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Abstract—The Architecture Quality Assurance Framework
(AQAF) is a theory developed to provide a holistic and for-
mal verification process for architectural engineering of critical
embedded systems. AQAF encompasses integrated architectural
model checking, model-based testing, and selective regression ver-
ification techniques to achieve this goal. The Architecture Quality
Assurance Tool (AQAT) implements the theory of AQAF and
enables automated application of the framework. In this paper, we
present an evaluation of AQAT and the underlying AQAF theory
by means of an industrial case study, where resource efficiency
and fault detection effectiveness are the targeted properties of
evaluation. The method of fault injection is utilized to guarantee
coverage of fault types and to generate a data sample size
adequate for statistical analysis. We discovered important areas of
improvement in this study, which required further development
of the framework before satisfactory results could be achieved.
The final results present a 100% fault detection rate at the design
level, a 98.5% fault detection rate at the implementation level,
and an average increased efficiency of 6.4% with the aid of the
selective regression verification technique.

Keywords—empirical evaluation; case study; fault injection

I. INTRODUCTION

Architectural engineering is essential to make critical em-
bedded systems dependable and comprehensively affects both
the development process as well as the behavior of the system.
System defects caused by erroneous architectural engineering
are therefore prone to have major negative impacts on both the
dependability of the system and the cost of the development
process. Boehm et al. [1] present a study that quantitatively
evaluates the return on investment of system engineering based
on an analysis of 161 projects. The results suggest that 20%
of the defects are responsible for 80% of the rework costs, and
that the primary source of these costly defects is inadequate
architecture definitions and risk resolutions. Elm et al. [2]
concluded that there is a strong positive relation between the
qualities of architectural engineering and the performances of
the studied projects. In addition to the possibility of introduc-
ing costly and hazardous defects during architectural design,
defects may be introduced in the process of implementing
the design and any time changes later are made due to
maintenance. Rigorous and holistic verification of architectural
engineering is consequently essential in the development of
critical embedded systems. Furthermore, manual verification is

labor intensive and error prone, where automation is necessary
to cope with the increasing complexity of embedded systems.
The Architecture Quality Assurance Framework (AQAF) [3]
is a theory that integrates a variety of formal methods with
model-driven architectural engineering to provide a holistic,
rigorous, and automated approach to verification, from ar-
chitectural requirements analysis and design to architectural
implementation and maintenance. AQAF includes an archi-
tectural model checking technique to detect design faults, an
architectural model-based test case generation technique to
detect implementation faults, and an architectural selective
regression verification technique based on a formal change
impact analysis technique to efficiently detect faults created
by maintenance modifications.

The Architecture Quality Assurance Tool (AQAT) [4] im-
plements the theory of AQAF and enables automated appli-
cation of the framework. The contribution of this paper is an
evaluation of the fault detection effectiveness and the resource
efficiency of AQAT and the underlying AQAF theory by
means of an industrial case study. The study encompasses an
application of AQAT to a safety-critical train control system,
where a fault injection methodology is used to ensure coverage
of fault types and to create a sufficiently large data sample from
which fault detection effectiveness and resource efficiency can
be statistically assessed. Effectiveness is assessed based on
the ratio of detections with respect to injections. Efficiency,
on the other hand, is assessed based on time and memory
consumptions and, for the selective regression verification
technique in particular, comparisons with a re-run all approach.
The presented study is a continuation of a preliminary evalua-
tion of AQAF reported in [3], where framework operations
were manually executed against a statistically insignificant
number of architectural faults. By means of a comprehensive
study of AQAT, we observed important areas of improvement
that required further development of the framework before
satisfactory results could be achieved.

The paper is structured as follows. In Section II, an
overview of the AQAF theory [3] implemented by AQAT [4]
is presented. In Section III, the case study design is presented.
The results of the case study are then presented in Section IV,
which is followed by discussion and lessons learned in Sec-
tion V, related work in Section VI, and finally conclusion and
future work in Section VII.



II. THE ARCHITECTURE QUALITY ASSURANCE
FRAMEWORK

AQAF has particularly been developed for architectural
models expressed by the Architecture Analysis and Design
Language (AADL) [5], but may be adapted to any other
architecture description language (ADL) with a similar ex-
pressiveness. AADL, initially released in 2004 [6], provides
hierarchical modeling of abstract system components to con-
crete application software components (e.g. process, thread,
subprogram, and data components) and hardware platform
components (e.g. processor, memory, bus, sensor, and actuator
components). The behavior of a component is represented by a
state transition system and the interaction between components
is represented by various types of component interfaces and
interface connections. Moreover, each AADL element may be
associated with property declarations to impose constraints
on its meaning, such as minimum and maximum execution
times, priorities, deadlines, and dispatch protocols of threads.
These elements together essentially prescribe how data and
control should flow through the system, typically from sensors
to actuators.

The verification criteria applied by AQAF ensure complete-
ness (no lack or excess), consistency (no contradictions), and
correctness (compliance with requirements) of the architectural
control and data flows. This is important to industry as
contemporary safety standards (e.g. ISO 26262 [7]) request
control and data flow analysis of architectural designs. In
order to extract the necessary verification data, the framework
includes a technique that captures all prescribed control and
data flows of an AADL model in a directed graph referred to as
the architecture flow graph (AFG) [3], as presented in Fig. 1.
The vertices of the AFG represent AADL expressions with
execution semantics, component interfaces, and scheduling
states of threads. The arcs of the graph represent how control
and data should flow through the vertices according to the
behavior of components, the component connections, and the
semantical rules of AADL.
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Fig. 1. Flowchart of the model checking process. A black shape represents a
necessary framework input. A gray shape represents an algorithm or rule set.
A white shape represents an artifact produced by the framework.

