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Abstract—Automotive embedded systems are subjected to
stringent timing requirements that need to be verified. One of
the most complex timing requirement in these systems is the data
age constraint. This constraint is specified on cause-effect chains
and restricts the maximum time for the propagation of data
through the chain. Tasks in a cause-effect chain can have different
activation patterns and different periods, that introduce over- and
under-sampling effects, which additionally aggravate the end-to-
end timing analysis of the chain. Furthermore, the level of timing
information available at various development stages (from mod-
eling of the software architecture to the software implementation)
varies a lot, the complete timing information is available only at
the implementation stage. This uncertainty and limited timing
information can restrict the end-to-end timing analysis of these
chains. In this paper, we present methods to compute end-to-
end delays based on different levels of system information. The
characteristics of different communication semantics are further
taken into account, thereby enabling timing analysis throughout
the development process of such heterogeneous software systems.
The presented methods are evaluated with extensive experiments.
As a proof of concept, an industrial case study demonstrates the
applicability of the proposed methods following a state-of-the-
practice development process.

I. INTRODUCTION

Automotive systems are getting complex with respect to
traditional components like the Engine Management System
(EMS) as well as modern features like assisted driving. While
the increase in the EMS complexity is attributed to newer
hybrid engines and stricter emission norms, assisted driving
requires the perfect convergence of various technologies to
provide safe, efficient and accurate guidance. This has led
to software intensive cars containing several million lines of
code, spread over up to hundred Electronic Control Units
(ECU) [1].

Given this complexity, over the last decades, standards like
AUTOSAR [2] have been proposed in order to conceive a
common platform for the development of automotive soft-
ware. These standards allow software components provided by
different suppliers to be integrated on the same ECU, since
they provide for a hardware agnostic software development.
Such robust interfaces enable designers to design software in
the early stages without knowledge of the concrete hardware
platform on which it will be eventually executed. Thus, during
the development it is often not known which other applications
share the same execution platform.

Most of these automotive applications typically have strict
real-time requirements – it is not only important that a com-
putation result is correct, but also that the result is presented at
the correct time. In addition to individual timing requirements
on the response times of the tasks (i.e. the deadline of a task
corresponds to the task’s response time), these applications
often have timing requirements on the end-to-end functionality
of the task chains, so-called end-to-end timing requirements.
Note that the task chains are commonly found in single-node
as well as distributed real-time systems. On the one hand, the
end-to-end timing requirement can be specified as an end-to-
end deadline on a task chain, which corresponds to the end-to-
end response time of the task chain. The end-to-end response
time of a task chain is equal to the response time of the
last task in the chain. The end-to-end deadline is considered
satisfied as long as the response time of the last task in the
chain is less than or equal to the specified deadline. It does not
matter if the data from the input of the chain is transferred to
the output of the chain within the specified end-to-end deadline
or not. On the other hand, the end-to-end timing requirement
on a task chain can also be specified by means of various
timing constraints such as the age constraint [3], [4], [5], [6],
[7]. The age constraint is specified on the data propagation
through a chain of semantically related tasks, where it specifies
the maximum time from reading an input value by the first
task of the chain, until a corresponding output value is last
produced at the end of the chain. It is of utmost importance
that the data from the input of the chain is transferred to the
output of the chain within the specified constraint. It is of
utmost importance that the data from the input of the chain
is only affecting the output of the chain within the interval
specified by the constraint.

Many design decisions, such as task activations and com-
munication semantics, have direct influence on the data age.
Thus, bounding the data age of a chain early during the design
process can potentially avoid costly software redesigns at later
development stages. The analysis gets complex as a chain
may consist of tasks with different periods leading to over-
and under-sampling situations. Such systems are called multi-
rate systems. Most of the available analysis methods for such
systems focuses on the implementation level where detailed
scheduling information is available [8] and thus they are not



applicable during early phases. In [9], a generic framework
to calculate the data age of a cause-effect chain is presented,
which targets single processor systems and is agnostic of the
scheduling algorithm used.

Contributions: In this paper, we extend our earlier work on
analyzing end-to-end delays among multi-rate effect chains [9]
to utilize the information available at different levels of timing
information. Specifically, we highlight the generic nature of
the framework by showing how varied levels of information
can be used to compute the maximum data age of systems
with following characteristics:

1) Different activation patterns between tasks of one cause-
effect chain, where individual tasks can be event triggered
or periodically triggered.

2) Knowledge of the communication semantic: We extend
the analysis to incorporate the explicit communication
semantics as well as the Logical Execution Time (LET).
Both being communication paradigms commonly used in
the automotive domain.

3) Knowledge of offsets: The analysis for systems without
knowledge of the schedule is extended to allow for task
release-offset specifications.

4) Knowledge of the scheduling algorithm (like Fixed Pri-
ority Scheduling (FPS)): Most ECUs utilize operating
systems which schedule tasks based on FPS. This allows
to utilize existing analysis for such systems to determine
worst-case response times of the individual tasks. It is
then shown how the concepts of the analysis can be
adapted to account for this information.

5) Knowledge of the exact schedule: Similar to most of
the existing end-to-end delay analyses, we show how the
exact schedule can be used to determine the exact delays
with low computational overheads.

Finally, we compare these different scenarios with extensive
evaluations, considering i) the tightness of the computed
bounds and ii) the computation time for the analysis. We
show that increased system information during the design
process can thus be used to obtain tighter end-to-end latencies.
An industrial case study is performed that demonstrates the
applicability of the proposed methods in a state-of-the-practice
tool-chain.

