
Flexible Components for Development of
Embedded Systems with GPUs

Gabriel Campeanu, Jan Carlson and Séverine Sentilles
Mälardalen Real-Time Research Center

Mälardalen University
Västerås, Sweden

Email: {gabriel.campeanu, jan.carlson, severine.sentilles}@mdh

Abstract—Today, embedded systems incorporate GPUs
through a multitude of different architectures. When it comes to
the development of these systems with GPUs, component-based
development is ill-equipped as it does not provide support for
GPUs. Instead, the component developer needs to encapsulate
inside the component, besides functionality, settings and envi-
ronment information that are specific to a particular GPU archi-
tecture. This binds the component this GPU architecture. Using
these hardware-specific components characterized by restricted
reusability, the system developer is confined to a limited design-
space which may negatively impact the overall system feasibility.

In this paper, we introduce the concept of flexible components,
which are components that can be executed indifferently on
CPU or GPU, regardless of the architecture. Using flexible
components, component developers are relieved from the side
development activities (e.g., environment information) which
are automatically handled by component-level mechanisms. To
enhance component communications, connection elements (i.e.,
adapters) are generated to handle component data transmission,
taking in consideration the platform characteristics. Finally, our
proposed solution is evaluated by using flexible components to
implement the vision system of an underwater robot, and execute
it on three platforms with different GPU architectures.

I. INTRODUCTION

Many modern embedded systems deal with huge amounts of
data originating from the interaction with the environment. For
example, the autonomous car developed by Google1 processes
up to 750 MB of data per second delivered through its
sensors (e.g., cameras). The data must be processed with
a certain performance in order to handle, in real-time2, the
environment changes. For example, an underwater robot must
rapidly process environment data in order to identify moving
objects before they actually move away from the sensors’
range.

A solution to process these data with adequate performance
is the usage of general-purpose Graphics Processing Units
(GPUs), which, thanks to their architecture, excel for highly
data-parallel applications. Today, embedded-board platforms
contain GPUs and different platforms often have different
architectures. Depending on their characteristics (e.g., size,
energy consumption, computation power), different platforms
are suitable in different contexts. For example, there are

1https://waymo.com/
2Real-time refers here to the timing correctness aspect, i.e., the physical

time when the system’s results are produced

platforms with high-computation GPU such as Condor GR2
used in high-performance computing solutions, but also low-
computation with low energy consumption such as Mali-470
GPU, utilized in smart watches.

Another trend in the development of embedded systems
is the usage of Component-Based Development (CBD) [1].
This software engineering methodology promotes the de-
velopment of systems through the composition of already
existing software units called (software) components. The
industry successfully uses various component models such as
AUTOSAR [2], Rubus [3] and IEC 61131 [4].

However, CBD is ineffective for embedded platforms that
combine CPUs and GPUs. This is due to the lack of specific
support for GPUs. This overall challenge has several facets.
One of them refers to the development of components with
GPU capabilities, which is complex, time-consuming and
error-prone. The component developer effort is increased due
to the fact that alongside the functionality, the component
must contains settings and GPU-specific environment infor-
mation. Therefore, encapsulating inside the components all the
required information, results in hardware-specific components
suitable for particular GPU architectures only. In our previous
work [5][6], we tackled parts of this issue in introducing:
i) specialized components that are specific designed to en-
capsulate GPU functionality and cannot function without a
GPU hardware, and ii) particular artifacts (i.e., adapters)
that facilitate component communications by automatically
transferring data between CPU and GPU memory systems.

Another existing issue involves the reduced flexibility of the
current way in designing component-based applications with
GPU capabilities. The existing hardware-specific components
have a reduced reusability between different hardware con-
texts. Using these (hardware-specific) components makes the
system developer to be limited, to some extent, in exploring
all the design-space solutions.

In this work, we introduce flexible components. Basically,
a flexible component is a component with a functionality that
may be executed either on CPU or GPU. Using flexible com-
ponents, the component developer focuses only on implement-
ing the functionality. Component-level mechanisms automati-
cally generate environment-specific information that allows the
component to be executed on different hardware. Moreover,
when employing flexible components in the system design, the

system developer has a larger design-space to choose from. In
the context of flexible components, the adapters automatically
transfer data between components, taking in consideration the
platform specifications.

The benefits of employing flexible components are: i) au-
tomatized mechanisms lift from the component developer the
responsibility of handling the component environment-specific
information, ii) a larger design-space may positively impact the
overall system feasibility, and iii) generated adapters improve
the component communication efficiency.

The reminder of the work is divided as follows. Background
of GPUs and CBD in embedded systems is covered by
Section II followed by the solution overview in Section III.
We present the realization details of the solution in Section IV.
The feasibility evaluation is covered by Section V, followed
by related work (Section VI) and conclusions (Section VII).

II. BACKGROUND - CBD AND GPUS

In the first part of this section, we presents more details
about CBD and its use in the context of embedded systems.
The second part describes the GPUs, their characteristics and
how they are addressed by the existing programming models.

A. CBD in Embedded Systems

Component-based development is a software engineering
methodology that promotes the efficient system development
through the composition of already existing software blocks
called (software) components. CBD advertises the use and
reuse of the same component in different contexts, which
increases the development efficiency. The way components
interact is through interfaces which are specifications of the
components’ access points. Several types of interfaces exists,
such as port-based and operation-based interfaces. The port-
based interfaces, used in our work, comprise of access points
for sending/received data of different types between compo-
nents.

A key concept of CBD is encapsulation, where all com-
ponent information including implementation details, are en-
closed inside the component. There are four level of the en-
capsulation. Black-box components are in compiled or binary
form, that cannot be changed; their functionality can be ac-
cessed through the interface. The white-box components, used
in this work, are readable source code, directly changeable by
the programmers. The glass-box components’ functionality is
accessed through the interface, and their internals are visible
from outside. For gray-box components, the developer has
access to their interface and internals.

