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Abstract. Data aggregation processes are essential constituents for data man-
agement in modern computer systems, such as decision support systems and In-
ternet of Things (IoT) systems. Due to the heterogeneity and real-time constraints
in such systems, designing appropriate data aggregation processes often demands
considerable effort. A study on the characteristics of data aggregation processes is
then desirable, as it provides a comprehensive view of such processes, potentially
facilitating their design, as well as the development of tool support to aid design-
ers. In this paper, we propose a taxonomy called DAGGTAX, which is a feature
diagram that models the common and variable characteristics of data aggregation
processes, with a special focus on the real-time aspect. The taxonomy can serve
as the foundation of a design tool, which we also introduce, enabling designers
to build an aggregation process by selecting and composing desired features, and
to reason about the feasibility of the design. We apply DAGGTAX on industrial
case studies, showing that DAGGTAX not only strengthens the understanding,
but also facilitates the model-driven design of data aggregation processes.

1 Introduction

In modern information systems, data aggregation has long been adopted for data pro-
cessing and management in order to discover unusual patterns and infer information
[21], to save storage space [25], or to reduce bandwidth and energy costs [17]. Amid
the era of cloud computing and Internet of Things (IoT), the application of data aggre-
gation is becoming increasingly common and important, when enormous amounts of
data are continuously collected from ubiquitous devices and services, and further ana-
lyzed. As an example, a surveillance application monitors a home by aggregating data
from a number of sensors and cameras. The aggregated surveillance data of individual
homes could then be aggregated again in the cloud to analyze the security of the area.
In this example, data aggregation serves as a pillar of the application’s workflow, and
directly impacts the quality of the software system.

Within such systems, different aggregations may have various requirements to be
satisfied by the design. For instance, while one aggregation receives data passively from
a data source, another aggregation must actively collect data from a database which is
shared concurrently by other processes. This heterogeneity increases the difficulty in
designing a suitable solution with multiple aggregations. In addition, many applications
such as automotive systems [19], avionic systems [8] and industrial automation [29]
have timing constraints on both the data and the aggregation processes themselves.
The validity of data depends on the time when they are collected and accessed, and



the correctness of a process depends on whether it completes on time. These real-time
constraints also add to the complexity of data aggregation design.

In this paper we focus on the design support for data aggregation processes (or DAP
for short), which are defined as the processes of producing synthesized forms from
multiple data items [36]. We consider a DAP as a sequence of three ordered activities
that allow raw data to be transformed into aggregated data via an aggregate function.
First, a DAP starts with preparing the raw data needed for the aggregation from the data
source into the aggregation unit called the aggregator. Next, an aggregate function is
applied by the aggregator on the raw data, and produces the aggregated data. Finally,
the aggregated data may be further handled by the aggregator, for example, to be saved
into storage or provided to other processes. The main constituents of these activities are
the raw data, the aggregate function and the aggregated data.

The main contribution of this paper is a high-level taxonomy of data aggregation
processes, called DAGGTAX, presented as a feature diagram [26]. The aim of our tax-
onomy is to ease the design of aggregation processes, by providing a comprehensive
view on the features and cross-cutting constraints, by a systematic representation. The
intuition is that, to design a DAP, we must understand the desired features of its main
constituents, as well as those of the DAP itself. Such features, ranging from functional
features (such as data sharing) to extra-functional features (such as timeliness), are vary-
ing depending on different applications. One aspect of the understanding is to distin-
guish the mandatory features from the optional ones, so that the application designer is
able to sort out the design choices. Another aspect is to comprehend the implications
of the features, and to reason about the (possible) impact on one another. Conflicts may
arise among features, in that the existence of one feature may prohibit another one. In
this case, trade-offs should be taken into consideration at design time, so that infeasi-
ble designs can be ruled out at an early stage. The proposed taxonomy can serve as a
basis for such automated reasoning. To evaluate the usefulness of DAGGTAX, we have
developed a DAGGTAX-based tool called DAPComposer, which enables constructing
DAP by selecting the desired features, and have applied it on two industrial case studies.
The evaluations demonstrate that DAGGTAX raises the awareness of design issues in
DAP, and helps to reason about possible trade-offs between different design solutions.

