
Customized Real-Time Data Management for
Automotive Systems: A Case Study

Simin Cai, Barbara Gallina, Dag Nyström, Cristina Seceleanu
School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

{simin.cai, barbara.gallina, dag.nystrom, cristina.seceleanu}@mdh.se

Abstract—Real-time DataBase Management Systems (RT-
DBMS) have been considered as a promising means to manage
data for data-centric automotive systems. During the design of an
RTDBMS, one must carefully trade off data consistency and time-
liness, in order to achieve an acceptable level of both properties.
Previously, we have proposed a design process called DAGGERS
to facilitate a systematic customization of transaction models and
decision on the run-time mechanisms. In this paper, we evaluate
the applicability of DAGGERS via an industrially relevant case
study that aims to design the transaction management for an on-
board diagnostic system, which should guarantee both timeliness
and data consistency under concurrent access. To achieve this,
we apply the pattern-based approach of DAGGERS to formalize
the transactions, and derive the appropriate isolation level and
concurrency control algorithm guided by model checking. We
show by simulation that the implementation of our designed
system satisfies the desired timeliness and derived isolation, and
demonstrate that DAGGERS helps to customize desired real-time
transaction management prior to implementation.

I. INTRODUCTION

Modern vehicles are equipped with dozens of sensors and
Electronic Control Units (ECUs), which generate hundreds of
signals [1]. These data usually reside in shared data structures
or simple in-memory databases, and processed by the ECUs
[2], [3]. With the increasing abundance of functionalities in au-
tomotive systems, the possibility of sharing data among ECUs
is also increasing, leading to potential risks of data inconsis-
tency and safety issues [4]. Real-Time DataBase Management
Systems (RTDBMSs) have been advocated as a promising
means to avoid inconsistent data in automotive systems, as
they provide the so-called ACID (Atomicity, Consistency,
Isolation, Durability) guarantees for transactions [4], [5]. Since
full ACID assurance may introduce unbounded delays, and
since timeliness is usually more crucial than data consistency
in automotive systems, full ACID assurance is often relaxed
in order to enhance time-predictability [6].

To aid the design of an RTDBMS with proper ACID
and timeliness trade-offs, we have proposed the DAGGERS
(Data AGGregation for Embedded Real-time Systems) pro-
cess, which helps to systematically derive the transaction
model with traded-off ACID and timeliness properties, and
decide the appropriate run-time mechanisms for the RTDBMS
[7]. To support this, it applies formal modeling and model-
checking techniques to reason about transaction properties,
and ensures that timeliness and an acceptable level of ACID
properties are satisfied under selected mechanisms. Eventually,

the process generates a customized RTDBMS based on the
derived transaction models and run-time mechanisms.

The main objective of this paper is to illustrate the design
capability of the DAGGERS process, and evaluate its appli-
cability, by applying it to an industrially relevant case study.
This case study aims to design an RTDBMS for an on-board
diagnostic system [8] that monitors the operational conditions
of vehicles. The target system collects high-frequency data
from a number of sensors mounted on the vehicle for condition
measurements. These data are transmitted to a microcontroller
on-board, and are aggregated before further analysis. The
computations in this system have timeliness requirements, and
may access the data concurrently. To develop such a system,
a common solution in industry is to apply coarse-grained
semaphores on shared memory for mutual exclusion, and
perform schedulability analysis for checking whether dead-
lines are met. If timeliness cannot be guaranteed, the designer
adjusts the code for better timeliness guarantee, without means
to analyze possible data inconsistency caused by concurrency.

An RTDBMS provides isolation of transactions, meaning
that the system are guaranteed to be free from a set of
concurrency-related inconsistencies (called anomalies [9] or
phenomena [10]), but at a cost of timeliness. To systematically
reason about the trade-offs between isolation and timeliness,
and derive transaction models customized for this particular
system, we apply the DAGGERS process to the design of the
transaction management. We construct formal models of an
abstracted version of transactions and the concurrency control
algorithms, and select the appropriate algorithm by means
of model checking. In the end, we implement the derived
transaction model on a prototype system, and evaluate by
simulation whether the transaction properties are satisfied.

The remainder of the paper is organized as follows. The
DAGGERS process is recalled in Section II, followed by the
application of DAGGERS to the case study in Section III.
The evaluation results of the developed system is presented in
Section IV. Section V discusses the related work, before we
conclude the paper and outline the future work in Section VI.