A component is constructed by following the specifications
of a component model. Besides the construction rules, the
component model defines how components interact with each
other when they are assembled into a system [7].

The embedded and real-time system industry successfully
adopted the CBD methodology through various component
models. These component models follow different interac-
tion styles suitable for particular type of applications [8].
For example, AUTOSAR which is a standard in automotive

industry, follows the request-response and sender-receiver
interaction styles. The pipe-and-filter style used in our work,
is another interaction approach used by industrial component
models such as IEC 61131 and Rubus. This particular style,
suitable for streaming of events-type of applications, allows an
easy mapping between the interaction model and the control
specifications required by embedded and real-time systems.

As the evaluation uses the Rubus component model, we
provide more information about it. From the development
perspective, a Rubus component consists of three parts, i.e., a
constructor, behavior function and destructor. The constructor
is executed once, before the system execution, and allocates
the component resource requirements, while the destructor is
execution when the system is properly switched off, and re-
leases the allocated resources. The behavior function contains
the functionality of the component and is executed each time
the component is triggered.

B. GPUs

GPUs were developed back in 90s and were employed only
in graphic-based applications. In time, thanks to the increase
of their computation power and becoming easier to program,
GPUs were utilized in different type of applications becoming
general-purpose GPUs [9]. For example, cryptography applica-
tions [10] and Monte Carlo simulations [11] have GPU-based
solutions.

The GPU is a processing unit equipped with a parallel
architecture that may employ at a time, thousands of compu-
tation threads through its multiple cores. Due to its execution
model, GPU excel in executing data-parallel applications. For
example, a simulation of bio-molecular systems may achieve
20 times speed-up on GPU compared to the CPU [12].

A particularity of a GPU is that it cannot function without
a CPU. Considered as the brain of the system, the CPU
coordinates all the GPU-specific activities such as data transfer
or execution of GPU functionality. Embedded-board platforms
with different GPU architectures are now developed by various
vendors. There are two existing types of GPU architectures,
where:

• the GPU is discrete (dGPU) and has its own private
memory such as the Condor GR23; and

• the GPU is integrated (iGPU) on the same chip as the
CPU (referred as SoC), sharing the same memory, such
as AMD Kabini4.

Embedded-boards with iGPU architectures are the predom-
inant platforms used in industry due to their reduced cost,
size and energy usage. On the other side, dGPUs, with large
physical sizes that incorporates more (GPU) resources, are
used by systems that require higher performance.

Fig. 1 presents different platforms with GPU architec-
tures, and their memory characteristics. Systems with dGPUs
(Fig. 1(a)) have different memory systems and data needs to be

3http://www.eizorugged.com/products/vpx/condor-gr2-3u-vpx-rugged-
graphics-nvidia-cuda-gpgpu/

4http://www.amd.com/en-us/products/processors/desktop/athlon

core core

core core

RAM Global Memory

…

CPU GPU

PCIe

(a) System with discrete GPU

core core

core core

System Memory

…

CPU GPU

(b) SoC with distinct memories

core core

core core

System Memory

…

CPU GPU

(c) SoC with shared memory

Fig. 1: Embedded platforms with different GPU architectures

copied (with additional overhead) via e.g., the PCIexpress bus.
Platforms with iGPUs have physical memories that are divided
into distinct parts (Fig. 1(b)). In this case, there is still need
for data transfer activities but the copy overhead is minimized
due to the physical location (i.e., on the same memory chip).
For this type of architecture (i.e. iGPU), there are platforms
that optimize the memory access by offering a shared virtual
memory (SVM) space. To place data on SVM, specific transfer
activity are used; on the other hand, no specific activities are
used to access the data from SVM. The latest SoC architecture
(Fig. 1(c)) offers concurrently access to the same memory for
both CPU and GPU, without the need for data copies.

Regarding the development of applications with GPU ca-
pabilities, different programming models may be employed.
OpenCL5 is a general framework that is supported by multiple
platforms and vendors (e.g., Intel, AMD, NVIDIA, Altera,
IBM, Samsung, Xilinx). In this work, we utilize OpenCL to
construct our flexible component solution.

While using OpenCL to develop an application, there are
several hierarchical steps that needs to be respected. A plat-
form is at the very top level; it contains the installed vendor’s
driver. A platform needs to have its own context that may
contain one or several execution devices. For example, a
system may have three devices, i.e., one CPU and two GPU
(iGPU and dGPU) devices. A device should be selected in
order to execute the functionality. The commands given by
the host (i.e., CPU) to the device (e.g., iGPU) are sent using a
command queue mechanism. The functionality that is intended
to be executed on the device, also known as the kernel, may
be defined even before setting the platform. A next step is
the allocation of device memory to hold data (referred as
buffers), either as input or output for the kernel function. A
program to hold the defined kernel is created and compiled.
The kernel arguments are assigned by using the allocated
(input and output) buffers, and specify the number of threads
utilized for the kernel execution. Finally, the kernel is ready
to be executed, and its results are transfered back to the host.
As a last step, the resources (i.e., memory buffers, program,
context, command queue, kernel) are released.

III. FLEXIBLE DEVELOPMENT OF EMBEDDED SYSTEMS
WITH GPUS

In this work, we introduce the notion of flexible component
which has the following particularities. A flexible component

5https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/

is a white-box component, with readable and modifiable source
code. The functionality of a flexible component is expressed in
a parallel manner using the OpenCL syntax. This functionality
can be executed either on CPU or GPU and the component
does not contain any environment-specific information that
would bind it to a particular processing unit.

During system design, the system developer decides on
which hardware (i.e., CPU or GPU) the flexible components
should be allocated onto. In order to be executed on the
specified hardware, the required environment information is
generated automatically.

The benefits of adopting flexible components are the fol-
lowing:

• The component developer does not need to address the
particular environment settings required for the compo-
nent execution, including details such as allocating GPU
memory and transferring parameters to the GPU; hence,
the development effort and complexity is decreased.

• The system developer has more alternatives when explor-
ing the system design-space solutions, which may result
in an improved overall system feasibility.