An AFG contains different types of paths composed of
control and data flows. There are component-internal paths
between the entry and exit points of a component and there are
inter-component paths between the exit point of a component
and the entry point of another if their interfaces are con-
nected. These may together connect indirect paths between two
components through one or several intermediate components.
The paths are constrained by scheduling properties of threads,
scheduling policies of processors, accessibility protocols of
shared resources, minimum and maximum latencies of con-
nections, and other expected extra-functional requirements ac-
cording to the property declarations within the AADL model.

A path in conjunction with a set of constraints, and possibly
explicitly declared requirements, is referred to as a verification
sequence, where AQAF verifies that each path can be executed
in compliance with the constraints.

An AADL model is transformed to the formal domain of
timed automata such that it can be subjected to the UPPAAL
model-checker [8] for the purpose of model checking and/or
model-based test case generation. The output of the transfor-
mation process is a network of timed automata essentially
composed of one automaton for each processor, thread, and
subprogram component, where schedulers within the processor
automata control dispatches and context switches of threads.
Verification sequences are subsequently executed through the
generation of observer automata, one for each AFG path (ver-
ification sequence). An observer automaton observes a state
space search of the transformed AADL model, i.e. the timed
automata model, and reaches a final “acceptance” location
whenever the corresponding AFG path has been executed in
compliance with the requirements and constraints. Satisfiability
of all observers imply a complete, consistent, and correct
AADL model.

The state space searches are performed by the UPPAAL
model-checker, which also generates traces of these searches.
The timed automata trace that satisfies an observer contains
information about the initial state of the system and its envi-
ronment before the path is executed, the input and timing of
input that stimulates an execution of the path, and the expected
output and timing of output. Each observer trace is therefore
used to generate a test case that tests the observed conditions
against the architecture implementation when available, to
verify its conformance to the architectural design, as illustrated
in Fig. 2.
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Fig. 2. Flowchart of the model-based testing process.

AQAF also includes a change impact analysis technique
for efficient reverification of a modified architecture, where
those verification sequences that are unnecessary to execute are
excluded in the reverification process, as presented in Fig. 3.
The technique identifies the change by comparing the AFGs
of the initial and changed model. The remaining parts of the
modified architectural design that possibly are impacted by
the change are subsequently determined through static forward
slicing [9] with respect to the identified change. The forward
slice is calculated based on the control and data dependencies
within the AFG of the changed model, which are represented
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Fig. 3. Flowchart of the selective regression verification process.



in a graph referred to as the architecture dependence graph
(ADG). AQAF then selects only those verification sequences
that cover vertices in the slice. AQAF further excludes un-
necessary verification sequences to re-execute by means of
inter-observer satisfiability independence analysis, which adds
dynamic dependencies to the selection process.

III. CASE STUDY DESIGN

A. Objectives of Study

The objectives of the study are to quantitatively and with
statistical significance evaluate the fault detection effectiveness
and the resource efficiency of AQAT in an industrial applica-
tion. It should be noted that fault detection effectiveness is
dependent on the number of true-positives and true-negatives
in relation to the number of false-positives and false-negatives,
where AQAT is expected to not falsely declare presence or
absence of faults. Moreover, the goal of the selective regression
verification technique is technically not to detect faults, but
rather to select those verification sequences that might. Con-
sequently, the criterion for effectiveness of the selective regres-
sion verification technique is that all verification sequences that
actually reveal faults are selected in the regression verification
process. Resource efficiency of model checking and test suite
generation is assessed by measuring the time and memory
consumption and by comparing the results with related work.
Efficiency of the selective regression verification technique, on
the other hand, is assessed by comparing the time and memory
consumption with respect to a re-run all approach.

B. Case Selection

The case study is conducted in collaboration with Bom-
bardier Transportation, a large company within the rail vehicle
and equipment manufacturing and servicing industry. In this
study, we are targeting a representative case subject to produce
results that can be generalized, rather than outlier cases, which
would yield richer information for limitations evaluation. A
system which do not exceed a moderate cyclomatic complexity
is therefore targeted. Furthermore, AQAT and AQAF have
primarily been developed for architectures with synchronous,
fixed-priority preemptive or non-preemptive execution models,
as these commonly are used for critical embedded systems.
These preferences are used to select a representative case
subject. Based on these preferences, the Line Trip Relay
Interface and Supervision (LTRIS) system is selected as case
subject.

C. The Case Study Subject

LTRIS is a safety-critical train control system embedded
in a system of systems developed by Bombardier Trans-
portation. A simplified graphical model of LTRIS is depicted
in Fig. 4. LTRIS interacts with numerous systems in the
system of systems it is embedded within. A sound architectural
representation of LTRIS should include the behavior of the
surrounding systems. However, inclusion of all systems is out
of scope of the study. Instead, we abstract the behavior of
the environment into a single process component, denoted
LineTripEnvironment in the model, and assume it executes with
LTRIS on a common processing platform. Any required input
by the LTRIS application software is consequently assumed to

be produced by LineTripEnvironment. Each of these is referred
to as “some connection” in the model.

