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Abstract— Cloud computing infrastructures are powering
most of the web hosting services that we use at all times. A
recent failure in the Amazon cloud infrastructure made many
of the website that we use on a hourly basis unavailable1. This
illustrates the importance of cloud applications being able to
absorb peaks in workload, and at the same time to tune their
power requirements to the power and energy capacity offered
by the data center infrastructure. In this paper we combine
an established technique for response time control – brownout
– with power capping. We use cascaded control to take into
account both the need for predictability in the response times
(the inner loop), and the power cap (the outer loop). We execute
tests on real machines to determine power usage and response
times models and extend an existing simulator. We then evaluate
the cascaded controller approach with a variety of workloads
and both open- and closed-loop client models.

I. INTRODUCTION

From the beginning of the era of grid and cloud comput-
ing, the load pressure on data centers has steadily increased.
This is partially due to the increased efficiency obtained
by running multiple virtual machines in a single physical
machine, often called server consolidation [9], [17]. In
principle, server consolidation aims to reduce the number of
physical machines active and used to serve a given workload
through the smart co-location of virtual machines hosting the
software applications. Thanks to the reduction in the total
number of physical machines active at the same time, it is
possible to reach both high utilization and energy efficiency.

However, data center owners face a challenge in providing
cost- and energy efficiency while meeting the large variations
in resource demands often shown by the applications. To
avoid wasting resources, they often apply overbooking tech-
niques in order to cope with the amount of virtual machines
that are constantly launched and kept in operation [20]. To
deal with some of the drawbacks of overbooking, graceful
degradation has been introduced in different forms to be
able to scale down the workload when necessary, without
the need of firing up a new virtual machine and consuming
more physical resources [2], [5], [11], [12], [18].

At the same time, these techniques do not take into account
one of the main costs that the data center operator has to
face: power. Notably, in addition to the power consumption
running costs one should consider that the power delivery

1http://www.mercurynews.com/2017/02/28/amazon-cloud-storage-
failure-causes-widespread-disruption/

infrastructure is one of the most expensive components in
a data center. Its cost widely depends on the peak delivery
capacity and that capacity is underutilized during most of the
operating time.

According to a recent study [8], in a Google data center
the normal operating range for power consumption at the
cluster level is between 52% and 72% of the peak power,
where a cluster comprises about 5000 servers. Scaling down
to 800 servers, the range widens to 48–77%, and for a rack
of 40 servers the range is even wider, between 45–93%. This
means that the data center could potentially host 39% more
servers with the same power delivery infrastructure, or it
could be built with a less powerful – therefore cheaper –
power delivery infrastructure.

This motivates the investigation of this paper into pro-
viding means to control the power consumption of a data
center, while serving as much as possible the content that the
users request. We aim at combining a graceful degradation
technique – namely brownout [12] – with power capping. For
each virtual machine, the methodology proposed in this paper
enforces a dynamically set power cap – the machine cannot
consume more than the given amount of power. At the same
time, graceful degradation of content helps us maximizing
clients satisfaction, given the constraints imposed by the
power cap.

The remainder of this paper is organized as follows.
Section II presents some background into both graceful
degradation and power capping. Section III presents the
design of a cascaded controller to obtain the mentioned
power capping and user satisfaction goal. Section IV presents
some experimental results that validate our proposal and
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The main idea behind this paper is to combine two differ-
ent concepts, which have both been explored in the literature,
but never jointly. The first concept is service degradation,
which builds upon the assumption that when the capacity
does not allow the server to serve all the users, providing a
degraded service to some of the users is better than no service
at all. A brief recap on the literature on service degradation
is provided in Section II-A. The second concept is called
power budgeting. Power budgeting was introduced to cap
the amount of power consumed by various entities in an
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infrastructure, from a single server and a rack, to a cluster
and an entire data center. We use power budgeting at the
level of the single virtual machine offering an application,
distributing therefore the power to the different basic entities
in a data center. Section II-B provides a brief overview of
the research on power budgeting.