• Efficient communication between components allocated
on different parts (i.e., CPU and GPU) of the platform
can be automatically generated.

A. Flexible component

We define a flexible component Cflex as a tuple that contains
the functionality F disclosed through the interface I . Flexible
components use port-base interaction style and the underlying
component model uses a pipe-and-filter style.

Cflex = 〈F, I〉, with I = {p1, p2, ...}.

F denotes the functionality.
I defines a set that contains all data ports pk.

Through the ports of the interface, Cflex communicates with
other components, i.e., by providing (through output ports) and
requiring (through input ports) data. Each port has a unique
name and a specific data type that characterizes the (provided
or required) data:

∀pk ∈ I , pk.name denotes the name of port pk, and
pk.type denotes the type of port pk.

The ports of flexible components support data of regular
type such as integer or double. Besides regular data, we

introduce m-elem as a data type, referred as multi-element
type, to describe large data that is also supported by flexible
component ports. For example, a 2D image is a large data
composed of many pixel elements grouped together, that
would be represented by a multi-element type.

In order to generate all the parts required by a flexible com-
ponent to be executed (see Section IV), we define additional
port information related to the multi-element ports, as follows.

The data of the multi-element type may have several dimen-
sions. Moreover, data of m-elem type contain many elements,
and the size of the individual elements can vary. Therefore:

∀pk, where pk.type = m-elem

pk.width denotes the horizontal size,
pk.height denotes the vertical size, and
pk.size denotes the size of each data element.

A good example is a color (2D) image with two dimensions,
that is a width of 640 and a height of 480 pixel elements. Each
pixel of the image has a color (i.e., value) that is obtained from
a combination of three colors (Red, Green and Blue), each
with values between 0 to 255. The size of each color pixel is
3 ∗ 1 bytes (the unsigned char type allows values between 0
and 255 and has a size of 1 byte). For a multi-element data
with one dimension (e.g., array of integers), pk.height is set to
1. The approach can easily be extended to support data with
more than two dimensions, e.g. by introducing information
about depth for 3D images.

The ports of the interface I are grouped into two subsets,
i.e., input and output. Moreover, each subset is further divided
according to their data types (i.e., regular and multi-element).
Therefore:

I = Iin ∪ Iout, where
Iin = Ireg in ∪ Imulti in and
Iout = Ireg out ∪ Imulti out with

∀pk ∈ Ireg in ∪ Ireg out, pk.type 6= m-elem and
∀pk ∈ Imulti in ∪ Imulti out, pk.type = m-elem.

As described in the background section, large data (e.g.,
images) need to reside on the GPU memory (e.g., for platforms
with distinct memory systems) in order to be processed by the
GPU. The motivation of introducing the multi-element type
and the separation of the interface into two subsets is that
automatically generated mechanisms transfer data between
CPU and GPU based on the data type information of the
connected ports. For example, for platforms with dGPUs,
when a regular component sends a data of m-elem type
to a GPU-allocated flexible component, that specific data is
automatically transfered on the GPU memory. We do not need
to specifically handle data of a regular type (e.g., integer
or double) because the GPU run-time driver automatically
handles it.

The other part of the flexible component is its functionality
F . The flexible component functionality is basically the kernel

code (see Section II) constructed using the OpenCL syntax.
Written in a data-parallel manner, it can be executed by either
CPU or GPU.

From the implementation perspective, the multi-element
type contains a pointer to the memory location of the data.
Listing 1 outlines the construction of the multi-element type.

Listing 1: Declaration of the m-elem type
typedef struct{

unsigned char *data;
} m-elem;

Concerning the actual implementation of the functionality,
instead of hard-coding the m-elem port information (e.g., 640)
inside the functionality which is considered a bad practice
(e.g., poor modifiability, readability), we provide a number
of macros. Moreover, we hide through a macro definition the
fact that a buffer (with one value) is utilized when addressing
regular output data. The macro definitions located in the
flexible component constructor (see Section IV-A), are the
following:

∀pk, where pk ∈ Imulti in ∪ Imulti out

pk.name width to access the width information,
pk.name height to access the height information,
pk.name size to access the size information, and
pk.name data to access the data memory location.

∀pk, where pk ∈ Ireg out

pk.name to access the corresponding (one value) buffer.

IV. REALIZATION

The realization of our solution is implemented on two
levels, i.e., on the component and system level, as follows.
In order for a flexible component to be executed on a de-
vice (i.e., CPU or GPU), it needs to include, alongside the
component functionality, specific information such as settings,
environment details about the device and memory allocation
to hold the result. As the flexible component contains the
main functionality, component-level mechanism automatically
generate the rest of the required code that allows it to be
executed on the selected hardware. More specifically, using the
core functionality and the information regarding the number
and data types of the (input and output) data ports provided by
the flexible component, a full component is generated, ready
to be executed on the hardware. The resulting generated com-
ponent contains: i) a constructor that initializes the component
resource requirements, ii) a behavior function that represents
the component functionality, and iii) a destructor that releases
the component resources.

From the system level perspective, we introduce specific
artifacts to facilitate an efficient component communica-
tion. More specifically, based on the component connections
and component-to-hardware allocation, artifacts, referred as
adapters, are generated where needed. The adapters take data
from one component and provide it to the connected compo-
nent in the appropriate memory location. For example, when

a regular component sends data to a GPU-allocated flexible
component, the generated adapter automatically transfers data
from the (CPU) main memory to the appropriate GPU memory
location, corresponding to the platform characteristics.

More details about the component generation and commu-
nication are presented in the following subsections.

A. Component-level realization

This section describes the transformation of a flexible com-
ponent into an executable component through its constituent
parts, i.e., constructor, behavior function and destructor.