The application software of LTRIS is essentially composed
of two periodic tasks: Controller and Tester. The functionality
of Controller is to control a critical relay, monitor its status,
and output feedback data. The feedback data are information
on the status of the relay and the status relative to the expected
one. Controller controls the relay according to data on in
ports and on shared variables assigned by components in the
environment. In this manner, Controller acts as an interface to
the relay. The behavior of Controller includes two consecutive
subprogram calls, first a call to subprogram LtrInt followed
by a call to subprogram dcu2 line trip. The possible opening
and closing requests received at in ports of Controller, together
with state information of LineTripEnvironment, are given as ar-
guments to LtrInt when called. LtrInt then performs a sequence
of operations on the input, as specified by its behavioral model,
to determine whether on opening or closing output (return)
signal shall be produced. The logic is composed such that an
opening request shall be prioritized over a closing request.
Output produced by LtrInt is subsequently used as argument
in the second call to dcu2 line trip, which is responsible of
controlling the relay and producing feedback information. The
feedback is made available for the environment through out
ports of Controller.

Controller’s input domain is partly set by Tester through
connection1 and connection2. The functionality of Tester is
partly to execute a test sequence, LtrTsSq, verifying a correct
functioning of the relay. LtrTsSq transmits opening and closing
requests to Controller through connection1 and connection2
respectively. The test sequence exercises the relay in the
possible ways it can be exercised: starting from an unidentified
state of the relay, the test sequence signals an opening request,
followed by a closing request, which finally is followed by an
opening request. The final request is intentionally delayed in
order to make sure that there is enough time for the power
supply to close the relay before it finally is opened. Each
request is validated through feedback before a subsequent
request is sent. The current status of the relay is transmitted
to Tester through connection3. The test process is reset to its
default state any time a malfunction signal is received during
the execution of the test sequence. Whenever the test sequence
successfully has been executed, a corresponding signal is sent
to the environment.

Given that the upper bound of feedback loops is set to one
(an indirect path may only include a component once), a total
of 38 paths (verification sequences) are extracted by AQAT.1
Without constraints on loops, the number of paths would be
infinite as the system is periodic and utilizes feedback.

D. Case Study Method and Expected Results

The faultiness of the AADL model must be controlled
in the study to reliably evaluate effectiveness and efficiency.
Firstly, an AADL model and an implementation thereof may
have different types of faults that AQAT is expected to detect.
Secondly, the presence of multiple faults may result in a

1The number of extracted paths by AQAT is less than the number of
manually extracted paths in the preliminary study due to addressed redundancy
of coverage.
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Fig. 4. Simplified model of LTRIS. Due to simplification, the depicted model differs from the graphical syntax of the AADL standard. In addition, the depicted
behavior models are only included for illustration and do not represent any actual behavior of LTRIS.

complex combined error behavior that makes it difficult to
determine whether AQAT produces any false positives or false
negatives. In order to apply the complete framework and
simultaneously ensure validity of the results and coverage of
fault types, AQAT must be systematically applied to controlled
versions of the LTRIS model. A typical application of the
complete framework involves the following steps, each of
which is executed by AQAT (except for step 7):

1) Generate the architecture flow graph (AFG) of the
AADL model.

2) Generate verification sequences by applying the ver-
ification criteria to the AFG.

3) Transform the AADL model to a network of timed
automata and each verification sequence to an ob-
server automaton.

4) Verify the satisfiability of each observer using the
UPPAAL model-checker.

– The AADL model is complete, consistent, and
correct if all observers are satisfiable. The
resulting traces may be used to test the con-
formance of an implementation with respect
to the AADL model, i.e., go to step 5.

– The AADL model is faulty if not all observers
are satisfiable. The model should be corrected,
where steps 8-11 subsequently may be used to
efficiently verify the updated model.

5) Generate a test suite from the produced timed au-
tomata traces – one test case for each trace.

6) Execute the test suite on the implementation.
– The implementation conforms to the AADL

model if each test case passes.

7) Modify the AADL model.
8) Generate the AFG and ADG of the modified model.
9) Compare the AFG of the previously verified AADL

model with the AFG of the modified model to identify
the modification.

10) Slice the ADG of the modified model with respect to
the identified modification and reduce the slice with
inter-observer satisfiability independences if any. The
slice determines which parts of the modified model
that may be impacted by the modification.

11) Perform selective regression verification by re-
executing (as in step 4 and, if an implementation is
available, steps 5-6) only those verification sequences
that cover vertices in the slice.

Our approach to a systematic application to controlled
versions of the LTRIS AADL model involves two stages. The
first stage is to perform steps 1-6 (model checking and model-
based testing) based on the original AADL model, which we
assume to be free from faults and has been created with such
goal. If the steps are valid and the implementation actually
conforms to the model, the result of model checking and
model-based testing must be satisfied observers and passed
test cases. Since the model evidently conforms to the model
itself, it, in the form of the generated timed automata model,
is treated as the implementation in step 6.

The second stage of the approach is to use the technique
of fault injection to create faulty versions of the LTRIS
AADL model and expand the steps of stage one such that
the application covers the whole framework and ranges over
all fault types. By means of the steps taken in the first stage,
each fault injection may be treated as a change. If steps 1-4



(the model checking technique) and 8-11 (the selective regres-
sion verification technique) are valid, the result of regression
verification must be at least one unsatisfied observer, since
there now evidently exist a fault. Nevertheless, the selective
approach must be contrasted with a re-run all approach to
conclude the selection effectiveness and efficiency. If steps 1-4
and 8-11 are valid, the result must be satisfied observers for all
non-selected verification sequences, since the impact analysis
is expected to select all verification sequences that may be
affected. The required overhead expense of performing the
selection in addition to the resource consumption of running
the selection must either not exceed the cost of a re-run all
approach to be resource efficient.

