
Towards Efficiently Checking Compliance Against
Automotive Security and Safety Standards

Julieth Patricia Castellanos Ardila
IDT, Mälardalen University,

Västerås, Sweden
Email: julieth.castellanos@mdh.se

Barbara Gallina
IDT, Mälardalen University,

Västerås, Sweden
Email: barbara.gallina@mdh.se

Abstract—The growing connectivity of the systems that we rely
on e.g. transportation vehicles is pushing towards the introduction
of new standards aimed at providing a baseline to address
cybersecurity besides safety. If the interplay of the two normative
spaces is not mastered, compliance management might become
more time consuming and costly, preventing engineers from
dedicating their energies to system engineering. In this paper,
we build on top of previous work aimed at increasing efficiency
and confidence in compliance management. More specifically,
we contribute to building a terminological framework needed
to enable the systematization of commonalities and variabilities
within ISO 26262 and SAE J3061. Then, we focus our attention on
the requirements for software design and implementation and we
use defeasible logic to prove compliance. Based on the compliance
checking results, we reveal reuse opportunities. Finally, we draw
our conclusions and sketch future research directions.

Keywords—ISO 26262, SAE J3061, compliance management,
compliance proofs, reuse, defeasible logic

I. INTRODUCTION

The growing connectivity of the systems that we rely on
e.g. transportation vehicles is pushing towards the introduction
of new standards aimed at providing a baseline to address
cybersecurity besides safety. If the semantic interplay of the
two normative spaces is not mastered, a twofold negative con-
sequence needs to be faced: system’s safety might be compro-
mised and compliance management might become more time
consuming and costly, preventing engineers from dedicating
their energies to system engineering. To enable the mastery
of the semantic interplay between the two normative spaces,
various contributions have been provided. Bloomfield et al
[1] coined the expression Security-informed Safety (shortened
SiS) to highlight the truth that “if you are not secure, you are
not safe”. Bloomfied et al. also pointed out the necessity for
a lingua franca. Gallina et al [2] built on top of Bloomfield
et al ’s work and elaborated on a possible SiS terminological
framework aimed at revealing syntactical as well as semantic
commonalities between safety and security. A SiS terminolog-
ical framework opens an opportunity for synergy between the
two normative spaces.

To increase efficiency in compliance management, Gallina
et al [2] also introduced the notion of Security-informed
Safety-oriented Process Line (SiSoPL) as an extension of
Safety-oriented Process Lines (SoPLs) [3], [4]. Via SiSoPLs,
the two normative spaces are treated as part of a single
family, and their commonalities and variabilities systematized.
Methodological guidelines to engineer (SiS)oPLE were also

investigated [5]. More recently, to further increase efficiency
and at the same time increase confidence, we proposed an
approach, called SoPLE&Logic-basedCM [6], which combines
Safety-oriented Process Line Engineering (SoPLE), Defeasible
Logic [7], and the approach for compliance management (CM)
proposed for business processes [8].

In this paper, we build on top of our previous work
aimed at increasing efficiency and confidence in compliance
management [2], [5], [6]. More specifically, first we contribute
to building a terminological framework needed to enable the
systematization of commonalities and variabilities within ISO
26262 and SAE J3061, i.e., a contribution towards an automo-
tive SiS terminological framework and a possible alignment
of safety and cybersecurity life-cycles highlighting the key
role of the architecture. Second, we focus our attention on
the requirements for software design and implementation and
we create an automotive SiSoPLE. Then, we use defeasible
logic combined with the approach for compliance by design to
prove compliance. Based on the compliance checking results,
we reveal reuse opportunities. Finally, we draw our conclusions
and sketch future research directions.

The rest of the paper is organized as follows. In Section
II, we provide background information related to our work.
In Section III, we present SiSoPLE&Logic-basedCM, the
adaptation of SoPLE&Logic-basedCM [6] in the context of
SiS normative space. In Section IV, we apply our approach for
identifying reusable compliance proofs between the automotive
standards. In Section V, we discuss our findings. In Section VI,
we discuss related work. Finally, in Section VII, we present
conclusions and future work.

II. BACKGROUND

This section presents the background required in this paper.
Section II-A, recalls key role of the (software) architecture
in the lifecycle process. In Sections II-B and II-C, we recall
the two automotive standards currently in use for addressing
functional safety and cybersecurity. Finally, in Section II-D, we
present SoPLE&Logic-basedCM, our previously introduced
approach for increasing efficiency and confidence.

A. Software Architecture in the Lifecycle

Software architecture [9] is: ”a collection of software
and system components, connections and constrains, a col-
lection of system stakeholders’ needs, and a rationale which

demonstrates that the components, connections, and con-
straints define a system that, if implemented, would satisfy
the collection of system stakeholders’ needs statements.” In
contrast with classical definitions, this definition highlights
the relevance of the architecture’s rationale. The reasoning
behind the software structure provides a connection between
the components description and the stakeholder’s needs. This
connection is required since the various stakeholders involved
in the creation of the software have different expectations
from the software architecture. For instance, the customer may
expect at the architecture stage an estimate of cost. However,
users need software architecture to clarify their requirements,
while architects and system engineers are concerned with
translating requirements into high-level design. For developers,
the architecture is a reference for developing and assembling
components. Safety and cybersecurity engineers, jointly with
architects, use the architecture to identify and design the trade-
offs due to the interplay of safety and security. Architecture
is also useful when pre-existing component are evaluated for
reuse. In this sense, the architecture can serve as the key
milestone during the entire lifecycle process, evolving in every
stage according to the stakeholder’s perspectives. Moreover,
software architecture concerns affect the gathering of require-
ments, the design decisions, the validation and capturing of the
design and the transformation of the design into implementa-
tion [10]. Therefore, there is a reciprocal relationship between
the software architecture and the process lifecycle.

