications

of the MLT framework for the creation of a family model during

the process of reverse engineering a PL in SE context.

4.1 Syntax and Semantics
MLT is conceived as a framework with textual syntax, i.e. predicate

statements in First-Order Logic, but both the original paper and

the examples in the present paper use a graphical representation

in order to facilitate comprehension. Because MLT uses similar

concepts as the well-known UML class-diagram language, graphical

MLT models should be intuitive for a large audience. Creation of a

MLT-UML pro�le, according to the proposal in [13], would facilitate

the use of MLT framework while the generation of the textual

representation, suitable for the analysis of MLT models, can be

automated.

The semantics of the MLT framework is not fully captured in the

original paper and the present paper complements it with additional

de�nitions. Additional de�nitions have contributed to the mapping

of all considered PL concepts, i.e. variants, presence conditions, and

product con�gurations, onto concepts that are �rst-class citizens in

the MLT framework. The semantics itself is simple, i.e. expressed

in terms of sets and relations, and is compatible with semantics

of other traditional class-instance based languages [6, 35] but also

with knowledge representation languages [7].

Since both the syntactical rules and the semantics of the MLT

framework are formally de�ned, ensuring well-formedness of MLT

models can be automated, for example using Alloy analyzer [27].

4.2 Applicability for family model creation in
SE PL

At the conceptual level, where each legacy asset is represented as a

class, i.e. a type in MLT, commonly used modeling frameworks, e.g.

UML class-diagram, can be used to capture the implementation de-

tails of legacy products. The advantage of using the MLT framework

becomes evident if besides implementation details, other assets like

speci�cation documents or architectural components should also

be captured by the same model.

The multiple abstraction levels in the model in Figure 2 can

be viewed as several pairs of models and meta-models from tools

that manage di�erent legacy assets. For example, types on levels

2ndOT and 1stOT could be the meta-model and models from a

tool that manages architectural assets. Types on levels 1stOT and

IndividualOT could be the meta-model and models from a tool

that manages implementation assets and speci�cation documents.

Finally, types on IndividualOT and real world individuals, shown

in Figure 1, could be the objects from a production tool. Reverse

engineering a family model that captures all the assets of legacy

products in an SE PL then becomes the problem of merging existing

models of legacy assets in a single MLT model on appropriate

abstraction levels. In such scenario, reverse engineering a family

model turns into a data integration problem that can be approached

by reusing existing data integration methods [9].

A further advantage of reverse engineering an MLT family model

is that all the use cases outlined in the introduction, e.g. change

impact analysis, could be performed over a single model which

would increase the reliability of further extraction tasks and in

general to safer PL evolution.

5 RELATEDWORK
Work in [25] also explores the relations between a MLM approaches

and PL concepts. This paper introduces a meta-language that cap-

tures PL concepts of con�guration, parametrization, and template
instantiation with the purpose of allowing model-based language

engineering and further disambiguating the relations between ab-

straction levels in MLM languages.

Clafer [6] is a modeling language designed with the goal to

unify notions of feature and a class thus allowing expressing both

feature-like and class-diagram-like models. Clafer is used for PL

asset modeling but in some aspects, Clafer is less expressive than

MLT. Clafer does not support multiple levels of specialization, e.g.

if type EMS specializes type ECU, it can’t be stated that type EMS1
specializes type EMS. Meta-modeling in Clafer is to a certain extent

supported through re�nement of abstract classes that cannot have

instances while in MLT meta-modeling is achieved by de�ning

types and relation on higher abstraction levels where each type in

MLT model can have instances. Instances in Clafer are semantically

still classes with a single individual while MLT can represent actual

real world individuals.

CVL [23] and BVR [22] languages are intended for derivation of

MOF-compliant [35] models by connecting the PL assets models

and the variability models. The variability of PL assets is captured

in a feature-like variability model called VSpec that is then resolved

through the process of materialization and re�ected in the PL assets

model. The approach presented in the present paper is conceptually

di�erent because the use of the MLT framework keeps PL asset

data and PL asset relations in the same model with variability

information, i.e. presence conditions and product groups.

ADOM [40] is a domain and application engineering modeling

framework that is implemented using UML stereotypes and multi-
plicities in order to capture the variability in the domain and check

the conformance of product variants to the domain model. However,

ADOM does not explicitly model presence conditions and product

con�gurations. Work in [39] introduces an approach that mod-

els phisycal product structure and multiplicities of product parts

together with corresponding presence conditions. The relations be-

tween the parts are limited to containment. Work in [17] introduces

an approach for integration of di�erent PL assets models and their

con�guration into speci�c product models while conforming to the

dependencies from the original domain models. However, �nding

a framework in which the data about PL assets can be integrated

systematically is left as future work.

