
Investigating Execution-Characteristics of
Feature-Detection Algorithms

Jakob Danielsson1, Marcus Jägemar2 Moris Behnam1, Mikael Sjödin1
1 Mälardalen University, Västerås, Sweden

2 Ericsson AB, Stockholm, Sweden
jakob.danielsson@mdh.se

Abstract—We discuss how to obtain information of execution
characteristics, such as parallelizability and memory utilization,
with the final aim to improve the performance and predictability
of feature and corner detection algorithms for use in e.g. robotics
and autonomous machines. Our aim is to obtain a better
understanding of how computer vision algorithms use hardware
resources and how to improve the time predictability and execu-
tion time of such algorithms when executing on multi-core CPUs.
We evaluate a fork-join model applicable to feature detection
algorithms and present a method for measuring how well the
algorithm performance correlates with hardware resource usage.
We have applied our method to the Featured from Acceler-
ated Segment Test (FAST) algorithm. Our characterization of
FAST reveals that it is an algorithm with excellent parallelism
opportunities, resulting in an almost linear speed-up per core.
Our measurements also reveal that the performance of FAST
correlates very little with the number number of misses in the
L1 data cache, L1 instruction cache, data translation lookaside
buffer and L2 cache. Thus, the FAST algorithm will not have a
negative effect on the execution time when the input data fits in
the L2 cache.

I. INTRODUCTION

Robots are becoming more autonomous which means they
are getting more dependent upon perception algorithms for
object detection. Object recognition algorithms often use pre-
processing algorithms to extract changes in color or features in
an image, called feature detection algorithms. Since the robot
is getting a continuous video stream, it is important that the
response of the feature detection algorithm is fast enough so
that the robot can maintain uninterrupted perception of the
environment.

Many different feature detection algorithms exist, which use
many different execution patterns. Some algorithms, them-
selves, are depending upon other feature detection algorithms
to do preprocessing before doing the actual work, while others
execute directly on the raw image data. Different feature
detection algorithms also work in finding different targets in an
image such as lines, corners and edges. Perception often make
use of many different, and well established, feature and corner
detection algorithms such as FAST, SIFT, SURF, and Harris.
Often they are combined to achieve better object recognition.
However, the algorithms which are combined have very dif-
ferent execution patterns which put stress on how to use the
computer hardware efficiency to meet the timing. Multi-core
architectures offer great opportunities for executing multiple
algorithms on different cores and also enables the workload of

a single algorithm to be spread out across multiple cores. How-
ever, since feature detection algorithms use different execution
patterns, they exhibit very different memory-access patterns
which impact on both the predictability and execution time of
the algorithms. Characteristics which affect the predictability
and execution time of an algorithm can be, but are not limited
to, resource utilization, execution time, possibility to distribute
the workload to different cores as well as how to schedule
different algorithms together to achieve maximum quality of
service. To investigate how these characteristics affect the
system performance, a firm understanding of the algorithms
properties and how it use hardware resources is needed. In
this paper, we discuss aspects which are important to consider
when using a feature detection algorithm as a real-time appli-
cation executing on a parallel platform. As a case study, we
have evaluated the Features from Accelerated Segment Test
(FAST) [12] algorithm with respect to these above mentioned
categories by investigating the algorithm behavior. The rest of
the paper is organized as follows. Section II presents a brief
study of related work. Section III presents the requirement to
build the testing tool. Section IV show our methodology and
measurements on the characteristics parallelism and memory
utilization, Section IV presents challenges occurring when
executing FAST on multiple cores, while Finally, Section V
concludes the paper and directs to future work.

A. The FAST algorithm

The FAST algorithm is used for detecting features and
corners in images. The main mechanism of FAST is based
upon using a Bresenham circle of radius 3 (depicted in figure
1) which is compared to all pixels in an image matrix. The
execution of FAST is divided into two steps: determining if
a selected pixel is an Interest Point and determining if the
interest point is a Corner. Two threshold values are used
for making this decision. The first threshold is the intensity
threshold (It) which is a percentage value that is applied to
the pixel intensity (I) of all pixels within the Bresenham circle.
If a pixel in the Bresenham circle is (It)% darker or brighter
than the currently selected pixel, it is considered as a feature.
The second threshold value N is used for deciding how many
pixels in the Bresenham circle should be features in order
for the currently selected pixel to be considered as a corner.
To determine if the selected pixel is an interest point, FAST
compares the pixel intensity value of the four utmost pixels -978-1-5090-6505-9/17$31.00 c©2017 IEEE

marked in Figure 1 as pixel 1, 5, 9 and 13 with the intensity of
the currently selected pixel. If at least 3 of the utmost pixels are
considered features, the current pixel is marked as an interest
point and the algorithm continues to execute, else break. In
the second step, the FAST algorithm compare the currently
selected pixel to the rest of the pixels in the Bresenham circle.
If at least N contiguous pixels are considered as features, the
current pixel is considered as a corner [12]. Since different
thresholds will affect execution time, we have executed the
tests using 10%, 20%, 30% and 40% as threshold values for
It and a threshold value of 12 for N .