II. RELATED WORK

The Timing Augmented Description Language (TADL2) [4]
was conceived out of the need for a timing model in the
automotive domain, and is the basis for the timing constraints
that can be defined in AUTOSAR [3] and EAST-ADL [5]. The
end-to-end timing constraints found in these automotive multi-
rate systems were first discussed in [10]. Here, the authors
describe the different design phases and link them to EAST-
ADL [5] and AUTOSAR [2]. An increased level of system
knowledge during the consecutive design phases is outlined.
Note that these types of end-to-end delays focus on data
propagation between independently triggered tasks, in contrast
to the end-to-end response time considering the first response

at the end of a chain of tasks, where tasks may trigger each
other [11].

A method to compute the different end-to-end delays of
multi-rate cause-effect chains is presented in [8]. In addition,
the authors relate the reaction delay to “button to reaction”
functionality and the maximum data age delay to “control”
functionality. In this work the focus lies on the maximum data
age and hence on control applications.

A model-checking based technique to compute the end-
to-end latencies in automotive systems is proposed in [12].
The authors generate a formal model based on the system
description which is then analyzed.

The end-to-end timing analysis in an industrial tool suite
is discussed in [6]. Two different activation methods are
discussed; trigger chains, where a predecessor task triggers
the release of a successor task, and data chains, where tasks
are individually triggered and hence over- and under-sampling
may occur. These activation patterns are supported by several
modeling technologies including the AUTOSAR standard [2].
The trigger activation pattern is also supported by middle-
ware approaches, e.g., a distributable thread in Real-Time
CORBA [13] closely resembles the trigger chain. In this work
we consider the chains that can have any activation pattern.

End-to-end delays in heterogeneous multiprocessor systems
are analyzed in [14]. Ashjaei et al. [15] propose a model
for end-to-end resource reservations in distributed embedded
systems, and also present the analysis, based on [8], for end-
to-end delays under their model.

Additionally, several industrial tools implement the end-
to-end delay analysis for multi-rate effect chains [16], [17],
[18], [19]. However all of the discussed works require system
information which is only available at the implementation
level. In [9], a scheduling agnostic end-to-end delay analysis
for data age is described, where only information about the
tasks of the cause-effect chains is required. Additionally, this
work shows how to add job-level dependencies to a task set,
such that the data propagation between tasks in an effect-chain
is restricted in a way that end-to-end delay constraints are met
irrespective of the scheduling decisions.

The principle behind the job-level dependencies can be
related to the rate transition operation of PRELUDE [20],
which is a synchronous language for multi-rate real-time
systems, based on the principles of LUSTRE [21]. LUSTRE is
addressed in several works, [22] addresses such systems under
fixed-priority scheduling [23], and [24] addresses systems
under online priority-based scheduling. While these works
address single-core systems, many-core target platforms are
considered in [25], [26].

The LET communication paradigm was introduced with the
time triggered programming language Giotto [27], [28]. De-
coupling the execution and communication provides benefits
for various areas of embedded systems where predictability
and dependability are of most importance [29], such as the
automotive industry [30].

In this work, we extend the results presented in [9], and
show that by augmenting information available during the



different design phases, we can analyze the maximum data
age with decreasing degree of pessimism. It is further shown
how the existing framework can be used for different trigger
schemes and communication paradigms. Hence, the input for
the framework is provided in such a way that the underlying
mechanisms and related works can be leveraged, while the set
of systems that can be represented is significantly enlarged.

Relation to Authors’ Previous Work

This work builds up on the timing analysis for the data age
which was presented in [9], where early timing analysis is used
to synthesize a partial ordering on the task’s jobs to satisfy
the corresponding data age constraints. This then significantly
eases the synthesis process.

In [31] we extend this analysis by observing that adjust-
ments of the read- and data-intervals can reflect the different
levels of system information, while the main analysis engine
remains the same. Additionally, in this work, the methods are
extended to support mixed trigger chains. It is shown that the
computed bounds are safe for the different communication
semantics found in the automotive domain. Moreover, we
show how these constraints can be addressed in EAST-ADL
and AUTOSAR. Finally, the applicability of the proposed
methods is demonstrated using a state-of-the-practice tool-
chain in the automotive domain.

III. SYSTEM MODEL

This section introduces the application model, inter-task
communication mechanisms, and the notion of cause-effect
chains as used in this work.

A. Application Model

We model the application as a set of periodic tasks Γ.Each
task τi ∈ Γ is described by the tuple {Ci, Ti,Ψi}, where Ci
is the task’s Worst Case Execution Time (WCET), and Ti is
the task’s period. All tasks have implicit deadlines, i.e. the
deadline of τi is equal to Ti. A task may also have an offset
Ψi. An offset is an externally imposed time interval between
the arrival of the task and its release for execution. For all tasks
executing on a processor, the hyperperiod can be defined as the
least common multiple of all periods, HP = LCM(∀Ti, i ∈
Γ). Hence, a task τi executes a number of jobs during one
HP , where the jth job is denoted by τi,j .

B. Inter-task Communication

In the automotive industry, three paradigms (explicit, im-
plicit and LET communication) are typically applied and
depending on the chosen paradigm, the communication pre-
dictability is affected. In these paradigms, inter-task communi-
cation is realized via shared registers wherein, a sending task
writes an output value to a shared register, while a receiving
task reads the current value of this register. Hence, there is no
signaling between the communicating tasks, and a receiving
task always consumes the newest value (i.e. last-is-best).