6 CONCLUSIONS
Because of the scale of SE PLs and the heterogeneity of legacy

assets, reverse engineering of SE PLs is a challenging task. One of

the challenges is the absence of a common modeling framework in

which the family model including all legacy assets can be captured

SPLC ’17, September 25-29, 2017, Sevilla, Spain Damir Nešić, Ma�ias Nyberg, and Barbara Gallina

together with their relations, traceability links, and variability infor-

mation. In the present paper we have explored the applicability of a

Multi-Level Modeling (MLM) approach called Multi-Level conceptual
Theory (MLT) framework for capturing such a family model. First,

the default MLT framework was used to model di�erent types of

legacy assets on di�erent abstraction levels. After that, PL speci�c

concepts of variants, versions, presence conditions, and product

con�gurations were mapped to MLT concepts. Furthermore, formal

semantic interpretation of relations that are speci�c for speci�c

product con�guration and their corresponding presence conditions

has been provided. Finally, an initial evaluation and potential ap-

plication of the MLT framework for reverse engineering PLs was

discussed.

As can be seen in the provided examples, the consequence of

being an instance of the MLM paradigm allowed modeling of con-

cepts on di�erent abstraction levels, from real world individuals

to abstract entities like ArchitectureElement. This outcome was

expected due to the expressiveness of the MLT framework. Map-

ping PL concepts of variants and versions was straightforward but

mapping presence conditions and product con�gurations required

careful interpretation of MLT semantics. The main bene�t of using

the MLT framework is that all legacy assets and their relations can

be expressed in the same model with a uni�ed formal semantics,

thus acting as a uni�ed target modeling framework for di�erent

extraction tasks. Moreover, having all legacy assets with associ-

ated relations and variability information expressed in a single

model facilitates the ful�llment of the use cases outlined in the

introduction.

Although the �ndings of this paper are promising, future work

will include more extensive evaluation of the MLT framework on

large industrial examples. Additionally, one of the main goals of

future work is to automate reverse engineering of MLT models

by leveraging Linked Data technologies [44] in order to create a

generic data extraction framework.

7 ACKNOWLEDGMENTS
This work was funded by the ITEA 14014 ASSUME project with

the support from Scania CV AB. B. Gallina is partially �nancially

supported by the Swedish Foundation for Strategic Research via

the SSF SM140013 Gen&ReuseSafetyCases project.

REFERENCES
[1] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio, and A.

Egyed. 2017. Reengineering legacy applications into software product lines: a

systematic mapping. Empirical Software Engineering (2017).

[2] C. Atkinson, M. Gutheil, and B. Kennel. 2009. A Flexible Infrastructure for

Multilevel Language Engineering. IEEE Transactions on Software Engineering
(2009).

[3] C. Atkinson and T. Kühne. 2001. The Essence of Multilevel Metamodeling. In

UML ’01.

[4] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider

(Eds.). 2003. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press.

[5] E. Bagheri, F. Ensan, and D. Gasevic. 2012. Decision support for the software

product line domain engineering lifecycle. Automated Software Engineering
(2012).

[6] K. Bąk, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wąsowski. 2016. Clafer:

unifying class and feature modeling. Software & Systems Modeling (2016).

[7] S. Bechhofer. 2009. OWL: Web Ontology Language. Springer.

[8] R. Behjati, T. Yue, L. Briand, and B. Selic. 2013. SimPL: A product-line modeling

methodology for families of integrated control systems. Information and Software
Technology (2013).

[9] Z. Bellahsene, A. Bonifati, and E. Rahm (Eds.). 2011. Schema matching and
mapping. Springer.

[10] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wąsowski. 2014.

Three Cases of Feature-Based Variability Modeling in Industry. In MODELS ’14.

[11] V. A. Carvalho and J. P. A. Almeida. 2016. Toward a well-founded theory for

multi-level conceptual modeling. Software & Systems Modeling (2016).

[12] V. A. Carvalho, J. P. A. Almeida, C. M. Fonseca, and G. Guizzardi. 2015. Extending

the Foundations of Ontology-Based Conceptual Modeling with a Multi-level

Theory. In ER ’16. Springer.

[13] V. A. Carvalho, J. P. A. Almeida, and G. Guizzardi. 2016. Using a Well-Founded

Multi-level Theory to Support the Analysis and Representation of the Powertype

Pattern in Conceptual Modeling. In CAISE ’16.

[14] Elliot J. Chikofsky and James H. Cross II. 1990. Reverse Engineering and Design

Recovery: A Taxonomy. IEEE Software (1990).

[15] T. Clark, C. Gonzalez-Perez, and B. Henderson-Sellers. 2014. A foundation for

multi-level modelling. In MODELS ’14: Workshop on Multi-Level Modelling.

[16] P. C. Clements. 2015. Product Line Engineering Comes to the Industrial Main-

stream. INCOSE International Symposium (2015).

[17] D. Dhungana, A. Falkner, and A. Haselböck. 2013. Generation of Conjoint Domain

Models for System-of-systems. SIGPLAN Notices (2013).