B. ISO 26262

ISO 26262, Road Vehicles-Functional Safety [11], is a
standard that focuses on electric/electronic systems located in
vehicles with maximum gross mass up to 3500 kg. ISO 26262
uses ASIL (Automotive Safety Integrity Levels) to specify
applicable requirements of ISO 26262 and safety measures
to apply (activities or technical solutions to avoid or control
systematic failures or random hardware failures, or mitigate
their harmful effects). Functional safety is influenced by the
development lifecycle process. Therefore, ISO 26262 specifies
a safety lifecycle that comprises the entirety of phases from
concept through decommissioning of the system. ISO 26262
safety lifecycle is based upon a V-model [12]. Planning,
coordinating and documenting the safety activities of all phases
of the safety lifecycle are key management tasks during the
implementation of ISO 26262. Based on the item definition,
a description of the system with regard to its functionality,
interfaces, environment, etc., the safety lifecycle is initiated.
An item is a system or array of systems to implement a
function at the vehicle level, to which ISO 26262 is applied.
After the initiation of the safety lifecycle, HARA (Hazard
Analysis and Risk Assessment) is performed to categorize
hazardous events, the combination of hazard (potential source
of harm) and operational situations (scenarios that can occur
during vehicle’s life). Harm is defined as the physical injury
or damage to the health of persons. The results of HARA
are the safety goals (top-level safety requirements). Func-
tional safety requirements (implementation-independent safety
requirements) are derived from the safety goals and refined into
technical safety requirements (implementation-specific safety
requirements), at the system level. Further, the technical safety
requirements are refined into software safety requirements. The
safety architecture (set of elements and their interaction to

fulfil the safety requirements) is created at the software level.
The design of the software units is based on the previously
defined safety architecture.

We focus on the activities and requirements for the sub-
phase Software Unit Design and Implementation, specified in
ISO 26262 part 6, clause 8, which defines three objectives.
First, to specify software units in accordance with the soft-
ware architectural design and the associated software safety
requirements. Second, to implement the software units as
specified. Third, to perform static verification of the design
of the software units and their implementation. These three
objectives characterize four ISO 26262-related activities (IA),
namely: IA1 Software unit design, IA2 Software unit design
verification, IA3 Software unit implementation, and IA4 Soft-
ware unit implementation verification. The previous activities
are associated to the ISO 26262-related requirements (IR)
described in clause 8 of the standard (see Table I).

TABLE I. REQUIREMENTS FOR ISO26262.

Ref1 ID Requirements description

8.2

IR1 Based on the software architectural design, the detailed design of
the software units is developed.

IR2
The detailed design will be implemented as a model or directly as
source code, in accordance with the modelling or coding guidelines
respectively.

IR3

The implementation-related properties are achievable at the source
code level if manual code development is used. If model-based
development with automatic code generation is used, these properties
apply to the model and need not apply to the source code.

IR4

In order to develop a single software unit design both software
safety requirements as well as all non-safety-related requirements are
implemented. Hence in this sub-phase safety-related and non-safety-
related requirements are handled within one development process.

8.4.1 IR5
The requirements of this subclause shall be complied with if the
software unit is safety-related. Note: ”Safety-related” means that the
unit implements safety requirements

8.4.2 IR6 Software units are designed by using a notation that depends on the
ASIL and the recommendation level.

8.4.3 IR7 The specification of the software units shall describe functional
behaviour and internal design.

8.4.4 IR8 Design principles for software unit design and implementation shall
be applied depending on the ASIL and the recommendation levels.

8.4.5 IR9 Software unit design and implementation are verified by applying
methods according to the ASIL and the recommendation levels

4.22 IR10 When ASIL and recommendation levels are not applied, a rationale
must be provided.

C. SAE J3061

SAE J3061 [14] consist of a guidebook that provides a
process reference model, high-level guiding principles and
information on existing tools, and methods to help organi-
zations identify and assess cybersecurity threats, and design
cybersecurity into cyber-physical vehicle systems. The current
version of SAE J3061 was release in January 20163, but
the definition of Automotive Cybersecurity Integrity Level
(ACsIL)4 is still a work in progress. A cyber-physical vehicle
system is a vehicle embedded control systems where there
exists a tight coupling between the computational elements, the
physical elements of the system and the environment around
the system. Cybersecurity is an attribute of cyber-physical
systems. A Cybersecure system is a system protected against