The remainder of the paper is organized as follows. In Section 2 we discuss the ex-
isting taxonomies of data aggregation. In Section 3 we provide background information.
Section 4 presents our proposed taxonomy, followed by the tool and the case studies in
Section 5. In Section 6 we conclude the paper and outline possible future works.

2 Related Work

Many researchers have promoted the understanding of data aggregation on various as-
pects. Among them, considerable effort has been dedicated to the study of aggregate
functions. Mesiar et al. [34], Marichal [33], and Rudas et al. [36] have studied the
mathematical properties of aggregate functions, such as continuity and stability, and
discussed these properties of common aggregate functions in detail. A procedure for
the construction of an appropriate aggregate function is also proposed by Rudas et al.
[36]. In order to design a software system that computes aggregation efficiently, Gray
et al. [21] have classified aggregate functions into distributive, algebraic and holistic,



depending on the amount of intermediate states required for partial aggregates. Later,
in order to study the influence of aggregate functions on the performance of sensor
data aggregation, Madden et al. [30] have extended Gray’s taxonomy, and classified
aggregate functions according to their state requirements, tolerance of loss, duplicate
sensitivity, and monotonicity. Fasolo et al. [17] classify aggregate functions with re-
spect to four dimensions, which are lossy aggregation, duplicate sensitivity, resilience
to losses/failures and correlation awareness. Our taxonomy builds on such work that
focuses on the aggregate functions mainly, and provide a comprehensive view of the
entire aggregate processes instead.

A large proportion of existing work has its focus on in-network data aggregation,
which is commonly used in sensor networks. In-network aggregation is the process of
processing and aggregating data at intermediate nodes when data are transmitted from
sensor nodes to sinks through the network [17]. Besides a classification of aggregate
functions that we have discussed in the previous paragraph, Fasolo et al. [17] classify
the existing routing protocols according to the aggregation method, resilience to link
failures, overhead to setup/maintain aggregation structure, scalability, resilience to node
mobility, energy saving method and timing strategy. The aggregation protocols are also
classified by Solis et al. [38], Makhloufi et al. [32], and Rajagopalan [35], with respect
to different classification criteria. In contrast to the aforementioned work that focuses
mainly on aggregation protocols, Alzaid et al. [2] have proposed a taxonomy of secure
aggregation schemes that classifies them into different models. All the existing related
work differ from our taxonomy in that they provide taxonomies from a different per-
spective, such as network topology for instance. Instead, our work strives to understand
the features and their implications of DAP and its constituents in design.

3 Background

In this section, we first recall the concepts of timeliness and temporal data consistency
in real-time systems, after which we introduce feature models and feature diagrams that
are used to present our taxonomy.

3.1 Timeliness and Temporal Data Consistency

In a real-time system, the correctness of a computation depends on both the logical
correctness of the results, and the time at which the computation completes [9]. The
property of completing the computation by a given deadline is referred to as timeli-
ness. A real-time task can be classified as hard, firm or soft real-time, depending on
the consequence of a deadline miss [9]. If a hard real-time task misses its deadline,
the consequence will be catastrophic, e.g., loss of life or significant amounts of money.
Therefore the timeliness of hard real-time tasks must always be guaranteed. For a firm
real-time task, such as a task detecting vacant parking places, missing deadlines will
render the results useless. For a soft real-time task, missing deadlines will reduce the
value of the results. Such an example is the signal processing task of a video meeting
application, whose quality of service will degrade if the task misses its deadline.
Depending on the regularity of activation, real-time tasks can be classified as peri-
odic, sporadic or aperiodic [9]. A periodic task is activated at a constant rate. The inter-
val between two activations of a periodic task, called its period, remains unchanged. A



sporadic task is activated with a MINimum inter-arrival Time (MINT), that is, the min-
imum interval between two consecutive activations. During the design of a real-time
system, a sporadic task is often modeled as a periodic task with a period equal to the
MINT. Similarly, MAXimum inter-arrival Time (MAXT) specifies the maximum inter-
val between two consecutive activations. An aperiodic task is activated with an unpre-
dictable interval between two consecutive activations. A task triggered by an external
event with unknown occurrence pattern can be seen as aperiodic.

