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Abstract 

A patch of layer 4 of cat area 17 has been modeled. The 
developmental network model is based on the modular structure of 
the neocortex. Connections between the orientation minicolumns, 
building the network model, are developed during exposure to 
visual input. The network model captures some of the known 
properties of the layer 4 of cat area 17. Local connections are 
dense, whereas distal connections are sparse. Both local and distal 
inhibition is mediated by inhibitory simple cells, which target 
excitatory cells that are located in their close surroundings and 
have opposite absolute and relative spatial phase. Excitatory local 
connections seem to be biased towards the iso-orientation domain. 
However, there is a strong crosstalk between all orientation 
domains made by the excitatory long-range horizontal connections. 
Furthermore, the excitatory long-range horizontal connections are 
mildly elongated along the orientation axis. We hypothesize that 
this network layout can give a simple explanation to the 
psychophysical experiments demonstrating response facilitation as 
a result of elongation of a Gabor patch along the orientation axis. 

1 Introduction 

Orientation selectivity of the striate cells populating the primary visual cortex (area 
17 of cat, area V1 of monkey) is one of the most investigated issues in visual 
neuroscience [3,21]. The feedforward model, proposed by Hubel and Wiesel [1], 
was the first attempt to explain the origin of the orientation selectivity of the striate 
cells. It was proposed that orientation selectivity of neurons classified as simple 
cells was a consequence of the synaptic input from the LGN. According to this 
arrangement, the ON-center LGN cells project to the ON-subregions of a simple 
cell’s receptive fields (RF). The OFF-subregions of a simple cell were constructed 



 

in the same way by the OFF-center LGN cells (see also [2]). Still today the Hubel 
and Wiesel feedforward model serves as a model of thalamic input to neocortex. 

However, some of the properties related to the orientation selectivity are not 
possible to predict by a pure feedforward model [3–8]. Especially the 
psychophysical studies [4–8] examining the long-range spatial interactions in visual 
cortex clearly demonstrate that the cortical circuit plays a major role in altering the 
responses of the striate cells. Polat and Norcia [5] demonstrated that elongation of a 
Gabor patch along the orientation axis results in facilitation of the responses of the 
striate cells. As a result, Polat and Norcia [5] propose elongated summation pools. 

 
 

Figure 1. A, The network model consists of an 11x20 hexagonal array of 
hypercolumn modules. The oval illustrates the RF of the magnified units, positioned 
in the hypercolumn in the center in Fig. 1B. These units detect vertical lines but 
have opposite absolute and relative spatial phases. We see that these units’ RF 
overlap with many other hypercolumns, and hence indicate strong overlap between 
RF of units situated in neighboring hypercolumns. B, A sub-network consisting of 
seven hypercolumns. Inside each hypercolumn 12 units are placed. Every 
hypercolumn figure is also a polar plot (see polar-plots in Fig. 2). The units indicate 
the positions in the polar-plot. 

 

The excitatory long-range horizontal connections are a prominent feature of the 
visual cortex [9–14]. These connections can extend for several millimeters on cortex 
surface. Local connections are defined as connections between neurons located 
inside an area as big as a hypercolumn (<500 µm). Especially the layer 2/3 
excitatory long-range horizontal connections have been subject to intense study 
since the discovery of their patchy layout [13]. More recent studies have confirmed 
the patchy, iso-orientation biased, layout of these connections [10,12]. The patches 
do, however, vary in size. Kisvárday et al. [10] report that the patch size can vary 
between 200 and 1000 µm in area 17 of cat. Observe that an iso-orientation domain 
is roughly 400–600 µm in diameter. These values indicate that the patches are 
heterogeneous. Differences in orientation preferences between striate cells up to 90º 
inside such a patch are not unusual. Furthermore, according to Kisvárday et al. [10], 
also the local connections prefer the iso-orientation domain, i.e. the local 
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connections show same connectivity patterns as the long-range horizontal 
connections. Schmidt et al. [12] do also report axial specificity of the excitatory 
long-range horizontal connections. Later we will see that this anisotropy, also 
shown by our network model, can explain some of the observations described above 
[4–8]. 