Fig. 1. FAST algorithm corner example where p is the currently selected
pixel for analysis

B. Hardware Resource Monitoring

The computational performance of the CPU is not the
only limiting factor when evaluating the performance of an
algorithm. Often, an algorithm process data that read from
main memory putting a severe strain on memory buses and
various cache levels. An algorithm may also suffer from other
congestion-related side-effects; For example, if the branch
prediction unit fails to predict the execution flow of the
program. One of our goals is to monitor and evaluate the
hardware resource usage of several edge detection algorithms.
Having a thorough understanding of the system-level perfor-
mance together with the low-level shared resource utilization
makes it possible to understand better how to implement and
deploy different algorithms [2] efficiently. Understanding the
hardware usage of the algorithms will also make it easier
to select the optimal hardware without expensive resources
overprovisioning providing a greater throughput [3]. We es-
timate that it is possible to substantially improve the overall
system performance of co-located algorithms by optimizing
the core allocation of algorithms [4]. We will use a per-
formance monitoring application that utilize the Performance
Monitor Unit (PMU) to continuously monitor the performance
of selected processes. Our application utilizes the Perf API for
convenient PMU configuration.

II. RELATED WORK

Different works for comparing Edge detection techniques
have been done, whereas the comparisons often include cor-
rectness of the algorithms [7] [15] [14] [6] and FPS compar-
ison [11]. Furthermore, many works try to optimize feature
detection algorithms using specialized hardware environments

such as FPGA [8] [13] [10]. Other studies also compare
image processing algorithms using different hardware units
such as CPU, GPU and FPGA [1]. Furthermore, Paul et al.
[9] presented a method which investigates the resource usage
in the Harris Corner detection algorithm.

In this study, we instead try to focus on a broad scope by
identifying characteristics which are important to investigate
when using feature detection algorithms on limited hardware.
Furthermore the ultimate goal of this work is to be able to
determine how the quality of service can be affected of feature
algorithm using a system with specific characteristics. In this
paper we investigate the mechanics of the FAST algorithm by
evaluating the code as well as analyzing the algorithms effects
on the memory of the system in which it is running.

III. METHOD

In this work, we evaluate three characteristics including
memory resources, opportunities for parallelism and resource
usage with respect to the FAST algorithm. For a richer proof
of concept, we used the 8-core Freescale P4080 with a 2017-
03 NXP fsl-core linux distribution for evaluating the parallel
issues due to the high multi-core capabilities while we used an
Intel Core i-3570k using Ubuntu 16.04, kernel version 4.4 for
investigating PMU related topics. We used a 512x512 bitmap
version of the Lena image as test data, due to its frequent
usage in other corner detection research papers. We executed
all FAST tests on a 512x512 pixel bitmap, depicted in figure
21.

Fig. 2. Input data for FAST

A. Opportunities for Parallelism

A traditional way of executing algorithms in parallel is using
the fork-join model, which partitions a workload into smaller
workloads and executes these smaller workloads on different
cores. When working with image processing, this is a simple
and intuitive way of increasing the performance, since a pixel
matrix often can be divided into sub-matrices by the amount
of cores used. There is no need for synchronization within
the algorithm steps because the FAST algorithm does not use
global shared variables. The FAST algorithm with a fork-join
using an 8 core machine is depicted in Figure 3. The optimal
performance of an algorithm running in parallel is defined
by Execution time using one core divided by amount of cores
being used. The execution model in Figure 3 depicts a straight-
forward fork-join execution model which is possible for the

1The figure was selected because it is one of the standard test images in
the image processing community

Fig. 3. FAST 8 core execution model

fast algorithm. This leads to a near-optimal execution speed-
up when using multiple cores. For proof of concept, we took
measurements of FAST running on 1 to 7 cores using an 8 core
Freescale P4080 machine and executing a test 100 times on the
same picture. Table I shows the percentage deviation from the
optimal performance when executing on multiple cores using
It thresholds of 10%, 20%, 30% and 40%.