A. Service Degradation

There are situations in which the available computational
capacity is not enough to serve the amount of requests
that a web server receives. In special conditions, an abrupt
increase in the number of hits for a specific page may cause
malfunctioning and crushes [1], similar to the Wikipedia and
Google News temporal failures caused by Michael Jackson’s
death in 20092.

In these situations it is often better to serve the clients
with reduced content (for example eliminating some images
or some sections from the response web page) than to not
serve the requests at all. In software engineering, this is
generally called graceful degradation, where a degraded
service is offered to the users in place of the original full-
quality one. The graceful degradation principle has been
applied to various domains [18], from search queries [11],
to indexing [5], and database consistency [2].

Recently, the same context has been applied to cloud
applications, under the name of Brownout [12], [16], [20].
The idea behind brownout is to produce a response that only
contains the minimal components that the user is looking for
(the mandatory part) and disable additional computation that
would increase the revenue of the application owner (the
optional content), like a recommender system that would
select similar movies to the one that the user is checking
out in an online renting website.

The brownout approach [12] models the 95th percentile of
the response times τ95 of a cloud application as a function
of the percentage of optional content served θ as a first
order model with an unknown and possibly time-varying
coefficient α that determines the relationship between the
two quantities.

τ95(k) = α(k − 1) θ(k − 1) (1)

Brownout uses a controller, designed using loop shaping,
to constrain the behavior of the closed loop to be a first
order transfer function with static gain one and a pole in
p∗. The controller updates the percentage of requests served
with optional content θ(k) based on the error between the
response time setpoint τ̄95 and the current measured value.
eτ95(k) = τ̄95(k)− τ95(k), and on an estimate α̂(k).

θ∗(k) = θ(k − 1) +
1− p∗
α̂(k)

eτ95(k) (2)

The value of θ∗ is subject to saturation. Since it represents
a probability, the following is applied, to compute θ. The
value of θ is called dimmer, to complete the analogy with
electrical brownouts.

2http://edition.cnn.com/2009/TECH/06/26/michael.jackson.i nternet/

θ(k) = max{min{θ∗(k), 1}, 0} (3)

The research work on brownout was then extended to
handle multiple servers, with load balancing strategies [6]
and to reduce the impact of server failures [13]. With this
paper we provide another extension of the original brownout
controller, that takes into account power budgeting.

B. Power Budgeting

Power budgeting is an approach to minimize the opera-
tional cost of a data center controlling the power usage of
all the entities that operate within the data center boundaries.
For a data center owner, being prepared to handle a high
maximum theoretical power consumption is associated with
a substantial cost, especially when the usual power consump-
tion of the data center is much lower than the maximum
theoretical value that the owner should provide for. Research
on power budgeting has tackled this problem, designing a
power delivery infrastructures that is reduced in comparison
with the traditional design [8], [15]. Instead of being prepared
to handle a peak corresponding to the aggregate peak of
all servers, the data center is designed only to provide a
usual range of power consumption, and the power that each
of the servers can draw from the network is capped to
a certain value. In this way, the data center operator can
reduce both building and infrastructure costs and operational
costs in terms of electricity. Power budgeting exploits (a)
knowledge on usual server utilization, (b) the properties of
the delivery infrastructure, (c) billing models used by the
electricity providers, and (d) the ability of modern machines
to throttle their power consumption.

Researchers have tackled the problem of power budget-
ing at various levels of data center infrastructure: single
server [3], [10], [14], [15], [25], rack [19], [21], cluster [23],
and whole data center [7], [22], [24]. Generally speaking,
power budgeting happens in two different phases: first, power
shifting is used to determine the consumption limits assigned
to each server. Then, each server individually enforces the
power consumption limit using power capping. In this paper
we focus only on power capping, since we act at the virtual
machine level. We assume that a cap has been determined for
each virtual machine and that the virtual machine respects
that cap. To this end, there are many actuators, examples
being Dynamic Voltage and Frequency Scaling and CPU Pin-
ning. Generally speaking, these actuators reduce the amount
of computation that the virtual machine is providing to the
connected users, therefore degrading the service.