II. THE DAGGERS PROCESS

The DAGGERS process [7] provides an engineering
methodology for developing a customized transaction manage-
ment for RTDBMSs based on analysis of trade-offs between
ACID and timeliness properties. As shown in Fig. 1, the main
steps of DAGGERS are presented as follows.

System
requirements

Logical and
temporal

requirements

Data-related
operations

Work unit

Transaction Model

Transaction

- Atomicity variant
- Consistency variant
- Isolation variant
- Durability variant
- Timeliness variant Candidate Run-time

Mechanism Models

- Concurrent control
algorithms
- Persistency algorithms
- Recovery algorithms
- …

Timed Automata
Model

Verification
with UPPAAL

Run-time
Mechanism Model

construct

select

compose

compose

Property violation detected

Unresolvable conflicts detected

RTDBMS

Properties satisfied Refined Transaction
Model

Transaction

Under verified:
- Concurrent control
algorithm
- Persistency algorithm
- Recovery algorithm
- …

Step I: Specification of initial
work units and requirements

Step II: Iterative refinement of transaction model

Step III: System
generation

Fig. 1. The DAGGERS process

a) Step I: Specification of initial work units and re-
quirements: The process starts with analyzing the work units,
each of which is a set of operations that are logically related to
achieve a business logic, as well as the logical and temporal
constraints that need to be fulfilled by these work units. A
work unit together with its associated constraints is called a
transaction. Based on these constraints the system designer
can propose the initial transaction models that can potentially
achieve the requirements. A transaction model specifies the
relationships between the transactions (for instance, a nested
transaction model allows a parent-child relationship), as well
as the ACID and timeliness variants to be ensured (for
instance, SERIALIZABLE isolation and soft deadlines).

b) Step II: Iterative refinement of transaction model:
We select a run-time mechanism, such as a concurrency
control algorithm for isolation in the initial transaction model,
from a set of candidate mechanisms. Together with the selected
mechanism, we model the transactions as a set of timed
automata [11], on which the ACID and timeliness properties
are specified formally and can be checked by model-checking
tools. If any property violation is detected, which indicates that
the selected mechanism fails to meet the requirement, a new
candidate mechanism is selected to replace the current one,
and the model checking is restarted. This iterative process
continues until all properties are satisfied by some selected
mechanisms. In case that none of the run-time mechanisms in
the repository can satisfy the specified properties, the designer
needs to adjust the initial transaction models, by adjusting for
instance the relationship between transactions, or the ACID
and timeliness variants. When a new initial transaction model
is decided, the refinement (Step (II)) is restarted. If the con-
flicts between properties cannot be resolved by any transaction

Isolation: “phenomenon”
location is not reachable

CCManager AutomatonWork Unit AutomatonIsolationObserver
Automaton

miss_deadline

phenomenon

Candidate CCManager
Automaton

|| ||

Timeliness:
“miss_deadline” location is
not reachable

||: parallel composition

iteration

Legend

Fig. 2. Timed automata framework for analyzing isolation and timeliness

model, the designer needs to adjust the requirements because
they are infeasible under the current DBMS platform. When
the requirements are adjusted, the entire DAGGERS process
will be restarted.

To facilitate the analysis of the transaction models in Step
II, we have proposed a formal framework for modeling con-
current real-time transactions with various concurrency control
mechanisms, and verifying isolation and timeliness [12].

An overview of the framework is presented in Fig. 2. We
model a concurrent transaction system as a parallel com-
position of timed automata [11], which are finite automata
extended with real-valued clock variables that measure elapsed
time, and progress continuously at the same speed.

The composition consists of three types of automata: a
set of work unit automata, a set of IsolationObserver au-
tomata, and a CCManager (Concurrency Control Manager)
automaton. A work unit automaton models the work unit of a
transaction as well as the interactions with the concurrency
control manager. For each work unit automaton, a clock
variable is defined to trace the time spent by the transaction,
while a location miss_deadline is defined to represent the
status of timeliness being breached, reached only if the clock

value exceeds a predefined deadline. An IsolationObserver
automaton is created to monitor a concurrency phenomenon
[10] that should be precluded by a particular isolation level
[9]. If the monitored phenomenon, for instance a “lost update”
occurs, the IsolationObserver will reach the location indicating
the phenomenon, which also means that isolation is breached.
The CCManager automaton models the concurrency control
manager that applies a selected algorithm for preventing
or resolving transaction conflicts. With this timed automata
network, the designer can verify timeliness and isolation using
model checkers such as UPPAAL [13], which is the state-of-
the-art model checker for real-time systems. It supports a de-
cidable subset of (Timed) Computation Tree Logic ((T)CTL)
[14] as the specification language of properties, and provides
verification of liveness and safety properties. We refer the
interesting readers to literature [12].