Cores It = 10% It = 20% It = 30% It = 40%
2 cores 4,41% 3,05% 1,98% 1,26%
3 cores 4,69% 3,21% 1,79% 0,98%
4 cores 5,10% 3,61% 2,21% 1,06%
5 cores 5,09% 2,93% 1,59% 0,92%
6 cores 5,86% 4,34% 2,80% 1,69%
7 cores 4,51% 2,79% 2,58% 1,95%

TABLE I
FORK-JOIN MEASUREMENTS OF FAST

As shown in Table I, we see only a small percentage
deviation to the optimal execution time even when the thresh-
old is set to 10% which can be considered a very sensitive
threshold. Thus we can conclude that FAST is an algorithm
very well suited for parallelism. Executing tests using 5 cores
managed to decrease the deviation percentage compared, even
though the trend was an increasing percentage. This can be an
indication of uneven workload between the different cores.

B. Resource Utilization

In our investigation, we have focused on two memory-
related issues. The first issue relates to the code size of the
algorithm itself. A long and complex execution flow causes
several performance-related side-effects, such as instruction
cache misses and branch mispredictions. The second memory-
related issue relates to the data processed by the algorithm.
A memory-bound algorithm has a large working set and
triggers a high degree of data cache misses, Data-TLB reloads
and memory bus contention which can cause a decrease in
performance. If two algorithms are memory-bound, it may not
be sufficient to distribute them on different CPU cores because
they often share HW resources. We have used a system-level
metric (SLM) as performance indicator that describes the
number of pixels traversed per time unit. Simultaneously, we
monitor Low-Level Metrics (LLM) describing the memory

subsystem usage. We use the Pearson coefficient [5] to denote
how well SLM correlates with each LLM whereas 0 mean
no correlation at all and 1 full correlation. We tested the
correlation by executing a test-suite that fetches SLM and
LLM at 100Hz. We ran this test using a fork-join model with
four cores, where core 0 was set up as a synchronization core
and core 1-3 as workload cores.

Core : I threshold L1D miss L1I miss L2 miss DTLB miss
Core 1 : It=10% 0.195 0.114 0.191 0.233
Core 2 : It=10% 0.103 0.067 0.084 0.21
Core 3 : It=10% 0.056 0.395 0.029 0.133
Core 1 : It=20% 0.004 0.365 0.145 0.024
Core 2 : It=20% 0.206 0.172 0.197 0.24
Core 3 : It=20% 0.076 0.395 0.427 0.4
Core 1 : It=30% 0.073 0.013 0.07 0.234
Core 2 : It=30% 0.198 0.187 0.078 0.169
Core 3 : It=30% 0.208 0.083 0.204 0.131
Core 1 : It=40% 0.012 0.035 0.119 0.083
Core 2 : It=40% 0.21 0.187 0.246 0.172
Core 3 : It=40% 0.431 0.395 0.427 0.4

TABLE II
FORK-JOIN MEASUREMENTS OF FAST

Table II show Pearson coefficient obtained from the work-
load cores during the tests of correlation between SLM and
the LLM. Our measurements indicate that the performance
correlates very little with the memories measured in this test.
This occurrence may be due to the fact that FAST has few
memory operations and instead uses many branch operations.
The current pattern however suggest that core 3 correlates best
with the LLM we chose. The correlation may be an effect of
how the picture is divided. With the current division of the
picture, core 3 would detect the least corners, and would use
the least branches and would therefore correlate better with
the memory.

IV. RESOURCE USAGE CHALLENGES

Many resources affect the performance of an algorithm apart
from the earlier mentioned ones. Different parallel paradigms
are useful depending on the algorithm, for example, the fork-
join model. Due to the many if statements of FAST, it is
very unlikely that a forked algorithm will execute with at the
same speed on different cores. If one core is overwhelmed
with corner detections it can lead to one core executing the
algorithm slower than the other cores, leaving the other cores
underutilized, Figure 4 illustrates such behavior. Altering

Fig. 4. Core idle issue due to synchronization

the threshold values of FAST can dramatically change the
result of found corners in an image. To test the resource
utilization of FAST, we executed 1000 tests on a single
picture, measuring the execution time of each individual core,

whereas core 1-7 were used as work-set cores and core 0
as housekeeping/synchronization thread. Figure 5 depicts the
mean execution time of the 1000 tests for each individual
work-set core using It values of 10%, 20%, 30% and 40%.

Fig. 5. Execution time per core with different It values using FAST

Each core also had different amount of corner detection,
Table III shows the amount of corner points detected in each
individual core.