1Reference to ISO 26262 clauses
2The interpretation of clause 4.2, a general clause that applies to all the

parts of ISO 26262, is provided in [13].
3http://standards.sae.org/j3061 201601/
4http://standards.sae.org/wip/j3061-1/

unauthorized access or attacks. A threat is a circumstance or
event with the potential to cause harm, where harm may be
respect to financial, reputation, privacy, safety or operational.
Cybersecurity should be built into the design. Therefore an
appropriate lifecycle, which addresses threats from concept to
decommissioning is required. SAE J3061 proposes a lifecycle
for handling cybersecurity which is based on ISO 26262’s
safety lifecycle. The cybersecurity lifecycle initiates at the
concept phase with the feature definition in which the scope
of the feature (a system or an array of systems to implement a
function at the vehicle level to which a cybersecurity process
is applied) is specified with respect the physical boundaries,
cybersecurity perimeter, and trust boundaries of the feature.
After the initiation of the lifecycle, TARA (Threat Analysis and
Risk Assessment) is performed. TARA is an analysis technique
applied to help identify potential threats to a feature and to
assess the risk associated with the identified threats. Cyberse-
curity goals, the highest level cybersecurity requirements for
achieving cybersecurity for the feature, are identified for each
of the highest risk potential threats resulting in the TARA.
Once the cybersecurity goals are established, the functional
cybersecurity requirements are determined (during cybersecu-
rity concept). A vulnerability analysis, which is designed to
find areas where an attack is likely to occur, is performed
at the system level. The result of the vulnerability analysis
in conjunction with the functional cybersecurity requirements
will be used to create a technical cybersecurity concept,
which is the base for defining the technical cybersecurity
requirements (implementation-specific requirements) at system
level. The technical Cybersecurity requirements are used to
understand the software support to the overall system purpose
including the cybersecurity functions at software level. As
a result software cybersecurity requirements are defined and
allocated to the software architecture. Software unit design
and implementation are then realized based on the software
architecture. The cybersecurity process can be integrated to a
safety process tailored from ISO 26262 by simply including the
cybersecurity activities for each product lifecycle phase, with
the corresponding activities for each product lifecycle phase
described in the safety process.

We focus our attention on SAE J3061, section 8.6.5, which
describes the Software Unit Design and Implementation phase,
and section 6.3, which describes the review activities that
apply to the mentioned phase. These two sections define four
SAE J3061-related activities (JA), namely JA1 Software unit
design, JA2 Software unit implementation, JA3 Design review
and JA4 Implementation review. The previous activities are
associated to the SAE J3061-related requirements (JR) which
are described in several parts of the guidebook (see Table II).

D. SoPLE&Logic-basedCM

SoPLE&Logic-basedCM [6] is an approach for providing
reusable compliance proofs. Three are the main components
of this approach. SoPLE [3], Safety-oriented Process Line,
is a methodological framework for modelling commonalities
(equal process elements) and variabilities (process elements

5Reference to SAE J3061 numerals
6Document in this case refers to SAE J3061
7The part selected is called Selection of Methods

TABLE II. REQUIREMENTS FOR SAE J3016.

Ref5 ID Requirements description

6.2.3.3 JR1 Software unit design implementation is based on the Cybersecurity
requirements allocated in the software architectural design

6.3 JR2 Design and implementation reviews comprises activities analysis,
review and refine Cybersecurity assessment.

8.2 JR3
Include the Cybersecurity activities described in this document6 for
each lifecycle phase, with the corresponding activities for each lifecy-
cle phase described in the safety process.

8.6.17

JR4

Use the extensive tables and methods provided by ISO 26262 Part 6 for
design and implementation. The selection of methods and the rationale
are recorded in the documented planning of software development.

8.6.5
During software design and implementation, good coding practices
should be followed. Many of the methods are described in ISO 26262
and are called design principles .

that vary) that are present in safety processes. SoPLE is consti-
tuted of two phases: one aimed at engineering reusable safety
process-related commonalities and variabilities, and the second
aimed at engineering single safety processes via selection
and composition of previously engineered reusable process
elements. Units of work for the processes provided by the
standards are called different (e.g. activities/tasks). Therefore,
the approach first proposes to align the work breaking down
structures and use the same terms by adopting SPEM2.0
as common process modelling language. Common aspects
constitute the commonality points (CP) while variability points
(VP) are the process elements that are replaced with particular
instances of process elements. SiSoPLE, Security-informed
Safety-oriented Process line is an extension of SoPLE, in
which it is expected to enable the alignment of security with
safety. Therefore, for creating a SiSoPL it is required to
overcome irrelevant terminological differences, through the
definition of a common terminological framework between
safety and security. Defeasible Logic [7], is a non-monotonic
logic to formalize defeasible reasoning, reasoning with in-
complete and inconsistent information. Defeasible theories are
the knowledge base in defeasible logic. A defeasible theory
contains: a) facts: indisputable statements; b) strict rules: rules
in the classical sense, whenever the premises are indisputable,
so is the conclusion; c) defeasible rules: rules that can be
defeated by contrary evidence; d) defeaters: rules used only to
prevent conclusions; e) superiority relation: a relation among
rules used to define priorities. Formally, r: A(r) ↪→ C(r), a
rule r consists of an antecedent A, the consequence of the
rule C, and the rule ↪→= {→ (strict), ⇒ (defeasible), or
 (defeater)}. A superiority relation is symbolized by >.
Compliance Management (CM) by design is an approach
in which the compliance of a process with a norm is verified
before the process is deployed. The abstract formal framework
for modeling compliance by design defined in [8], [15] is
recalled in this section. This approach is based on deontic
logic of violations [16], in which deontic notions are modelled
using defeasible logics. One deontic notion that is present in
normative systems is the obligation. An obligation constraint
the bearer to a specific situation. Obligations are attached
to process elements (i.e., activities) by semantic annotations
(functions that describe the environment in which a process
operates). Two semantic annotations are used in this frame-
work: Ann(n,t,i) returns the state of a trace (n) obtained after
a task (t), in the step (i). The function Force(n,t,i) = {p}
associates to each task (t) in a trace (n), in the step (i) a set
of obligations {p}.