The constructor is a function that encloses all information
necessary to initialize a component. The constructor contains:
i) memory allocation to hold the component results, ii) the
kernel functionality defined by the flexible component, and
iii) settings and environment information of the hardware (i.e.,
CPU or GPU). The implementation provided by the developer
in the flexible component represents the actual body of the
kernel function. The kernel function name and its arguments
are automatically generated inside the constructor using the
information of the input and output data ports of the flexible
component. This kernel function (name and its body) is loaded
on the allocated hardware (i.e., CPU or GPU) as a string (due
to OpenCL specifications).

Listing 2 describes the body of generated constructor func-
tion. At lines 3 and 7, the constructor contains the generated
memory buffers that hold the resulting data corresponding to
each output data port. We distinguish between regular and
multi-element output ports. The OpenCL run-time does not
support individual values (e.g., of integer or float type) as
output kernel arguments. Therefore, when having an output
data port of regular type, a buffer (that has one value) is created
as an output argument of the kernel.

The generated constructor continues by defining a variable
(i.e., source string) that contains the kernel function name
(line 10) and its arguments (line 12, 15, 18 and 21) that
correspond to the input and output ports. The macro definitions
described at lines 26-37 may be used by the component
developer to access, inside the functionality, the required port
information. The flexible component functionality is added to
the string variable as the body of the kernel function (line
41). The device is loaded with the source code by storing the
source string variable into the program (line 45) after which
is build (line 48). Finally, a kernel object (line 51) is created
to be executed by the device.

Regarding the flexible component settings, we define two
types. The first one refers to the device environment in which
the flexible component will be executed i.e., the context,
command queue and device id (at lines 3, 7, 45, 48). These
settings are automatically constructed with the system ini-
tialization. If flexible components are allocated to both CPU
and GPU, two global settings are constructed, each for the
individual processing device. The same settings that target the
GPU will be used for all GPU-allocated flexible components;
similarly, CPU settings will be used for all CPU-allocated
flexible components.

The second setting type concerns the specification and
grouping of the computation resources of the hardware that are
assigned to the component (lines 54 and 55). These settings are
personalized to each flexible component and depend on e.g.,
the hardware available resources. Re-using the concept from
our previous work [5][6], we provide these settings to each
flexible component through a configuration interface. This
interface is implemented as an additional input data port, that
receives constant content and re-use it for every component
execution.

Finally, the output m-elem ports contain the data resulted
from the execution of the kernel by linking them to the
corresponding memory buffers (line 59).

Listing 2: Constructor code
1 //create memory buffers for the output ports
2 <foreach p in Ireg_out>
3 void *result_<p.name> = apiCreateBuffer(settings->contex,

CL_MEM_WRITE_ONLY, sizeof(<p.type>),NULL,NULL);
4 <endforeach>
5
6 <foreach p in Imulti_out>
7 void *result_<p.name> = apiCreateBuffer(settings->contex,

CL_MEM_WRITE_ONLY, <p.width*p.height*p.size>,NULL,NULL);
8 <endforeach>
9

10 const char *source_string ="__kernel void flexible_kernel(
11 <foreach p in Ireg_in>
12 <p.type> <p.name>,
13 <endforeach>
14 <foreach p in Ireg_out>
15 __global <p.type> *result_<p.name>,
16 <endforeach>
17 <foreach p in Imulti_in>
18 __global <p.type> *<p.name>,
19 <endforeach>
20 <foreach p in Imulti_out>
21 __global unsigned char *result_<p.name>,
22 <endforeach>
23){
24 /* macro definitions to access port information */
25 <foreach p in Imulti_in ∪ Imulti_out>
26 #define <p.name>_width <p.width>
27 #define <p.name>_height <p.height>
28 #define <p.name>_size <p.size>
29 <endforeach>
30 <foreach p in Imulti_in>
31 #define <p.name>_data <p.name>->data
32 <endforeach>
33 <foreach p in Imulti_out>
34 #define <p.name>_data result_<p.name>
35 <endforeach>
36 <foreach p in Ireg_out>
37 #define <p.name> result_<p.name>[0]
38 <endforeach>
39
40 /* flexible component functionality */
41 <F >
42 }";
43
44 /* Create a program from the kernel source */
45 cl_program program = clCreateProgramWithSource(settings->context

, 1, (const char **)&source_string, NULL, NULL);
46
47 /* Build the program */
48 clBuildProgram(program,1,&(settings->device_id), NULL, NULL,

NULL);
49
50 /* Create the kernel object */
51 cl_kernel kernel = clCreateKernel(program, "flexible_kernel",

NULL);
52
53 /* individual settings - CPU/GPU threads usage */
54 int total_thrd[2] = {(settings->global1),(settings->global2)};
55 int group_thrd[2] = {(settings->local1), (settings->local2)};
56
57 /* connect the output m-elem ports to the corresponding results */
58 <foreach p in Imulti_out>
59 <p.name>->data = (unsigned char*) result_<p.name>;
60 <endforeach>

As described in Section II, there are various platforms with
different GPU architectures. In order to access the appropriate

OpenCL function, a common API, presented in our previ-
ous work [13], is defined to abstract the different hardware
characteristics through a set of functions. For example, the
apiCreateBuffer used in line 3 to allocate buffer memory,
based on the hardware and software capabilities (i.e., the
device memory features and the existing OpenCL version on
the platform), allocates memory on the appropriate location
using the appropriate OpenCL function.