The outcome of this step is the refined transaction models
that are proved to achieve the appropriate ACID variants and
timeliness under selected run-time mechanisms.

c) Step III: System generation: With the verified trans-
action models, the designer can implement the transactions in
SQL or other programming languages, and generate the cus-
tomized RTDBMS by composing or configuring the verified
run-time mechanisms. In this paper, however, we do not intend
to evaluate system generation.

While DAGGERS is valid for one or more ACID properties
that one might need to trade off, in this paper we focus on
trade-offs between isolation and timeliness, and selection of
the appropriate concurrency control algorithm.

III. CASE STUDY

In this section, we describe our case study on which we
assess the applicability of the DAGGERS design process.

A. Case Study Description and Setup

Modern vehicles are equipped with dozens of sensors to
monitor the vehicular and environmental states, which are
analyzed by on-board diagnostic systems for on-line and off-
line analysis. In our case study, these sensors are connected to
a microcontroller, where the sensor data are temporarily stored,
filtered and aggregated in its main memory. The sensor inputs
are triggered periodically, and have strict deadlines. Since data
may be accessed concurrently by updating, aggregation and
other management tasks, concurrency control is needed to
maintain data consistency.

Our studied system monitors 20 sensors, measuring velocity,
temperature, vibration, etc, in a vehicle. The system is de-
ployed on a AT32UC3A1512 microcontroller with a 66 MHz
CPU, 512 kB flash and 65 KB data memory. The operating
system is FreeRTOS, with a round-robin scheduler for tasks.
All sensors have the same frequency of 5 Hz, meaning that
they feed the microcontroller with data every 200 ms. A
threshold is specified for each sensor to identify normal states.
In case that a measurement exceeds its threshold, an error
message is logged by the microcontroller, including the type
of measurement and a timestamp. Every 2 seconds, the error

TABLE I
TIMING MEASUREMENTS OF INDIVIDUAL OPERATIONS

Operation WCET BCET
Update one SensorData record 414 µs 345 µs
Insert one ErrorLog record 2070 µs 2001 µs
Read one ErrorLog record 345 µs 276 µs
Update one Threshold record 207 µs 138 µs
Read one Threshold record 207 µs 138 µs

logs are aggregated by the microcontroller, which are sent to
a central computer for further analysis. The vehicle may be
switched between different modes at run-time, triggered by
external events. When a mode switch occurs, all thresholds
should be updated for the new mode at once, without affecting
the timeliness of other tasks in the microcontroller.

The architecture of the monitoring system is presented in
Fig. 3. The data of each sensor is represented by a structure,
SensorData. Thresholds are represented as an array, Threshold,
of values. Error logs are stored in a circular list of log
structures, ErrorLog. When a new error log should be inserted,
the new data are stored in the next position of the list. The
aggregated results are stored in a circular list, called History.

To maintain the logical data consistency, the designers
decide to use an RTDBMS for managing the concurrent data
access, with an appropriate lock-based concurrency control
algorithm. We assume that we have a set of concurrency
control algorithms to choose from, including Rigorous Two
Phase Locking (R2PL), Conservative Two Phase Locking
(C2PL) and short readlock algorithm [15], [16]. The first
two algorithms ensure at least REPEATABLE READ isolation
level, which guarantees that any data read by a transaction
remains unchanged if the transaction reads the same data again
before commit. The short readlock algorithm ensures a lower
isolation level, READ COMMITTED, by releasing the read
locks immediately after the read operations, which guarantees
that only committed data are read by transactions.

The execution times of individual operations without any
concurrent interference or transaction management can be
measured directly on the platform, by a single task with
a simple loop. These baseline measurements, including the
Worst-Case Execution Time (WCET) and Best-Case Execution
Time (BCET), are listed in Table I.

B. Applying the DAGGERS Process

In this subsection, we describe the design of the online
monitoring subsystem following the DAGGERS process.

1) Step I Specification of initial work units and re-
quirements: In this step we analyze the work units and
their temporal and logical requirements, which allows us to
propose the initial transaction models. As an example, we
identify a work unit WU1

n, which updates the sensor value
in SensorData_n when new data have arrived from sensor n.
Similarly, we identify others. All WU are listed in Table II.