Fig. 1. SiSoPLE&Logic-basedCM framework.

III. SISOPLE&LOGIC-BASEDCM

SiSople&Logic-basedCM, the approach presented in this
paper, is a variation of Sople&Logic-basedCM, recalled in
Section II-D. This variation adds the benefits of Security-
informed Safety-oriented Process Line [2] by replacing SoPLs
with SiSoPLs, a step that involves the definition of a common
terminological framework. An overview of the approach is
presented in Figure 1. To apply the methodology, a process
engineer is expected to:

A define a common terminological framework by study-
ing the similarities between the concepts presented in
the standards,

B model a SiSoPL, by comparing the process elements
that are present in the process lifecycle provided by
the standards (called also Process Reference Model),
and extracting the commonalities and variability
points,

C formalize the rules by defining defeasible theories
(studying the requirements provided by the standards
and transform them into defeasible rules),

D compare defeasible theories and define the overlap-
ping set.

E annotate the SiSoPL, using Ann to describe the se-
quencing of activities in the process, and Force to add
the effects of the defeasible rules, and

F analyze the compliance of the SiSoPL with the com-
mon set of rules and define common proofs.

IV. APPLYING SISOPLE&LOGIC-BASEDCM

We apply our approach to an overlapping portion of
the process reference models provided for ISO 26262 and
SAE J3061. This portion is small, but it provides enough
information to illustrate our approach. It is structured as
follows. In Section IV-A, we present an automotive-SiS ter-
minological framework. In Section IV-B, we model a SiSoPL.
In Section IV-C, we define formalize the standards rules. In
Section IV-D, we define the overlapping set of rules between
the two standards. In Section IV-E, we annotate the SiSoPL
with the common rules. Finally, in Section IV-F, we analize
the compliance of the SiSoPL.

A. Automotive-SiS Terminological Framework

We aim at offering an initial brainstorming on automotive-
SiS by looking at two aspects. First, the underlying similarities
between the concepts presented in Sections II-B and II-C.
Second, the evident commonalities among process elements
in both standards, taking into account that SAE J3061 bases
its process reference model in the one provided by ISO 26262.

To represent a system in a vehicle, ISO 26262 uses the
term item while SAE J3061 uses the term feature. Therefore,
ISO 26262 and SAE J3061 are meant to be applied to a
similar computational structure. An attack to a cybersecurity-
critical system has the potential to produce a system failure.
A similar potential is found for an external fault in a safety-
critical system. The concept of harm is explicitly described
in both standards, referring to a kind of loss. A potential
source of harm is known in safety as a hazard, while in
Cybersecurity it is knows as threat. HARA and TARA are
phases in the lifecycle that are also similar, in the sense that
they provide common techniques to mitigate a potential source
of harm. HARA is the base for the definition of safety goals,
and the provision of safety measures, while TARA is used to
define cybersecurity goals and provide cybersecurity measures.
Goals, in both standards, are the top-level requirements which
are decomposed in more refined requirements during the life-
cycle stages. When both standards are applied, the architecture
evolves in an similar way. Initially, both processes require a
high level system description (item/feature definition), which
is used to generate preliminary architectural assumptions.
During system level, technical requirements are allocated into
the system architecture which is then refined into software
architectural design at the software level. Process phases and
their relationship with the requirements decomposition and the
architectural evolution is presented in Figure 2.

B. SiSoPL Modeling

To define a SiSoPL, we compare the activities that are
present in the process reference model of ISO 26262 and
SAE J3061. This comparison is based on the descriptions
given in natural language in Sections II-B and II-C, and
the automotive-SiS terminological framework described in
Section IV-A. The phase selected is the software unit design
and specification, highlighted in Figure 2. The selected phase
is populated in both processes by common steps, defining

Fig. 2. Process elements comparison between SAE J3061 and ISO 26262.

partial commonality-tasks, characterized by a variation point
that takes into consideration the variability. For example, the
activity software unit design is a partial commonality point
(CP) in both processes. However, for safety, safety-related units
are designed, while cybersecurity-related units are designed
for cybersecurity. This kind of specificities are referred as
the variability points (VP) in the model. The commonalities
identification is presented in Table 3 and the resulting SiSoPL
is presented in Figure 3.

TABLE III. ACTIVITIES COMPARISON ISO 26262/SAE J3061.

ID IR JR Common Name
CP1 IA1 JA1 Unit design
VP1a IA1 Design concerning safety
VP1b JA1 Design concerning cybersecurity
CP2 IA2 JA3 Unit design review
VP2a IA2 Design review concerning safety
VP2b JA3 Design review concerning cybersecurity
CP3 IA3 JA2 Unit implementation
VP3a IA3 Unit implementation concerning safety
VP1b JA2 Unit implementation concerning cybersecurity
CP4 IA4 JA4 Unit implementation review
VP4a IA4 Implementation review concerning safety
VP4b JA4 Implementation review concerning cybersecurity

Fig. 3. SiSoPL model.