Finally, the timed automata models that are generated from
the faulty LTRIS AADL versions may be treated as faulty
implementations to validate the fault detection effectiveness
of the test suite generation conducted in stage one. If steps
1-6 (the model-based test case generation technique) are valid
the result must be at least one failed test case for each test suite
execution. Consequently, the validity criteria for stage one and
stage two are:

CRITERIA STAGE ONE
Number unsatisfied observers = 0

Total time consumption <≈ related work

Total memory consumption <≈ related work

Number failed test cases = 0

CRITERIA STAGE TWO
Number unsatisfied selected observers > 0

Number unsatisfied observers = No. unsatisfied selected observers

Total time consumption of a selective regression verification approach <
total time consumption of a re-run all regression verification approach <≈
related work

Total memory consumption of a selective regression verification approach <
total memory consumption of a re-run all regression verification approach <≈
related work

Number failed test cases > 0

E. Fault Types and Fault Injections

In this study, we have chosen to consider the following
fault types:

FT1: Absent, unachievable, or incorrect control expression
(guard)

FT2: Absent or incorrect data assignment, event, or call
(action)

FT3: Absent or incorrect port connection
FT4: Absent or incorrect parameter connection
FT5: Absent, incorrect, or incompatible timing property
FT6: Absent, incorrect, or incompatible protocol or use of

shared resource (deadlock, livelock, starvation, and
priority inversion of threads)

FT7: Absent, incorrect, or incompatible scheduling prop-
erty (missed deadlines)

FT8: Absent behavior model transition
FT9: Absent or incorrect transition priority

The selection is based on the set of AADL expressions
that determine and constrain the control and data flows of an
AADL model. By using a common practice confidence level
of 95%, a conservative expected standard deviation of 0.5,
and a ± 5% margin of error, the number of fault injections
is set to 385 (385 design faults, 385 implementation faults,
and 385 modification faults). For the purpose of the case
study, AQAT is extended with a module that automatically
performs the fault injections. The module essentially parses
the AADL model and injects a fault upon the arrival of a
selected expression. The distribution of fault injections across
fault types is thereby largely determined by the frequency of
the corresponding AADL expressions.

F. Case Study Instrumentation

In order to exercise the architectural paths by every class
of input, the input domain of LTRIS is divided through
equivalence portioning, where concrete values are determined
through boundary value analysis. In the LTRIS AADL model,
we assume that any required input is generated by the
LineTripEnvironment process. The process should be able
to stimulate LTRIS with the possible input classes at comple-
tions – the environment is assumed to dispatch periodically.
Moreover, the values of (input) data objects at the time of
LTRIS initialization depends on its environment. The concept
of including the complete input range and input behavior of a
data object is presented in Fig. 5. In this case, for a Boolean-
typed data object. The boundary values of each object are
presented in Table I. Note that these values are determined
based on an approximation of the environment.

Fig. 5. Template for input generation of a Boolean typed connection/shared
data component.

TABLE I. VALUE SETS OF EACH INPUT DATA OBJECT.

Data object Initialization Env. completion
some connection1-2 {0(false),1(true)} {0(false),1(true)}
some connection3 {0,3,4,27,30,31,38} {0,3,4,27,30,31,38}
some connection4-14 {0(false),1(true)} {0(false),1(true)}
GPIO OUT {0(false)}
LTRIP EN N {1(true)}
MCU LT ON {1(true)}
FPGA2 LT ON {0(false),1(true)} {0(false),1(true)}
LT RELAY FB {0(false),1(true)} {0(false),1(true)}

For the purpose of the case study design, each generated
test case is scripted in timed automata such that they can be



automatically executed. AQAT is extended in the study with a
module that automatically performs the encoding. An example
of a scripted test case is shown in Fig. 6.

Fig. 6. Example of a test case scripted in timed automata.

According to the test case, a set of (initialization) inputs
(values displayed in the figure) at time t = 0 ms, followed by
a set of inputs at time t = 60 ms, should result in a set of
outputs by Tester at time = 596 ms (60+536), followed by a
set of outputs by Controller at time t = 598 ms. Similarly to
observers, if the test script may reach the acceptance location,
the test case passes.

IV. RESULTS

The descriptive statistics of the results are presented in
Table II, which is supported by six diagram charts in Fig. 7. In
Fig. 8, various measurement distributions across the different
fault types are presented by box and whisker charts. Table II
presents the averages, standard deviations, minimums, max-
imums, and the totals in five consecutive row sections. The
first column of the table presents the fault type (“0” denotes
no injected fault). The second column presents the number of
extracted verification sequences for full coverage of the AADL
model. The third column presents the number of selected ver-
ification sequences (for selective regression verification) when
the fault injection is treated as a modification of the default
model. The fourth column presents the number of unsatisfied
selected verification sequences (observers) whereas the fifth
column presents the total number of unsatisfied verification
sequences (selected and deselected). Columns six to eleven
present the time and memory consumption of model checking
the selected set of verification sequences versus the complete
set of verification sequences. Note that the model-based testing
technique uses the results (traces) of model checking to gen-
erate the test suite. Hence, the resource consumption of model
checking also indicates the resource consumption of test suite
generation. The last column presents the number of failed test
cases of the test suite generated from the default model.

