
Analysis of Perceived Helpfulness in Adaptive
Autonomous Agent Populations

Mirgita Frasheri, Baran Cürüklü, and Mikael Ekström

Mälardalen University, Väster̊as, Sweden
{mirgita.frasheri, baran.curuklu, mikael.ekstrom}@mdh.se

Abstract. Adaptive autonomy allows agents to change their autonomy
levels based on circumstances, e.g. when they decide to rely upon one
another for completing tasks. In this paper, two configurations of agent
models for adaptive autonomy are discussed. In the former configuration,
the adaptive autonomous behavior is modeled through the willingness of
an agent to assist others in the population. An agent that completes a
high number of tasks, with respect to a predefined threshold, increases
its willingness, and vice-versa. Results show that, agents complete more
tasks when they are willing to give help, however the need for such help
needs to be low. Agents configured to be helpful will perform well among
alike agents. The second configuration extends the first by adding the
willingness to ask for help. Furthermore, the perceived helpfulness of
the population and of the agent asking for help are used as input in
the calculation of the willingness to give help. Simulations were run for
three different scenarios. (i) A helpful agent which operates among an
unhelpful population, (ii) an unhelpful agent which operates in a helpful
populations, and (iii) a population split in half between helpful and un-
helpful agents. Results for all scenarios show that, by using such trait of
the population in the calculation of willingness and given enough interac-
tions, helpful agents can control the degree of exploitation by unhelpful
agents.

Keywords: Adaptive Autonomy, Collaborative Agents, Multi-Agent Sys-
tems.

1 Introduction

Adaptive autonomous (AA) agents are software agents which are able to decide
on whether to be more or less autonomous, with respect to some task, given
specific circumstances. Autonomy can both refer to the behaviour of an agent,
in any given context, as well as the agent’s relationship with other entities. The
latter can include other AA agents, non AA agents, or human operators that
operate in a nearby environment (physical or virtual), such that communication
between them is possible. The decision to change the autonomy level could also
lie on the human operator, or be a result of the cooperation between human
and agent. Thus, adaptive autonomy is one of many concepts that involves the
change of the autonomy level of an agent. A non-exhaustive list of theories and



definitions, in addition to AA is as follows: adjustable autonomy, mixed-initiative
interaction, sliding autonomy, collaborative control and so on.

Adjustable autonomy refers to a system in which the human is the one who
makes the decision with respect to the autonomy of an agent [1]. Nonetheless, it
has also been used as a generic term for the different means in which decision-
making regarding autonomy could be shared between human and agent [2]. In
mixed-initiative interaction, agent and human are both able to make a decision,
depending as well on the circumstances [1]. Collaborative control [3] is an early
approach, which departed from a classical view of human/master - agent/slave,
into one in which both were peers. Any inconsistencies between them were re-
solved through dialogue. Nonetheless, the human was the one who would set
the global goals for the agent. Sliding autonomy represents another approach in
which two modes (full autonomy and tele-operation) could be switched on the
task level [4]. Consequently, an operator is able to conduct some tasks, whilst
the system performs autonomously for others, depending on the circumstances.
Agent autonomy has been studied extensively in the literature. The 10 levels

Table 1: The 10 levels of autonomy proposed by Parasuraman et al.
HIGH 10. The computer decides everything, acts autonomously, ignoring the human

9. informs the human only if it, the computer, decides to

8. informs the human only if asked, or

7. executes automatically, then necessarily informs the human, and

6. allows the human a restricted time to veto before automatic execution, or

5. executes that suggestion if the human approves, or

4. suggest an alternative

3. narrows the selection down to a few, or

2. The computer offers a complete set of decision/action alternatives, or

LOW 1. The computer offers no assistance: human must take all the decisions/actions

of autonomy have been proposed by Parasuraman et al. [5] (Table 1). Another
scheme is through the dimensions of self-sufficiency, i.e. being able to do a task
without outside assistance, and self-directedness, i.e. being able to choose one’s
own goals. Johnson et al. [2] refer to them as the descriptive and prescriptive
dimensions of autonomy, respectively. Furthermore, they add a third dimension,
that of inter-dependencies between team-mates (either agent or human). The
former could be either hard, i.e. necessary for the successful outcome of a task,
or soft, i.e. not necessary, however, could improve on the performance of a task.
Castelfranchi defines autonomy using dependence theory [6], i.e. if an agent ai
lacks any means (e.g. ability, knowledge, or external resources) to perform a
task t and relies/depends on another agent aj for its provision, then ai is not
autonomous from aj with respect to t. Moreover, this kind of autonomy/non
autonomy has a social nature, and is to be distinguished from autonomy from
the environment, or in other words autonomy with respect to how to react to
incoming stimuli. This paper assumes [6], thus allows agents to adapt their au-



tonomy by deciding on whether to depend on each other. Section 2 provides more
information on the research conducted in the field of AA and alike concepts. It
also puts the work presented in this paper into perspective with respect to the
literature.

