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Abstract. Attitude Control Systems (ACSs) maintain the orientation of the satellite in three-

dimensional space. ACSs need to be engineered in compliance with ECSS standards and need 

to ensure a certain degree of dependability. Thus, dependability analysis is conducted at 

various levels and by using ECSS-compliant techniques.  Fault Tree Analysis (FTA) is one of 

these techniques. FTA is being automated within various Model Driven Engineering (MDE)-

based methodologies. The tool-supported CHESS-methodology is one of them. This 

methodology incorporates ConcertoFLA, a dependability analysis technique enabling failure 

behavior analysis and thus FTA-results generation.  ConcertoFLA, however, similarly to other 

techniques, still belongs to the academic research niche. To promote this technique within the 

space industry, we apply it on an ACS and discuss about its multi-faceted potentialities in the 

context of ECSS-compliant engineering. 

1.  Introduction 

Attitude Control Systems (ACSs) play an important role within satellites. More specifically, ACSs 

contribute to maintaining a certain attitude (i.e., orientation of the satellite in three-dimensional space). 

Controlling the attitude is necessary to enable satellites (space crafts, which, typically, orbit earth [1]) 

to accomplish their mission including the fulfillment of their pointing requirements, often referred to 

as pointing modes [2]. 

ACSs need to be engineered in compliance with ECSS standards and need to ensure a certain 

degree of dependability. Thus, dependability analysis is conducted at various levels and by using 

different techniques.  Fault Tree Analysis (FTA) is one of these techniques. This analysis technique is 

being automated within various Model Driven Engineering (MDE)-based methodologies. The tool 

supported CHESS-methodology [3] is one of them. This tool-supported methodology incorporates 

ConcertoFLA [4], a dependability analysis technique enabling failure behavior and propagation 

analysis and thus FTA-results generation.  ConcertoFLA, however, similarly to other techniques, 

belongs to the academic research niche. To promote this technique within the space industry, extensive 

explorations are needed. In this paper, we contribute to perform such explorations. More specifically, 

we exploit the tool-supported CHESS methodology to model and analyze (via ConcertoFLA) an ACS. 

We also discuss how analysis results can be used to generate ECSS-FTA compliant analysis results. 



 

 

 

 

 

 

The rest of the paper is organized as follows. In Section 2, we provide background information. In 

Section 3, we provide an overview of the entire approach. In Section 4, we focus on the modelling of 

our ACS. In Section 5, we perform the analysis. In Section 6, we elaborate on FTA generation, based 

on ConcertoFLA analysis results.  In Section 7, we discuss related work. Finally, in Section 8, we 

present our concluding remarks and future work. 

2.  Background 

In this section, we present the background information on which we base our work. 

2.1.  ACSs in Sun Pointing mode 

As mentioned in the introduction, ACSs control the satellite’s attitude. This control-related 

functionality is relative to a frame of reference depending upon the pointing requirement, which is 

either mission mode or safehold mode [2]. The former refers to the main objective of the satellite and 

latter contributes to fail safe. For instance, a sun pointing mode could be a safehold mode for a satellite 

pointing its solar arrays towards the sun to power the critical parts of the satellite. In sun pointing 

mode, the attitude of a satellite, relative to the sun, is maintained by controlling the torques applied to 

the satellite by actuator thrusters. A sun sensor measures the angle of the sun beam, in sensor’s 

reference frame, when the beam hits the sensor. The direction of the sun is acquired from this angle 

and fed into the control system as an input. The control system calculates the torque based on 

minimizing the pointing error function. 

Typically, an ACS (focus on software) is a composite component composed of the following four 

software components: (1) PDController takes the Sun direction and angular velocity of the satellite in 

three axes as an input, computes the pointing error and calculates proportional and derivative torques. 

(2) SteerController also computes the proportional torque by minimizing the pointing error. But, the 

objective is to compute relatively greater torques for faster convergence to target pointing position. 

This is important in cases when the satellite is significantly diverging from the desired position e.g., 

when it is upside down. (3) FeedforwController computes additional torques to achieve the 

equilibrium state and stabilize the satellite body. A satellite in the space is subject to the disturbance 

torques coming from outside of the boundary of the satellite. For example, the Sun radiation pressure, 

gravitational pull of the celestial bodies and the earth atmospheric pressure etc. FeedforwController 

takes these torques as an input and calculates a complementary torque to counteract the disturbances. 