1) Explicit Communication: With this paradigm, tasks di-
rectly access the shared register to either read its value or to
write a new value to the register. This means, anytime the code
demands a read or write operation to the variable, the shared
register is accessed. This results in uncertainty, since the exact
point in time the register access is performed depends on the
respective execution path of the task.

2) Implicit Communication: This communication paradigm
is used in order to increase determinism and is based on
the read-execute-write model. Here, a task reads all its input
values into local copies before the execution starts. During the
execution phase only those local copies are accessed. Finally,
at the end of the execution the task writes the output values to
the shared registers, making them available to other tasks. In
short, reading and writing of input and output values is done
at deterministic points in time, at the beginning and end of the
tasks execution respectively. This is a common, and preferred
communication paradigm found in several industrial standards
(i.e. in AUTOSAR this model is defined as the implicit commu-
nication [32]. Also the standard IEC 61131-3 for automation
systems defines similar communication mechanisms [33]).

3) Logical Execution Time: The LET communication
paradigm [27], [28], [30] provides an abstraction to the system
designer by temporally decoupling the communication among
tasks from the tasks execution. In this model, the input values
of a task are always read at the release of the task. The
output values become available once the next period starts.
This temporal decoupling of communication and execution
has significant advantages. while implicit communication still
suffers from execution jitter, the LET paves the way for fully
deterministic communication.

C. Cause-Effect Chains in Single-Node and Distributed Real-
Time Systems

For many systems it is not only important that the individual
tasks execute within their timing constraints but also that the
data propagates through a chain of tasks within certain time
bounds. One example is the Air Intake System (AIS), which
is part of the Engine Management System (EMS) in a modern
car. For a smooth operation, the air and fuel mixture inside
the engine must be controlled and the AIS is responsible for
injecting the correct amount of air. To do so, an initial sensor
task periodically samples the position of the pedal, followed
by a number of control tasks that process this information,
and finally an actuator task actuates the throttle to regulate the
amount of air inside the engine. For the control algorithm, it is
important that the sensed input data is fresh in order to reach
the required control quality. Hence, the time from reading
the data until the actuation is subject to delay constraints in
addition to the task’s individual timing constraints.

In AUTOSAR these constraints are described by the cause-
effect chains [3]. For a task set Γ, a set of cause-effect chains Π
can be specified. Where Π contains the individual cause-effect
chains ζi. A chain ζi is represented by a Directed Acyclic
Graph (DAG) {V, E}. The nodes of the graph are represented
by the set V and contain the tasks involved in the cause-effect
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Fig. 1: Data propagation between tasks of a cause-effect chain on a single
processor in a real-time system with maximum data age specified.

chain. The set E includes all edges between the nodes. An
edge from τi to τk implies that τi has at least one output
variable which is consumed by τk. A cause-effect chain can
have forks and joins, but the first and the last task in the chain
must be the same for all possible data paths. To simplify the
analysis, chains with fork/join operations are decomposed into
individual sequential chains. Hence, all cause-effect chains in
Π are sequential.

End-to-End Timing Requirements: For each cause-effect
chain, an end-to-end timing requirement can be specified that
targets the data propagation through a chain of semantically
related tasks in automotive systems. The end-to-end timing
requirements can be defined for these systems by means of
several timing constraints [4], [3], [5]. In this work the data
age, one of the most important timing requirements for control
systems, is examined. A detailed discussion of end-to-end
delays is provided in [8]. The data age describes the maximum
time which an input value can have effect on the output of the
cause-effect chain. I.e. the maximum time from sampling an
initial input value at the beginning of the cause-effect chain,
until the last time this value has influence on the produced
output of the cause-effect chain. Fig. 1 depicts an example
with three tasks, τ1, τ2, and τ3. All tasks are part of a cause-
effect chain in this order. Note that τ1 and τ3 are activated
with a period of T = 2, while τ2 is activated with a period
of T = 4. This leads to under-sampling between tasks τ1 and
τ2, as τ2 is activated with a slower rate than τ1. Consequently,
not all values that are written by τ1 are read by τ2. Similarly,
over-sampling is observed between τ2 and τ3. τ2 writes new
values less frequently than τ3 reads them, which leads to τ3
reading the same value more than once.

While the output value of the first instance of τ1 is con-
sumed by the first instance of τ2, the data produced by the
second instance of τ1 is overwritten before τ2 has the chance
to consume it. Similarly, the data produced by the first instance
of τ2 is consumed by the first instance of τ3. Since no new
data is produced before the second instance of τ3 is scheduled
the same data is consumed. In the example, this constitutes
the maximum data age, from sampling of the first instance of
τ1 until the last appearance of the data at the output of the
second instance of τ3.

D. Job-Level Dependency

In many systems, data typically propagates between tasks
having different periods (activation rates) [22], [20], [26], [9].
Such systems are difficult to analyze [8], especially during the

early development phases where low level information, such
as the employed scheduling algorithms, may not be available.
This lack of information further leads to over-estimated end-
to-end delay estimates. One way to add predictability, and thus
reduce the pessimism, in such systems is to use the concept
of job-level dependencies which can be specified already at
early design phases [9]. A job-level dependency is a high level
concept that can be used to specify a partial ordering on a pair
of task instances, where the two tasks potentially execute at
different periods.

