
Pioneering the Creation of ISO 26262-compliant
OSLC-based Safety Cases

Barbara Gallina
Mälardalen University

Västerås, Sweden
barbara.gallina@mdh.se

Mattias Nyberg
Scania AB

Södertälje, Sweden
mattias.nyberg@scania.com

Abstract—ISO 26262 requires for each item the creation of a
safety case. Such creation is extremely time-consuming. Currently,
no satisfying approach is at disposal to speed up such creation.
OSLC (Open Services for Lifecycle Collaboration) is a standard
for tool interoperability, which, if enabled, permits effective
documentation management, needed for efficient safety case
creation. OSLC defines a set of extensible core specifications
(domains), each of which focuses on a single phase of the life-cycle.
In our previous work, we provided ISO 26262-compliant domain
extensions. In this paper, we use such extensions to pioneer the
creation of OSLC-based safety cases. In particular, we show how
information exposed via such extensions can be queried to
“produce” compositional pieces of safety case-fragments, arguing
about requirements traceability and satisfiability. We illustrate
the production of such fragments for an Electronic Control Unit-
module in use at Scania. We then discuss our findings.

Keywords—ISO 26262; safety cases; OSLC; SPARQL Protocol
and RDF Query Language (SPARQL).

I. INTRODUCTION
ISO 26262 [1] is the standard for automotive functional

safety. Initially introduced for road vehicles up to 3,5-ton gross
mass, ISO 26262 is now under revision to be proposed for all
road vehicles, including heavy trucks. A new version of the
standard is expected to be issued by 2018. ISO 26262 requires
for each item the creation of a safety case. According to ISO
26262- Part 1, Definition 1.106, “a safety case is an argument
that the safety requirements for an item are complete and
satisfied by evidence compiled from work products of the safety
activities during development”. To show requirements
satisfiability, a safety case is expected to compile all the work
products of the life-cycle in a traceable manner. Thus, an
effective documentation management is necessary.

The creation of a safety case is extremely time-consuming,
involving hundreds of work-products. Its manual creation does
not seem to be an option due to its complexity, which is even
higher in the case of trucks. Keeping safety cases up-to-date
fully manually would subtract precious time to the engineering
phase. These observations stem from our own experience. Since
the introduction of ISO 26262, we have been working on
methods for building safety cases in compliance with ISO 26262
(see [4] and [5]). Initially, we have targeted manual creation and
then we have started conceiving semi-automatic creation by
proposing model-driven certification approaches. Concretely,
we have shown that a safety case fragment can be created semi-

automatically via transformation rules from contract-and
component-based architectural specifications [13] and process
models [11]. Moreover, we have proposed a Cloud-based
infrastructure (see [12]), where safety processes, including tasks
aimed at generating safety case fragments can be enacted on the
Cloud. In the literature, other model-based approaches have
been explored for enabling the semi-automatic generation of
safety case fragments. Currently, however, no satisfying and
fully integrated approach exists for enabling semi-automatic
creation of skeletons of safety cases, embracing the tool-
supported portion of the safety life-cycle. Compositional
approaches are envisioned however their implementation is
hindered by the limited tool interoperability.

OSLC (Open Services for Lifecycle Collaboration) [31] is a
recently introduced standard, built on top of the Semantic Web
standards, aimed at enabling life cycle tools interoperability and
effective documentation management via production and
consumption of resources. As presented in our previous work
[8], an ISO 26262-compliant tool chain can be achieved by
extending such domains. Such a tool chain would rely on a ISO
26262-compliant ontology, offering a unified representation,
which may facilitate compositional creation of safety cases. In
this paper, based on what previously envisioned [6], we pioneer
the creation of OSLC-based safety cases, towards semi-
automatic and continuous self-assessment. More specifically,
we first interconnect our previously defined ISO 26262-
compliant OSLC domains. Then, we show how information
exposed via such domains can be queried in order to first get
essential evidence and reasoning via a set of SPARQL queries
and then use such evidence and reasoning to generate
compositional pieces of safety case-fragments for arguing about
requirements traceability and satisfiability. Finally, we illustrate
the manual generation of such fragments for a Scania Electronic
Control Unit-module and we discuss our findings.