Listing 3: Behavior function
1 /* Set the arguments of the kernel */
2 <counter=0>
3 <for each p in Ireg_in>
4 apiSetKernelArg(kernel,<counter>, sizeof(<p.type>), (void*)&

<p.name>);
5 <counter+= 1>
6 <endforeach>
7 <for each p in Ireg_out>
8 apiSetKernelArg(kernel,<counter>, sizeof(<p.type>), (void*)&

result_<p.name>);
9 <counter+= 1>

10 <endforeach>
11 <foreach p in Imulti_in>
12 apiSetKernelArg(kernel,<counter>, <p.width*p.height*p.size>, (

void*)&<p.name>);
13 <counter+= 1>
14 <endforeach>
15 <for each p in Imulti_out>
16 apiSetKernelArg(kernel,<counter>, <p.width*p.height*p.size>, (

void*)&result_<p.name>);
17 <counter+= 1>
18 <endforeach>
19
20 /* Execute the OpenCL kernel */
21 clEnqueueNDRangeKernel(settings->cmd_queue, kernel, 2, NULL,

total_thrd, group_thrd, 0, NULL, NULL);
22
23 /* Wait for command queue and GPU to finish their activities */
24 clFlush(settings->cmd_queue);
25 clFinish(settings->cmd_queue);
26
27 /* copy regular kernel output to correpsonding output port */
28 <foreach p in Ireg_out>
29 apiEnqueueReadBuffer(command_queue, result_<p.name>, CL_TRUE, 0,

sizeof(<p.type>), &<p.name>, 0, NULL, NULL);
30 <endforeach>

The behavior function, described in Listing 3, is generated as
follows. Using the memory buffers of the input and output data
ports, the arguments of the kernel function are automatically
provided (lines 4, 8, 12 and 16). The kernel execution is
described in line 21, while in the last part (i.e., line 24 and 25),
specific OpenCL functions are used to wait for the execution
completion of the functionality. The last line of the function
(i.e., 29) describes how the data from result buffers (with one
value) are copied to the corresponding output regular ports.

The destructor releases the component resources. Listing 4
describes the destructor code, where the environment informa-
tion (i.e., kernel object and program) are released (lines 2 and
3). The destructor also releases the memory buffers that were
initially allocated by the constructor (lines 5 and 9).

Listing 4: Destructor code
1 /* Clean up */
2 clReleaseKernel(kernel);
3 clReleaseProgram(program);
4 <foreach p in Iout>
5 apiReleaseBuffer(result_<p.Name>);
6 <endforeach>

B. System-level realization

To facilitate the component communication at the system
level, we use the concept of adapters proposed in our previous

work [5] [6]. In the following paragraphs, we present in details
how adapters are utilized in the context of flexible components.

1) Adapter identification. Components executed by different
processing units (i.e., CPU and GPU) need, for particular
platforms, data transferred between memory systems. For
example, data send by a regular component to a GPU-allocated
flexible component needs to be copied to the GPU memory
system in order to be accessed by the flexible component.
Instead of being encapsulated in the flexible components, the
transfer activities are lifted from the component level and
automatically provided through transparent adapters, based on
the platform specifications.

There are two types of adapters corresponding to the
transfer activity directions, i.e., CPU-to-GPU and GPU-to-
CPU adapters, each one accomplishing an one-to-one port
communication between two components. In our approach,
adapters are implemented as regular components by following
the component model specification, and are automatically
generated by fulfilling three generation steps: I) introduce the
adapters, II) remove unnecessary adapters, and III) merge the
adapters where possible. The steps are presented as follows.

Step I. Two rules define the introduction of adapters:
a) Two components, of which at least one is a flexible

component, communicate through data ports of the multi-
element type.

b) One of the components, which is a flexible component,
is allocated to the GPU and the other component (either
regular or flexible) is allocated to the CPU.

CPU-to-GPU
adapter

Flexible
component

(CPU)

Flexible
component

(GPU)

Regular
component

(CPU)

Flexible
component

(GPU)

Regular
component

(CPU)

GPU-to-CPU
adapter

Fig. 2: Basic generation of adapters

We exemplify the generation of adapters in Fig. 2, where
a CPU-to-GPU adapter facilitates the communication be-
tween CPU- and GPU-allocated flexible components. Sim-
ilarly, a GPU-to-CPU adapter facilitates communication be-
tween GPU- and CPU-allocated components. No adapters are
required when connected components are allocated on the
same processing units.

Step II. The hardware characteristics impose additional
restrictions on the generation of adapters, as follows:

• If the platform has a full-shared memory system, there
will be no generation of adapters (due to the direct
memory access feature).

• For platforms with shared virtual memory, only
CPU-to-GPU adapters are generated.

Fig. 3 illustrates the generation of adapters for platforms
with different characteristics. In Fig. 3(a) where the platform
has distinct address spaces, generated adapters transfer data
to appropriate location. For platforms with shared virtual
memory support (Fig. 3(b)) there is need only for CPU-to-
GPU adapters to specifically transfer data on the SVM space.

CPU-to-GPU
Adapter

GPU-to-CPU
Adapter

CPU GPU
CPU

address space
GPU

address space

Flexible
component

(GPU)

Ex
ec

ut
io

n
tim

e

copy to GPU

copy to CPU

(a) Distinct address spaces

CPU GPU
CPU

address space
GPU

address space

Flexible
component

(GPU)

CPU-to-GPU
Adapter

SVM

copy to SVM

(b) Shared virtual memory

CPU GPU

Flexible
component

(GPU)

Ex
ec

ut
io

n
tim

e

Shared
address space

(c) Shared address space

Processing
unit

Private
address space

Shared
address space

Flexible
component

Transparent
adapter

Shared
virtual space

SVM

Data transfer
operation

Flow of
data

Legend:

Fig. 3: Adapters in different hardware architectures

For this particular platform, there is no need for GPU-to-CPU
adapters because all components can directly access the SVM
space. The last case where platforms have full shared memory
(Fig. 3(c)), there is no generation of adapters; all CPU- and/or
GPU-allocate components can directly access the memory.

Step III. For optimization purposes, we group several (one-
to-one into one-to-many) adapters, using the following rules:

• when a regular or CPU-allocated flexible component
communicates with several GPU-allocated flexible com-
ponents through one output port, the communications are
done through a single CPU-to-GPU adapter.

• when a GPU-allocated flexible component communicates
with several regular or/and CPU-allocated flexible com-
ponents through one output port, the communications are
done through a single GPU-to-CPU adapter.