A job-level dependency is defined by the expression
τA

(i,j)−−−→ τB . The index i refers to the ith instance of τi, and j
refers to the jth instance of τB respectively. The dependency
then imposes an ordering on these two instances, meaning the
ith instance of τi must be executed before the jth instance of
τB . The indices are chosen based on the respective occurrence
of each tasks job within the hyperperiod of the two task’s,
e.g. LCM(τA, τB), and repeat itself for each consecutive
hyperperiod. Consequently, an execution order constraint can
be defined between tasks of the same period, wherein the
indices i and j are both set to 1. A repetitive execution order
constraint results in a job-level dependency where i 6= j.

IV. CALCULATION OF DATA PROPAGATION PATHS

In this section we recapitulate the calculations of data
propagation paths for systems without prior knowledge of the
schedule, considering the specified job-level dependencies, as
this is the basis for the work presented in this paper. For a
more in depth explanation the reader is referred to [9].

A. Reachability Between Jobs

The notions of read interval and the data interval are
key in deciding the valid span of communication. For a
job τi,j , the read interval is defined as the interval starting
from the earliest time a job can potentially read its input
data (Rmin(τi,j)) until the latest possible time a job can
do so without violating its timing constraints (Rmax(τi,j)).
Similarly, the data interval is defined as the interval from
the earliest time the output data of a job can be available
(Dmin(τi,j)) up to the latest time a successor job of the
same task overwrites the data (Dmax(τi,j)). Hence, the read
interval RIi,j is the interval [Rmin(τi,j), Rmax(τi,j)], and the
data interval is [Dmin(τi,j), Dmax(τi,j)). These concepts are
depicted in Fig. 2 for jobs of a task τi. For a system without
any knowledge of scheduling decisions, one has to assume
that a job may be scheduled anywhere, as long as it starts no
earlier than its release and finishes no later than its deadline.
In [9], the intervals for systems without offset are defined as
follows:

Rmin(τi,j) = (j − 1) · Ti (1)
Rmax(τi,j) = Rmin(τi,j+1)− Ci (2)
Dmin(τi,j) = Rmin(τi,j) + Ci (3)
Dmax(τi,j) = Rmax(τi,j+1) + Ci (4)
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Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Fig. 2: Read and data intervals of consecutive jobs of τi if no scheduling
information is available.

1) Deciding Reachability Between Jobs: In order for a job
τk,l to consume data of a job τi,j , the data interval of τi,j
must intersect with the read interval of τk,l. The function
Follows(τi,j , τk,l) is defined to return true if this is the case:

Follows(τi,j , τk,l) =

{
true, if RIi,j ∩DIi,j 6= ∅
false, otherwise

2) Adjusting the Data Interval for Long Chains: In order to
capture the characteristics of data propagation in a cause-effect
chain of length > 2, the data interval needs to be modified.
Assume the first job of τi, as shown in Fig. 2 is followed
by a job of a task τk. τk is released with the same period as
that of τi, but the execution time of τi is shorter than the one
of τk. Follows(τi,1, τk,1) returns true and indicates that τk,1
can potentially consume the data of τi,1. However, in order
to decide reachability between the τk,1 and a third task in the
chain, the data interval of τk,1 must be modified. This is the
case because τk,1 can consume the data of τi,j earliest at time
Dmin(τi,j). Consequently, this data can earliest be available
as output data of τk,l at time Dmin(τi,j)+Ck. D′min(τk,l, τi,j)
defines the starting time of the data interval of τk,l if the data
produced by τi,j shall be considered as well:

D′min(τk,l, τi,j) = max(Dmin(τi,j) + Ck, Dmin(τk,l))

Note that the data interval only needs to be adjusted if
Dmin(τk,l) is smaller than Dmin(τi,j) + Ck. These modifi-
cations are local for the specific data path; hence, if another
combination of jobs is involved then the original data interval
must be used.

B. Calculating Data Paths

A recursive function is used to calculate all possible data
propagation paths in a system. This function constructs all
possible data propagation paths from a job of the first node in
a cause-effect chain up to the job of a last node of the chain.
Consequently this needs to be done for all jobs of the first
task of a chain, within the hyper-period of the chain.

The function starts at the first level of the cause-effect chain;
for the initial job, all jobs of the second task of the chain
are found where Follows() returns true. To these nodes, a
logical data path is created from the initial job. The same
principle is applied from each of these nodes to the jobs of the
next lower level of the cause-effect chain. Once the last level
is reached all possible paths are calculated and the function
returns. Interested readers are referred to [9] for a detailed
explanation.

C. Calculations for Maximum Data Age

For a given data path, the maximum end-to-end delay and
thus the data age, can be computed as follows, where τstart
is a job of the first task of the cause-effect chain, and τend is
a job of the last task of a cause-effect chain:

AgeMax(τstart, τend) = (Rmax(τend)+Cend)−Rmin(τstart)

In order to compute the maximum data age for any possible
path in the system, AgeMax() must be computed for all
computed data paths. The maximum of these values is the
maximum data age of the cause-effect chain.

D. Calculations for Maximum Data Age with Job-Level De-
pendencies

The analysis framework presented in [9] further takes spec-
ified job-level dependencies into account. This is done by two
modifications. 1) The read-intervals of the affected jobs need
to be adjusted. Since a dependency τA

(i,j)−−−→ τB defines that
the ith job of τA needs to finish its execution CB time units
before the deadline of τB . Similarly, the jth job of τB cannot
start before the ith job of τA had the chance to execute. 2)
A logical boundary is introduced by a job-level dependency.
Meaning a dependency τA

(i,j)−−−→ τB prohibits the propagation
of data from the (i − 1)th instance of τA to the jth instance
of τB . This is taken into account in the recursive calculation
of the data paths.