Real-time applications often monitor the state of the environment, and react to
changes accordingly and timely. The environment state is represented as data in the sys-
tem, which must be updated according to the actual environment state. The coherency
between the value of the data in the system and its corresponding environment state is
referred to as temporal data consistency, which includes two aspects, the absolute tem-
poral validity and relative temporal validity [39]. A data instance is absolute valid, if
the timespan between the time of sampling its corresponding real-world value, and the
current time, is less than a specified absolute validity interval. A data instance derived
from a set of data instances (base data) is absolute valid if all participating base data
are absolute valid. A derived data instance is relative valid, if the base data are sampled
within a specified interval, called relative validity interval.

Data instances that are not temporally consistent may lead to different consequences.
Different levels of strictness with respect to temporal consistency thus exist, which are
hard, firm and soft real-time, in a decreasing order of strictness. Using outdated hard
real-time data could cause disastrous consequences, and therefore this should not ap-
pear. Firm real-time data are useless if they are outdated, whereas outdated soft real-
time data can still be used, but will yield degraded usefulness.

3.2 Feature Model and Feature Diagram

The notion of feature was first introduced by Kang et al. in the Feature-Oriented Domain
Analysis (FODA) method [26], in order to capture both the common characteristics of
a family of systems as well as the differences between individual systems. Kang et al.
define a feature as a prominent or distinctive system characteristic visible to end-users.
Czarnecki and Eisenecker extend the definition of a feature to be any functional or extra-
functional characteristic at the requirement, architecture, component, or any other level
[13]. This definition allows us to model the characteristics of data aggregation processes
as features. A feature model is a hierarchically organized set of features, representing
all possible characteristics of a family of software products. A particular product can
be formed by a combination of features, often obtained via a configuration process,
selected from the feature model of its family.

A feature model is usually represented as a feature diagram [26], which is often
depicted as a multilevel tree, whose nodes represent features and edges represent de-
composition of features. In a feature diagram, a node with a solid dot represents a com-
mon feature (as shown in Fig. 1a), which is mandatory in every configuration. A node
with a circle represents an optional feature (Fig. 1b), which may be selected by a par-
ticular configuration. Several nodes associated with a spanning curve represent a group
of alternative features (Fig. 1c), from which one feature must be selected by a partic-
ular configuration. The cardinality [m..n] (n > m > 0) annotated with a node in Fig.
1d denotes how many instances of the feature, including the entire sub-tree, can be



considered as children of the feature’s parent in a concrete configuration. If m>1, a
configuration must include at least one instance of the feature, e.g., a feature with [1..1]
is then a mandatory feature. If m=0, the feature is optional for a configuration.

(a) Mandatory feature (b) Optional feature

o

(c) Alternative features (d) Cardinality

Fig. 1. Notations of a feature diagram

A valid configuration is a combination of features that meets all specified con-
straints, which can be dependencies among features within the same model, or depen-
dencies among different models. An example of such a constraint is that the selection of
one feature requires the selection of another feature. Researchers in the software prod-
uct line community have developed a number of tools, providing extensive support for
feature modeling and the verification of constraints. For instance, in FeatureIDE [40],
software designers can create feature diagrams using a rich graphic interface. Design-
ers can specify constraints across features as well as models, to ensure that only valid
configurations are generated from the feature diagram.

4 Our Proposed Taxonomy

In this section we propose a taxonomy of data aggregation processes, called DAG-
GTAX, as an ordered arrangement of common and variable features revealed by the
survey in our referred report [10]. The taxonomy for these common and variable char-
acteristics not only leads to a clear understanding of the aggregation process, but also
lays a solid foundation for an eventual tool support for analyzing the impact of different
features on the design. In this paper, we also present an initial version of such tool.

We choose feature diagrams as the presentation of our taxonomy, mainly due to
two reasons. First, features may be used to model both functional and extra-functional
characteristics of systems. This allows us to capture cross-cutting aspects that have im-
pact on multiple software modules related to different concerns. Second, the notation
of feature diagrams is simple to construct, powerful to capture the common and vari-
able characteristics of different data aggregation processes, and intuitive to provide an
organizational view of the processes. The taxonomy is shown in Fig. 2.