C. Formalising the rules

To formalise the rules, we take the set of requirements
presented in each standard, organize them according to the

activity to which they are applied8, and decompose them
in atomic expressions9. For example requirement IR1 (see
Table I) can be decomposed in two atomic expressions, namely,
1) There is a software design and implementation phase
(sdip)10, and 2) (sdip) have available the software architectural
design (sad). The first atomic expression corresponds to a fact,
and the second atomic expression corresponds to a strict rule.
Facts and strict rules are indisputable statements, and both are
represented as strict rules, using the symbol → (see R1 and R2
in Table IV). The difference in the representation of strict rules
and facts is that facts do not have antecedent. When the atomic
expression refers to a rule that is weakened by other rule, it is
represented as a defeasible rule. For example, requirement IR2
(see Table I) can be decomposed in the atomic expressions:
1) A software unit (sui) is usually implemented as a model
(im) and 2) A software unit (sui) is usually implemented as
source code (isc). As seen the adverb ”usually” is added to the
description of the rule. The defeasible rule is defined using the
symbol ⇒ (see R27 and R30 in Table IV). Rules that prevent
conclusions (defeaters) are defined using the symbol , and
the verb ”prevents” is added to the description of the rule. An
example of this type or rules can be found with the two de-
feasible rules described before: Implementing as a model (im)
prevents the direct implementation as a source code (-isc) (see
R33 in Table IV). Priority relations are created when there
are two rules that are in conflict. An example of a priority
relations is created when modelling requirements IR6 and IR10
for ISO 26262 (see Table I). The formalization of these two

8This step makes the rules derived from the standards requirements appear
in a different order.

9An atomic expression, in the context of this paper, is an expression that
is equivalent to a proposition in logic (statement which is either true or false,
but not both [17]).

10For every atom (or variable) presented in the rule, we define acronyms,
so the visualization of the defeasible rules is easier.

rules results in the rules R10, R11 and R12 in Table IV and
the Superiority relation SR1 in Table V. R10 implies that the
design notations for safety-related units have to be selected
according to ASIL and recommendations levels while R12
implies that if there is a rationale (R11)11, the design notations
for safety-related units does not need to be done according
to ASIL and recommendation levels. It means that R10 and
R12 are in conflict if R11 is fulfilled. However the superiority
relation SR1, resolves this conflict, giving priority to R10.
Rules for both ISO 26262 and SAE J3061 are presented in
Table V, and the superiority relations for ISO 2626212 are
presented in Table V.

D. Definition of the overlapping set of rules

Requirement JR3 in SAE J3061 (see Table II) prescribes
the inclusion of Cybersecurity activities for each lifecycle
phase described in the safety process. Moreover, requirement
JR4 prescribes also the use of ISO 26262 methods and
rationale. For this reason, the rules derived for ISO 26262,
that are not specifically safety-related, are adopted for mod-
elling SAE J3061 rules. Therefore, rules that apply to process
elements in ISO 26262 are inherited by the process elements in
SAE J3061. Safety-related rules are only applied to ISO 26262
process lifecycle and cybersecurity-related rules are only ap-
plied to SAE J3061 process lifecylce. The defeasible theory
that applies to both standards is presented in Table IV, which
includes the common rules that apply to both standards, as
well as the standard-specific rules (dark-gray for ISO 26262
and light-gray for SAE J3061).

E. Annotating the SiSoPL

Formalized rules are annotated in the corresponding pro-
cess activities defined in the SiSoPL. For instance, R1 is a
rule common rule (presented in both standards) related to
design. Therefore, R1 is annotated to the activity Unit design
that corresponds to the commonality CP1. In the same way,
standard-specific rules are annotated to standard-specific tasks,
e.g., R3, which is an ISO 26262-related rule is annotated to the
task VP1a, which is a ISO 26262-related task. An abstraction
of the annotation process is presented in the Figure 4.

Fig. 4. Annotated SiSoPL.

The initial part of the annotation process requires the
determination of the states of the tasks and their effects on

11A valid rationale that explains why this requirement does not apply, or
a rationale that explains how tailoring activities make that the requirement is
not required

12There were not superiority relations for SAE J3061

TABLE IV. DEFEASIBLE THEORY FOR ISO 26262 AND SAE J3061.

ID Req. Rule Rule description

R1 IR1/JR1 → sdip There is a software design and implementation
phase (sdip).

R2 sdip → sad (sdip) have available the software architectural
design (sad).

R3 IR4-5 sdip → ssr (sdip) have available the software safety require-
ments (ssr).

R4 sad, ssr →
sru

(sad) and (ssr) are used to design safety-related
software units (su).

R5 JR1 sdip → scr (sdip) have available software cybersecurity re-
quirements (scr).

R6 sad,scr →
cru

(sad) and (scr) are used to design cybersecurity-
related units (cru)

R7 IR4-
5/JR1

sad,-ssr,-scr
→ nscru

If (sad) is provided but (ssr) and (scr) are not
provided, non safety/non cybersecurity-related
(nscru) are designed.

R8 IR6/JR3 sdip → dsu (sdip) has an activity called design of software
unit (dsu).

R9 IR6/JR4 dsu → dn (dsu) is done using design notations (dn).

R10 IR6 dn,sru ⇒
dnArl

(dn) for (sru) are usually selected according to
ASIL and recommendation levels (dnArl).

R11 IR6-
10/JR4 ⇒ rdn There is usually a rationale about design notations

(rdn).

R12 IR6/10 dn,sru,rdn
⇒ -dnArl

Rationale (rdn) about (dn) for (sru) is provided
and (dnrl) is usually not required.

R13 IR8/JR4 dsu → dp (dsu) is done using design principles (dp).

R14 IR8 dp,sru ⇒
dpArl

(dp) for (sru) are usually selected according to
ASIL and recommendation levels (dpArl).

R15 IR8-
10/JR4 ⇒ rdP There is usually a rationale about design princi-

ples (rdp).