Flexible
component

(CPU)

CPU-to-GPU
adapter

Flexible
component

(GPU)

Flexible
component

(GPU)

Flexible
component

(CPU)

GPU-to-CPU
adapter

Regular
component

(CPU)

Fig. 4: Optimization of generation of adapters

The reason to have one adapter is that, instead of copying
several versions of the same data on the main/GPU memory
system, we transfer the data once and provide it to several
components. Fig. 4 exemplifies the optimization step, where
one CPU-to-GPU adapter transfers data on the GPU memory
system and provides it to two GPU-allocated flexible compo-
nents. Similarly, a GPU-to-CPU adapter copies once data on
main memory system.

2) Adapter generation. This section describes the generation
of the adapters’ constituent parts, i.e., constructor, behavior

function and destructor, as follows.
The constructor. The adapter has one input data port p in

and one output data port p out, both of multi-element type.
The adapter’s constructor allocates memory (line 2) corre-
sponding to the size of input data, on the appropriate location,
i.e., the GPU (for CPU-to-GPU adapters) or main memory
(for GPU-to-CPU adapters). The output port is linked to the
location that holds the copied input data (line 5).

Listing 5: Constructor code of adapters
1 /* create memory buffers for the (one) output port */
2 void *result_adp = apiCreateBuffer(settings->contex,

CL_MEM_WRITE_ONLY, <p_in.width*p_in.height*p_in.size>,NULL,
NULL);

3
4 /* connect the output port to the created buffers */
5 <p_out.name>->data = (unsigned char*) result_adp;

Behavior function. The generated code of this part handles
the transfer of data to or from GPU, corresponding to the
hardware allocation of the connected components. The clEn-
queueWriteBuffer is synchronous (i.e., returns the control after
it finishes) due to the usage of CL TRUE flag.

Listing 6: The adapter behavior function
clEnqueueWriteBuffer(settings->cmd_queue, result_adp, CL_TRUE, 0,

<p_in.width*p_in.height*p_in.size>, <p_in.name>->data, 0, NULL,
NULL);

The destructor. Opposite to the adapter’s constructor that
allocates one memory space for the input data, the adapter’s
destructor releases this memory.

Listing 7: Destructor code of adapters
/* Clean up */
apiReleaseBuffer(result_adp);

V. FEASIBILITY EVALUATION

This section presents a feasibility evaluation of our solution.
The first part describes the underwater robot vision system
used in the case study, while the rest of the section examines
our solution implementation and its output for different cases.

A. Case study

For the evaluation, we use the vision system of an underwa-
ter robot as a case study. The robot autonomously navigates
under water with the purpose to fulfill various missions that
involves navigating based on vision, e.g., identifying red
buoys [14]. The hardware platform contains an electronic
board with a GPU, that is connected to various sensors (e.g.,
two cameras) and actuators (e.g., thrusters). The continuous
flow of data produced by the cameras, is processed by the
robot’s vision system using the GPU.

Fig. 5 presents a simplified Rubus version of the component-
based vision system. Two Camera components are connected
to the physical camera sensors. The received data is converted
into readable frames and forwarded to the MergeAndEnhance
component that merges and reduces the noise of the two
received frames. The resulting frame is converted to grayscale

Camera1

Camera2

Merge
And

Enhance

Convert
Grayscale

Edge
Detection

Object
Detection

Sync
Sensor

Camera1

Sensor
Camera2

Sync Logger
Compress

RGB

Compress
Grayscale

Legend:

Rubus component Data port

Trigger port

Sync
Synchronisation

element Control flow

Data flow
Flexible component

…

Fig. 5: The vision system of the underwater robot

by ConvertGrayscale, and passed to EdgeDetection component
that outputs a frame where the object edges are presented
with white color on a black background. The ObjectDetection
component, based on the received black-and-white frame,
detects the existing objects. To record the robot’s underwater
journey e.g., for debugging purposes, the Logger component
registers the compressed underwater frames, both the original
(merged) and black-and-white frames. Due to the nature of
computations (i.e., image processing), we use MergeAndEn-
hance, ConvertGrayscale, EdgeDetection, CompressRGB and
CompressGrayscale as flexible components. The frames are
of m-elem type, where the maximum size (i.e., RGB and
grayscale) varies from component to component, depending
on the functionality.

Listing 8 illustrates the functionality code of the Con-
vertGrayscale flexible component that receive a 2D color
image through the input multi-element port named ImgIn. To
access the width and height dimensions of the input data, the
developer uses the macros (see Section IV-A) as illustrated
in e.g., lines 6 and 10. The individual colors of a pixel are
accessed by the current processing thread (determined using
the index position), through three different variables that are
initialized with their corresponding values (lines 14, 15 and
16). Finally, each output pixel is initialized with its grayscale
value (line 21).

Listing 8: ConvertGrayscale kernel code
1 /* compute absolute image position (x, y) */
2 int row = get_global_id(0);
3 int col = get_global_id(1);
4
5 /* relieve any thread that is outside of the image */
6 if(row >= ImgIn_width || col >= ImgIn_height)
7 return;
8
9 /* compute 1-dimensional pixel index */

10 int index = row + ImgIn_width * col;
11
12 /* load RGB values of pixel (converted to float) */
13 float3 pixel;
14 pixel.x = ImgIn_data[ImgIn_size * index];
15 pixel.y = ImgIn_data[ImgIn_size * index + 1];
16 pixel.z = ImgIn_data[ImgIn_size * index + 2];
17
18 /* compute luminance and store to output array */
19 float lum = 0.2126f*pixel.x + 0.7153f*pixel.y + 0.0721f*pixel.z;
20
21 ImgOut_data[index] = (unsigned char)lum;

B. Experimental setup

To evaluate our approach, we use four allocation scenarios
for the vision system, described in Table I. In scenario 1 all
flexible components are allocated to the GPU; in scenario 2,
all flexible components are allocated to the CPU. In scenario
3 and 4, we alternate in allocating the flexible components to
CPU and GPU.