The rest of the paper is organized as follows. In Section II,
we provide background information. In Section III, we provide
an overview of the entire approach. In Section IV, we identify
the resources that are needed for the safety case compilation and
we represent them as ontologies. In Section V, we query the
ontological representation to check for traceability and
supportive evidence. In Section VI, we create safety case
fragments. In Section VII, we discuss our findings. In Section
VIII, we discuss related work. Finally, in Section IX, we present
our concluding remarks and future work.

II. BACKGROUND
In this section, we present the background information on

which we base our work.

A. ISO 26262-compliant Software Unit Design and Testing
In this subsection, we limit our attention to a subset of

clauses (8-9) of Part 6. These clauses target the software unit’s
development within the software V-model. More specifically,
clause 8 defines how a software unit should be designed and
implemented; while clause 9 defines how a software unit should
be tested against its design specification. Expected work
products related to clause 8 are: Software unit design
specification and Software unit implementation. Expected work
products of clause 9 are: Software verification plan, Software
verification specification, and Software verification report.
These work products should be produced in compliance with the
process-related requirements stated in the clauses 8-9 plus all
other related requirements stated in other clauses. These
requirements define the properties that the work products should
exhibit, the methods to produce them, etc.

B. CMS (Chassis Management System)1
CMS1 is an ECU (Electronic Control Unit), which

contributes to the realization of the Fuel Level Estimation and
Display System within Scania products. CMS1 is responsible for
calculating the total fuel level. Within CMS1 there is a software
module, called CMS1: Fuel. CMS1: Fuel’s design,
implementation and testing is conducted according to practices
adopted for a large number of ECUs developed at Scania. Thus,
CMS1: Fuel can be considered a representative case.

C. OSLC, RDF(S), and SPARQL
OSLC [31] is a standard that defines a set of core

specifications to enable interoperability of tools, used during a
product’s life cycle. The set of specifications, called domains,
target e.g., requirements management (RM), Architecture
Management (AM), and Quality Management (QM). OSLC
builds on top of Linked Data [24], Resource Description
Framework (RDF) [16], RDF Schema [17], and HTTP protocol.
Each work product is described as an HTTP resource, identified
via a Uniform Resource Identifier (URI). To interoperate via a
work product, a tool that acts as a provider has to associate an
URI to the work product and post it; a tool acting as consumer
can get the work product from the URI itself.

RDF [25-26] provides a standard representation for data as
directed graphs to facilitate the linking of the resources to be
described. This standard representation defines a key data
structure: the RDF graph, also called triple (Subject, Predicate,
Object). In RDF terms, the subject is the thing being described
(a resource identified by an URI), the predicate is a property type
of the resource, and the object is equivalent to the value of the
resource property type for the specific subject. The core RDF
vocabulary is defined in an XML namespace, commonly called
rdf, where the URI is http://www.w3.org/1999/02/22-rdf-
syntax-ns#. The following commented XML/RDF-based
fragment shows an example of an RDF resource, where a
software unit resource is described.
<?xml version=”1.0”?>
<!—Comment: rdf document with prefix rdf and ex (selected namespace) -->
<rdf:RDF

xmlns:rdf=”http://www.w3. org/1999/02/22 rdf syntax ns#”
x m l n s : e x =” h t t p : / / e x a m p l e . c o m / e l e m e n t s / 1 . 0 / ”>
<!-- Definition of the resource software unit -->
 <ex:SoftwareUnit>

<!--property identifier -- >
<ex:documentedIn>A02</ex:documentedIn>
 <!--property name-->
<ex:name>CMS1:Fuel </ex:name>
</ex:SoftwareUnit>

</rdf:RDF>

RDF Schema (RDFS) [17] provides a data-modelling

vocabulary for RDF data. RDFS permits groups of related
resources and the relationships between these resources to be
specified.