The distribution of fault injections across the fault types
from which the results are generated is presented in chart
A of Fig. 7. The results are in compliance with the validity
criteria except for three cases, two of which are expected.
First, the selective regression verification technique has no
effect with respect to FT3, FT6, and FT7. No effect with
respect to FT7 is expected since the fault type corresponds

to a changed scheduling property, which has no measurable
impact on the AFG. Consequently, no slicing nor selection is
performed by AQAT in response to such changes. Second, no
implementation faults of FT5 were detected by the generated
test suite. The invalidity is expected as the fault type is an
inconsistent latency property, which in the model does not
affect the execution but impose an analysis constraint on it.
It is not sound to treat the faulty timed automata model as
a faulty implementation in this case since the inconsistent
property must be manifested in the execution to emulate an
implementation fault. Finally, additional five (the quantity is
not deducible from Table II) faults of FT1, FT3 and FT7
were not detected at the implementation level – the minimum
number of failed test cases is zero for each type (see Table II).

On average, it took 390.5 seconds and 2418.6 MB of mem-
ory to model check a faulty version of LTRIS, i.e. to check sat-
isfiability of 36 verification sequences (observers). The default
fault-free model, yielding 38 verification sequences, consumed
249 seconds and 1258 MB. By considering the distribution of
time consumption of a re-run all approach, presented in chart J
of Fig. 8, faults have the ability to both significantly reduce as
well as increase the resource consumption of model checking
(fault-free reference level is 249 sec). The minimum time
consumption of the sample is 15 seconds (Table II) whereas
the maximum is approximately 43 minutes (2566 seconds).
Since the minimum number of unsatisfied observers over the
complete sample of fault injections is larger than zero, 385
out of 385 design faults are detected. Given that the unsound
implementation faults of FT5 are disregarding, 338 out of 343
(385-42*FT5) implementation faults are detected. By compar-
ing the distribution of the number of extracted verification
sequences by fault types in chart G and the distribution of
unsatisfied verification sequences by fault types in chart I of
Fig. 8, faulty mechanisms of shared resources (FT6), faulty
scheduling properties (FT7), and missing transitions (FT8)
cause the most comprehensive negative effect on the architec-
tural design in terms of percentage of unsatisfied verification
sequences: on average 82% (31/38), 74% (28.3/38), and 84%
(19.5/23.3) respectively. At the implementation level, on the
other hand, faults caused by missing connections (FT3) in
addition to these fault types on average resulted in the largest
portion of failed test cases, as presented in chart L.

In total, as explicitly presented in chart C of Fig. 7, 13844
verification sequences are extracted in the study, 11168 of
which are selected for regression verification. 5886 of the
selected verification sequences are unsatisfiable compared to
5886 in the re-run all approach. The consistency is presented
in scatter chart D, where any data point divergence from
the cross section between the selective approach (horizontal
axis) and the re-run all approach (vertical axis) would indicate
ineffectiveness of the selection process. The distribution of the
number of selected verification sequences in contrast to a re-
run all approach is presented in chart B of Fig. 7. For the
majority of the faulty versions of the LTRIS AADL model
(319 out of 385), between 35 to 40 sequences are extract to
achieve full coverage for a re-run all approach. For 125 of
these, the change impact analysis had little to no effect on the
reduction of verification sequences to re-execute. For the other
260 (385-125) faulty versions of the LTRIS AADL model, the
selection process on average reduced the necessary number
of verification sequences to execute by approximately 19%



TABLE II. CASE STUDY RESULTS

Testing effectiveness

Fault type No. ver. seq. No. sel. No. unsat. sel. obs. No. unsat. obs. Sel. (sec) All (sec) Sel. (MB) All (MB) Time (%) Mem. (%) No. failed TCs (of 38)