TABLE I: Different allocation scenarios for the vision system

Flexible Hardware allocation
Component Scenario 1 Scenario 2 Scenario 3 Scenario 4

MergeAndEnhance GPU CPU CPU GPU
ConvertGrayscale GPU CPU GPU CPU

EdgeDetection GPU CPU CPU GPU
CompressRGB GPU CPU GPU CPU

CompressGrayscale GPU CPU CPU GPU

Moreover, for each scenario, we used three different hard-
ware platforms that contain GPUs: a) a PC with an NVIDIA
dGPU architecture, b) an embedded platform with an AMD
Kabini SoC with shared virtual memory architecture6, and c)
an embedded platform with an AMD Carizzo SoC with full
shared memory architecture6.

Depending on the flexible component allocation and the
hardware characteristics, the resulting vision system is popu-
lated with adapters. Fig. 6 illustrates the vision system supplied
with adapters to address scenario 1 for the dGPU-based
platform. In this case, five adapters are generated illustrated
as dash-line components (i.e., two CPU-to-GPU adapters and
three GPU-to-CPU adapters).

C. Results

We compared three produced frames (i.e., the input to
ObjectDetection and Logger) from all twelve combinations of
scenarios and platforms; all combinations generated identical
output frames.

In addition, we present the number of generated adapters for
all cases (i.e., four scenarios and three platforms), in Table II.

6https://unibap.com/product/advanced-hetereogeneous-computing-modules/

Camera1

Camera2

Merge
And

Enhance
(GPU)

Convert
Grayscale
(GPU)

Edge
Detection
(GPU)

Object
Detection

Sync

Sensor
Camera1

Sensor
Camera2

Sync Logger
Compress

RGB
(GPU)

Compress
Grayscale
(GPU)

CPU-to-GPU
adapter

CPU-to-GPU
adapter

GPU-to-CPU
adapter

GPU-to-CPU
adapter

GPU-to-CPU
adapter

…

Fig. 6: Vision system with adapters for dGPU-based platforms

For scenario 1 (i.e., all flexible components allocated on GPU),
for platforms with dGPU architecture, there are generated
two CPU-to-GPU adapters and three GPU-to-CPU adapters
(see Fig. 6). When all flexible components are allocated
to CPU, there is no need for adapters. For shared virtual
memory architectures, there are generated only CPU-to-GPU
adapters; there is no need for GPU-to-CPU adapters because
all components (regular and flexible) have direct access to the
same shared virtual memory system.

TABLE II: Experimental results

Scenario Platform Number of adapters Code size
type CPU-to-GPU GPU-to-CPU Generated Written

1
dGPU 2 3 7819
iGPU1 2 0 6871 4101
iGPU2 0 0 6239

2
dGPU 0 0 6239
iGPU1 0 0 6239 4101
iGPU2 0 0 6239

3
dGPU 1 1 6878
iGPU1 1 0 6554 4101
iGPU2 0 0 6239

4
dGPU 1 3 7503
iGPU1 1 0 6554 4101
iGPU2 0 0 6239

dGPU - CPU and GPU distinct memory platform
iGPU1 - Shared Virtual Memory platform
iGPU2 - Shared Memory platform

The table also describes the size of the generated code
in comparison to the manually written code. The generated
code, including all flexible components and adapters, varies
from 6239 characters for shared memory platforms to 7819
characters for platforms with dGPUs. For all scenarios and
platforms, the flexible component functionalities are the same,
i.e., a total of 4101 characters manually written.

VI. RELATED WORK

The first part describes programming models for different
platforms. The second part presents existing component-based
solutions and how they address system flexibility.

A. Programming models for heterogeneous platforms

The market contains programming models that specifically
target GPUs. We mention CUDA7 that targets only NVIDIA

7http://docs.nvidia.com/cuda/

GPUs, CTM8 for ATI AMD GPUs, and Brook [15]. OpenCL
bridges the gap between CPU and GPU, being employed even
further by other processing unit types such as FPGA. However,
with OpenCL, the communication between processing units
falls under the developers responsibility. EXOCHI [16] and
Merge [17] hide the communication responsibility from the
developer and provide uniform frameworks that target different
processors. Using them, the developer needs to write different
versions of the same functionality, for different processing
units. We also mention frameworks that automatic translate
between CPU and CUDA code. MCUDA [18] translates
CUDA code into multi-thread CPU code, and the framework
proposed by Lee et al. [19] translates OpenMP code to CUDA
code. An improved framework, i.e., MapCG [20], contains a
high level API (C-like language) that hides programming side-
burdens (e.g., communication). Similarly, we provide transpar-
ent communication mechanism (i.e., adapters) that ease the
development responsibility.

Although the enumerated solutions are not intended to be
used in a CBD context, they may be employed in out work for
hiding the communication overhead and eliminating adapters.
Their disadvantage is that they may introduce additional over-
head and resource utilization which represents an important
factor for the embedded systems targeted by our work.

It is worth to mention the Aspect-Oriented Programming
(AOP) paradigm where various concerns called aspects, are
inserted in the source code. For example, Wang et al. [21]
propose a programming system to assist the development of
GPU functionality. More exactly, a special compiler inserts
GPU aspect code fragments (e.g., memory transfer activi-
ties) in the C++ source code, resulting in GPU applications.
Similarly with AOP, we generate parts with GPU-specific
information for flexible components and adapters. However,
the AOP paradigm does not provide the encapsulation concept
that is required in our solution.

B. Heterogeneous component-based systems

Flexibility for embedded systems is addressed in different
ways and for different reasons. For example, Lednicki et
al. [22] tackled the way that some component models develop
systems (i.e., hard-coding inside the software component the
hardware platform characteristics) by introducing an additional
layer (i.e., mapping layer). The mapping layer connects the

8http://roland.pri.ee/doktor/papers/gpgpu/ATI CTM Guide.pdf

software and hardware layers, allowing them to be developed
independent of each other, improving the component reusabil-
ity for different (hardware and software) contexts. Although
aiming at a different platform type (i.e., with GPU) that brings
particular challenges, our solution also increases the reusability
of flexible components for different hardware platforms.