Typically, these disturbances torque are calculated by the angular rates of the satellite measured a 

gyroscope sensor. (4) TorqueSelector takes the torques computed by the above-mentioned controllers, 

and, based on the current attitude of the satellite, allows a specific torque to be applied on the satellite 

through the thrusters. If the satellite is oriented 180 degrees opposite to the desired pointing direction, 

a rapid change in attitude is required. Hence, relatively greater torques, which are computed by 

SteerController, are applied. On the other hand, when the satellite is closer to the desired pointing 

direction, rather a seamless convergence and stabilization is of interest. Therefore, smaller torques and 

stabilization torques, computed by PDController and FeedforwController respectively, are applied to 

satellite. 

2.2.  ECSS-compliant FTA 

ECSS-Q-ST-30 [5], the ECSS standard targeting product assurance, lists the methods for performing 

dependability analysis, required at all levels of the space system.  Fault Tree Analysis (FTA) is a top 

down approach to assess the reliability of a system, by analyzing the failure state and constructing a 

probable cause tree. The objective of the analysis is to “ensure that the design conforms to the failure 

tolerance requirements for combinations of failures” [5]. According to ECSS-Q-ST-30, a system/sub-

system level analysis is required to identify the combination of the events that lead to a failure e.g. loss 

of mission [5]. The end consequence of a failure is defined as the severity, and could be catastrophic, 

critical, major and minor. The severity level of a failure together with the probability of its occurrence 



 

 

 

 

 

 

defines the criticality of the event. The severity level of the system in consideration i.e., ACS in Sun 

pointing mode is classified as critical, since the consequence is loss of the mission. 

ECSS-Q-ST-40-12C [6] provides the guidelines for performing ECSS-compliant FTA, required for 

all the systems/sub-systems with severity level catastrophic, critical or major consequences. For 

procedural guidelines of performing FTA, ECSS-Q-ST-40-12C refers to IEC-61025 [7]. Additionally, 

it is suggested that Fault Tree Handbook [8] can be used to complement the standard.  IEC-61025 uses 

general terms to describe FTA analysis, steps to perform the analysis, list of assumptions and 

standardized shapes and symbols. IEC-61025 requirements are generic and are not limited to space 

domain. A compliance artifact, as per IEC-61025, is required to include the analysis, data, used 

symbols, and common cause failures & minimal cut sets; where appropriate. Section 4 discusses these 

requirements in ConcertoFLA context and their conformance. 

2.3.  SafeConcert and ConcertoFLA 

SafeConcert [9] is a meta-model implemented within the CHESS toolset [3] enabling dependability 

architects to model dependability’s information necessary to conduct dependability analysis. 

SafeConcert is a subset of CHESS-ML (which in turn is an extension of SySML [10]), the meta-model 

used in CHESS toolset to enable component-based systems design.  

ConcertoFLA [4], which builds on top of CHESSFLA [11], allows users (system architects and 

dependability engineers) to decorate component-based architectural models (specified using CHESS-

ML) with dependability-related information, execute Failure Logic Analysis (FLA) techniques, and 

get the results back-propagated onto the original model. Different FLA techniques are available in the 

literature [12], and can be used at the early stages of the design phase to achieve a robust architecture 

with respect to linear relationships. ConcertoFLA builds on top of Failure Propagation Transform 

Logic (FPTC) [13]. Similar to FPTC, ConcertoFLA is a compositional technique to qualitatively 

assess the dependability of component-based systems, and partially combines and automatize 

traditional safety analysis techniques (i.e., FMEA and FTA). ConcertoFLA allows users to calculate 

the behavior at system-level, based on the specification of the behavior of individual components.  

 In ConcertoFLA terms, a component can act in four different possible ways (1) source of the 

failure thus generating a failure due to internal fault, (2) sink of the failure thus avoiding the 

propagation of the external fault (failure in input) through fault tolerance, (3) propagator of the failure, 

and (4) transformer of the failure into a different type. ConcertoFLA rules are logical expressions, 

which specify the component’s behavior by describing the input/output relationship. In [14], the 

syntax for writing the logical expressions is given (subset of the FlaMM meta model). This syntax 

represents a further refinement of what was presented in [4]. 