 

 
 

Figure 2. Polar-plots organized as the network model, each one representing a 
hypercolumn module. The legend in A (top right) shows the orientation and the 
relative spatial phase of the units in each polar-plot representing a hypercolumn 
module. A, Projections of the ‘reference unit’, which is positioned in the middle 
hypercolumn (marked with an arrow). Thick lines are excitatory connections and 
thin lines correspond to inhibitory connections. Distance from the origin is 
proportional to the strength of the connection. B, Polar-plots showing normalized 
activities of the units in hypercolumn modules after 50 ms. Distance from the origin 
is proportional to the activity level. During this simulation the units receive both 
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thalamic and cortical input. C, Same as B, but the units receive only thalamic input. 
Note that only hypercolumns receiving strongest input, those in the middle column, 
do converge. 

 

On the contrary, the excitatory long-range horizontal connections found in layer 4 
have drawn less attention [11,14]. However, the study by Yousef et al. [11] reveals 
some of the layer 4 excitatory long-range horizontal connections’ properties. This 
study indicate that these connections are not, or very little, biased towards iso-
orientation domains. The excitatory long-range horizontal connections to iso-, 
oblique- and cross-orientation domains are almost equal in distribution. However, 
local connections are still biased towards the iso-orientation domain. It seems that 
independent of the layer, the excitatory long-range connections are neither random 
nor restricted to iso-orientation domains. We can therefore assume that crosstalk 
between different orientation domains is a prominent feature of both layer 4 and 
layer 2/3. This belief is also supported by the experiments described above [4–8]. 

According to the findings by Hubel and Wiesel [15] the primary visual cortex has a 
modular structure (for a recent review see [16]). It is composed of orientation 
minicolumns each one comprising some hundreds of excitatory cells and a smaller 
number of inhibitory interneurons of different kinds. Contrast edge orientation is 
coded such that the striate cells in each orientation minicolumn respond selectively 
to a broad range of orientations. A recent study by DeAngelis et al. [17] reveal the 
degree of invariance of response variables like orientation, spatial frequency and 
relative spatial phase. Orientation was highly clustered, closely followed by spatial 
frequency. One response variable did, however, not show any evidence of 
clustering, namely, the relative spatial phase. Furthermore, an orientation 
hypercolumn contains orientation minicolumns with response properties distributed 
over all angles, and thus represents the local edge orientation pertinent to a given 
point in visual space. 

The Bayesian Confidence Propagation Neural Network model (BCPNN) has been 
developed in analogy with the known generic cortical structure [25]. This is an 
abstract neural network model in which each unit corresponds to a cortical 
minicolumn. The network is partitioned into hypercolumn-like modules and the 
summed activity within each hypercolumn is normalized to one. We hypothesize 
that normalization can be carried out by large basket cells [28]. We assume that 
these cells inhibit an area that corresponds to a hypercolumns. 

A patch of layer 4 of cat area 17 has been modeled. This developmental network 
model is based on the modular structure of the neocortex. BCPNN incremental 
learning algorithm develops the connections between the units. The correlation-
based network captures some of the known properties of area 17 of cats, such as 
dense local and sparse distal connectivity. The network has two different types of 
interneurons. Large basket cells are responsible for keeping the total activity within 
a hypercolumn constant. The second group of interneurons, the inhibitory simple 
cells, mediate local and distal inhibition through targeting excitatory cells that are 
located in their close surroundings and have opposite absolute and relative spatial 
phase (relative to the interneuron). Excitatory local connections seem to be biased 
towards the iso-orientation domain. However, excitatory long-range horizontal 
connections target all orientation domains in a balanced manner, thus there is a 
strong crosstalk between all orientation domains. Note however that some of the 
targets of the long-range horizontal connections are excitatory cells, whereas some 
are inhibitory simple cells, since the network is correlation-based. Furthermore, the 
excitatory long-range horizontal connections are mildly elongated along the 
orientation axis, most likely as a result of the stimulus configuration. During the 
learning phase the stimuli were contrast edges. Note that on the contrary to layer 



 

2/3, there has not been any report on axial specificity of the layer 4 long-range 
horizontal connections. Nevertheless, we believe that the network behavior supports 
the existence of elongated summation pools in visual cortex, and gives a simple 
explanation for how it might be carried out within area 17. There are a variety of 
feedforward and recurrent models of area 17 (see review [3]), however, very few of 
them address the questions related to response facilitation as a consequence of 
elongated summation pools. Recently, Grossberg and Raizada [31] modeled 
perceptual grouping based on long-range horizontal interactions within area 17. In 
that model, layer 2/3 complex cells are responsible for contrast-sensitive perceptual 
grouping. 