SPARQL [15, 23] is a recursive name and stands for
SPARQL Protocol and RDF Query Language. SPARQL can be
used to express queries across diverse data sources (which can
be stored natively as RDF graphs). As summarized in [23],
SPARQL specifies four different query variations for different
purposes: 1) SELECT query is used to extract raw values, the
results are returned in a table format; 2) CONSTRUCT query is
used to extract information and transform the results into valid
RDF; 3) ASK query is used to provide a simple True/False result
for a query. Finally, 4) DESCRIBE query is used to extract an
RDF graph. In our work, SELECT, CONSTRUCT and ASK
queries are the most used.

D. Safety Case Documentation
As extensively discussed in [22], several documenting

approaches (textual and/or graphical) exist to structure a safety
case. The most common graphical and human-readable
approaches have been unified and standardized via the OMG
standard SACM (Structured Assurance Case Meta-model) [18],
which provides language constructs to model the argumentation
aimed at explaining why the claims are (not) supported as well
as the (counter) evidence aimed at providing the foundation for
the (counter) claims.

III. APPROACH OVERVIEW
In this section, we provide an overview of our approach,

which enables continuous self-assessment by seamlessly
aligning the life-cycle of a safety case with the life-cycle of the
product. Thus, self-assessment can continuously semi-
automatically be performed by compiling the different types of
evidence. Fig. 1 depicts the overview of our approach. More
specifically, Fig. 1 limits its focus to the alignment of a portion
of the software V-model and the compilation of the evidence
related to that portion. A user (in this case, the safety architect,
software component developer, and the safety manager) may
preliminarily execute SPARQL queries of type “ASK” to make
certain that the rational (reasoning steps) have been documented,
i.e., that the traces linking pieces of evidence and (sub)claims
exist and that explanations are offered where necessary. If this is
the case, then, the safety case generator, embraced by the dotted-
line in Fig.1, can execute SPARQL query of type
“CONSTRUCT” in order to create and populate argumentation-
related RDF-graphs, which are expected to be compliant to a
specific argumentation meta-model. Finally, this model can be
queried (via SPARQL query of type “SELECT”) and via a
model-transformation the retrieved information, can be used to
build e.g. GSN-goal structures in compliance with SACM.

Fig. 1. OSLC-based approach for self-assessment.

IV. ISO 26262-COMPLIANT AM & QM INSTANCES
The software V-model described within ISO 26262-Part 6,

can be sliced and mapped onto three OSLC-based domain
extensions: one aimed at representing the requirements
engineering phase (ISO 26262-compliant OSLC RM), one
aimed at representing the design and implementation phase
(ISO 26262-compliant OSLC AM) and finally one aimed at
representing the verification phase (ISO 26262-compliant
OSLC QM). In the context of two master theses (see [10] and
[9]), methodological guidelines for designing ISO 26262 –
compliant AM and QM were provided. Additionally, RDFS
representations of the AM and QM domains were separately
provided and RDF-graphs were created based on Scania
documentation and only partly published (see [7] and [8]).

In this section, we limit our attention to a very limited
portion of the AM and QM-related extensions. More
specifically we focus on few classes (namely, SW Unit
Implementation, SW Verification Report, SW Verification
Specification, and, Object to be tested) and create instances by
populating them with CMS1: Fuel –related information and by
linking them. The following listings partially represent the
instances.

<!--SW Unit Implementation: CMS1: Fuel -->
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_iso26262am="http://open-services.net/ns/oslc_iso26262am#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<oslc_iso26262am:SWUnitImplementation
rdf:about= " http://open-
services.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1Fuel">
…
</oslc_iso26262am:SoftwareUnitImplementation>
</rdf:RDF>

<!—SW Verification Report-->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">
<oslc_iso26262qm:SWVerificationReport

rdf:about=" http://open-services.net/ns/oslc_iso26262qm
/verificationReports/1">
<dcterms:description> Work product, specified according to ISO 26262-Part6,
9.5.3, that consists of the execution and evaluation of the software with
reference to the software verification plan and software verification
specification</dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
 <dcterms:title >SW Verification report </dcterms:title >
<oslc_iso26262qm:passResult>1 </oslc_iso26262qm:passResult >
…
<oslc_iso26262qm:usesSWVerificationSpecification rdf:resource="
http://open-services.net/ns/oslc_iso26262qm/verificationSpecifications/1" />
</oslc_iso26262qm:SWVerificationReport>
</rdf:RDF>