R16 IR8-10 dp,sru,rdp
→ -dpArl

Rationale (rdp) about (dp) for (sru) is provided
and (dpArl) is usually not required.

R17 IR7/JR3 dsu → sufb (dsu) describes software unit functional behavior
(sufb).

R18 dsu → suid (dsu) describes software unit internal design
(suid).

R19 IR9/JR3 dsu → sudv (dsu) have a software unit design verification
(sudv).

R20 IR9/JR4 sudv → vm (sudv) is done using verification methods (vm).

R21 IR9 vm, sru ⇒
vmArl

(vm) for (sru) are usually selected according to
ASIL and recommendation levels (vmArl).

R22 IR9-
10/JR4 ⇒ rvm There is usually a rationale about verification

methods (rvm).

R23 IR9/10 vm,sru,rvm
⇒ -vmArl

Rationale (rvm) about (vm) for (sru) is provided
and (vmArl) is usually not required.

R24 JR2
sudv, scr →
cdaa

(sudv) for (scr) have available design activities
analysis (cdaa).

R25 sudv, scr →
cdar

(sudv) for (scr) have cybersecurity design assess-
ment refinement (cdar).

R26

IR2/JR3

dsu, sudv
→ sui

after design (dsu) and design verification (sudv),
software unit implementation (sui) is done.

R27 sui ⇒ im (sui) is usually implemented as a model (im).
R28 im → mg (im) have available modelling guidelines (mg).

R29 IR3/JR3 im → irp (im) achieve implementation-related properties
(irp).

R30
IR2/JR3

sui ⇒ isc (sui) is usually implemented as source code(isc).
R31 isc → scg (sc) have available source code guidelines (scg).
R32 IR3/JR3 isc → irp (isc) achieve (irp).

R33 IR2/JR3 im -isc implementing as a model (im) prevents the direct
implementation as a source code (-isc).

R34 IR9/JR4 sui → suiv (sui) has a software unit implementation verifica-
tion (suiv).

R35 suiv ⇒
ivm.

(suiv) is done using implementation verification
methods (ivm)

R36 IR9 ivm, sru ⇒
ivmArl

(ivm) for (sru) are usually selected according to
ASIL and recommendation levels (ivmArl).

R37 IR9-
10/JR4 ⇒ rivm There is usually a rationale about implementation

verification methods (rivm).

R38 IR9-10 ivm,sru,rivm
⇒ -ivmArl

Rationale (rivm) about (ivm) for (sru) is provided
and (ivmArl) is usually not required.

R39 JR2
ivm, scr →
ciaa

(ivm) for (scr) have a cybersecurity implementa-
tion activities analysis (ciaa).

R40 ivm, scr →
ciar

(ivm) for (scr) have a cybersecurity implementa-
tion assessment refinement (ciar).

other tasks. We, first, want to find the compliance of the
commonality points (CPs), in order to understand the reuse
possibilities. For this, we annotate the SiSoPL model, which

TABLE V. SUPERIORITY RELATIONS FOR ISO 26262 RULES.

ID Req. Rule Rule description

SR1 IR6 r10>r12 Selecting (dn) according to ASIL and reccomendation
levels have priority over not doing it an include rationale.

SR2 IR8 r14>r16 Selecting (dp) according to ASIL and reccomendation
levels have priority over not doing it an include rationale.

SR3 IR9 r21>r23 Selecting (vm) according to ASIL and reccomendation
levels have priority over not doing it an include rationale.

SR4 r36>r38 Selecting (ivm) according to ASIL and reccomendation
levels have priority over not doing it an include rationale.

is constituted by one trace i.e. tSiSoPL, using the function Ann
(See Listing 1).

Ann (tSiSoPL , CP1 , 1) ={CP1}
Ann (tSiSoPL , CP2 , 2) =Ann (tSiSoPL , CP1 , 1)U{CP2}
Ann (tSiSoPL , CP3 , 3) =Ann (tSiSoPL , CP2 , 4)U{CP3}
Ann (tSiSoPL , VP3 , 6) =Ann (tSiSoPL , CP3 , 5)U{CP4}

Listing 1. tSiSoPL states.

A task determines its state taking its effect and inheriting the
previous effects. For example the state of CP2 depends on
the state of CP1, i.e., if CP1 is not executed, CP2 is also
not executed. Once the states are determined, the obligations
in force (rules that apply to the tasks) are assigned, using
the function Force. Since the tSiSoPL is composed by CPs,
the defeasible rules that can be annotated are those that are
common to both processes, i.e., rules that are not highlighted
in Table IV (See Listing 2).

Force (tSiSoPL , CP1 , 1) ={R1}U{R2}U{R7}U{R9}{R11}U{R13}U{R15}U{
R17}U{R18}

Force (tSiSoPL , CP2 , 2) = Force (tSiSoPL , CP1 , 1)U{R19}U{R20}U{R22}
Force (tSiSoPL , CP3 , 3) = Force (tSiSoPL , CP2 , 2)U{R26}U{R27}U{R28}

U{R29}U{R30}U{R31}U{R32}U{R33}
Force (tSiSoPL , CP4 , 4) = Force (tSiSoPL , CP3 , 3)U{R34}U{R35}U{R37}

Listing 2. Obligations in force for the trace tSiSoPL.