2 Network Model  

As stated before the columnar organization of the primary visual cortex [15] is the 
main influence of our network model. We hypothesize that area 17 is composed of 
repetitive structures, i.e. orientation minicolumns. We assume further that the 
orientation minicolumns can be grouped around hypothetical centers, the so-called 
pinwheels [18], to form modules we refer to as hypercolumns. We hypothesize that 
a hypercolumn can be built from a finite number of orientation minicolumns each 
representing a unique orientation (Fig. 1B). The network model used during the 
simulations consists of 220 (11x20) hypercolumns arranged to form a hexagonal 
array (Fig. 1A). The diameter of the circular hypercolumns, and thus the distance 
between two adjacent hypercolumns is 0.7 mm [19]. The size of the network model 
in cortical dimensions is 5.6x14.4 mm (Fig. 1A). The distance between the RF 
centers of two adjacent hypercolumns corresponds to 0.2º of visual angle (at 2º of 
eccentricity [19]). The visual world covered by the model is 2.4x5.4º. Note that the 
modeled cortical patch and hence the visual field covered by the network model is 
elongated. This shape was chosen after observing the mildly elongated shape of the 
excitatory long-range horizontal connections, and having the computational 
limitations in mind. However no artifacts related to corner effects due to the 
elongated shape of the network model was noticed during the simulations. 

Each hypercolumn consists of 12 units, representing 6 orientation minicolumns (Fig. 
1B). The difference in orientation preference between two successive units inside a 
model hypercolumn is 30°. Observe that having this configuration, we represent 
every orientation twice with two so-called anticorrelation units. These 
anticorrelation units represent same orientation. However, they have opposite 
absolute and relative spatial phases, so that their subfields with opposite sign 
overlap. The magnified RF figures inside the middle hypercolumn are detecting 
vertical lines and have opposite absolute and relative spatial phases (Fig. 1B), thus 
they qualify as anticorrelation pairs. 

The RF centers of the units belonging to a model hypercolumn are positioned in the 
center of their host hypercolumn. As a consequence of this arrangement the units 
belonging to a hypercolumn are analyzing the same spot of the visual field. The RF 
of the units are designed as contrast edge detectors, and hence composed of two 
elongated subregions with opposite sign (Fig. 1B). Orientation tuning of the LGN 
input is 40º at half-width at half-height [20], suggesting a subfield aspect ratio of 
3:1. The RF width is 1º [19], and hence the RF height is 1.5º. Figure 1A. shows how 
a RF, in this case belonging to the units located in the middle hypercolumn 
detecting vertical lines (Fig. 1B), are related to the rest of the network. We can see 
that there is an overlap between the RF:s of these two units and the rest of the 
network. Furthermore, all units are tuned for the same spatial frequency of 1 
cycle/degree [19]. The thalamic input of the units is computed using a model 
developed by Troyer et al. [23]. 



 

3 Simulat ion Results  

The simulations are divided into two parts. Firstly, BCPNN incremental learning 
algorithm [15] is used to train the fully connected recurrent network of units. The 
objective is to see if the BCPNN algorithm can develop a network that resembles 
the primary visual cortex [9–14]. Later we address the question of whether or not 
this network can explain some of the reported psychophysical observations, 
especially those related to response facilitation [5]. 

Briefly the BCPNN incremental learning algorithm behaves in the following way. If 
two units are correlated during a time step, the connection between them 
strengthens. This corresponds to the creation of an excitatory connection. However, 
anticorrelation between two units will result in an inhibitory connection (via a local 
inhibitory interneuron [26,27]). Hirsh and colleagues [26] have reported that there 
are inhibitory simple and complex cells in cat area 17. Furthermore, according to the 
study by Ferster [27] interneurons mediate inhibition between excitatory simple 
cells, which have opposite absolute spatial phase. Based on the results by Ferster 
[27] and Hirsh et al. [26] we assume that interneurons inhibit excitatory cells 
located in their close surroundings. We hypothesize further that the interneurons and 
their postsynaptic excitatory cell targets have overlapping receptive fields and 
opposite absolute spatial phases, relative each other. The implication of this scheme 
is that any given excitatory cell can, through an interneuron, inhibit another 
excitatory cell. Note that both local and distal inhibition can be mediated by these 
interneurons, since excitatory cells located in an arbitrary place can target an 
interneuron. Kayser and Miller [22] have proposed a similar model called the 
opponent inhibition model based on [27]. Their model assumes, however, that 
exclusively excitatory cells that have similar receptive field profile, i.e. same 
orientation preference and same absolute spatial phase, target the interneurons. 
Kayser and Miller [27] also assumed that the excitatory cell’s receptive field and its 
inhibitory target’s receptive field coincide in visual space. Hypothetically the whole 
network is local and can be located within an orientation minicolumn. 