The work units have to meet their temporal requirements,
specified as follows:

SensorData1<value, time>

…

Sensor 1

Sensor 2

Sensor 20 SensorData20<value, time>

Err1 <sensor, type, time, …>

…

…

…

Err200<sensor, type, time, …>

…

SensorData2<value, time>

threshold1

…

…

…

threshold20

…

Mode
switch

update

update

read

If exceeds
threshold,
insert

Aggregate

ErrorLog

Threshold

history1 <aggregated data>

…

…

…

history100 <aggregated data>

History

…

Fig. 3. Architecture of the sensor-based condition monitoring system

TABLE II
WORK UNITS IN THE ON-BOARD DIAGNOSTIC SYSTEM

WU Description Operations Periods
WU1

n Update the
SensorData_n,
and compare with
the threshold

update SensorData_n
read Threshold_n

every 200 ms
(if new data are
within threshold)

WU2
n Update the

SensorData_n,
compare with
the threshold,
and insert a log
into Error if
it exceeds the
threshold

update SensorData_n
read Threshold_n
insert a record into Error

every 200 ms (if
new data exceed
threshold)

WUreset Reset the values
of thresholds

loop n from 1 to N
update Threshold_n

end loop

Triggered by a
mode switch

WUagg Aggregate the Er-
ror table

loop each record in Error
read record from Error

end loop
compute aggregation
insert into History

every 2 s

TR For each sensor n, work units WU1
n and WU2

n have
to meet their deadlines, which are equal to their
respective periods. WUagg and WUreset do not have
explicit deadline requirements. However, they should
not cause deadline misses of the real-time work units.

Two requirements are imposed to maintain the logical data
consistency. First, when a mode switch takes place, the thresh-
olds should be updated at once. All monitored values should
be compared with the thresholds from the same mode, in order
to provide a consistent view of the system. Second, when the
aggregation performs a sequential scan on the ErrorLog table,
a sensor update work unit may overwrite a record that has not
been aggregated, which may reduce the accuracy of further
analysis. Therefore, it is desired that no updates should occur
during the aggregation. With these considerations we conclude
the following logical consistency requirements:

LR1 For each sensor n, WU1
n and WU2

n should not read
uncommitted changes from WUreset.

LR2 During the aggregation by WUagg , the ErrorLog
records should not be overwritten by WU2

n.

TABLE III
THE INITIAL TRANSACTION MODEL

Transaction WU Isolation Timeliness
T 1
n WU1

n
REPEATABLE

READ

Deadline: 200ms
T 2
n WU2

n Deadline: 200ms
Treset WUreset No explicit deadline
Tagg WUagg No explicit deadline

In order to achieve the above temporal and logical require-
ments, we propose an initial transaction model to organize
the work units. Our initial model is a flat transaction model,
which considers each work unit in Table II as an individual
transaction. The transaction model assumes totally relaxed
atomicity, since the transactions in this system are not likely
to be aborted. Durability is also totally relaxed as the mi-
crocontroller does not have persistent storage. The isolation
level is decided to be REPEATABLE READ, since it not only
precludes reading uncommitted data, but also enforces that
all records in the ErrorLog remain unchanged during WUagg .
Table III lists the details of the initial transaction model.

2) Step II Iterative refinement of transaction model: In
this following step we refine the initial transaction model via
formal modeling and verification. In the studied case, we have
performed three iterations for the refinement.

a) Iteration 1: We model the transactions specified in
Step I as timed automata in the UPPAAL tool using the
framework presented in Section II. For each transaction, a
work unit automaton is created, using the automata skeletons
and patterns proposed in DAGGERS [12].

As an example of the timed automata models, Fig 4 presents
the automaton of transaction T 2

1 , which updates data for sensor
1, reads its threshold, and inserts a new log to ErrorLog. The
model is constructed by composing the instantiated locking,
unlocking and data operation patterns. More specifically, this
transaction starts with acquiring a write lock on SensorData_n
via channel lockwrite[SenTran1][SenData1]. When it gets the
notification of the granted lock from the transaction manager
automaton via grantwrite[SenTran1][SenData1], it moves to
location locked_s1, and continues to the update operation,

wait_for_lock_s1 lockwrite[SenTran1][SenData1]!

grantwrite[SenTran1][SenData1]?

writelocked_s1

C

begin

unlocked_s1

unlock[SenTran1][SenData1]!