0 38 n/a n/a 0 n/a 249 n/a 1258 n/a n/a 0

1 37,8 27,7 19,2 19,2 285,3 319,6 1742,9 1983,8 12,3 12,9 19,4

2 34,1 29,0 11,5 11,5 912,1 925,4 5437,2 5527,9 3,1 3,4 17,0

3 34,4 34,4 13,1 13,1 595,0 595,0 3855,4 3855,4 0,0 0,0 20,3

4 33,2 32,4 11,8 11,8 697,4 698,2 4057,9 4061,2 0,4 0,5 19,3

5 38,0 29,0 6,0 6,0 518,5 530,0 3423,2 3477,7 3,1 2,2 0,0

6 38,0 38,0 31,0 31,0 38,0 38,0 121,9 121,9 0,0 0,0 31,0

7 38,0 38,0 28,3 28,3 82,2 82,2 444,0 444,0 0,0 0,0 27,4

8 23,3 21,1 19,5 19,5 59,1 62,6 285,7 305,7 2,7 2,4 33,2

9 38,0 24,4 1,0 1,0 306,3 340,9 2125,1 2350,1 11,4 11,1 1,0

AVG: 36,0 29,0 15,3 15,3 371,7 390,5 2293,1 2418,6 6,4 6,4 16,9

1 1,5 12,0 15,0 15,0 403,1 398,4 2682,2 2655,2 20,6 22,3 14,6

2 7,1 8,4 7,4 7,4 509,1 499,1 2932,3 2856,9 9,3 10,2 8,8

3 5,9 5,9 12,1 12,1 479,1 479,1 3288,7 3288,7 0,0 0,0 16,7

4 6,3 6,4 10,3 10,3 525,7 525,6 3029,0 3028,0 0,7 1,2 13,2

5 0,0 1,4 0,8 0,8 305,7 303,4 1892,4 1872,9 1,7 1,5 0,0

6 0,0 0,0 0,0 0,0 0,0 0,0 6,4 6,4 0,0 0,0 0,0

7 0,0 0,0 9,2 9,2 107,2 107,2 619,0 619,0 0,0 0,0 11,3

8 5,0 4,1 6,7 6,7 80,3 86,2 472,8 511,1 4,7 4,5 7,7

9 0,0 4,5 0,0 0,0 75,3 54,1 568,9 413,3 8,1 8,6 0,0

STD: 5,4 9,0 13,2 13,2 436,5 433,1 2697,4 2675,1 13,2 14,2 14,7

1 23 1 1 1 32 38 110 113 0,0 0,0 0

2 23 3 1 1 123 224 789 1096 0,0 0,0 2

3 22 22 1 1 38 38 119 119 0,0 0,0 0

4 23 22 1 1 37 38 111 116 0,0 0,0 1

5 38 27 5 5 271 281 1796 1849 0,7 0,3 0

6 38 38 31 31 38 38 111 111 0,0 0,0 31

7 38 38 5 5 38 38 108 108 0,0 0,0 0

8 15 12 2 2 14 15 30 32 0,0 0,0 8

9 38 20 1 1 221 273 1483 1863 3,0 1,8 1

MIN: 15 1 1 1 14 15 30 32 0,0 0,0 0

1 38 38 38 38 2421 2422 16015 16017 66,0 71,4 38

2 56 45 34 34 2551 2566 15356 15466 59,1 63,6 38

3 38 38 34 34 1514 1514 10725 10725 0,0 0,0 38

4 38 38 34 34 1791 1792 11133 11135 2,6 4,3 36

5 38 30 7 7 1136 1144 7748 7774 5,0 4,3 0

6 38 38 31 31 38 38 141 141 0,0 0,0 31

7 38 38 35 35 481 481 2304 2304 0,0 0,0 35

8 35 33 30 30 273 282 1484 1565 20,0 19,2 37

9 38 29 1 1 403 416 3249 3308 20,2 20,8 1

MAX: 56 45 38 38 2551 2566 16015 16017 66,0 71,4 38

1 4198 3079 2135 2135 31672 35471 193458 220197 10,7 12,1 2154

2 2014 1713 679 679 53815 54598 320795 326146 1,4 1,6 1001

3 241 241 92 92 4165 4165 26988 26988 0,0 0,0 142

4 398 389 142 142 8369 8378 48695 48734 0,1 0,1 231

5 1596 1218 252 252 21775 22262 143775 146062 2,2 1,6 0

6 1596 1596 1302 1302 1596 1596 5118 5118 0,0 0,0 1302

7 836 836 622 622 1809 1809 9769 9769 0,0 0,0 602

8 723 655 603 603 1831 1942 8857 9476 5,7 6,5 1029

9 2242 1441 59 59 18071 20115 125381 138653 10,2 9,6 59

TOT: 13844 11168 5886 5886 143103 150336 882836 931143 4,8 5,2 6520
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(1-11168/13844). Approximately 53% (5886/11168) of these
are unsatisfiable (reveal faults). In terms of time and memory
consumption, the selective approach on average reduces the
necessary resources for regression verification by 6.4% (Ta-
ble II). Note that the average reductions in percentage are
averages of the reduction proportion of each individual data
point and therefore do not correspond to the difference between
the average consumption of the selective approach and the re-
run all approach over all fault types. For example, a reduction
of ten seconds of a re-run all execution of twenty seconds
(50%) is weighted equal to a reduction of hundred seconds of
a re-run all execution of two hundred seconds (50%) although
the actual reduction in terms of seconds is ten times higher in
the latter case. In total, time and memory are reduced by 4.8%
and 5.2% respectively, which approximately correspond to 2
hours and 48 gigabyte of memory. The selective regression

verification technique is on average most efficient with respect
to faulty transition priorities (11.4% and 11.1% on average). At
best, in terms of proportions, a reduction of time and memory
by 66.0% and 71.4% is achieved. The selective approach has
little to no effect on increased efficiency with respect to FT3,
FT4, FT6, and FT7 (expected) in this study, as explicitly
presented in chart K of Fig. 8.

The overhead expense of conducting the change impact
analyses and the time needed to transform verification se-
quences to observer automata are negligible in the study and
not included in Table II. The sum of all variables that influence
the efficiency of the selective approach is presented in chart
E of Fig. 7. The impact analysis took in total six minutes to
execute. One minute is however saved, in total, by reducing the
time needed to transform the necessary number of verification
sequences to observers compared to a re-run all approach.
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Fig. 7. Results charts A to F

Furthermore, the time consumption of extracting paths is not
included in any measurement. With an upper bound on inter-
component feedback loops of one (an indirect path may only
include a component once), the time needed to extract paths
is negligible (371 ms per model), as presented in chart F
(an upper bound of zero constitutes no extractions of indirect
paths). The measurements of the chart are based on extractions
from the default fault-free model. However, the time needed
for paths extraction grows exponentially with an increasing
limit of feedback loops.