This paper exploits a graceful degradation technique –
brownout – to react to the power capping that is imposed
by a central manager with the best delivered performance
possible. To the best of the authors knowledge, this is the
first research work in which the effects of the power cap are
quantified in terms of the amount of performance degradation
imposed on the application and on its end users.
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Fig. 1. Block Diagram of the System.

III. METHODOLOGY

This paper proposes a cascaded controller with the scheme
shown in Figure 1. A power consumption setpoint, P̄(k)
is the input to the system. The setpoint value is compared
with the current power consumption of the machine P(k),
computing the error eP(k) = P̄(k) − P(k). The error
is the input to a Proportional and Integral (PI) controller,
which is in charge of selecting the setpoint for the 95th

percentile in the brownout controller, ¯τ95. The setpoint is
used to compute the current response time error eτ95(k) =
τ̄95(k) − τ95(k). The error is then used by the brownout
controller in Equation (2) to compute the dimmer value θ.
Both the values of θ and τ̄95 are subject to saturations, as
shown in the Figure.

To be precise, the power controller selects the response
time setpoint using the following PI controller in velocity
form.

τ̄∗95(k) = τ̄95(k−1)+Kp[eP(k)−eP(k−1)]+KieP(k) (4)

In (4), Kp and Ki are the proportional and integral
gain of the controller, respectively −0.1 and −0.02 in our
implementation. We also apply saturations, defining as the
minimum response time setpoint τ̄95,min = 0.001 seconds
and as the maximum response time setpoint τ̄95,max = 4.0
seconds, leading to the following control law.

τ̄95(k) = max (min (τ̄∗95(k), τ̄95,max) , τ̄95,min) (5)

Finally, we execute the controller with a period τc = 0.5s.

IV. EXPERIMENTAL VALIDATION

We validated our controller using the publicly available
brownout simulator3. The simulator already contains a profile
of the amount of time it takes for a server running the
brownout-aware RUBiS benchmark4 to serve requests with
and without optional content. Similarly to what the real web
server would do, the simulator enqueues the requests and
use a process sharing discipline with a small timeslice to
simulate the processing capacity given to each of them. In
our simulator, clients always behave according to the closed-
loop model, i.e., they issue a request, receive a response,
wait for a certain think time (3 second), and then issue the
following request.

We extended the simulator with power profiles. More
precisely, we profiled the real machine obtaining data about
the relationship between the 95th percentile of the response

3https://github.com/cloud-control/brownout-simulator
4https://github.com/cloud-control/brownout-rubis
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Fig. 2. Power model interpolation.

times τ95 and the power consumption P , which we then
introduced in the simulator to model the power consumption
based on the measured response times. Then we used the
enhanced simulator to test the cascaded control loop of
Figure 1. In the following, we discuss in details the power
profiles and then we delve into the experimental results.

A. Power Profiles

To create power profiles we conducted a set of experiments
in which we exposed the RUBiS benchmark to a workload
and measured how the application performance changes with
the limited power budget. The benchmark was deployed in
a virtual machine with 6 virtual CPUs and 8 GB of RAM
on a server equipped with Intel Xeon E5-2620 v2 processor.
We used multiple experiment settings: (a) serving requests
with or without an optional content, (b) limiting the server
power budget between 5 and 12W , and (c) changing the
workload level between 1000 and 3000 connected clients.
The power budgets were enforced using Running Average
Power Limit (RAPL) technology [4]. The measurements are
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shown in Figure 2, for θ = 0 (top graph), and for θ = 1
(bottom graph).

We analyzed the collected data to identify the relation
between the power consumption, the response time, the
incoming workload and the value of θ. In particular, we
identified a function that maps the current response time,
the incoming workload λ and the dimmer value θ into the
power consumption.