C

unlocked_t1

C

U
tc>DEADLINE[0]

miss_deadlinecommit_trans

Instantiated
Locking
Pattern

Instantiated
Unlocking
Pattern

U

ready
tc:=0

locked_s1

tp:=0

update_s1 temp_clock<=WCET_update_s1()

Cupdate_s1_done

temp_clock>=BCET_update_s1()

wait_for_lock_t1 lockread[SenTran1][Threshold1]!

grantread[SenTran1][Threshold1]?

readlocked_t1C

locked_t1

tp:=0

read_t1 temp_clock<=WCET_read_t1()

Cread_t1_done

temp_clock>=BCET_read_t1()

wait_for_lock_e1
lockread[SenTran1][Error1]!

grantread[SenTran1][Error1]?

writelocked_e1C

locked_e1

tp:=0

insert_e1 temp_clock<=WCET_insert_e1()

insert_e1_done

temp_clock>=BCET_insert_e1()

C
unlock[SenTran1][Threshold1]! unlock[SenTran1][Error1]!

unlocked_e1

Instantiated
Operation
Pattern

Instantiated
Locking
Pattern

Instantiated
Operation
Pattern

Instantiated
Locking
Pattern

Instantiated
Operation
Pattern

notify_read [SenTran1][Threshold1]!

Fig. 4. Timed automaton model of T 2
1

modeled by the location update_s1. The automaton may stay
at this location for at most WCET_update_s1(), representing
the worst-case response time of this operation, and for at least
BCET_update_s1(), representing the best-case response time.
When this update operation is done, the automaton of T 2

1

continues to lock data Threshold_1, read Threshold_1, lock
Error_1, and insert Error_1, modeled by the similar principle.
Before committing, the automaton unlocks all granted locks,
via the unlock channels. If the transaction’s deadline is missed,
the automaton will reach the miss_deadline location.

For each operation, the worst-case and best-case times
are derived a priori from schedulability analysis, based on a
chosen scheduling policy. For instance, in Fig 4, the function
WCET_insert_e1() on location insert_e1 denotes the worst
case time that could be spent on inserting a row to the
ErrorLog table. Since round-robin is applied as the scheduling
policy, WCET_insert_e1() is calculated as:

WCET_WRITE_ERROR_ROW + QUANTUM *
OTHER_TRANSACTIONS *

(WCET_WRITE_ERROR_ROW / QUANTUM),

in which WCET_WRITE_ERROR_ROW is the WCET of
writing one row without interference, QUANTUM is the time-

slice assigned to each transaction by the operating system, and
OTHER_TRANSACTIONS is the maximum number of other
concurrent transactions in the system. Other timing parameters
are calculated in a similar way.

A set of IsolationObservers are created to capture the
phenomena that should be prevented according to LR1 and
LR2. For instance, Fig 5 shows the IsolationObserver for
detecting a dirty read phenomenon, which appears in case that
T 2
1 reads the threshold data updated by Treset before Treset

commits. Since the IsolationObserver monitors the occurrence
of the operations, it will reach the DirtyRead location when
the particular sequence of operations of this phenomenon are
performed.

These work unit and IsolationObserver models are com-
posed with the model of a candidate concurrency control man-
ager that ensures REPEATABLE READ. In the first iteration
we choose R2PL as the concurrency control algorithm from
the pool of existing algorithms. By R2PL, transactions acquire
read and write locks in their growing phase before the read
and write operations on data, respectively, and release all locks
when they commit. If two concurrent transactions try to lock
the same data, and one of them acquires a write lock, a conflict
occurs and the later transaction needs to wait. The CCManager

TABLE IV
VERIFICATION RESULTS USING R2PL

ID Specification Verification
Time

Explored
States

Result

S1.1 A[]not T _1_2.miss_deadline 0.515 s 55667 Not Sat-
isfied

S2.1 A[]notIsolationObserver1.
DirtyRead

1.529 s 169210 Satisfied

S2.2 A[]notIsolationObserver2.
InconsistentAggResult

1.576 s 169210 Satisfied

automaton models the lock resolution policy, as shown in Fig
6. The timing of lock-related actions is not modeled here since
it is not significant compared with the reading and writing of
data.