In the following subsections, these features are discussed in details with concrete
examples. More precisely, the discussion is organized in order to reflect the logical
separation of features. We explain Fig. 2 from the top-level features under “Aggregation
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Fig. 2. The taxonomy of data aggregation processes

Process”, including “Raw Data Type”, “Aggregate Function” and “Aggregated Data”,
which are the main constituents of an aggregation process. Features that characterize the
entire DAP are also top-level features, including the “Triggering Pattern” of the process,
and “Real-Time (P)”, which refers to the timeliness of the entire process. Sub-features
of the top-level features are explained in a depth-first way.

4.1 Raw Data

One of the mandatory features of real-time data aggregation is the raw data involved in
the process. Raw data are the data provided by the DAP data sources. One DAP may
involve one or more types of raw data. The multiplicity is reflected by the cardinality
[1..*] next to the feature “Raw Data Type” in Fig. 2. Each raw data type may have a
set of raw data. For instance, a surveillance system has two types of raw data (“sensor
data” and “camera data”), while for the sensor data type there are several individual
sensors with the same characteristics. Each raw data may have a set of properties, which
are interpreted as its sub-features and constitute a sub-tree. These sub-features are: Pull,
Shared, Sheddable, and Real-Time.

Pull “Pull” is a data acquisition scheme for collecting raw data. Using this scheme,
the aggregator actively acquires data from the data source, as illustrated in Fig. 3a. For
instance, a traditional DBMS adopts the pull scheme, in which raw data are acquired
from disks using SQL queries and aggregated in the main memory. “Pull” is considered
to be an optional feature of raw data, since not every DAP pulls data actively from
data source. If raw data have the “pull” feature, pulling raw data actively from the data
source is a necessary part of the aggregation process, including the selection of data as
well as the shipment of data from the data source. If the raw data do not have the “pull”
feature, they are pushed into the aggregator (Fig. 3b). In this case, in our view the action
of pushing data is the responsibility of another process outside of the DAP. From the
DAP’s perspective, the raw data are already prepared for aggregation.

An optional sub-feature of “Pull” is “Persistently Stored”, since raw data to be
pulled from data source may be stored persistently in a non-volatile storage, such as a
disk-based relational DBMS. The retrieval of persistent raw data involves locating the
data in the storage and the necessary 1/O.
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Shared Raw data of a DAP may be read or updated by other processes at the same
time when they are read for aggregation [25]. The same raw data may be aggregated
by several DAP, or accessed by processes that do not perform aggregations. We use the
optional “shared” feature to represent the characteristic that the raw data involved in the
aggregation may be shared by other processes in the system.

Sheddable We classify the raw data as “sheddable”, which is an optional feature, used
in cases when data can be skipped for the aggregation. For instance, in TAG [30], the
inputs from sensors will be ignored by the aggregation process if the data arrive too
late. In a stream processing system, new arrivals may be discarded when the system is
overloaded [1]. For raw data without the sheddable feature, every instance of the raw
data is crucial and has to be computed for aggregation.

Real-Time (RD) The raw data involved in some of the surveyed DAP have real-time
constraints. Each data instance is associated with an arrival time, and is only valid if the
elapsed time from its arrival time is less than its absolute validity interval. “Real-time”
is therefore considered an optional feature of raw data, and “absolute validity interval”
is a mandatory sub-feature of the “real-time” feature. We name the real-time feature
of raw data as “Real-Time (RD)” in our taxonomy, for differentiating from the real-
time features of the aggregated data (“Real-Time (AD)” in Section 4.3) and the process
(“Real-Time (P)” in Section 4.5).

Raw data with real-time constraints are classified as “hard”, “firm” or “soft” real-
time, depending on the strictness with respect to temporal consistency. They are rep-
resented as alternative sub-features of the real-time feature. As we have explained in
Section 3, hard real-time data (such as sensor data from a field device [29]) and firm
real-time data (such as surveillance data [23]) must be guaranteed up-to-date, while out-
dated soft real-time data are still of some value and thus can be used (e.g., the derived
data from a neighboring node in VigilNet [23]).

MINT and MAXT Raw data may arrive continuously with a MINimum inter-arrival
Time (MINT), of which a fixed arrival time is a special case. For instance, in the
surveillance system VigilNet [23], a magnetometer sensor monitors the environment
and pushes the latest data to the aggregator at a frequency of 32HZ, implying a MINT
of 32.15 milliseconds. Similarly a raw data may have a MAXimum inter-arrival Time
(MAXT). We consider “MINT” and “MAXT” optional features of the raw data.