The power profile can be divided into three different
operating regions:

1) High-Power Budget (HPB), where the machine can
be operated with sufficient power and guarantees a low
response time;

2) Mid-Power Budget (MPB), where the machine is
operated with an amount of power that is not able
to guarantee reasonable performance, and the response
time increases; and

3) Low-Power Budget (LPB), where the machine is
operated with the minimum amount of power, i.e., the
idle power, and the response time is saturated to the
maximum.

Figure 3 shows the typical shape of the power profile
described above, evidencing the three different operating
regions.

The two highlighted points (Wm, τM ) and (WM , τm)
characterize the transition among the operating regions, and
they depend both on the incoming workload, and on the
dimmer value. From the experimental data we identified
these points for θ = 0 and θ = 1, and for the different
workloads, deducing that they can be expressed as:

W 0
m(λ) = 5 + (λ/1000)

0.4 W, W 0
M (λ) = 6 + (λ/1000)

0.7 W
W 1
m(λ) = 5 + (λ/1000)

0.6 W, W 1
M (λ) = 6 + (λ/1000)

1.4 W
τ0m = 5ms, τ0M = 9200ms
τ1m = 7ms, τ1M = 9600ms

Therefore, we compute the actual points based on the
current workload and dimmer as a convex combination of
the obtained points as:

Wm(θ, λ) = (1− θ)W 0
m(λ) + θW 1

m(λ)

WM (θ, λ) = (1− θ)W 0
M (λ) + θW 1

M (λ)

τm(θ, λ) = (1− θ)τ0m(λ) + θτ1m(λ)

τM (θ, λ) = (1− θ)τ0M (λ) + θτ1M (λ)

Finally, we computed the approximated power model as a
piecewise affine function, and the result is shown in Figure 2.
Notice that the obtained approximation is an invertible func-
tion, i.e., given the response time it is possible to compute
the power consumption, and vice versa.

B. Experiments

After introducing the power profiles in the simulator, as
specified in Section IV-A, we tested the behavior of the
cascaded controller when the system is subject to a set of
perturbations.

Together with more qualitative considerations, we also
evaluate our solution using standard metrics. We compute the
Integral of the Absolute Error for both power and response
time, respectively indicated with Eτ95 and EP . Indicating
with t the end instant of the simulation, the expressions are
computed as follows.

Eτ95 =

t∑
k=0

|eτ95(k)|, EP =

t∑
k=0

|eP(k)| (6)

Notice that the data collection is done together with the
controller execution, therefore the error sums data points
sensed with a time interval of τc = 0.5s.

Testing power setpoint variations and incoming re-
quest rate changes. Figure 4 shows one of such tests.
The simulation here lasts for 500 seconds and is divided
into 5 different time intervals, each lasting for 100 seconds.
In the interval [0, 100), the application should serve 2000
clients with a power budget of 15W . In the second interval,
between [100, 200) seconds, the application has a power
budget of 18W and 2000 clients. In between these two
intervals only the power budget is changed. The application
responds decreasing the setpoint for the response time. Since
it has more power to use, it can serve users with a better user
experience.
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Fig. 4. Closed-loop behavior when the system is subject to power setpoint
variations and incoming request rate changes.
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In the third interval, when time belongs to [200, 300) the
power budget is decreased to 12W , with 2000 clients. The
application then increases the response time setpoint, to keep
the users in the system for a longer time and therefore avoid
many simultaneous requests. Doing so, the application is able
to meet the power budget and also increase the dimmer value.
When time equals to 300 seconds, 500 clients disconnects,
the load therefore becoming of 1500 concurrent users. It is
much easier in this case for the application to meet the power
budget and regulate the response time setpoint. The dimmer
value can be increased and users receive a better service.
Finally, at time 400 and for the last interval, the power budget
is increased to 20W and the number of clients is increased of
250, making it 1750. As a consequence, the setpoint response
time can be decreased, serving the users faster.