V. DISCUSSION

Improvements of the AQAF theory [3] had to be developed
before the presented results were achieved. During the initial
instances of this study, we occasionally observed inaccurate
impact analyses of architectural design changes that resulted
in unsatisfied deselected verification sequences, i.e., some
verification sequences that revealed faults were not selected.
The cause of the inaccuracy is the lack of considerations to
unconditional versus conditional dependencies/independencies
in the dynamic slicing technique presented in [3]. We learned
from this study that there may exist situations where the exe-
cutability of an AFG path may be dynamically independent to
a set of (other) paths as long as one path of the set, any of them,
is executed prior to it, i.e., that the dynamic independencies
to the paths of the set are conditional. Conditional multi-
dependence/independence information is necessary for dynam-

ical impact analyses of changes that modify several paths;
changes to the paths of the set do not impact the executability
of the path as long as one path of the set remains unchanged.
Some of the injected faults in this study caused changes to such
sets, given that each path of the set covered the location of the
injected fault. Since conditional dynamic independences are
regarded as unconditional by the dynamic slicing technique
presented in [3], verification sequences that cover impacted
paths were occasionally not selected for regression verification.
By improving the dynamic slicing technique with conditional
multi-independence analysis, as illustrated in [4], the selection
process complied with the expectations in this study.

For 125 of the faulty versions of the LTRIS AADL
model, the change impact analysis had little to no effect
on the reduction of verification sequences to re-execute. By
comparing the distribution of selected sequences and failed
tests by fault types, presented in chart H and L of Fig. 8
respectively, FT1, FT3, FT4, FT6, FT7, and FT8 are centered
around a moderately high number of selected verification
sequences as well as a moderately high number of failed
tests. This indicates that the 125 fault injections of which
the selective approach has little effect upon do in fact have
comprehensive impacts on the architecture. The change impact
analysis is consequently not overly pessimistic with respect
to these changes. It should be noted that the distribution of
FT8 may seem to be clustered around a number of selected
sequences that may appear moderately low. However, note



0

10

20

30

40

50

60

All fault
types

1 2 3 4 5 6 7 8 9

Ex
tr

ac
ta

b
le

 v
er

if
ic

at
io

n
 s

eq
u

en
ce

s 
p

er
 

A
A

D
L 

m
o

d
el

(G) Distribution of verification sequences 

0

5

10

15

20

25

30

35

40

45

50

All fault
types

1 2 3 4 5 6 7 8 9Se
le

ct
ed

 v
er

i. 
se

q
u

en
ce

s 
p

er
 A

A
D

L 
m

o
d

el

(H) Distribution of selected sequences 

0

5

10

15

20

25

30

35

40

All fault
types

1 2 3 4 5 6 7 8 9

U
n

sa
ti

sf
ie

d
 v

er
if

ic
at

io
n

 s
eq

u
en

ce
s 

p
er

 
A

A
D

L 
m

o
d

el

(I) Distribution of unsatisfied verification sequences 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

All fault
types

1 2 3 4 5 6 7 8 9

Se
co

n
d

s 
p

er
 A

A
D

L 
m

o
d

el

(J) Distribution of model checking time consumption 

0

10

20

30

40

50

60

70

All fault
types

1 2 3 4 5 6 7 8 9

R
ed

u
ct

io
n

 o
f 

ti
m

e 
co

n
su

m
p

ti
o

n
 in

 %

(K) Distribution of time reduction (in %) by impact analysis

0

5

10

15

20

25

30

35

40

All fault
types

1 2 3 4 5 6 7 8 9

Fa
ile

d
 t

es
t 

ca
se

s 
p

er
 im

p
le

m
en

ta
ti

o
n

(L) Distribution of failed test cases

Fig. 8. Results charts G to L

that fault injections of FT8 significantly reduce the number of
prescribed paths (23.3 compared to 38 of the default fault-free
model), as presented in chart G. Consequently, the distribution
of selected verification sequences by FT8 has a concentration
of a relatively high number of selected sequences although it
may not appear as such in chart H. Furthermore, the selective
regression verification technique had little to no effect on
increased efficiency for FT3, FT4, FT6, and FT7 (expected)
in this study. We argue it is unreasonable to generalize this
phenomenon to architectures that are composed of a larger set
of functionally independent software components compared to
LTRIS. A missing behavioral model transition (FT8) within
LTRIS on average significantly reduces the number of pre-
scribed paths, which indicates that the architecture of LTRIS
is composed of rather functionally interdependent components.
We therefore believe the efficiency of the selective regression
verification technique may be significantly higher for architec-
tures that have less functionally interdependent structures.

Five implementation faults that AQAT was expected to
detect were not detected in the study. An analysis showed
that the faults are not detected because the changed behavior
still produced the same output, i.e., the post-conditions of
the tests are fulfilled but the behaviors that cause them do
not correspond to the architectural design. To detect non-
conformance of the implementation with respect to the design
under such circumstances, an implementation instrumentation
that measures code coverage must be utilized.