4.2 Aggregate Function

An aggregation process must have an aggregate function to compute the aggregated
result from raw data. An aggregate function exhibits a set of characteristics that we
interpret as features.



Duplicate Sensitive ‘“Duplicate sensitivity” has been introduced as a dimension by
Madden et al. [30] and Fasolo et al. [17]. An aggregate function is duplicate sensitive,
if an incorrect aggregated result is produced due to a duplicated raw data. For example,
COUNT, which counts the number of raw data instances, is duplicate sensitive, since
a duplicated instance will lead to a result one bigger than it should be. MIN, which
returns the minimum value of a set of instances, is not duplicate sensitive because its
result is not affected by a duplicated instance. “Duplicate sensitive” is considered as an
optional feature of the aggregate function.

Exemplary or Summary According to Madden et.al [30], an aggregate function is
either “exemplary” or “summary”, which are alternative features in our taxonomy. An
exemplary aggregate function returns one or several representative values of the selected
raw data, for instance, MIN, which returns the minimum as a representative value of a
set of values. A summary aggregate function computes a result based on all selected
raw data, for instance, COUNT, which computes the cardinality of a set of values .

Lossy An aggregate function is “lossy”, if the raw data cannot be reconstructed from
the aggregated data alone [17]. For example, SUM, which computes the summation of
a set of raw data instances, is a lossy function, as one cannot reproduce the raw data
instances from the aggregated summation value without any additional information. On
the contrary, a function that concatenates raw data instances with a known delimiter
is not lossy, since the raw data can be reconstructed by splitting the concatenation.
Therefore, we introduce “lossy” as an optional feature of aggregate functions.

Holistic or Progressive Depending on whether the computation of aggregation can
be decomposed into sub-aggregations, an aggregate function can be classified as either
“progressive” or “holistic”. The computation of a progressive aggregate function can
be decomposed into the computation of sub-aggregates. In order to compute the AV-
ERAGE of ten data instances, for example, one can compute the AVERAGE values of
the first five instances and the second five instances respectively, and then compute the
AVERAGE of the whole set using these two values. The computation of a holistic ag-
gregate function cannot be decomposed into sub-aggregations. An example of holistic
aggregate function is MEDIAN, which finds the middle value from a sequence of sorted
values. The correct MEDIAN value cannot be composed by, for example, the MEDIAN
of the first half of the sequence together with the MEDIAN of the second half.

4.3 Aggregated Data

An aggregation process must produce one aggregated result, denoted as mandatory fea-
ture “Aggregate Data” in the feature diagram. Aggregated data may have a set of fea-
tures, which are explained as follows.

Push In some survey DAP examples, sending aggregated data to another unit of the
system is an activity of the aggregator immediately after the computation of aggrega-
tion. This is considered as an active step of the aggregation process, and is represented
by the feature “push”. For example, in the group layer aggregation of VigilNet [23],
each node sends the aggregated data to its leading node actively. An aggregation pro-
cess without the “push” feature leaves the aggregate results in the main memory, and it
is other processes’ responsibility to fetch the results.



The aggregated data may be “pushed” into permanent storage [6,29]. The stored
aggregated data may be required to be durable, which means that the aggregated data
must survive potential system failures. Therefore, “durable” is considered as an op-
tional sub-feature of the “push” feature.

Shared Similar to raw data, the aggregated data has an optional “shared” feature too, to
represent the characteristic of some of the surveyed DAP that the aggregated data may
be shared by other concurrent processes in the system. For instance, the aggregated
results of one process may serve as the raw data inputs of another aggregation pro-
cess, creating a hierarchy of aggregation [1, 23]. The results of aggregation may also be
accessed by a non-aggregation process, such as a control process [19].

Time-to-live The “time-to-live” feature regulates how long the aggregated data should
be preserved in the aggregator. For instance, Aurora system [1] can be configured to
guarantee that the aggregated data are available for other processes, such as an archiving
process or another aggregate process, for a certain period of time. After this period,
these data can be discarded or overwritten. We use the optional feature “time-to-live”
to represent this characteristic.