V. REACHABILITY BETWEEN JOBS AT VARIOUS LEVELS
OF SYSTEM TIMING INFORMATION

The basic computation of data age delays without prior
knowledge of the schedule can result in pessimistic results.
Many of the computed data propagation paths may not occur
since scheduling algorithms impose a recurring order of jobs in
each hyperperiod of the task set. In this section, modifications
of the read and data interval are presented to reflect the
behavior of the systems with more elaborate knowledge on the
scheduling decisions. One key observation is that the presented
method to calculate the different data paths and the maximum
data age is independent of the concrete system model as long
as the read and data intervals are adjusted accordingly. Table I
depicts the required changes to the read and data interval for
different levels of system information, if such a modification
is required by the respective system. The remainder of this
section discusses these required modifications in more detail,
while example figures are provided.

A. Reachability in Mixed Trigger Chains

A mixed-trigger chain is defined as a cause-effect chain
where different trigger events are used to release the tasks
jobs.

The first trigger event is the periodic activation of tasks.
Such a task is released with its specified period Ti, and can
be executed anytime within the interval [k · Ti, (k + 1) · Ti),
independent of other tasks in the effect-chain, where k ∈ N.

Often it is important to impose an ordering to the execution
of different tasks in the system. For example, if there is a



TABLE I: Description of the read and data interval for the system with different levels of timing information.

No Knowledge Exact Schedule Known WCRT Known LET Execution Model

Rmin(τi,j) Ψi + (j − 1) · Ti starti,j Ψi + (j − 1) · Ti (j − 1) · Ti

Rmax(τi,j) j · Ti − Ci Rmin(τi,j) Rmin(τi,j)+WCRTi−Ci Rmin(τi,j)

Dmin(τi,j) Rmin(τi,j) + Ci endi,j Rmin(τi,j) + Ci j · Ti

Dmax(τi,j) Rmax(τi,j+1) + Ci endi,j+1 Rmax(τi,j+1) + Ci (j + 1) · Ti

relation between two tasks, one reading a sensor value and a
second applying data processing as first step before the data is
further used. Both functions can be implemented separately,
however the underlying causal relationship allows a system
designer to impose an execution order. Thus, the second trigger
event is at the end of the execution of the predecessor tasks
job in the cause-effect chain. Assume the partial cause-effect
chain τA → τB . If the two tasks are connected by such an
activation pattern, it must hold that TA = TB . In order to
impose the correct ordering of jobs, a job-level dependency
is specified for the timing analysis. This is done between the
two tasks: τA

(1,1)−−−→ τB .
This example is visualized in Fig. 3, where an cause-effect

chain of length 4 is shown. Tasks τA and τC are periodically
triggered, whereas the task τB is triggered by the end of
execution of a job of τA, and τD is triggered by the end of
execution of a job of τC respectively. It is further shown how to
represent such a trigger pattern using job-level dependencies.
Modeling the two activation rates by the use of job-level
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Fig. 3: Example of a mixed trigger chain and the required job-level depen-
dencies for the timing analysis.

dependencies allows to directly apply the end-to-end timing
analysis proposed in [9].

B. Knowledge of Task Offsets

In our earlier work [9], no task release offsets were consid-
ered in the analysis. In order to account for known offsets, the
read interval needs to be adjusted. Given an offset Ψ, a job of
a task can now read its input data only after Ψ time units with
respect to the start of its period. The end of the read interval is
unchanged at C time units before the next period starts. Since
Dmin and Dmax are described by Rmin and Rmax, no direct
changes are required in the formulation. With the adjustment
of the input interval according to the offsets, the remaining
calculations to determine the maximum data age can remain
the same, as described in Section IV.

C. Reachability in Known Schedules

Many automotive real-time systems deploy time-triggered
schedules in order to guarantee a deterministic timing be-
havior. In such a schedule it is known at design time when

the different jobs of the different tasks are executed. Thus, a
complete knowledge of the system is available. On the other
hand, for dynamically scheduled systems it is often possible
to compute the Worst-Case Response Time (WCRT). In that
case the exact execution times of a task are not known but the
earliest and latest time a task can execute is known.

1) Schedule is Available: Let’s assume an offline schedule
is available for the system. So for each job τi,j of the task
set its exact start time is known as starti,j , and similarly
its finishing time is known as endi,j , see Fig. 4. With this
additional knowledge the read and data interval can be adjusted
as shown in Table I.
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Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Fig. 4: Read and data intervals of consecutive jobs of τi if the exact schedule
is available.

Since the start of the jobs execution, and hence the time it
reads its input data, is known, the read interval collapses to a
point. This also leads to smaller data intervals, resulting to no
overlap between consecutive jobs.

2) Worst Case Response Time is Available: For systems
where the WCRT of a task τi is known as WCRTi, the read
and data interval can be adjusted to account for this more
accurate system information (see Fig. 5). The modifications
of the read interval mainly reflect the possible execution of a
job during its execution window (bounded by the WCRT).
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Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Fig. 5: Read and data intervals of consecutive jobs of τi if WCRT of the tasks
are available.

D. Reachability in the LET model

In the LET model the read and write operations are confined
to the boundaries of the execution window. In Fig. 6, these



points are highlighted by the thick-vertical dotted orange lines
below the arrows marking the job releases. This temporal
decoupling of communication and execution has significant
advantages for the end-to-end delay calculations.