3.  Approach Overview 

Figure 1 shows a high-level view of the overall approach. This approach builds on top of the tool-

supported technique presented in [4] and then further developed in [14]. In this paper, we use such 

approach and customize it in the context of ECSS standards to enable architects and dependability 

managers to calculate the failure behavior at sub/system level, as well as generating FTA based on the 

causality paths traced by the ConcertoFLA plugin. 

 
Figure 1. Approach overview, adapted from [4]. 

4.  Modelling 

In this section, first, we explain the system level assumptions, then, we model the ACS system 

(textually described in Section 2). 



 

 

 

 

 

 

4.1.  System Level Assumptions 

Assumption 1. The system starts computing torques when valid estimates of the input sensor readings 

are available. An external component checks the estimated values of the input sensors and, in response 

to the valid estimates, activates the ACS system. This component is assumed to be analyzed already as 

per ECSS standards [6][7] and is out of the scope of this paper. The validity check in the component 

determines that the sensors are activated and registering their perceptions, and does not reason on the 

value itself being registered. Therefore, this assumption rules out the following failure types/modes on 

the input ports (1) Omission, (2) Commission, (3) Early, and (4) Late. 

Assumption 2. Each of the components has been internally verified as per ECSS standard verification 

guidelines. Thus, none of the components in the system could act as the source of the failure. Rather, a 

component may only propagate, transform or sink failures. 

4.2.  Modelling of ACS in SafeConcert 

The ACS described in Section 2 is modeled using CHESS-ML/SafeConcert, which enables for 

representing the system architecture utilizing the component based paradigm. ACS itself is represented 

as a composite component, which is composed of all the other components, collectively defining the 

function of the system. Figure 2 illustrates the component based design of the software system with 

injected failures on the input ports. ACSComposite component has three inputs and four output ports 

providing the interfaced sensors readings and actuators commands respectively. More specifically, the 

three input ports sunEstVec, angVelocity and gyroDistTorques represent Sun direction, angular 

velocity of the satellite and measured disturbance torques, respectively. The output ports ctrlTorque, 

propTorque, derTorque and feedforwardTorque corresponds to the control torque selected to be 

applied to the satellite for achieving the desired orientation, the torque computed through proportional 

controller, the torque computed through derivative controller and compensating cross coupling torque 

respectively. 

According to the assumptions listed in Section 4.1, on the input ports, value failure could be 

experienced. As shown in figure 2, this value failure, which is of two types i.e. valueSubtle and 

valueCoarse, is injected on each input port by using the appropriate CHESS stereotype, called 

FPTCSpecification. Moreover, the failure behavior of each component is given by using the 

FLABehavior stereotype. This behavior is described as follows. 

PDController component propagates and sinks the failures exposed on its input ports. If there is a 

valueCoarse failure on any of the input ports, the produced torques will also have a valueCoarse 

failure. The valueSubtle failure on sunEstVec input port is propagated to the output ports. Whereas, a 

valueSubtle failure occurs on the angVelocity input port, the component detects it via a low pass filter 

and sinks it and produces noFailure on the output ports. Similarly, FeedforwController component also 

detects a valueSubtle failure on its input port using a low pass filter and sinks it and produces no 

failure on output port. FeedforwController, however, propagates the valueCoarse failure to 

FeedforwardTorque output port. SteerController component propagates both the valueSubtle and 

valueCoarse failure on the sunestVec input port to the output torque. Finally, the TorqueSelector 

component also propagates both the valueSubtle and valueCoarse failure on the input ports to the 

ctrlTorque output port. 

5.  Analysis of ACS via ConcertoFLA 

To apply ConcertoFLA, all the three input ports of the system shall be injected with possible failures. 