F. Analizing the compliance of the SiSoPL

To be compliant, every task in the trace must be compliant,
meaning that every rule that applies to the task must be true.
Rules are true if there is an element in the task that fulfill the
rule, e.g. specific tasks steps. For instance, nine rules applied
to the task CP1, which means that nine task elements are
defined in CP1, so that the rules are fulfilled in CP1 and,
therefore, it is compliant. Particularly, for fulfilling R1 a step
called ”Obtain a software architectural design” should exist.
Once the SiSoPL is determined as compliant, the standard-
specific tasks are deployed and the standard-specific rules are
annotated. The corresponding analysis of compliance of the
standard-specific process just required the compliance analysis
of the new elements added e.g. standard-specific elements. For
instance, in Listing 3, ISO 26262-specific tasks are deployed
and annotated with ISO 26262-specific rules. As seen, the first
part of the annotation includes the obligations in force for the
SiSoPL. Since the SiSoPL was previously analysed and defined
as compliant, only the specific rules need to be analyzed.

Force (ISO26262 , IA1 , 1) = Force (tSiSoPL , CP1 , 1)U{R3}U{R4}U{R10}U
{R12}U{R14}U{R16}

Force (ISO26262 , IA2 , 2) = Force (tSiSoPL , CP2 , 2) UForce (ISO26262 ,
IA1 , 1)U{R21}U{R23}

Force (ISO26262 , IA3 , 3) = Force (tSiSoPL , CP3 , 3) UForce (ISO26262 ,
IA2 , 2)

Force (ISO26262 , IA4 , 4) = Force (tSiSoPL , CP4 , 4) UForce (ISO26262 ,
IA3 , 3)U{R26}U{R38}

Listing 3. Obligations in force for ISO 26262.

V. DISCUSSION

From the application of SiSople&Logic-basedCM, despite
the simplicity of our example, we have identified some points
that are worth to discuss. Our first observation is related to
the selection of the logic. Defeasible logic provides the ele-
ments and the flexibility required for working with normative
systems, which are often difficult to interpret, inconsistent, or
incomplete. The existence of the different kind of rules (fact,
strict rule, defeasible rule and defeater) as well as the superi-
ority relations have facilitated the formalization of safety and
security standards, as well as the compliance analysis of the
processes with the formalized rules. Our second observation
is connected with the interpretation of standards requirements.
As it is well known, standards requirements are difficult to
interpret due to their presentation in natural language. The
definition of atomic expressions, as a prerequisite for creating
the formal rules, can be considered a step towards better inter-
pretation of the standards requirements. If rules are correctly
formalized, hidden rules, or inconsistencies between rules can
be discovered. Even a different sequencing of the rules, that
facilitate their application, can be spotted. In addition, the
definition of atomic expressions can reveal the granularity level
of the steps in a task, i.e., every rule make mandatory the
existence of specific elements that fulfill the rule. Moreover,
the analysis of the similarity/variability between two atomic
expressions extracted from two different standards is easier
than performing the same analysis in two requirements ex-
tracted from the same two standards. This observation leads
to the conclusion that our approach has general soundness,
since commonalities and variabilities present in the process
reference models elements, i.e., tasks, as well as common
and variable standards rules can be identified and modeled.
Our last observation is related to reusability. Process elements
commonalities aligned with common formalized rules enable
compliance proof reuse. From the example, 34 rules apply
to ISO 26262 and 30 apply to SAE J3061. However, 24 of
the rules presented in Table IV are common rules, which
presupposes, in this specific case (and assuming that the
rules are correctly formalized), a high level of proofs reuse.
Proof reuse can make the compliance management task more
efficient since time and effort are saved.

VI. RELATED WORK

Related work regarding automated compliance checking
was already discussed in [6], and works related to combine
safety and security, as well as harmonization and cross fer-
tilization are discussed in [2]. Therefore, in this paper we
limit our attention to works that are focused in enabling the
mastery of the semantic interplay between safety and security
standards. Several efforts have been done in the past. For
example, a technical note presenting the foundations for safety,
security and survivability engineering [18] was carried out to
clarify the similarities and differences between those concepts.
A comparison between security and safety engineering process
based on ISO 26262 and a generic standard for IT (ISO 15408)
was carried out in [19]. A more recent and limited comparison
between terms and process elements of the concept phase
in ISO 26262 and SAE J3061 was done in [20]. In their
work, the authors discuss initial terminology and process
elements found in the concept phase of the two standards,
e.g., item/feature, HARA/TARA. In our work, we have done

a similar comparison, but we include more terms and more
process elements. In addition, we take into consideration the
requirements decomposition and the evolution of the architec-
ture in the lifecycle, as well as the systematic reuse of process
elements and standards rules.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a variation of our previ-
ously introduced approach Sople&Logic-basedCM. Our varia-
tion, called SiSople&Logic-basedCM includes the elaboration
of an automotive-SiS terminological framework, by initiating a
brainstorming around common terminological aspects present
in the automotive standards, as well as the commonalities
identified in their process reference models. The identified
automotive-SiS terminological framework is then used to en-
able the systematization of commonalities and variabilities
within ISO 26262 and SAE J3061. To perform our approach,
we have selected a restricted but generic portion of the
automotive safety and cybersecurity standards, namely, the
software unit design and specification phase. This portion was
selected due to the expertise gained in their analysis in previous
projects [6], [13]. From the application of our approach in this
restricted portion, we have concluded that the interpretation of
the standards can be benefited by the creation of defeasible
theories, since there is an step in which atomic expressions,
the base of the defeasible theories, are created. We also have
found that our approach is sound, since commonalities and
variabilities in both, the process space and the normative space
can be identified and modelled. Additionally, the alignment of
the mentioned spaces enables compliance proofs reuse.