The periodic access to all input variables at the beginning
of the period collapses the read interval to a point. The data
interval is also defined, making the output data available for
exactly the period after the jobs execution. These modifications
are shown in Table I. As can be seen, all descriptions are
independent of the actual execution time of the job.
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Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Fig. 6: Read and data intervals of consecutive jobs of τi if the system operates
based on the LET model.

E. Discussion

All presented modifications affect solely the read and/or data
intervals of the jobs. Hence, the existing calculations for the
maximum data age, as presented in Section IV, can be applied
without modification. This fact allows the system designer to
perform the calculation of maximum data age based on various
levels of system information.

A tradeoff between the required system knowledge and ac-
curacy of the obtained maximum data age exists. For systems
with exact knowledge, and for the LET systems, it can be
observed that data intervals of different jobs of the same task
never overlap with each other. This means that it is always
certain which data is consumed by a job and thus, all data
paths which are computed are observed when the system is
executed.

Lemma 1. If it holds for all tasks in a chain, that the read
intervals of a task are reduced to a point (i.e. Rmin(τi,j) =
Rmax(τi,j), then the calculated data age delays are exact.
Here “exact” means that all calculated data age delays are
observed during the execution of the real system.

Proof. From the definition of the read and data intervals in
Section V we can see that once Rmin(τi,j) = Rmax(τi,j)
the resulting data intervals of consecutive jobs do not overlap.
Given that data intervals do not overlap and read intervals are
reduced to points, the function Follows(τi,j , τk,l) only returns
true for the jobs which actually consume the respective data
during the execution of the real system.

VI. TIMING CONSTRAINTS TO RESTRICT EXECUTION
ORDER IN AUTOMOTIVE STANDARDS

While job-level dependencies are a useful notation to de-
scribe an ordering between jobs of different tasks, which possi-
bly execute at different rates, they are not directly supported by
the timing models found in the automotive standards such as

EAST-ADL [5] or AUTOSAR [3]. In this section we address
this problem first by showing how to represent a subset of
such constraint using the EAST-ADL timing specifications.
Later we show how to represent job-level dependencies using
the AUTOSAR extensions for timing specifications [3]. In
AUTOSAR such constraints can be represented using specific
constraints that are not available at the higher abstraction levels
that are defined by EAST-ADL.

A. Job-Level Dependencies and EAST-ADL

EAST-ADL allows to specify the so-called Ordering Con-
straint between two tasks. Such a constraint is specified
between two events, the source and the target, where both need
to appear at the same rate, i.e. Tsource = Ttarget. The constraint
then dictates that for each occurrence, the source needs to be
executed before the target.

This can be mapped to a job-level dependency, where τA is
the source and τB is the target: τA

(1,1)−−−→ τB . Note, that a more
general job-level dependency with instance indices 6= 1 cannot
directly be represented by the timing constraints available in
EAST-ADL.

B. Job-Level Dependencies and AUTOSAR

In AUTOSAR, a job-level dependency can be represented
by an Execution Order Constraint [3]. In the basic form, such a
constraint defines a trigger event that activates a group of tasks.
The tasks inside this group are then executed sequentially, in
the specified order. Hence, tasks that are connected by such
a relation need to be triggered with the same rate. This then
directly maps to a single-rate job-level dependency τA

(1,1)−−−→
τB , since the ordering of the tasks in the group defines the
execution order.

The same type of constraint can be used as Repetitive Exe-
cution Order Constraint [3], which allows to define relations
between tasks that are not executed with the same period.
Involved periods only need to be harmonic, i.e. the periods
of the tasks need to be divisible. Compared to the basic exe-
cution order constraint, several task groups are related in this
constraint and the active group is selected in a cyclic manner.
Like the simple execution order constraint, this constraint type
is activated by a trigger event with rate of min(TA, TB). The
number of required cycles, and thus groups, can be computed
by max(LCM(τA,τB)

τA
, LCM(τA,τB)

τB
).

As an example in Fig. 7 , two tasks, τA and τB are scheduled
where τA is activated with twice the periodicity of τB . While,
in the general case, τB can execute anytime, it introduces
pessimism since the execution order is unknown. To achieve
correct functionality, the instance of τB must execute after the
second instance of τA. This can be achieved by the repetitive
execution order constraint shown in Fig. 7.

The constraint is triggered with the period of τA. The
number of task groups that is needed is 2, since the hyper-
period of the two tasks is twice the period of τA. In the
first task group only τA is included, while both tasks are
present in the second group in the order as specified by the



constraint. This dependency can be described by the job-
level dependency τA

(2,1)−−−→ τB . The resulting schedule of the
described constraint is also shown in Fig. 7.
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Fig. 7: Repetitive execution order constraint on the left and the resulting
schedule on the right.

VII. REPRESENTATION IN DIFFERENT
COMMUNICATION PARADIGMS

So far, all assumptions for the read and data interval are
based on the implicit communication model, where it is
assumed that all read operations happen at the start of the
execution and all write operations happen at the end of execu-
tion. In this section, we are going to relax this restriction by
showing that the model in fact covers all other communication
models as well. In the remainder of this section, we first show
that the read and data intervals are safe and that they capture
all cases for the different execution paradigms.

A. Boundaries of the Read and Data Intervals

This section shows which boundary of the respective inter-
val affects the maximum data age and is thus most important
for the corresponding calculations.

Lemma 2. The lower boundary of the read interval affects
the maximum data age of a cause-effect chain.