[18] D. Dhungana, P.l GrÃĳnbacher, R. Rabiser, and T. Neumayer. 2010. Structuring the

modeling space and supporting evolution in software product line engineering.

Journal of Systems and Software (2010).

[19] U. Frank. 2014. Multilevel Modeling: Toward a New Paradigm of Conceptual

Modeling and Information Systems Design. Business & Information Systems
Engineering (2014).

[20] H. Gomaa and M. E. Shin. 2004. A Multiple-View Meta-modeling Approach for

Variability Management in Software Product Lines. In ICSR ’04.

[21] C. Gonzalez-Perez and B. Henderson-Sellers. 2006. A powertype-based meta-

modelling framework. Software & Systems Modeling (2006).

[22] Ø. Haugen and O. Øgård. 2014. BVR – Better Variability Results. In SAM ’14.

[23] Ø. Haugen, A. Wąsowski, and K. Czarnecki. 2013. CVL: Common Variability

Language. In SPLC ’13.

[24] B. Henderson-Sellers, T. Clark, and C. Gonzalez-Perez. 2013. On the Search for a

Level-Agnostic Modelling Language. In CAISE ’13.

[25] Reinhartz-Berger I., A. Sturm, and Clark T. 2015. Exploring Multi-Level Modeling

Relations Using Variability Mechanisms. In MODELS ’15: Workshop onMulti-Level
Modelling.

[26] ISO/IEC 15026 2011. ISO/IEC 15026-2:2011 - Systems and Software assurance: As-
surance cases. standard. International Organization for Standardization, Geneva.

[27] D. Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM Trans-
actions on Software Engineering Methodology (2002).

[28] J. Knodel, I. John, D. Ganesan, M. Pinzger, F. Usero, J. L. Arciniegas, and C. Riva.

2005. Asset recovery and their incorporation into product lines. In WCRE ’05).
[29] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and

How to Use Multilevel Modelling. ACM Transactions on Software Engineering
Methodology (2014).

[30] Antkiewicz M., Czarnecki K., and Diskin Z. 2013. Example-Driven Modeling

Using Clafer. In MDEBE ’13.

[31] K. Meinke and J. V. Tucker (Eds.). 1993. Many-sorted Logic and Its Applications.
John Wiley & Sons.

[32] Murashkin, A. 2014. Automotive Electronic/Electric Architecture Modeling,

Design Exploration and Optimization using Clafer. (2014).

[33] D. Nesic and M. Nyberg. 2016. Multi-view modeling and automated analysis of

product line variability in systems engineering. In SPLC ’16.

[34] B. Neumayr, M. A. Jeusfeld, M. Schre�, and C. Schütz. 2014. Dual Deep Instantia-

tion and Its ConceptBase Implementation. In CAiSE ’14.

[35] OMG. 2017. Meta-Object Facility. (2017). http://www.omg.org/mof/

[36] Akira K Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. 1998.

Regression testing in an industrial environment. Commun. ACM (1998).

[37] K. Pohl, G. Böckle, and F. J. van der Linden. 2005. Software Product Line Engi-
neering. Foundations, Principles, and Techniques. Springer.

[38] Arshad R. and Lau K. 2016. A Concise Classi�cation of Reverse Engineering

Approaches for Software Product Lines. In ICSEA ’16.

[39] R. Rabiser, M. Vierhauser, P. Grünbacher, D. Dhungana, H. Schreiner, and M.

Lehofer. 2014. Supporting Multiplicity and Hierarchy in Model-Based Con�gu-

ration: Experiences and Lessons Learned. In MODELS ’14.

[40] I. Reinhartz-Berger and A. Sturm. 2009. Utilizing Domain Models for Application

Design and Validation. Information and Software Technology (2009).

[41] I. Reinhartz-Berger, A. Zamansky, and Y. Wand. 2016. An Ontological Approach

for Identifying Software Variants: Specialization and Template Instantiation. In

ER ’16.

[42] J. Rumbaugh, I. Jacobson, and G. Booch. 2004. Uni�ed Modeling Language Refer-
ence Manual, The 2nd Edition. Pearson.

[43] A. v. Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and T. Berger. 2015.

Presence-Condition Simpli�cation in Highly Con�gurable Systems. In ICSE ’15.

[44] World Wide Web Consortium. 2017. Linked Data. (2017). http://linkeddata.org/

http://www.omg.org/mof/
http://linkeddata.org/

	Abstract
	1 Introduction
	2 Multi-Level Modeling
	2.1 MLT: A Theory for Multi-Level Conceptual Modeling
	2.2 Summary of MLT applicability

	3 Mapping PL concepts to MLT concepts
	3.1 Mapping variants and versions
	3.2 Model-Theoretic Semantics of MLT
	3.3 Mapping presence conditions
	3.4 Expressing PL concepts in MLT

	4 Evaluation of the MLT framework
	4.1 Syntax and Semantics
	4.2 Applicability for family model creation in SE PL

	5 Related Work
	6 Conclusions
	7 Acknowledgments
	References