<!—SW Verification Specification-->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">
<oslc_iso26262qm:SWVerificationSpecification
rdf:about=" http://open-
services.net/ns/oslc_iso26262qm/SWVerificationSpecification/1">
<dcterms:description> Specification of methods, test environment, execution
of CMS1:Fuel. It includes the resources of test objects and test cases used to
test these objects </dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
<oslc_iso26262qm:testlevel> sw unit test</oslc_iso26262qm:testlevel>
<oslc_iso26262qm:objectToBeTested
"http://open-
services.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1Fuel">
…
</oslc_iso26262qm:SWVerificationSpecification>
</rdf:RDF>

<!—Object to be tested: CMS1:Fuel -->
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms=http://purl.org/dc/terms/
xmlns:oslc_iso26262qm="http://open-services.net/ns/iso26262qm#">
<oslc_iso26262qm:ObjectToBeTested
rdf:about=
"http://openservices.net/ns/oslc_iso26262am/SWUnitImplementation/CMS1F
uel ">
<dcterms:description> CMS1:Fuel description</dcterms:description>
<dcterms:identifier> 1 </dcterms:identifier>
<dcterms:title> CMS1:Fuel </dcterms:title>
<oslc_iso26262qm:testlevel> sw unit test</oslc_iso26262qm:testlevel>
<oslc_iso26262qm:objectType> sw unit </oslc_iso26262qm:objectType>
<oslc_iso26262qm:usedBySoftwareTestCase rdf:resource=" http://open-
services.net/ns/oslc_iso26262qm /testCases/1" />
<oslc_iso26262qm:usedBySWVerificationSpecification rdf:resource="
http://open-services.net/ns/oslc_iso26262qm/verificationSpecifications/1" />
</oslc_iso26262qm:ObjectToBeTested >
</rdf:RDF>

For sake of clarity it should be noted that for confidentiality
reasons, these instances are based on Scania documents related
to an old variant of the CMS1: Fuel. As it can be easily retrieved
from the listing, a software verification report is connected to
the software verification specification via “uses”. The software
verification specification contains the object to be tested, which
points to the specific software unit implementation (CSM1:
Fuel). The explanation of all the properties of the above-listed
resources is out of scope. The interested reader might refer to
ISO 26262-Part 6.

Implemented	sw architecture	

+

testing-related	model

(RDF-graph)

Query	

Mechanism

OSLC	&	

ISO	26262-compliant

Scania-specific

AM+QM-meta-model

(RDFS)

Compliant	with

Argumentation-related	

Model

(RDF-graph)

OSLC	&	

ISO	26262-compliant

Scania-specific

Argumentation	

meta-model	(RDFS)

Compliant	with

Query	

mechanism

+

Transformation	

engine	+	rules

Compliant	with

Meta-model	for	

Safety	cases

(e.g.	SACM)

Safety case	

Model

e.g.	Structured	Prose,	

Goal	Structure

User

V. QUERYING THE ONTOLOGICAL REPRESENTATION
In this section, we first present the infrastructural settings

for querying the ontological representation. Then, we explain
which kind of queries we intend to execute. Finally, we provide
an example of such queries.

In our environment, the user performs queries via a
SPARQL endpoint and gets the needed results, based on data
stored in graph DB which is fed with information coming from
the tools used for software unit requirements specification,
design, implementation, and testing. Implemented SW Units –
IDE contain the work products related to clause 8 while the
testing tool contains information related to the work product
required by clause 9.

Fig. 2. Infrastructural settings

As Fig. 2 shows, the user might be a human being (e.g.,

safety engineer) or a machine, more specifically a safety case
generator that coherently with what depicted in Fig. 1 would get
results to be then visualized in a standardized format.

Since the safety case generator has not been developed yet,
in this section, we only provide initial sets of conceptual queries
to be formulated in SPARQL by a human. It should be noted
that, given our approach, three different kinds of queries can be
envisaged. The first set of queries of type CONSTRUCT is
aimed at constructing argumentation-related RDF graph from
RDF graphs related to ISO 26262-Part 6-resources in order to
populate the RDF-graph representing the argumentation.
CONSTRUCT queries should enable the complete compilation
of ISO 26262 Part 6 work-products.