A model for an AA agent has been proposed previously [7], in which adapta-
tion is modeled through the willingness of agents to give assistance to each other.
The agent’s own performance – calculated as the number of tasks completed over
tasks attempted – influences the willingness to give assistance. If the performance
is high, the agent will be more willing to help, the opposite also being true. This
is Configuration 1 (C1) of the agent model. C1, alongside dedicated simula-
tions are shortly described in this paper, specifically in Section 3.1 - 3.3 and
Section 5.1. Subsequently, the AA agent architecture was extended through the
incorporation of another behaviour: willingness to ask for help (Section 3.4).
Thus, the current model incorporates both directions of communication with
respect to allowing agents to help each other. This is Configuration 2 (C2).

The next step is to consider the interactions from a population perspective.
The characteristic of the population under study is the perceived helpfulness
of its individuals taken as a group. It is defined by the number of times in
which agents have been willing to assist an agent ai, over the total number of
requests for help made by ai. Each agent in the group can estimate the perceived
helpfulness (i) of the population, and (ii) of individual agents. Both measures
are combined and used in the calculation of the willingness to give help, and
extend C2 (Section 4). The perceived helpfulness of the population is referred
throughout the text as part of agent culture. The main objective is to analyse how
the (most) helpful AA agents can avoid extensive exploitation of their resources
by other agents. The corresponding simulations and results are summarized in
Section 5.2. Three hypotheses are evaluated.

Hypothesis 1 (H1): Exploitation of an agent by its peers can be lowered by
considering the helpfulness of the population as a whole as well as that of an
individual agent in the calculation of willingness to give help.

Hypothesis 2 (H2): An agent population can adapt to an agent configured so
as to exploit by considering the helpfulness of the population as a whole as well
as that of an individual agent in the calculation of the willingness to give help.
Moreover, the efficiency of such isolation is disproportional to the population
size.

Hypothesis 3 (H3): Agents in a mixed population, where half of the popula-
tion is helpful and the other half is otherwise, can reduce exploitation while still
helping each other by considering the helpfulness of the population as a whole as
well as that of an individual agent in the calculation of the willingness to give
help.

Finally, the paper concludes with a discussion and reflections for future work
(Section 6), and conclusions (Section 7).



2 Related Work

Agent autonomy is an extensively discussed topic in the literature. A close exam-
ination of the related work points at six (6) main directions of research: (i) design
of user interfaces which aid human/robot(agent) collaboration, (ii) specific al-
gorithms that allow for autonomy levels of agents/robots to be changed such as
Markov Decision Processes, (iii) design of policy systems for the regulation of
agent behaviour, (iv) works that aim at comparing different schemes for changing
autonomy levels and works that motivate the need for such change, (v) design
methodologies for the creation of systems that support inter-dependencies be-
tween systems, (vi) general architectures and frameworks. The next paragraphs
provide a compact description of relevant literature in each of the mentioned
directions. Furthermore, the research conducted in this paper is put into per-
spective with the existing work found in the literature.

(i) User interfaces are used as means to allow both agent and human to mon-
itor each other, and consequently change autonomy levels if perceived necessary.
The initiation of change can come from both sides. A system able to capture the
user’s skill, can change its autonomy accordingly [8]. In this case skills are of a
navigational, manipulation (gripping), and multi-robot coordination nature. On
the other hand, a human operator can have the flexibility to command a robot
at several levels such as: low-level control, way-point control, high-level control
(sending goals like ”bring the can of coke”) [9]. Other types of interfaces are
aimed at aiding a human to monitor and control a group of robots, which may
need only occasional support [10] [11]. Other work is specific to navigational is-
sues, in which a human assists path planning of UAVs (unmanned aerial vehicles)
by providing spatial and temporal constraints [12]. The 3T agent architecture
[13] has been extended to allow for the human in the loop of the decision-making
of the agent [14]. The addition enables the system to keep track of what the hu-
man does, so as not to lose the common picture between human/system. Overall,
the challenge for these interfaces is to allow for the common ground not to be lost
and be accessible by all parties [15] [16]. Moreover, an important consideration
to be made has to do with how much autonomy the agent/robot is intended to
have [17].