Core 10% 20 % 30 % 40 %
1 2018 761 373 206
2 2460 873 432 232
3 2301 842 377 203
4 2391 796 390 178
5 1938 588 432 102
6 1284 253 99 39
7 546 99 42 11

TABLE III
PRESENTS THE AMOUNT OF CORNERS DETECTED PER CORE

From the measurements conducted in this section, we can
conclude that the inter-core synchronization time correlates
with the amount of corners detected. This mean executing
FAST on images which does not have corners evenly dis-
tributed, may lead to a utilization loss when executing FAST
on multiple cores.

V. CONCLUSION

In this study, we have evaluated an implementation of
the FAST algorithm regarding aspects of resource utilization,
opportunities for parallelism and memory consumption using
different thresholds. Our results show that FAST is a relatively
simple algorithm with strong opportunities for parallelism. We
see a challenge with choosing threshold values which has to
be investigated further. If choosing a high threshold, there is
a risk of not detecting important corners. If however choosing
a low threshold, there is a possibility of loading the system
inefficiently. It could however be possible to schedule FAST
more efficiently by programming already finished cores to help
the non finished cores finish. This approach could reduce the
synchronization performance loss. By monitoring the PMU
counters, we also conclude that FAST does not suffer much
from misses in the memory.

Future work includes conducting a deeper study of the
execution characteristics, investigating both execution behavior
as well as memory behavior of more well-known feature and
corner detection algorithms such as Harris, SURF and SIFT.
By carrying out such a study, it is possible to understand how
different feature detection algorithms should be partitioned and
scheduled together. Ultimately, this knowledge can lead to a
more time-predictable and dependable corner detection suite.

REFERENCES

[1] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi.
Performance comparison of fpga, gpu and cpu in image pro-
cessing. In Field Programmable Logic and Applications, 2009.
FPL 2009. International Conference on, pages 126–131. IEEE,
2009.

[2] Stijn Eyerman and Lieven Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro, 28(3):42–53,
2008.

[3] Stijn Eyerman and Pierre Michaud. Defining metrics for mul-
ticore throughput on multiprogrammed workloads. Technical
report, Ghent University - Team ALF, 2013.

[4] Marcus Jägemar, Andreas Ermedahl, and Sigrid Eldh. Decision
support for OS process scheduling based on HW-, OS- and
system-level performance counters, 2016.

[5] Marcus Jägemar, Andreas Ermedahl, Sigridh Eldh, and Moris
Behnam. A Scheduling Architecture for Enforcing Quality of
Service in Multi-Process Systems. In Proceedings of Emerging
Technologies and Factory Automation. Analysis, ETFA 2017.

[6] Luo Juan and Oubong Gwun. A comparison of sift, pca-sift
and surf. International Journal of Image Processing (IJIP), 3
(4):143–152, 2009.

[7] Raman Maini and Himanshu Aggarwal. Study and comparison
of various image edge detection techniques. International
journal of image processing (IJIP), 3(1):1–11, 2009.

[8] Rajesh Mehra and Rupinder Verma. Area efficient fpga
implementation of sobel edge detector for image processing
applications. International Journal of Computer Applications,
56(16), 2012.

[9] Johny Paul, Walter Stechele, Manfred Kröhnert, Tamim Asfour,
Benjamin Oechslein, Christoph Erhardt, Jens Schedel, Daniel
Lohmann, and Wolfgang Schröder-Preikschat. Resource-aware
harris corner detection based on adaptive pruning. In Interna-
tional Conference on Architecture of Computing Systems, pages
1–12. Springer, 2014.

[10] Paulo Ricardo Possa, Sidi Ahmed Mahmoudi, Naim Harb,
Carlos Valderrama, and Pierre Manneback. A multi-resolution
fpga-based architecture for real-time edge and corner detection.
IEEE Transactions on Computers, 63(10):2376–2388, 2014.

[11] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 779–788, 2016.

[12] Edward Rosten and Tom Drummond. Fusing points and lines
for high performance tracking. In Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on, volume 2, pages
1508–1515. IEEE, 2005.

[13] Varun Sanduja and Rajeev Patial. Sobel edge detection using
parallel architecture based on fpga. International Journal of
Applied Information Systems, 3(4):20–24, 2012.

[14] GT Shrivakshan, C Chandrasekar, et al. A comparison of
various edge detection techniques used in image processing.
IJCSI International Journal of Computer Science Issues, 9(5):
272–276, 2012.

[15] Kaiman Zeng, Nansong Wu, Lu Wang, and Kang K Yen. Local
visual feature detection and description for non-rigid 3d objects.
Advances in Image and Video Processing, 4(2):01, 2016.