According to the BCPNN incremental learning algorithm, if units are uncorrelated, 
the connection value will fluctuate around zero value. This means that the weight 
between two units is a measure of the correlation between them. From this follows 
also that the weight matrix is symmetric, and hence can be interpreted both as 
projections from one unit to all units in the network, and projections from all units 
into one. Note that normalization limits the total activity within a hypercolumn to 
one. This is done mathematically by dividing activity level of each unit within a 
hypercolumn by the total activity of its host hypercolumn. It is, however, assumed 
that large basket cells are responsible for normalization within area 17 [28]. 

Training of the fully connected network lasts for 1000 simulation steps. The time 
step is defined as 1 second, and hence the simulation duration corresponds to 1000 
seconds. The learning rate, which defines the degree of weight modification, is 
0.005 [15]. At every time step, the activity levels of the units are initiated with a 
new arbitrary contrast edge stimulus. The position and the orientation of the 
stimulus are sampled from a uniform distribution. The stimulus width is 1º, and its 
spatial frequency is 1 cycle/degree. Observe that for convenience the width and the 
spatial frequency of the stimulus is the same as that of the RF. 

Noise is added to the activity levels through several steps. First a normally 
distributed noise with a standard deviation of 10% of the so-called bias value is 
added. The bias value is defined as the value of all units inside a hypercolumn in 
absence of any stimulus. The activity levels are rectified so that all negative activity 
levels are set to zero, and a 5-10% uniform distribution noise is added to all units to 
simulate the background activity. Later the activity levels are normalized so that the 



 

sum of activities in each hypercolumn is equal to one, as required by the BCPNN 
incremental learning algorithm. The contrast of the stimulus is 100%, though the 
effect of high noise in combination with the normalization procedure lowers this 
level considerably. 

We see that in general the local connections do have higher amplitude than the long-
range horizontal connections. This indicates strong local and sparse distal 
connectivity (Fig. 2A). The developed network is correlation-based and incorporates 
a second group of interneurons (after the large basket cells), which are hypothesized 
to be the inhibitory simple cells described by Hirch et al. [26] (see also [27]). 

Not surprisingly, the ‘reference unit’ is most correlated with itself (Fig. 2A). Units 
that are correlated excite each other (Fig. 2A). Units that are anticorrelated (not only 
anticorrelation pairs) inhibit each other through inhibitory simple cells, which have 
opposite absolute and relative spatial phase compared to their postsynaptic targets 
(Fig. 2A). We hypothesize that these interneurons could be driven by both local and 
distal excitatory cells that are anticorrelated with the targets of the interneurons. We 
assume further that the connection strengths between the inhibitory simple cells and 
their excitatory targets are constant. 

The mildly elongated shape (along the orientation axis) of the connections made by 
the reference unit reveals the axial specificity of the excitatory long-range 
horizontal connections (Fig. 2A). This result is in agreement with the results of 
Schmidt et al. [12] and others on layer 2/3 of several species. Note however that the 
layer 4 network seems to be less elongated than layer 2/3. 

As shown by Yousef et al. [11], all distal orientation domains are targets of the 
long-range horizontal connections. The connection matrix shows that, some of the 
excitatory long-range horizontal connections are targeting excitatory cells located in 
iso-orientation domains, whereas others are targeting local interneurons positioned 
in all three orientation domains (2A). Obviously there is an intense crosstalk 
between all orientation domains, made by the excitatory long-range horizontal 
connections. Note further that the inhibitory long-range horizontal connections are 
not the subject of study, since all long-range horizontal connections are considered 
to be excitatory. 

A more detailed analysis of the excitatory long-range horizontal connections 
uncovers the type of these connections. We see that the strength of the excitatory 
connections between the reference unit, and units having same orientation 
preference and absolute (and relative) spatial phase tend to decrease along the axis, 
which corresponds to the preferred orientation of the reference unit. Along the 
orthogonal axis, connection type is switched from excitatory to inhibitory, as an 
effect of anticorrelation (Fig. 2A). Note also that again along the orthogonal axis, 
the reference unit is correlated with the units having opposite relative spatial phases, 
but similar absolute spatial phases (Fig. 2A). These observations indicate that units 
with similar absolute spatial phases excite each other. DeAngelis et al. [17] showed 
recently that relative spatial phase did not show any evidence of clustering, and 
local pooling across simple cells with different spatial phases was proposed to 
improve signal quality. These ideas support the connectivity pattern between the 
iso-orientation domains. 