(ii) Attributes such as task urgency and dedication level to the organiza-
tion haven been used to guide the agent’s reasoning with respect to when to
take more initiative (increase its autonomy) [18]. Autonomy levels can also be
changed at the task level, i.e. one task needs tele-operation from the human,
whereas another can be conducted autonomously [4]. Furthermore, several task
allocation algorithms have been proposed. In one, tasks are mapped to agents,
and the human is able to accept/reject such mapping and trigger task alloca-
tion from the start [19]. Others categorize tasks in two groups: tasks which the
agent can perform autonomously, and tasks that need human assistance [20].
The classification influences algorithm design. Colored Petri Nets are used in
the formalization of team plans and addition of interrupt mechanisms, which
allow the human to intervene in case of need [21]. Markov Decision Processes
(MDPs) are employed to map help requests from agents with available humans



– assuming that agents detect when they are in trouble [22]. In other threat
recognition and target identification applications, the system is implemented to
query a human when it fails [23].

(iii) Regulatory systems (e.g. policies) are discussed in the context of regulat-
ing agent behaviour, due to bringing predictability and thus coordination [24].
An example is the Kaa system [25] which extends the KAoS policy system, by
introducing a central agent (the Kaa) to override and adjust policies during run-
time. If Kaa cannot reach a decision, then the human is introduced in the loop.
Another approach involves the implementation of transfer-of-control strategies
(through MDPs), which specify how control should be transferred between hu-
man and agents [26]. This has been applied in the E-elves platform (personal
assistant agents) which ran at the University of Southern California.

(iv) The ability to change autonomy levels is considered a desirable features
of systems, which can allow them to operate in human-team like fashion [27].
Scenarios with and without the ability to change autonomy have been compared
[28] [29]. Decision-making frameworks such as master/slave, peer-2-peer and lo-
cally autonomous are dynamically shifted to show the superiority compared to
static autonomy. However, the authors use data from previous experiments to
apply the right decision framework for each environmental condition; there is
no reasoning embedded in the agents. Different implementations of dynamic au-
tonomy have been compared, which are adaptive autonomy (agents change their
own autonomy), mixed-initiative interaction (both human and agent are able to
change autonomy), and adjustable autonomy (the human is able to change the
autonomy) [1]. In their simulations, mixed-initiative interaction performs better
in terms of victims identified in search and rescue simulation scenario.

(v) Jonson et al. have argued the need for the analysis of inter-dependencies
between systems, and its use in the design phase [2]. Moreover, they have pro-
posed one such methodology [30], namely Co-active Design. This method in-
cludes the following steps. (i) Inter-dependencies in the system are identified.
(ii) Mechanisms are designed to address each inter-dependency. (iii) The effects
of these mechanisms on present inter-dependent relationships are analyzed. The
aim is to make automation a team-player. In this respect several challenges
have been identified [31] such as: basic compact, adequate models, predictabil-
ity, directability, revealing status and intention, goal negotiation, collaboration,
attention management, and cost control.

(vi) The agent architecture STEAM [32] has extended the Soar agent [33] to
include support for teamwork. Team operators – reactive team plans – are intro-
duced. These are an addition to the agent’s plans that do not require teamwork.
The solution includes a synchronization protocol so that agents can coordinate
with respect to team plans. The DEFACTO framework [34] aims at providing
support for transfers of control in continuous time, resolving human-agent incon-
sistencies, and making actions interruptible for real-time systems. Team THOR’s
Entry in the DARPA Robotics Challenge [35] brings forward a motion frame-
work for a humanoid robot which allows for low-level control, scripted autonomy



(i.e. invocation of robot movements by calling predefined scripts), and enables
issuing high-level commands.

The research discussed in this paper fits mostly within (ii) and (vi). On one
hand, algorithms are being developed to allow agents to assist and ask each
other for assistance during their run-time. There are no classifications of tasks
that either need assistance or not. In principle, an agent might require help for
any task, due to changing circumstances. Assume an agent ai which at time
T1 is able to perform task t. The same agent, at time T2 might not be able
anymore to continue on its own. One reason could be that, its battery levels
have gone down. On the other hand, these algorithms fit within a general agent
architecture, which models how an agent executes during its run-time.