The dimmer value is set by the inner loop according to
the brownout framework [12], while the last plot shows
the workload that is estimated at the application level (the
number of simultaneously active requests per second as
seen by the application, that is used for the power profiles
estimation as described in Section IV-A). Finally, for the
experiment shown in Figure 4, Eτ95 = 511.71 and EP =
1469.78.

Testing concurrency effects in the long run. In this
second test, we generated traces for a one day long simula-
tion, using patterns of incoming requests that would vary in
rate about every 15 minutes (precisely every 1000 seconds).
In the simulation, we kept the power budget constant to
15W , while the number of concurrent users connected to
our application was spanning between 750 and 2250. Table I
shows the number of connected users for the first 26000
seconds. As can be seen abrupt changes (an increase of 500
users connected or the disconnection of a similar number of
users) are tested as well as slow perturbations (both increase
and decrease in the order of 50 users).
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Fig. 5. A close look to a fraction of the day long simulation.

TABLE I
CONNECTED USERS IN THE FIRST PART OF THE SIMULATION.

Interval Users
[00000,01000) 1500
[01000,02000) 2000
[02000,03000) 2250
[03000,04000) 1750
[04000,05000) 1250
[05000,06000) 1000
[06000,07000) 1250
[07000,08000) 1750
[08000,09000) 1250
[09000,10000) 1750
[10000,11000) 1800
[11000,12000) 1850
[12000,13000) 1900
[13000,14000) 1950
[14000,15000) 1450
[15000,16000) 1950
[16000,17000) 1900
[17000,18000) 1850
[18000,19000) 1800
[19000,20000) 1750
[20000,21000) 1450
[21000,22000) 1950
[22000,23000) 2200
[23000,24000) 1700
[24000,25000) 1200
[25000,26000) 950

As a result of the simulation, we analyze both Eτ95 =
55749.75 and EP = 130706.81 more in details. A closer look
at the Integral of the Absolute Error of the error in power,
reveals that the data corresponds to an average absolute error
of 0.756W every second (recall that the control period is
the same as the data collection period, being 0.5s). If we
count only the samples in which the machine is exceeding the
power budget, we obtain an average excess of 0.514W per
second. At the same time, the Integral of the Absolute Error
for the response time reveals an average error of 0.322s. If
we again look only at the excess in absolute time, the average
is reduced to 0.120s, which is acceptable for our application.

The errors are mainly due to periods of time like the one
depicted in Figure 5. As can be seen, at time 25000, the
system reacts to the incoming request rate change by in-
creasing the response time setpoint to the maximum allowed
value imposed by the saturation levels. This in turn leads
to an increase in the dimmer value which reaches its own
saturation value. At this point, the system is not capable
to reduce the consumed power and therefore the consumed
power exceeds the setpoint. When these unfeasible condi-
tions do not happen, the controller is capable of regulating
the power consumed by the machine.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to combine
the brownout controller for response time control in cloud
applications with a power budget controller. The resulting
cascaded controller is capable of maintaining a power budget
for the running application machine, by using the inner loop
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controller to modulate the amount of load that the cloud
application receives by changing the response time setpoint.

The idea behind this work is to make cloud applications
self-adaptive using a control-theoretical approach and to en-
force some guarantees on the resulting closed-loop systems.
In this work, it is particularly relevant to notice the effect
of the saturation levels for the outer loop, because increased
response times come at a cost for the cloud provider, e.g., in
terms of reduced costumer retention. Saturating the setpoint
for the 95th percentile of the response times at 4 seconds
means ensuring that the cloud application is serving clients
in the correct way whenever possible and not exceeding some
acceptable performance metrics.

We envision extensions of this work that would better
exploit the tradeoff between the power budget and the
response time. For example, it could be possible to use
Model Predictive Control to control the power budget using
the response time setpoint as a constraint. At the same
time, another future extension of this work would be to
include scaling policy to dynamically change the amount of
resource given to the cloud application, together with the
power budget, thus enforcing the power constraint on a per-
core basis.
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