The second set of queries of type SELECT is aimed at
retrieving the information to be used by transformation rules to
render the argumentation via the popular concrete syntaxes
[22]. For instance, the leader of the testing-team might be
interested in inspecting the argument concerning traceability
and satisfiability of software requirements and see if the
software unit implementation has been tested and if the result
was “pass” or not. The identification and visualization of
counter evidence is crucial and should trigger a re-
implementation of even a re-design.

Finally, the third type of queries of queries of type ASK is
aimed at asking questions to get quick confirmations. For
instance, an external assessor (e.g., an auditor) might be

interested in checking if the software unit design is designed
according to the method appropriate for its criticality level [9].
An external assessor might also be interested in checking if, for
a given software verification report, the corresponding software
verification specification exists.
In this paper, we only present one simple ASK query:
PREFIX oslc_iso26262am: <http://open-services.net/ns/oslc_iso26262am#>
PREFIX oslc_iso26262qm: <http://open-services.net/ns/oslc_iso26262qm#>
ASK{
 { ?subject oslc_iso26262qm:passResult ?o
 FILTER(xsd:integer(?o="1"))}
}
This query was performed on the graph obtained by considering
jointly the AM and the QM domains. This query returned YES
since the verification report under consideration contains a
single test case with passResult equal to one. This query was
executed by using TopBraid Composer, the namespaces where
not published.

VI. CREATING A SAFETY CASE FRAGMENT
In this section, we sketch a pattern-based safety case

fragment that can be used to construct an instance via our
approach based on the current information presented within the
ISO 26262-compliant AM and QM. To do that we use simple
declarative language, indentation, numbering, etc. as proposed
by [22].

Claim 1: Algorithm X was successfully tested.
Context 1: Definition of successfully tested via coverage criteria.
Definition of X.

Claim 1.1: All critical test cases passed
Context 2: Definition of critical test cases.

 Strategy 1.1: Argument over all critical test cases (TC1, TC2, TCN)
Claim 1.1.1: Test case TC1 passed
Evidence 1.1.1: Test report to be directly linked to TC1;
Claim 1.1.2: Test case TC1 passed
Evidence 1.1.2: Test report to be directly linked to TC2;
…
Claim 1.1.N: Test case TC1 passed
Evidence 1.1.N: Test report to be directly linked to TCN;

By replacing X with “CMS1:Fuel” and by considering that

in our simple example only 1 test case was considered, we
obtain:

Claim 1: CMS1:Fuel was successfully tested.
 Context 1: Definition of successfully tested via coverage criteria.
 Claim 1.1: All critical test cases passed

Context 2: Definition of critical test cases.
 Strategy 1.1: Argument over test case TC1

Claim 1.1.1: Test case TC1 ("http://open-
services.net/ns/oslc_iso26262qm/testCases/1") passed
Evidence 1.1.1: Test Execution Log
(rdf:resource= http://open-services.net/ns/oslc_iso26262qm/
testExecutionLogs/1);

This fragment is not intended to be comprehensive. The

degree of coverage with regard to what is expected to be
presented in a safety case is extremely limited. This fragment is
not intended to be compelling either. Additional years of
experience are required to provide compelling safety cases for
truck-related items. As mentioned in the introduction, a new
version of the standard embracing all road vehicles is expected

Requirements	Specifier
O
S
L
C

Safety	Case	
Generator

O
S
L
C

Graph	DB SPARQL
(endpoint)

Testing	Tool
O
S
L
C

O
S
L
C

Implemented	SW	Units	-
IDE

User

Human

to be issued by 2018. Thus, a comprehensive and compelling
argument is still to be developed.

Similar fragments could be conceived for showing process
compliance. However, at the time being no process compliance
could be claimed since ASIL-classification was not yet
integrated within the documents that we considered for this
paper. By formulating adequate queries, counter evidence could
be identified and this would be beneficial since it could lead to
mitigation actions aimed at increasing safety.