Considering the assumptions in Section 4.1, the possible failures are limited to only value failures i.e. 

valueSubtle and/or valueCoarse. This suggests two possible failures for each port. However, in this 

paper, for space reasons, we only consider one input port i.e., sunEstVec. This port receives faulty 

data. To compute the torques, PDController and SteerController rely on the data received on 

sunEstVec. Thus, the computed torques are also faulty (valueCoarse or valueSubtle failure). The 

control torque selected by TorqueSelector, based on the context i.e., satellite current attitude opposite 

to pointing object or closer to the pointing object (see Section 2), will also be faulty. The resulting 



 

 

 

 

 

 

torque, in case of valueSubtle failure on the output port, when applied on the satellite, could result in 

loss of mission. The valueCoarse failure could result in major mission degradation due to not pointing 

accurately to the object of interest. Figure 3 shows the propagated failures on the output ports. 

 

  
Figure 2. ACS system before the analysis. Figure 3. ACS system with analysis results. 

6.  ECSS-compliant FTA via ConcertoFLA 

ConcertoFLA also calculates the failure propagation paths and produces their representation according 

to the specifications of FlaMM meta model (see [14] for FlaMM structure and corresponding XML 

Schema). Figure 4 shows some XML snippets representing the failure propagation paths. The yellow 

highlighted text illustrates the failure behavior on the CtrlTorque output port along with the 

information on previous failures. Figure 5 displays the same failure propagation for ACS composite 

component in a tree-like view. The component exhibits valueCoarse failure on the ctrlTorque output 

port. This is a system level failure and could be described as a top event of the FTA. The valueCoarse 

failure could be collapsed in the tree and the contributing previous failures could be traced, as depicted 

in figure 5. The ports exhibiting previous failures could be used as the contributing events of top level 

event, in the FTA. The information regarding the owning component of the port could also be 

retrieved from the tree, to uniquely identify ports with same label e.g., in the ACS case. This also 

conforms to one of the requirement from IEC 61025, which specifies that the FTA events shall be 

uniquely identified. Moreover, all the listed components in the tree could also be collapsed further to 

view the failure behavior displayed as tree nodes. This information is crucial to identify the 

relationship between an event and its descendants, otherwise depicted using logical gate symbols in 

FTA. Thus, the FlaMM model contains all the required information to construct an ECSS conformant 

FTA. Figure 6 illustrates ECSS-compliant partial FTA manually produced from the results stored in 

FlaMM model upon a successful execution of ConcertoFLA analysis. For the sake of clarity, it should 

be noted that given the qualitative nature of the ConcertoFLA analysis the fault tree cannot contain 

quantitative information. 

7.  Related Work 

To develop dependable systems many researchers are utilizing model based methods. In [9] and in [4], 

some of these works were already discussed (focus on dependability modelling and analysis). Thus, in 

this paper, we limit our attention to those works that have considered automatic generation of analysis 



 

 

 

 

 

 

artifacts based on requirements coming from standards. To enhance the V-model process of the 

avionics product development, in [15], authors propose a model based tool chain which embraces the 

end-to-end process covering all phases of software development lifecycle and focusing explicitly on 

dependability aspects. They also use a SySML-metamodel extension and consider FTA analysis. 

However, the integration of dependability analysis is still in progress and no generation is mentioned. 

In [16], a model based approach is proposed to augment the structure and behavior models of railway 

domain system with fault related information. Effects of the presence of faults are analyzed in system 

and are used to complement the preliminary Failure Modes, Effects and Analysis (FMEA). 

 

 

 

 

Figure 4. XML based ACS FlaMM model.  Figure 5. Tree-like ACS FlaMM model. 

 

 

Figure 6. ECSS-compliant Partial FTA of ACS generated manually. 

8.  Conclusion and Future Work 

In this paper, we have explored the usage of the tool-supported CHESS-methodology in the context of 

Attitude Control Systems Engineering. More specifically, we have used ConcertoFLA, the 

dependability analysis technique incorporated within the CHESS methodology. Via ConcertoFLA, we 

have modeled an Attitude Control System, its failure behavior, and performed analysis. Based on the 

analysis results, we could elaborate on FTA-results generation in the context of ECSS standards and 

more generally in the context of IEC 61025. 

In the future, we aim at implementing a plugin to support a proper generation of FTA, in 

compliance with the largely accepted graphical concrete syntax. Based on ongoing work in the context 

of AMASS [17] and previous work [18] [19], we also aim at generating product and process-based 

argument fragments. This generation is also expected to connect ECSS-compliant product artifacts 

with ECSS-compliant process artifacts, since dependability analysis results constitute expected work 

products in a software development process model. 
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