To verify the timeliness property imposed by TR, and the
isolation property by LR1 and LR2, we model check the
timed automata network, against the specification S1 and S2
using UPPAAL model checker, respectively. The verification
results are presented in Table IV. S1.1 specifies that transaction
T 2
1 will never miss its deadline. For any other sensor n, the

timeliness specification is basically the same. S2.1 and S2.2
specify the absence of dirty read and inconsistent aggregation
result, respectively. The results show that while isolation is
guaranteed, transactions may miss their deadlines. The traces
given by the model checker show that the long blocking time
caused by Tagg on table Error may result in the breached
timeliness of T 2

1 . In order to resolve this conflict, another
iteration is necessary.

b) Iteration 2: We replace the Rigorous 2PL with another
candidate concurrency control algorithm called Conservative
2PL that also ensures REPEATABLE READ isolation. The
timed automata models built in Iteration 1 are adjusted to
model Conservative 2PL, and the properties are checked in the
same way. The results show, still, that transaction timeliness
could be breached due to long blocking time.

c) Iteration 3: Since neither of the concurrency con-
trol algorithms provided for REPEATABLE READ is able
to achieve the desired timeliness requirement, the proposed
transaction model is not feasible under the current platform. In
addition, we cannot find an alternative transaction model with-
out changing the requirements. Therefore, we can conclude at
this stage that the current requirements are not feasible.

In order to continue the system design, we revise the system
requirements, and realize that LR2 can be relaxed. Even
though a sensor value is overwritten before the aggregation
finishes, this new value will soon be processed in the next
aggregation, which will not affect the error trend analysis.
Relaxing this requirement, on the other hand, allows us to
relax the isolation guarantee, which may reduce the blocking
on the ErrorLog table and improve the timeliness.

With LR2 being relaxed, the adjusted transaction model,
instead of REPEATABLE READ, requires READ COM-
MITTED isolation, for which we select the short readlock
concurrency control algorithm. The new models are easily
adapted from the R2PL models, as shown in our previous

TABLE V
VERIFICATION RESULTS USING SHORT READLOCK

ID Specification Verification
Time

Explored
States

Result

S1.1 A[]not T _1_2.miss_deadline 4.524 s 480538 Satisfied
S2.1 A[]notIsolationObserver1.

DirtyRead
4.587 s 480538 Satisfied

S2.2 A[]notIsolationObserver2.
InconsistentAggResult

0.405 s 39105 Not Sat-
isfied

TABLE VI
THE REFINED TRANSACTION MODEL

Transaction WU Isolation Timeliness
T 1
n WU1

n
READ

COMMITTED

Deadline: 200ms
T 2
n WU2

n Deadline: 200ms
Treset WUreset No explicit deadline
Tagg WUagg No explicit deadline

work [12]. Verification results in Table V show that both
READ COMMITTED isolation and timeliness are satisfied.
As expected, inconsistent aggregation results may occur, but
they are not regarded as anomaly.

As the outcome of this iteration, also the outcome of this
step, we get the refined transaction model, presented in Table
VI. The selected concurrency control algorithm is the short
readlock algorithm.

3) Step III System generation: We have implemented the
transaction models from the previous step in a prototype
system on the aforementioned AT32UC3A1512 board. Every
transaction in Table VI is implemented as one task, controlled
by the short readlock algorithm verified in step II. The
experiment results are presented in Section IV.

IV. RESULTS

We run the implemented prototype system for 10000 rounds,
and record the worst-case response times, deadline miss
ratio and the occurrence of dirty reads. For comparison,
we have also implemented a common design with coarse-
grained semaphores as our baseline system, and a system
using R2PL concurrency control. The results, presented in
Table VII, demonstrate that in the system implemented with
the short readlock algorithm, all real-time transactions have
met their deadlines, and no dirty reads precluded by READ
UNCOMMITTED have occurred. This confirms our research
hypothesis that the concurrency control algorithm selected by
DAGGERS ensures the desired isolation level, while preserv-
ing the timeliness of the real-time transactions.

V. RELATED WORK

Customization of transaction management systems have
attracted much attention from the research community. Some
of these works have been applied in industrially relevant
case studies. Gallina [17] proposes a software product line-
oriented process called PRISMA for derivation and analysis
of flexible transaction models, and applied it to a banking
use case. Khachana et al. [18] propose an approach for

notify_write
[Reset][Threshold1]?idle

notify_read
[SenTran1][Threshold1]?

notify_commit[Reset]?

DirtyRead

notify_commit[Reset]?