VII. DISCUSSION
Semi-automatic argument generation of argument

fragments might be considered inappropriate. The risk could be
that only supportive evidence is considered. To avoid being
biased by the well-known confirmation bias, in our approach
queries aimed at identifying counter evidence are also expected
to be formulated. Moreover, as mentioned our intention is to
offer an approach for continuous self-assessment. The
identification of counter evidence is expected to trigger a
review/redo of previous process steps.

The benefits of using OSLC to enable traceability is
undoubtable. Our vision was to bring those benefits to safety-
critical systems self-assessment. Our vision-oriented and
breadth-first-oriented investigation is still in its early stages and
we have not yet performed a proper evaluation of our approach.
Evaluating our approach is indeed challenging as the resources
(time and workforce) are not available to develop the OSLC
adaptors as well as other tools -required to create a complex,
real world safety case using our approach. Therefore, in our
work we rely on a phased evaluation in which we use the
lessons learnt from our experiences with ISO 26262-Part 6,
OSLC-domain extension, and Apache Jena [29] in addition to
studying literature and learning from industrial experience as in
[30] to validate the potential of our approach.

In our pioneering and conceptual work, no issue concerning
e.g., maturity of OSLC, scalability when performing complex
queries, was taken into consideration. As surveyed in [28],
OSLC is still unstable to offer a solution spanning the entire
ALM-tool chain. However, given its potential, we believe that
it is worth investigating this technological domain and in
parallel contribute to its development. Given our initial simple
queries and the current infrastructural settings, where data can
be considered static, we selected SPARQL. However, to
perform continuous self-assessment in the presence of a real-
time stream of data, other query languages could be explored.
For instance, Continuous SPARQL [32], the extension of
SPARQL to query RDF streams could be taken into
consideration.

VIII. RELATED WORK
In this section, we discuss work that is related to ours either

because of similar choices in terms of OSLC-specifications or
because of similar objectives in terms of querying mechanisms.
Moreover, we also discuss work aimed at extracting
automatically arguments from unstructured textual corpora.

In the literature, few works have currently explored the semi-
automatic creation of safety cases based on OSLC. Iliasov et al

2015 [20] present their vision for building an OSLC-based
prototype of integrated environment for engineering and
certifying dependable systems. Laibinis et al 2015 [21] further
develop the work presented in [20]. Concerning transformation
rules, declarative transformation rules from RDF to RDF and
other languages were discussed in [14]. Authors also discussed
how to make their approach generic, i.e., the rule language
independent from the output language.

Concerning querying mechanisms, Denney et al. 2014 [19]
introduce a preliminary approach and a new query language
called AQL (Argumentation Query Language). Via their
approach, they semantically enrich GSN arguments with
domain-specific metadata that the query language leverages to
produce views and offer a means to get answers to specific
questions. In our approach, a new language is not needed. The
exploitation of the semantic web already offers semantics-
enriched data, which can be queried to obtain desired
information. Finally, concerning automatically extraction of
arguments from unstructured textual corpora, recently, an online
argumentation mining system, called MARGOT, was proposed
[28]. Via MARGOT, claims and evidence detection with word-
level granularity is supported. However, MARGOT has not yet
been applied to safety-critical systems.

IX. CONCLUSION AND FUTURE WORK
In this paper, we have built on top of our previous work and

we have performed an additional step towards an ISO 26262-
compliant OSLC-based tool chain enabling continuous self-
assessment, via the continuous semi-automatic creation of safety
cases. Our step consisted of the provision of a global vision of
such a tool chain and a set of SPARQL queries, aimed at
extracting information from an RDF-graph, representing an
instance of interconnected domains targeting ISO 26262-Part 6.
As discussed, in principle, our intended set of queries supports
the compilation of traceable work product towards the semi-
automatic creation of a safety case. To empirically investigate
the effectiveness of our domain, we have instantiated it for a
truck ECU system at Scania. An RDF-graph embracing the
software design, implementation, testing-related resources was
created. Finally, a discussion was provided. The approach has
been presented for ISO 26262-Part 6. However, it can be
extended to the entire ISO 26262, as soon as appropriate
domains are available.