As future work, as presented by [6], we aim at further
develop SiSople&Logic-basedCM, as well as Sople&Logic-
basedCM in various directions. First, to be able to generalize
the approach, we plan to apply it in more significant portions of
the automotive standards ISO 26262 and SAE J3061. Second,
we have applied standards rules to process activities. However,
there are other process elements e.g. work products, guidelines,
roles, required to be compliant, that have not being addressed
yet. Therefore, we plan to address these elements in future
extensions of our approach. Third, we will further explore
methodologies and/or strategies to be make the formalization
of the rules more accurate. Four, we have use the deontic
notion Obligation, but other deontic notions (permission, pro-
hibition) and their effects in safety/cybersecurity standards are
planned to be studied. Fifth, we have applied our approach
manually, but tools support is required. Therefore, we plan
to explore tools that addressed defeasible logic reasoning and
their adaptability to the current tool used for modelling SoPLE
and SiSople, namely SPEM2.0/EPF composer13.

Acknowledgments.: This work is supported by the EU and
VINNOVA via the ECSEL JU project AMASS (No. 692474)
[21].

REFERENCES

[1] R. Bloomfield, K. Netkachova, and R. Stroud, “Security-Informed
Safety : If It’s Not Secure , It’s Not Safe,” in International Workshop
on Software Engineering for Resilient Systems, 2013, pp. 17–32.

13http://www.eclipse.org/epf/

[2] B. Gallina and L. Fabre, “Benefits of security-informed safety-oriented
process line engineering,” in IEEE/AIAA 34th Digital Avionics Systems
Conference (DASC), 2015, pp. 8C11–8C19.

[3] B. Gallina, I. Sljivo, and O. Jaradat, “Towards a Safety-oriented Process
Line for Enabling Reuse in Safety Critical Systems Development and
Certification,” in 35th Annual IEEE Software Engineering Workshop
(SEW), 2012, pp. 148–157.

[4] B. Gallina, S. Kashiyarandi, H. Martin, and R. Bramberger, “Modeling
a Safety- and Automotive-Oriented Process Line to Enable Reuse and
Flexible Process Derivation,” in IEEE 38th International Computer
Software and Applications Conference Workshops (COMPSACW), 2014,
pp. 504–509.

[5] I. Ayala and B. Gallina, “Towards tool-based security-informed safety
oriented process line engineering,” in Proccedings of the 10th European
Conference on Software Architecture Workshops (ECSAW), 2016, pp. 1–
7.

[6] J. P. Castellanos Ardila and B. Gallina, “Towards Increased Efficiency
and Confidence in Process Compliance,” in 24th European & Asian
Systems, Software &Service Process Improvement & Innovation, 2017,
p. 12.

[7] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher, “Repre-
sentation Results for Defeasible Logic,” ACM Transactions on Compu-
tational Logic, no. 2, pp. 255–287, 2000.

[8] G. Governatori and S. Sadiq, “The Journey to Business Process Com-
pliance,” Public Law, pp. 1–32, 2008.

[9] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the Definition
of Software System Architecture,” in The First International Workshop
on Architectures for Software Systems, 1995, pp. 85–95.

[10] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
third edit ed. Addison Wesley, 2013.

[11] ISO 26262, “Road Vehicles-Functional Safety. International Standard,”
2011.

[12] N. B. Ruparelia, “Software development lifecycle models,” ACM SIG-
SOFT Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.

[13] B. Gallina, J. P. Castellanos Ardila, and M. Nyberg, “Towards Shaping
ISO 26262-compliant Resources for OSLC-based Safety Case Cre-
ation,” in 4th International Workshop on Critical Automotive Appli-
cations: Robustness & Safety, Göteborg, Sweden, 2016, p. 4.

[14] SAE, “Surface Vehicle Recommended Practice,” Tech. Rep., 2016.
[15] M. Hashmi, G. Governatori, and M. T. Wynn, “Normative Require-

ments for Regulatory Compliance: An Abstract Formal Framework,”
Information Systems Frontiers, pp. 429–455, 2016.

[16] G. Governatori, A. Rotolo, and G. Sartor, “Temporalised Normative
Positions in Defeasible Logic,” in 10th International Conference on
Artificial Intelligence and Law (ICAIL), 2005, pp. 25–34.

[17] K. H. Rosen, “The foundations: Logic and Proofs,” in Discrete Mathe-
matics and Its Applications, 7th ed. New York: Mc Graw Hill, 2012,
ch. 1, p. 1071.

[18] D. Firesmith, “Common concepts undelying safety, security and surviv-
ability engineering,” DTIC Document, Tech. Rep., 2003.

[19] C. Robinson-Mallett, “Coordinating security and safety engineering
processes in automotive electronics development,” 9th Annual Cyber
and Information Security Research Conference (CISR), pp. 45–48,
2014.

[20] C. Schmittner, Z. Ma, C. Reyes, O. Dillinger, and P. Puschner, “Using
SAE J3061 for Automotive Security Requirement Engineering,” in
International Conference on Computer Safety, Reliability, and Security,
2016, pp. 157–170.

[21] AMASS, “Architecture-driven, Multi-concern and Seamless Assur-
ance and Certification of Cyber-Physical Systems. http://www.amass-
ecsel.eu/,” Accessed: 2017-05-30.