Proof. This can be shown by considering both corner cases.
Lets assume the upper boundary of the interval ends at time
Rmax and overlaps with a predecessor instance τj,i. If the
upper boundary of the interval is extended by k time units to
time Rmax + k it potentially overlaps with the data interval
of τj,i+1. This instance is released after the original instance
τj,i and hence the consumed data is fresher and the data age
becomes smaller. On the other hand, if the lower bound of the
interval Rmin is extended to Rmin−k, the instance may read
the data of τj,i−1. This then leads to a larger value for the data
age since τj,i−1 is executed before τj,i, thus the consumed data
is older.

Similarly we can address the data interval.

Lemma 3. The upper boundary of the data interval affects
the maximum data age of a cause-effect chain.

Proof. This can also be shown by considering both corner
cases. Assume that the first instance of the successor task τj
that overlaps with the data interval with boundary Dmin is
instance i. By extending the lower boundary by k time units
to Dmin − k an earlier instance τj,i−1 may overlap with this
extended data interval. Such a data propagation will lead to a
reduced data age since τj,i−1 is scheduled before τj,i. On the

other hand, if the upper bound of the data interval Dmax is
extended by k time units to Dmax + k, the data may be read
by a later instance of τj,i which will lead to a larger maximum
data age.

B. Explicit Communication

As described in Section III-B, explicit communication does
not restrict the locality of memory access like implicit com-
munication. Fig. 8 shows an example job of a task τi, where
read and write access to the global variables happens at various
points during its execution. In the figure, the variable Lk is
read ∆Lk time units after the start of the execution. Note that
the actual execution path of the code may lead to several other
possible data access patterns and even the same execution
path may lead to different values of ∆Lk, depending on the
state of the processor and scheduling effects. To compute
safe bounds for the maximum data age it is assumed that
the data access happens as early as possible, with the start
of the execution (see Lemma 2). Similarly, the write access
to data happens as late as possible during the execution (see
Lemma 3). Thus, the resulting boundaries for the intervals
are equivalent to the intervals of the implicit communication
model. However, differences between the two models do exist.
The access to global variables is limited in the implicit com-
munication model, compared to the explicit communication
model, where expensive access to global variables may be
accounted for multiple times during the execution. This then
leads to different WCET estimates between the two models.

VIII. EVALUATION

This section presents the evaluation of the proposed ap-
proaches to analyze the end-to-end delay based on various
levels of system information. First the experimental setup
is described, before the computed worst-case data age is
compared based on various levels of timing information. Then
the required computation time to perform the analysis at the
presented information levels are evaluated. The applicability
of the proposed methods to an industrial setting are presented
in Section IX, using a case study.

A. Experimental Setup

The analyzed cause-effect chains for the experiments are
generated according to the automotive benchmarks described
in [34]. The task periods are uniformly selected out of the
set {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms. The individual task
utilization is computed by UUnifast [35]. As stated in [34],
an individual cause-effect chain is comprised of either 2 or
3 different periods, where tasks of the same period appear
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Fig. 8: Read and write operations in the explicit communication model.
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(b) Cause-effect chains with 3 involved periods.

Fig. 9: Comparison of the max. data age (normalized to the chains HP) for chains with 2 and 3 activation rates under various levels of system knowledge.

in sequence in the chain. Note that period-pairs are randomly
generated in the cause-effect chain in conformance to [34]. For
each of the presented data points, 1000 random cause-effect
chains are examined.

Fixed priority scheduling is used to generate the schedule
and compute the task response times. Priorities are assigned as
per the Rate Monotonic [36] policy, where priorities between
tasks of the same period are assigned in arbitrary order. For
the evaluation of the systems with required response times
or known schedule, the response times are calculated by the
classical response time analysis [37], and the schedule is
generated by simulating the tasks’ execution.

B. Analysis of Pessimism at Various Levels of Timing Infor-
mation

The first experiment analyzes each cause-effect chain in a
system given different information states – no information,
response times, known schedule, and LET communication.
The system contains 30 tasks while the generated cause-effect
chains are comprised of 4 – 10 tasks in the case of two
activation patterns (i.e. periods), and 6 – 15 tasks in the
case of three activation patterns and the system utilization
is set to 80%. The results are presented in Fig. 9. The
calculated end-to-end latencies are normalized with respect to
the hyperperiod of the chain and shown on the vertical-axis.
The decreased pessimism in the analysis with increased system
knowledge is visible in all results. The computed worst-case
data age of the same scenario includes lesser pessimism from
systems with no prior information to systems with known
response times up to systems where the schedule is available.
Additionally, we present the maximum data age under the LET
model, which behaves close to the computed results based on
response times in our setting. The difference of the execution

semantic becomes visible when comparing with the results
for known schedules. Both results are exact results under the
respective execution semantic but the observed maximum data
age for the LET model is larger than the value for the known
schedule. This is because the LET model restricts the data
communication to the period boundaries. While the maximum
data age is larger, the data age experiences no jitter since it
does not depend on the execution of tasks. This has significant
benefits for control applications.

C. Analysis of the Computation Time

In this experiment we evaluate the required computation
time for the analysis under the different levels of system
knowledge, as shown in Fig. 10. The system contains 30
tasks while the cause-effect chain under analysis has a length
of 4 – 10 tasks with two involved activation rates. All
experiments were performed on a system containing an Intel
i7 CPU (4 cores at 2,8 GHz), and 16 GB of RAM. The two
scenarios with exact knowledge (i.e. the known schedule and
the LET model) have very low analysis times with almost no
increase with increasing length of the chain under analysis.
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On the other hand, the scenarios with less system information
experience an exponential increase in analysis time. This is
attributed to the increased uncertainty due to overlapping data
intervals. Thereby increasing the possible successors that must
be analyzed by the algorithm.