The resource consumption of model checking varies sig-
nificantly in the study. There are mainly two parameters that
determine the outcome. First, a fault injection may add or
remove states of the AADL model, which may exponentially
reduce or increase the state space. Thus, possibly lengthens or
shortens the state space search by a significant amount. Fault
injections of FT6 produced the lowest average time consump-
tion (38 seconds). The cause is a significantly reduced state
space due to starvations, missed deadlines, and deadlocks if
the change forces Tester to enter a critical region that is shared
with Controller. Fault injections of FT2 produced the highest
average time consumption (925.4 seconds). This is however
not caused by a significantly increased state space. The signif-
icant increase of necessary resources is caused by multiple
unsatisfiable verification sequences in relation to relatively
large state spaces. Unsatisfiability of verification sequences
can only be concluded by searching the complete state space
with all possible combinations of system inputs, which tend
to be relatively time consuming. Furthermore, the number of
unsatisfied verification sequences varies significantly between
faults of the same type. Consequently, the impact of a fault on
the system architecture and the verification process is largely
determined by the combination of its type and its location.

According to the results in chart F of Fig. 8, the time
consumption of paths extractions increase exponentially with
an increasing loop bound. Nevertheless, depending on the
structure and behavior of the architecture, the necessary



number of indirect paths to extract may decrease with an
increasing feedback loop bound due to a larger coverage by
each extracted path. For example, Tester of LTRIS requires
multiple consecutive feedbacks from Controller in response to
opening and closing orders to achieve a successful progress of
the relay test process. With an upper feedback loop bound of
three, a single indirect path may cover several different types
of interactions between the components such that a complete
relay test behavior is included in a single path, which otherwise
are covered by a set of paths. Consequently, an increasing time
consumption of paths extraction by increasing feedback loop
bounds may, to a certain extent, advantageously reduce the
time needed to perform satisfiability checking by reducing the
number of verification sequences. An analysis of this threshold
is consequently an interesting topic for future research for the
purpose of performance optimization.

VI. RELATED WORK

Research in this field has developed a number of
techniques for AADL, such as model checking tech-
niques (e.g. [10] [11] [12]) and formal analysis techniques
(e.g. [13] [14] [15] [16]). However, contrary to AQAT and
AQAF, these contributions are lacking verification of architec-
tural engineering that is conducted subsequent to an established
design, such as generation of tests that demonstrate the com-
pliance of an implementation with respect to its architectural
design and impact analysis of architectural design changes
for the identification of the necessary reverification measures.
They are also lacking methods that measure and enforce
coverage of the architectural design in the verification process,
such as control and data flow coverage criteria applied by
AQAT, which is essential to determine the extent to which
an architecture has been verified. Furthermore, vital properties
of critical embedded systems such as real-time constraints,
scheduling properties, uses of shared resources, and concur-
rency by multitasking and parallel processing are not jointly
considered in the verification.

Simulink Design Verifier [17] provides a formal verifi-
cation and analysis framework similar to AQAT, however
for Simulink models. Besides the ability to automatically
detect design faults and requirements violations through model
checking, the tool includes a condition, decision, and modified
condition/decision coverage analyser and a slicer for depen-
dency tracing and variability modeling.

To our knowledge, there are only two cases of published
related work that present quantitative evaluations of resource
consumption. Murugesan et al. [18] present a study where
the AADL model checker AGREE verifies a medical device
against requirements expressed in past-time linear temporal
logic (PLTL). The study resulted in a model checking time
consumption of 273 seconds to prove 35 properties. The model
checking approach presented by Murugesan et al. is however
not comparable with AQAF in the sense that concurrent exe-
cution, shared resources, scheduling, and timing properties are
not considered. Esteve et al. [19] present a study of COMPASS,
a tool-set for SLIM (a variant of AADL), that provides the
ability to model-check functional properties through transfor-
mation to Markov chain. The study constitutes an application
to a satellite platform where model checking of both nominal
behavior and error behavior is conducted. The resultant average

time and memory consumptions of verification are 508 sec
and 469 MB for checking of 19 properties. No inclusion of
concurrent execution is presented.

VII. CONCLUSION AND FUTURE WORK

We have presented an industrial evaluation of the Archi-
tecture Quality Assurance Tool (AQAT) and the underlying
Architecture Quality Assurance Framework (AQAF), devel-
oped to provide a holistic, formal, and automated approach
to verification of architectural engineering. AQAT provides
architectural model checking, model-based testing, and se-
lective regression verification techniques for the detection of
design faults, implementation faults, and faults created by
maintenance modifications. The fault detection effectiveness
and the resource efficiency of AQAT are assessed by means
of a case study comprising an application to a safety-critical
train control system. The method of fault injection is used
to ensure coverage of fault types and to produce a data
sample size adequate for statistical analysis. The initial results
did not comply with the expectations and indicated areas of
improvement, in particular within the selective verification
technique of AQAF. By improving the impact analysis of ar-
chitectural design changes with an analysis of conditional and
unconditional dependencies, satisfactory results were achieved.
Final results suggest a 100% fault detection rate at the model
level, a 98.5% fault detection rate at the implementation level,
and an average increased efficiency of regression verification
by 6.4% compared to a re-run all approach. We learned
that an increased fault detection rate at the implementation
level requires a monitoring instrumentation that measures code
coverage during the execution of the tests. Due to results that
indicate a rather interdependent structure of the case subject,
we believe the efficiency of the selective regression verification
technique may increase significantly for systems with less
interdependent structures.

The main area of evaluation improvement is an application
to a diverse set of systems. Without results from applications
to extreme cases, e.g. a system with a large set of concurrent
tasks, the scalability limitations of AQAT and AQAF remain
inconclusive. Furthermore, the method of fault injection is
utilized in this study to emulate erroneous architectural engi-
neering. Although creations of these faults are plausible in de-
velopment processes, an assessment of the usability of AQAT
and AQAF requires studies with more authentic scenarios to
be reliable.
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