Regarding platforms with various processing units (e.g.,
GPUs, FPGAs), elastic computing framework [23] allows a
transparent application design by selecting among different
implementations (referred as elastic functions), the most ef-
ficient one. The elastic functions should be developed sep-
arately and included in the framework. Although is not a
component model per se, the elastic computing framework has
similar principles (e.g., interfaces, usage of already developed
functions). Using the same approach, the PEPPHER model
contains different C/C++ based components (i.e., sequential
and parallel implementation) for the same functionality, that
can be executed on systems with or without GPUs. The data
that is passed between PEPPHER components is encapsulated
in containers; there are three types of containers (i.e., scalar,
array and 2D array) to support different type of data. Opposite
to these approaches, our work’s advantage is that it has
less overhead (e.g., memory footprint, development time) by
using a single component version that can be executed either
on CPU or GPU hardware. This component functionality is
written in a generic way, so the performance achieved by our
solution may be inferior to the one provided by the elastic and
PEPPHER frameworks. In addition, as the PEPPHER model
has dimension-specialized data-containers, we use the same
adapter to take care of data transfer between components,
regardless of their dimension size (i.e., 1, 2 or 3 dimensions).

VII. CONCLUSIONS

The existing embedded boards with GPU capabilities pro-
vide feasible solutions for the stringent requirements of mod-
ern embedded systems. CBD methodology, successfully in-
tegrated in industry for development of traditional embed-
ded systems, provide no specific support when it comes to
platforms with GPUs. In this context, we introduce flexible
components to address parts of the CBD lack of GPU support.

Through our solution, the component developer is released
from side activities which are automatically handled. Employ-
ing flexible increases the design-solution space which may
improve the system overall feasibility. Moreover, we facilitate
the component communication by utilizing specialized arti-
facts (i.e., adapters) that automatically transfer data between
CPU- and GPU-allocated flexible components.

ACKNOWLEDGMENTS

The Swedish Foundation for Strategic Research (SSF) sup-
ports our work through the RALF3 project (IIS11-0060).

REFERENCES

[1] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[2] “AUTOSAR - Technical Overview,” http://www.autosar.org, accessed:
2017-03-24.

[3] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and
K.-L. Lundbäck, “The Rubus component model for resource constrained
real-time systems,” in Industrial Embedded Systems, 2008. SIES 2008.
International Symposium on. IEEE, 2008, pp. 177–183.

[4] K.-H. John and M. Tiegelkamp, IEC 61131-3: programming industrial
automation systems: concepts and programming languages, require-
ments for programming systems, decision-making aids. Springer
Science & Business Media, 2010.

[5] G. Campeanu, J. Carlson, and S. Sentilles, “A GPU-aware component
model extension for heterogeneous embedded systems,” in The Tenth
International Conference on Software Engineering Advances, 2015.

[6] G. Campeanu, J. Carlson, S. Sentilles, and S. Mubeen, “Extending the
Rubus component model with GPU-aware components,” in Component-
Based Software Engineering (CBSE), 2016 19th International ACM
SIGSOFT Symposium on. IEEE, 2016, pp. 59–68.

[7] M. Chaudron and I. Crnkovic, “Component-based software engineering,”
in Software Engineering: Principles and Practice, H. van Vliet, Ed.
Wiley, 2008.

[8] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, pp. 593–615, 2011.

[9] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, 2008.

[10] S. A. Manavski, “CUDA compatible GPU as an efficient hardware accel-
erator for AES cryptography,” in Signal Processing and Communications
IEEE International Conference. IEEE, 2007, pp. 65–68.

[11] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model,” Journal of
Computational Physics, vol. 228, no. 12, pp. 4468 – 4477, 2009.

[12] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten, “Accelerating molecular modeling applications with
graphics processors,” Journal of computational chemistry, 2007.

[13] G. Campeanu, J. Carlson, and S. Sentilles, “Developing CPU-GPU em-
bedded systems using platform-agnostic components,” in 43rd Euromi-
cro Conference on Software Engineering and Advanced Applications,
August 2017, to appear.

[14] C. Ahlberg, L. Asplund, G. Campeanu, F. Ciccozzi, F. Ekstrand, M. Ek-
ström, J. Feljan, A. Gustavsson, S. Sentilles, I. Svogor et al., “The Black
Pearl: An autonomous underwater vehicle,” 2013.

[15] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: stream computing on graphics
hardware,” in ACM Transactions on Graphics (TOG). ACM, 2004.

[16] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang, “EXOCHI: architecture and
programming environment for a heterogeneous multi-core multithreaded
system,” in ACM SIGPLAN Notices. ACM, 2007.

[17] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:
a programming model for heterogeneous multi-core systems,” in ACM
SIGOPS operating systems review. ACM, 2008.

[18] J. A. Stratton, S. S. Stone, and W. H. Wen-mei, “MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs,” in Interna-
tional Workshop on Languages and Compilers for Parallel Computing.
Springer, 2008, pp. 16–30.

[19] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” ACM Sigplan
Notices, vol. 44, no. 4, pp. 101–110, 2009.

[20] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin, “MapCG: writing
parallel program portable between CPU and GPU,” in Proceedings of the
19th international conference on Parallel architectures and compilation
techniques. ACM, 2010, pp. 217–226.

[21] M. Wang and M. Parashar, “Object-oriented stream programming using
aspects,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, 2010, pp. 1–11.

[22] L. Lednicki, J. Feljan, J. Carlson, and M. Zagar, “Adding support
for hardware devices to component models for embedded systems,” in
The Sixth International Conference on Software Engineering Advances,
2011.

[23] J. R. Wernsing and G. Stitt, “Elastic computing: A framework for
transparent, portable, and adaptive multi-core heterogeneous comput-
ing,” in Proceedings of the ACM SIGPLAN/SIGBED 2010 Conference
on Languages, Compilers, and Tools for Embedded Systems, ser. LCTES
’10. ACM, 2010, pp. 115–124.