Real-Time (AD) The aggregated data may be real-time, if the validity of the data in-
stance depends on whether its temporal consistency constraints are met. Therefore the
“real-time” feature, which is named ‘“Real-Time (AD)”, is an optional feature of aggre-
gated data in our taxonomy. The temporal consistency constraints on real-time aggre-
gated data include two aspects, the absolute validity and relative validity, as explained
in Section 3. “Absolute validity interval” and “relative validity interval” are two
mandatory sub-features of the “Real-Time (AD)” feature.

Similar to raw data, the real-time feature of aggregated data has “hard”, “firm”
and “soft” as alternative sub-features. If the aggregated data are required to be hard
real-time, they have to be ensured temporally consistent in order to avoid catastrophic
consequences [6]. Compared with hard real-time data, firm real-time aggregated data
are useless if they are not temporally consistent [23], while soft real-time aggregated
data can still be used with less value (e.g., the aggregation in the remote server [29]).

4.4 Triggering Pattern

“Triggering pattern” refers to how the DAP is activated, which is a mandatory feature.
We consider three types of triggering patterns for the activation of DAP, represented by
the alternative sub-features “periodic”, “sporadic” and “aperiodic”.

A periodic DAP is invoked according to a time schedule with a specified “Period”.
A sporadic DAP could be triggered by an external “event”, or according to a time
schedule, possibly with a “MINT” or “MAXT”. An aperiodic DAP is activated by
an external “event” without a constant period, MINT or MAXT. The event can be an

aggregate command (e.g. an explicit query [31]) or a state change in the system [6].

4.5 Real-time (P)

Real-time applications, such as automotive systems [19] and industrial monitoring sys-
tems [29], require the data aggregation process to complete its work by a specified
deadline. The process timeliness, named “Real-Time (P)”, is considered as an optional
feature of the DAP, and “deadline” is its mandatory sub-feature.
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Aggregation processes may have different types of timeliness constraints, depend-
ing on the consequences of missing their deadlines. For a soft real-time DAP, a deadline
miss will lead to a less valuable aggregated result [14]. For a firm real-time DAP [29],
the aggregated result becomes useless if the deadline is missed. If a hard real-time DAP
misses its deadline, the aggregated result is not only useless, but hazardous [8]. “Hard”,
“firm” and “soft” are alternative sub-features of the timeliness feature.

We must emphasize the difference between timeliness (“Real-Time (P)”) and real-
time features of data (“Real-Time (RD)” and “Real-Time (AD)”), although both of
them appear to be classified into hard, firm and soft real-time. Timeliness is a feature
of the aggregation process, with respect to meeting its deadline. It specifies when the
process must produce the aggregated data and release the system resources for other
processes. As for real-time features of data, the validity intervals specify when the data
become outdated, while the level of strictness with respect to temporal consistency de-
cides whether outdated data could be used.

5 Case Studies

In this section, we evaluate the usefulness of our taxonomy in aiding the design of
data aggregation via two industrial projects together with the engineers from Erics-
son, in Section 5.1 and Section 5.2, respectively. Prior to the case studies we have
implemented a tool called DAPComposer (Data Aggregation Process Composer) in
Javascript. The tool provides a graphical user interface for designers to create DAP, by
simply enabling/disabling features from DAGGTAX. More details of the tool are in-
cluded in the technical report [10]. Although to date only primitive constraints intrinsic
to the feature model are checked by DAPComposer, we plan to mature the tool with
more sophisticated analysis capabilities, such as timing analysis, in the next version.

5.1 Case Study I: the Hardware Assisted Trace (HAT) Framework

In our first case study we apply DAGGTAX to analyze the design of the Hardware
Assisted Trace (HAT) [41] framework. HAT, as shown in Fig. 4, is a framework for de-
bugging functional errors in an embedded system. In this framework, a debugger func-
tion runs in the same system as the debugged program, and collects both hardware and
software run-time traces continuously. Together with the engineers we have analyzed
the aggregation processes in their current design. At a lower level, a Program Trace
Macrocell (PTM) aggregation process aggregates traces from hardware. These aggre-
gated PTM traces, together with software instrumentation traces from the System Trace
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Macrocell (STM), are then aggregated by a higher level ApplicationTrace aggregation
process, to create an informative trace for the debugged application.