In the near future, we plan to develop our approach further
by: creating the Scania-specific argumentation meta-model,
developing CONSTRUCT queries to populate its models, and
more in general by defining a set of queries according to the
stakeholder (assessor, safety manager, developer, product
manager). In the long-term future, we aim at achieving a tool-
supported proof of concept aimed at demonstrating the benefits
of having an ISO 26262-compliant OSLC-based tool chain
enabling continuous self-assessment, initially limited to ISO
26262-Part 6. To do that, we plan to develop OSLC-adaptors for
the Scania -tools related to ISO 26262-Part 6 as well as adapt
and integrate the Safety Case Generator, which was initially
developed to be executed on the Cloud [12]). Once the tool-
chain is in place, we will also investigate possible limitations due
to scalability issues and rapidly changing data when performing
complex queries.

ACKNOWLEDGMENT
This work has been financially supported by EU and

VINNOVA via the ECSEL Joint Undertaking project AMASS
(No 692474) [3] and by the Swedish Foundation for Strategic
Research via the Gen&ReuseSafetyCase (No SM14-0013)
project [2].

REFERENCES
[1] International Organization for Standardization (ISO). ISO 26262: Road

vehicles — Functional safety, 2011.
[2] Gen&ReuseSafetyCases. http://www.es.mdh.se/projects/393-

genreusesafetycases.
[3] AMASS (Architecture-driven, Multi-concern and Seamless Assurance

and Certification of Cyber-Physical Systems). http://www.amass-
ecsel.eu.

[4] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, and M. Nyberg.
Industrial experiences of building a safety case in compliance with iso
26262. In IEEE 23rd International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 349–354, 2012.

[5] B. Gallina, A. Gallucci, K. Lundqvist, and M. Nyberg. VROOM & cC: a
Method to Build Safety Cases for ISO 26262-compliant Product Lines. In
2nd Workshop on Next Generation of System Assurance Approaches for
Safety-Critical Systems. Hyper Articles en Ligne (HAL), September 2013.

[6] B. Gallina and M. Nyberg. Reconciling the ISO 26262-compliant and the
Agile Documentation Management in the Swedish Context. In Critical
Automotive applications: Robustness & Safety (CARS), Matthieu Roy,
Paris, France, HAL, September 2015.

[7] B. Gallina, J. P. Castellanos Ardila, and M. Nyberg. Towards Shaping
ISO 26262-compliant Resources for OSLC-based Safety Case Creation.
In Critical Automotive applications: Robustness & Safety (CARS),
Gteborg, Sweden, HAL, September 2016.

[8] B. Gallina, K. Padira, and M. Nyberg, “Towards an iso 26262-compliant
oslc-based tool chain enabling continuous self-assessment,” in 10th
International Conference on the Quality of Information and Communi-
cations Technology- Track: Quality Aspects in Safety Critical Systems
(QUATIC), Lisbon, Portugal, 6-9 September, 2016.

[9] J. P. Castellanos Ardila, “Investigation of an OSLC-domain targeting ISO
26262,” Master’s thesis, Ma ̈lardalen University, School of Innova- tion,
Design and Engineering, Va ̈stera ̊s, Sweden, to appear in 2016.

[10] K. Padira. Investigation of Resources Types for OSLC domains Targeting
ISO 26262: Focus on Traceable safety evidence for the Right side of the
ISO 26262 Software V-model. Master’s thesis, Blekinge Tekniska
Hgskola, Karlskrona, Sweden, 2016.

[11] B. Gallina. A Model-driven Safety Certification Method for Process
Compliance. 2nd IEEE International Workshop on Assurance Cases for
Software-intensive Systems (ASSURE), joint event of ISSRE, Naples,
Italy, doi: 10.1109/ISSREW.2014.30, pp. 204-209, November 3-6, 2014.

[12] S. Alajrami, B. Gallina, I. Sljivo, A. Romanovsky, P. Isberg. Towards
Cloud-Based Enactment of Safety-Related Processes. Proceedings of the
35th International Conference on Computer Safety, Reliability and
Security (SafeComp), Trondheim, Norway, September 20-23, 2016.