Above, we showed that the network captures important properties of the connection 
pattern found within area 17. In the second part of the simulations, we will see if 
this network can predict some of the psychophysical effects especially those related 
to elongated summation pools in visual cortex [5]. But first, a brief explanation of 
the balance between the excitatory cortical input and the thalamic input received by 
the units. Chung and Ferster [20] reported that cortical suppression left only 46% of 
the visually evoked response of the striate cells receiving monosynaptic input from 



 

the thalamus. This balance is preserved in our network model such that at 100% 
contrast the input to a unit is 46% of maximum theoretical input, and the cortical 
input is scaled accordingly. The maximum theoretical input is defined as the 
strongest excitatory input that is possible to receive by a unit from the rest of the 
network. Normally distributed noise with a standard deviation of 10% of the 
maximum theoretical input is added to the total input of every unit. The simulation 
time step is 10 ms, and the ‘membrane time constant’ of the units is 50 ms [15]. 

The simulation consists of two phases. During these both phases the stimulus is a 
vertical contrast edge, positioned in the center of the network. This stimulus is 
identical to the stimuli used during the training of the network. In the first phase, the 
units receive both thalamic input and cortical excitatory and inhibitory input (Fig. 
2B). The thalamic input is amplified by the cortical connections and all 
hypercolumns are converging after 50 ms, even those receiving weak input. In the 
second phase, the units receive only thalamic input (Fig. 2C). However, the thalamic 
input is not sufficient for the majority of the hypercolumns; only those receiving 
maximum thalamic input can converge. Note the difference in convergence speed 
and quality between these two cases after 50 ms. The role of excitatory long-range 
horizontal connections in sharpening of the responses of the units receiving weak 
thalamic input is evident. 

The experiment by Polat and Norcia [5] shows that elongation of a Gabor patch 
along the orientation axis results in facilitation of the responses of the striate cells in 
visual cortex. As a result, elongated physiological summation pools are proposed. 
We hypothesize that the mildly elongated shape of the long-range horizontal 
connections along the orientation axis (Fig. 2A) can explain the facilitation 
described by Polat and Norcia [5]. Furthermore, pooling across simple cells with 
different, in our network model opposite, relative spatial phases might also play an 
important role improving signal quality [17]. Finally, we presume that at least 
qualitatively, the simulations show the facilitatory effect of the excitatory long-
range horizontal connections (Fig. 2B and 2C). 

4 Discussion 

A patch of layer 4 of cat area 17 has been modeled. This developmental network 
model is based on the modular structure of the neocortex. BCPNN incremental 
learning algorithm develops the connections between the units. The correlation-
based network captures some of the known properties of area 17 of cats, such as 
dense local and sparse distal connectivity. The network has two different types of 
interneurons. Large basket cells are responsible for keeping the total activity within 
a hypercolumn constant. The second group of interneurons, the inhibitory simple 
cells, mediate local and distal inhibition through targeting excitatory cells that are 
located in their close surroundings and have opposite absolute and relative spatial 
phase (relative to the interneuron). Excitatory local connections seem to be biased 
towards the iso-orientation domain. However, excitatory long-range horizontal 
connections target all orientation domains in a balanced manner, thus there is a 
strong crosstalk between all orientation domains. Note however that some of the 
targets of the long-range horizontal connections are excitatory cells, whereas some 
are inhibitory simple cells, since the network is correlation-based. Furthermore, the 
excitatory long-range horizontal connections are mildly elongated along the 
orientation axis, most likely as a result of the stimulus configuration. During the 
learning phase the stimuli were contrast edges. Note that on the contrary to layer 
2/3, there has not been any report on axial specificity of the layer 4 long-range 
horizontal connections. Nevertheless, we believe that the network behavior supports 
the existence of elongated summation pools in visual cortex, and gives a simple 
explanation for how it might be carried out within area 17. 



 

During the learning phase exclusively contrast edges stimuli were used. We believe 
that this affected the layout of the local and long-range horizontal connections 
significantly. One obvious question is how other types of stimuli like sinusoidal 
gratings or other shapes might affect the layout of these connections. Our intention 
is to address this question in the near future. 
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