IX. INDUSTRIAL CASE STUDY

In this case study, we demonstrate the applicability of the
proposed methods to one node of a Steer-by-Wire (SBW)
application.
A. Prototype Setup

We integrate the proposed timing analysis into the RUBUS
tool chain, which is a commercial tool chain [18], as seen in
Figure 11. Rubus-EAST models the system at the design level
with the EAST-ADL language, while Rubus-ICE uses this
model to generate the implementation level model, compliant
with the Rubus Component Model [38] containing the offline
schedule to be executed at the target platform. We apply
our proposed timing analysis on the artifacts generated by
the respective tools (i.e. the design level model for Rubus-
EAST and the implementation level model for Rubus-ICE).
Currently, there is no support in Rubus-EAST to perform
timing analysis at the design level without additional expert
knowledge. At the implementation level however, it is possible
to analyze the maximum data age of the cause-effect chains
which is based on the timing analysis of [8].

Design-Level	
Model	(XML)Design-Level	Model	

Rubus-EAST
Design-Level	Model	
Rubus-ICE

Implementation-
Level	Model	(XML)

End-to-End	Timing	
Analysis	based	on	no	
System	Information

End-to-End	Timing	
Analysis	based	on	
Offline-Schedule

Fig. 11: Case Study setup showing different points to perform the timing
analysis.

B. Steer-by-Wire Subsystem and its Timing Analysis

We base this case-study on the SBW system presented
in [7], and analyze the ECU that handles the front wheel
subsystem. The functionality implemented in this subsystem
is part of a larger control loop, where control information and
data is received and sent over a connected Controller Area
Network [39] bus every 20 ms. The ECU reads from the angle
and torque sensors, processes it and finally passes control to
the actuator of the wheel. Internal processing includes filtering
the sensor inputs and the main control functionality which is
triggered every 10 ms. Detailed information about the tasks
and their attributes can be found in Table II.

For the case study, we focus on two cause-effect chains
shown in Fig. 12. The first cause-effect chain is the Network

TABLE II: Timing properties of the tasks in the SBW subsystem.
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Fig. 12: Design-level software architecture of the SBW subsystem.

Chain, which spans from input In1, to the output Out1. The
second cause-effect chain, the Wheel Chain, is related to the
internal functionality and actuation and spans from In2 to
Out2.

1) Analysis at the Design Level: At the design level, where
no scheduling information is present, we analyze both cause-
effect chains using the methods presented in this paper. For
the Wheel Chain, the maximum data age is computed to be
40 ms if the basic analysis of [9] is applied. Since the Wheel
Chain contains a mixed trigger pattern, the required job-level
dependencies can be specified, as described in Section V-A.
This consideration leads to a maximum data age of 20 ms. The
Network Chain contains only independently triggered tasks,
where the maximum data age is computed to be 60 ms.

2) Analysis at the Implementation Level: At the imple-
mentation level, in the Rubus tool chain, the exact schedule
is computed offline and therefore we apply the proposed
modifications of Section V-C. In the specific schedule, the
Wheel Chain experiences a maximum data age of 10.22 ms,
and the Network Chain experiences a maximum data age of
10.10 ms. It can further be shown that each observed data-path
results in the same data age for the respective cause-effect
chains, leading to jitter only on the data age due to the jitter
of the last task in the chain. Hence, the experienced jitter is
minimal, which is highly desirable in control systems.

3) Discussion: This case study demonstrates the applica-
bility of the proposed methods in an industrial tool-chain.
The existing system information can directly be used as input
for the required analysis at the different abstraction levels,
which is important, as the integration in the tool-chain needs to
impose as few changes as possible to it. Being able to analyze
the data age at both abstraction levels enables the engineers
to detect design flaws already early on which can significantly
reduce the development costs.

X. CONCLUSION AND OUTLOOK

Timing requirements specified for the end-to-end data prop-
agation delays through a chain of independently triggered
tasks are commonly found in the automotive domain. In this
paper, we have shown how to utilize the different levels of
system information available during the design of automotive
systems in order to compute the maximum data age of a cause-
effect chain. It is further shown how different communication
semantics, that are typically used in these systems, can be
addressed. This is done by extending the analysis method
presented in [9] by adjusting the read- and data-intervals,



which are used as input values of the analysis, to reflect
the increase in system knowledge. A clear trade-off can be
observed between the required information for the analysis
and the pessimism (overestimation) in the obtained results.
Hence, the analysis presented in this work allows to compute
the analysis results with high precision based on the various
levels of available system information.

An industrial case study is performed to demonstrate the
applicability of the proposed methods in using a state-of-the-
practice tool chain. It is demonstrated that the data age com-
puted at a high abstraction level (before the system synthesis)
is less precise than the data age that is computed with full
system information. The benefits emerge as system engineers
can utilize these timing bounds to detect design flaws as
soon as they become visible based on the available system
information. Moreover, the early timing estimations also allow
the system designer to perform early system refinements with
respect to end-to-end timing. This can then significantly reduce
development costs.

The analysis presented in this paper is applicable to single
node real-time systems as well as distributed real-time sys-
tems, where the nodes are synchronized. Future work focuses
on the analysis of maximum data age over cause-effect chains
which are distributed over multiple nodes, where the nodes
may or may not be synchronized.
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