[13] I. Sljivo, B. Gallina, J.Carlson, H. Hansson. Generation of Safety Case
Argument-Fragments from Safety Contracts. Proceedings of the 33rd
International Conference on Computer Safety, Reliability and Security

(SAFECOMP), Springer, LNCS 8666, ISBN 978-3-319-10505-5, pp.
170-185, Florence, Italy, September 10-12, 2014.

[14] Olivier Corby, Catherine Faron-Zucker. A Transformation Language for
RDF based on SPARQL. van der Aalst, W.; Mylopoulos, J.; Rosemann,
M.; Shaw, M.J.; Szyperski, C. Web Information Systems and
Technologies, Springer, 2015, Lecture Notes in Business Information
Processing, <10.5220/0005450604660476>.
<http://www.springer.com/>. <hal-01186048>

[15] “SPARQL 1.1 Query Language.” [Online]. Available:
https://www.w3.org/TR/ sparql11-query/  

[16] RDF Primer. http://www.w3.org/tr/rdf-primer/.
[17] RDF Schema 1.1, W3C Recommendation 25 February 2014.

http://www.w3.org/tr/rdf-schema/.
[18] OMG. SACM: Structured Assurance Case Metamodel. Technical report,

Version 1.1,. http://www.omg.org/spec/SACM, 2015.
[19] E. Denney, D. Naylor, and G. Pai. Querying Safety Cases. Proceedings of

the 33rd International Conference on Computer Safety, Reliability, and
Security - Volume 8666 (SAFECOMP). Springer-Verlag New York, Inc.,
New York, NY, USA, 294-309, 2014.

[20] A. Iliasov, A. B. Romanovsky, L. Laibinis, E. Troubitsyn ̊a. OSLC-based
Support for Integrated Development of Dependable Systems. Ilir Gashi;
Yann Busnel. 11th European Dependable Computing Conference
(EDCC), Sep 2015, Paris, France., Proc. of Fast Abstract. <hal-
01226607>

[21] L. Laibinis, E. Troubitsyna, Y. Prokhorova, A. Iliasov, A. Romanovsky,
From Requirements Engineering to Safety Assurance: Refinement
Approach. First International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications, SETTA, Nanjing, LNCS
9409, 201–216, Springer, 2015.

[22] C.M. Holloway. Safety Case Notations: Alternatives for the Non-
Graphically Inclined? In C.W. Johnson and P. Casely (eds.), Proc. of the
IET 3rd International Conference on System Safety, IET Press, Savoy
Place, London, 2008.

[23] B. DuCharme. Learning SPARQL, 2nd Edition, Querying and Updating
with SPARQL 1.1. O'Reilly Media, July 2013.

[24] Linked Data, “http://www.w3.org/designissues/linkeddata.html.”
[25] S. Powers, Practical RDF. OReilly Media, 2003. [Online]. Available:

https://www.safaribooksonline.com/library/view/practical-
rdf/0596002637/index.html

[26] W3C, “RDF 1.1 Concepts and Abstract Syntax,” 2014. [Online].
Available: https://www.w3.org/TR/2014/REC-rdf11-concepts- 20140225/

[27] AMASS, D5.1 Baseline and Requirements for Seamless Interoperability,
http://www.amass-ecsel.eu/content/deliverables, Sept. 2016.

[28] M. Lippi and P. Torroni. MARGOT. Expert Syst. Appl. 65, C (Dec 2016),
292-303. DOI: https://doi.org/10.1016/j.eswa.2016.08.050

[29] Apache Jena https://jena.apache.org
[30] J. El-Khoury, D. Gurdur, F. Loiret, M. Törngren, D. Zhang, M. Nyberg.

Modelling Support for a Linked Data Approach to Tool Interoperability.
ALLDATA: The Second International Conference on Big Data, Small
Data, Linked Data and Open Data, 2016.

[31] Open Services for Lifecycle Collaboration. http://open-services.net/.
[32] D.F. Barbieri, D. Braga, S.Ceri, E. Della Valle, M. Grossniklaus. C-

SPARQL: SPARQL for continuous querying. In: WWW 1061–1062,
2009.