Fig. 5. Timed automaton model of IsolationObserver for DirtyRead phenomenon

C

C

C

C

C

lockread[ti][dj]?
lock_type:=READLOCK

lockwrite [ti][dj]?
lock_type:=WRITELOCK

unlock[ti][dj]?
updateUnlock(ti, dj)

!isTransWaiting(dj)

isTransWaiting(dj)
trans_id:=
getNextFromQueue(dj)

updateUngranted()

lock_type==WRITELOCK
grantwrite [ti][dj]!
updateGranted()

lock_type==READLOCK
grantread[ti][dj]!

updateGranted()satisfyPolicy()

!satisfyPolicy()

lock_type==READLOCK
grantread[ti][dj]!
updateGranted()

lock_type==WRITELOCK
grantwrite [trans_id][dj]!
updateGranted()

lock_request_received unlock_request_received

decide_grant

decide_refuse

decide_grant_next

Fig. 6. Timed automaton model of the concurrency control manager for R2PL

TABLE VII
TIMING MEASUREMENTS OF THE IMPLEMENTED SYSTEM

Concurrency
Control

WCRT Deadline
Miss Ratio

Number of
Dirty Reads

Short readlock
(selected by
DAGGERS)

15.594 ms 0 0

Baseline 445.740 ms 0.08 % 0
Rigorous 2PL 1577.133 ms 1.37% 0

relaxation of ACID properties and tested it on a travel agency
scenario. Various formalisms have been proposed to model
transactions, such as first order logics in ACTA [19], real-
time Maude by Liu et al. [20]. Our work models transactions
as timed automata, and emphasizes on trading off isolation for
timeliness, which is crucial to many embedded systems.

For customized embedded database systems, Thüm et al.
[21] propose a feature-oriented approach for generating cus-
tomized DBMSs for automotive systems and validated their
platform on an automotive testing environment. Nyström et
al. [22] combine a component-based approach and aspect-
oriented programing to build customized RTDBMS, and ver-
ified the approach in an embedded automotive system. Both
works base their transaction management design decisions on
functional requirements analysis, code-size and performance.
Our case study, as a contrast, performs the customization at the
transaction model level, and bases the design decisions on the
trade-offs between timeliness and isolation. Formal modeling
and verification of transaction models, while not applied by
these existing works, are the essence of our approach.

VI. CONCLUSION

In this paper we have presented a case study conducted
to evaluate the applicability of the DAGGERS process in de-
signing customized data management for automotive systems.
In the case study, a customized RTDBMS for an on-board
diagnostic system is designed following the exact steps of
DAGGERS. Experiments on the prototype system show that
both timeliness and the desired level of isolation are satisfied.

The results show that DAGGERS can help designers to
systematically derive transaction models based on iteratively
analyzing trade-offs between timeliness and isolation, and se-
lect the appropriate concurrency control algorithm to guarantee
both properties. The transactional properties, as well as the
work units, can be identified from the system requirements.
The timing parameters necessary for the formal models can
be measured on the real platform, together with schedulability
analysis. The abstracted behaviors of the work units and the
candidate concurrency control algorithms can be modeled as
timed automata, and verified using UPPAAL. Therefore, based
on this case study, it is unlikely to face technical obstacles
when applying the process to other automotive systems, as
long as they have well-defined requirements and platforms.

However, one major obstacle might still exist: the scalability
issue of the automata modeling method due to the complexity
of transaction management. At first we constructed a timed
automata network modeling every transaction, together with
concurrency control and round-robin scheduling policy ex-
plicitly, and tried to model check the entire system together.
This however led to state explosion, and the verification failed
to terminate. As an improvement, we have abstracted the
scheduling policy away. Instead of modeling scheduling, we
calculate the worst-case times of operations using schedulabil-
ity analysis, and annotate these values directly to the models.

Although this replacement of worst-case estimation introduces
pessimism, it still provides a safe upper bound, and reduces
the state space. This abstraction also breaks the dependency
at modeling level between transactions that do not share data
directly, for instance two sensor transactions. Since the indirect
impacts on timing from another sensor transaction has already
been counted by the worst-case impact estimation, we only
need to verify one sensor transaction automaton, together
with the aggregation transaction automaton, threshold reset
transaction automaton, and the CCManager automaton. As a
result, the abstraction greatly improves the scalability of the
analysis, and thus the applicability of the DAGGERS process.

For large systems where complex dependencies exist among
many transactions, our experience tells that exhaustive verifi-
cation may be possible only at a very high level of abstraction.
As an alternative, one may consider applying statistical model
checking, which only explores a bounded state space, and
provides probabilistic verification results with a confidence.
Although not a completely exhaustive and exact verification,
this can still provide guidance for making design decisions,
especially to eliminate infeasible ones.