We have analyzed the features of the PTM aggregation process and the Application-
Trace aggregation process in HAT based on our taxonomy. The diagram of the PTM
aggregation process created using DAPComposer is presented in Fig. 5. Triggered by
computing events, this process pulls raw data from the local buffer of the hardware,
and aggregates them using an encoding function to form an aggregated trace into the
PTM cluster buffer. The raw data are considered sheddable, since they are generated
frequently, and each aggregation pulls only the data in the local buffer at the time of
the triggering event. The aggregated PTM and STM traces then serve as part of the raw
data of the ApplicationTrace aggregation process, which is shown in Fig. 6. The dashed
arrows represent the data flow between DAP. The ApplicationTrace process is triggered
sporadically with a minimum inter-arrival time, and aggregates its raw data using an
analytical function. The raw data of the ApplicationTrace should not be sheddable so
that all aggregated traces are captured.

Problem identified in the HAT design. With the diagrams showing the features of
the aggregation processes, the engineers could immediately identify a problem in the
PTM buffer management. The problem is that the data in the buffer may be overwritten
before they are aggregated. It arises due to the lack of a holistic consideration on the
PTM aggregation process and the ApplicationTrace aggregation process at design time.
Triggered by aperiodic external events, the PTM process could produce a large number
of traces within a short period and fill up the PTM buffer. The ApplicationTrace process,
on the other hand, is triggered with a minimum inter-arrival time, and consumes the
PTM traces as unsheddable raw data. When the inter-arrival time of the PTM triggering
events is shorter than the MINT of the ApplicationTrace process, the PTM traces in
the buffer may be overwritten before they could be aggregated by the ApplicationTrace
process. This problem has been observed on Ericsson’s implemented system, and awaits
a solution. However, if the taxonomy would have been applied on the system design,
this problem could have been identified before it was propagated to implementation.



We have provided two solutions to solve the identified problem. Due to lack of space,
the details of this case study is included in the technical report [10].

5.2 Case Study II: A Cloud Monitoring System for Enhanced Auto-scaling

In our second case study we apply DAGGTAX to design a cloud-monitoring system
that enables auto scaling based on both virtual-machine-level and application-level per-
formance measurements, by extending the open-source OpenStack framework, which
collects measurements only from the virtual-machine level. DAGGTAX is applied to
both the existing framework, as well as the new design. Based on the feature diagrams,
we analyze the pros and cons of different feature combinations, and decide the design
solution. Some features and DAP of the existing framework are identified as reusable,
and reused in the solution. We refer the details of this case study to the paper [11].

5.3 Summary

The engineers in the evaluation acknowledge that our taxonomy bridges the gap be-
tween the properties of data and the properties of the process, which has not been elab-
orated by other taxonomies. Our taxonomy enhances the understanding of the system
by structuring the common and variable features of data aggregation processes, which
provides help in both identifying reusable DAP and constructing new DAP. By apply-
ing analysis based on our taxonomy, design flaws can be identified and fixed prior to
implementation, which improves the quality of the system and reduces costs. Design
solutions can be constructed by composing reusable features, and reasoned about based
on the taxonomy, which contributes to a reduced design space. Due to these benefits,
the engineers see great value in a more mature version of DAPComposer for data ag-
gregation applications, based on our taxonomy.

6 Conclusions and Future Work

In this paper, we have investigated the characteristics of data aggregation processes in a
variety of applications, and provided a taxonomy of the DAP called DAGGTAX, with
a particular focus on the real-time properties. DAGGTAX is presented as a feature di-
agram, in which the common and variable characteristics are modeled as features. The
taxonomy provides a comprehensive view of data aggregation processes for the design-
ers, and allows the design of a DAP to be achieved via the selection of desired features
and the combination of the selected features via the DAPComposer tool. The useful-
ness of the taxonomy has been demonstrated on two industrial case studies. Flaws can
be identified at design time, and solutions can be proposed at design level, by applying
the taxonomy to the analysis.

Our taxonomy can be viewed as a framework for analyzing the dependencies be-
tween features and between DAP. Our future work aims to integrate more advanced
analysis techniques, such as model checking and schedulability analysis, to detect con-
flicting features and provide guidance for trade-offs. These techniques can be integrated
into DAPComposer. We also plan to extend the DAPComposer so that users can specify
their constraints and validate the design through the tool automatically.
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