Several future directions can be explored to improve DAG-
GERS. First, more timed-automata patterns for common run-
time mechanisms need to be invented in order to enrich our
repository. This includes not only models of other concurrency
control algorithms, but also models of common logging, per-
sistence and recovery algorithms, for customization involving
all ACID properties. Second, as we have started in this paper,
we plan to explore the integration of other formal methods,
for instance statistical model checking, into the process, to
achieve better scalability, effectiveness and efficiency.

REFERENCES

[1] R. Hegde, G. Mishra, and K. S. Gurumurthy, An Insight into the
Hardware and Software Complexity of ECUs in Vehicles, 2011, pp. 99–
106.

[2] C. Nitsche, S. Schroedl, and W. Weiss, “Onboard diagnostics concept for
fuel cell vehicles using adaptive modelling,” in IEEE Intelligent Vehicles
Symposium, 2004, June 2004, pp. 127–132.

[3] G. R. Goud, N. Sharma, K. Ramamritham, and S. Malewar, “Efficient
real-time support for automotive applications: A case study,” in 12th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’06), 2006, pp. 335–341.

[4] S. Schulze, M. Pukall, G. Saake, T. Hoppe, and J. Dittmann, “On the
need of data management in automotive systems,” in Datenbanksysteme
in Business, Technologie und Web (BTW), 2009, pp. 217–226.

[5] K. Ramamritham, “Real-time databases,” Distributed and parallel
databases, vol. 1, no. 2, pp. 199–226, 1993.

[6] J. A. Stankovic, S. H. Son, and J. Hansson, “Misconceptions about real-
time databases,” Computer, vol. 32, no. 6, pp. 29–36, 1999.

[7] S. Cai, B. Gallina, D. Nyström, and C. Seceleanu, “Trading-off data
consistency for timeliness in real-time database systems,” in Proceedings
of the 27th Euromicro Conference on Real-Time Systems, 2015, pp. 13–
16.

[8] O. Benedettini, T. S. Baines, H. Lightfoot, and R. Greenough, “State-
of-the-art in integrated vehicle health management,” Proceedings of
the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol. 223, no. 2, pp. 157–170, 2009.

[9] “ISO/IEC 9075:1992 Database Language SQL,” International Organiza-
tion for Standardization, Standard.

[10] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level defi-
nitions,” in Proceedings of the 16th IEEE International Conference on
Data Engineering, 2000, pp. 67–78.

[11] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[12] S. Cai, B. Gallina, D. Nyström, and C. Seceleanu, “A formal approach
for flexible modeling and analysis of transaction timeliness and isola-
tion,” in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 3–12.

[13] K. G. Larsen, P. Pettersson, and Y. Wang, “Uppaal in a nutshell,”
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1, pp. 134–152, 1997.

[14] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-
time,” Information and Computation, vol. 104, no. 1, pp. 2 – 34, 1993.

[15] R. A. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
C. Shanklin, Ed. Addison-Wesley Longman Publishing Co., Inc., 2004.

[16] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger, “Readings
in database systems.” Morgan Kaufmann Publishers Inc., 1998, ch.
Granularity of Locks and Degrees of Consistency in a Shared Data Base,
pp. 175–193.

[17] B. Gallina, “Prisma: a software product line-oriented process for the
requirements engineering of flexible transaction models,” Ph.D. disser-
tation, University of Luxembourg, 2010.

[18] R. T. Khachana, A. James, and R. Iqbal, “Relaxation of acid properties
in autra, the adaptive user-defined transaction relaxing approach,” Future
Generation Computer Systems, vol. 27, no. 1, pp. 58–66, Jan. 2011.

[19] P. Chrysanthis and K. Ramamritham, “Synthesis of extended transaction
models using acta,” ACM Transactions on Database Systems (TODS),
vol. 19, no. 3, pp. 450–491, 1994.

[20] S. Liu, P. C. Ölveczky, M. R. Rahman, J. Ganhotra, I. Gupta, and
J. Meseguer, “Formal modeling and analysis of ramp transaction sys-
tems,” in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, 2016, pp. 1700–1707.

[21] T. Thüm, S. Schulze, M. Pukall, G. Saake, and S. Günther, “Secure and
customizable data management for automotive systems: A feasibility
study,” ISRN Software Engineering, 2012.

[22] D. Nyström, A. Tešanovic, M. Nolin, C. Norström, and J. Hansson,
“Comet: a component-based real-time database for automotive systems,”
in Proceedings of the Workshop on Software Engineering for Automotive
Systems, 2004, pp. 1–8.

[23] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