3 Agent Model

This section describes configurations 1 and 2 of the agent model.

Fig. 1: C1 agent model with three states [7]. The Msg. PU represents the module
in which messages coming from other agents are handled

3.1 Early Work (C1)

The agent model proposed previously [7] consists of the three (3) states, interact,
execute, and idle (Figure 1). All agents in the population have a willingness to
give assistance to each other. This concept is represented by a probability value,
which defines the likelihood for such an event to occur. Assume an agent ai
which is in either the states of idle or execute. If the agent is in execute, it means
that it is already dedicated to a task. Agent ai can be in either idle or execute
when a request for assistance is received, and will switch immediately to the
interact state, where the decision of whether to accept the request will be made.



If ai accepts the request, it will switch to execute with the new corresponding
task, whilst the old one will be dropped for good. Otherwise, it will switch to
its previous state, i.e. either idle or execute and continue with the old task.

Fig. 2: Flowchart for the idle state [7].

Fig. 3: Flowchart for the execute state [7].

An agent always starts its operation in the idle state. In this state, the agent
is not dedicated to any task or goal. Nonetheless, a task could be generated
with a probability P (Figure 2). This task is picked from a list of tasks which
the agent is able to do (specified before runtime). When a task is generated, or
a request for help is accepted, the agent switches to execute. The assumption
is made that if the agent is not interrupted, it will always complete its task
successfully (Figure 3). At the beginning of each task, an agent will check for
dependencies on other tasks. In the case of C1, dependencies are assumed to be



Fig. 4: Flowchart for the interact state [7].

fixed and known before-hand by all agents. If there is any, it will issue a help
request to some known agent aj which is able to perform the task. Then it will
wait for a finite amount of time (constant determined before runtime and equal
to all agents) for a response from aj . If there is no response, the agent will give
up on waiting, update the history of interactions with aj , and attempt to do the
task by itself with a lower probability of success. There are other options which
could be implemented as well. (i) The agent can first try by itself, and if it fails,
asks another for help. (ii) After aj fails, the agent attempts with another agent
ak. When a task is finished, the agent returns to idle.

Agents keep track of the outcomes of the interactions with each other. As a
result, they are able to compute the perceived willingness to help and expertise
with respect to some task of every other agent. An agent ai will select another
agent aj to ask for help based on aj ’s helpfulness in the past, i.e. based on
aj ’s perceived willingness to help. During its operation, the agent keeps track of
the outcomes for each interaction, which is used to determine helpfulness. It is
important to note the difference between the perceived helpfulness and expertise.
The former is an indicator of how much another agent has been willing to help,
whereas the latter captures the actual success rate of the agent that has been
trying to help. As a result, the perceived willingness is a more optimistic measure
in which to judge other agents.

When the agent gets a request from another agent for help, then it will switch
to the interact state which cannot be interrupted, i.e. it can be considered as
an atomic step (Figure 4). This has the implication that the requests will be
processed one at a time in a FIFO manner. There are two possible outcomes
from the interact state. The agent can drop the past activity and go into execute
with a new task, or it discards the requests and continues with what it was doing
before receiving the request. The willingness to give help is the determining factor
that shapes agent behaviour. The agent performance will in turn influence the
willingness to give help in the following way. If the agent calculates that it has
dropped too many tasks, then its willingness will decrease. On the other hand,
if it has completed most of the tasks it has attempted, then its willingness will
increase.



3.2 Interactions between Agents

In order to resolve the dependencies between them, agents need to interact with
each other. This means that, if an agent ai doing a task t identifies that it needs
to depend on aj to complete t, then ai will need to interact with aj . Dependencies
themselves could be known in advance (as assumed for the agent described in
3.1) or could arise during runtime. Moreover, they can arise at the beginning or
during the execution of a task t.

There are several types of possible interaction between agents:

1. Non-committal interaction. Agents could broadcast certain messages to oth-
ers in the vicinity. These messages can contain different kinds of information
related to e.g. identity, offered services, warnings (”There is fire in corridor
x”, ”path from x1 to x2 is blocked”). Other agents are able to accept or dis-
regard them. Nonetheless, no dialogue is being established by the involved
parties. This means that the agent sending a broadcast does not expect any
reply or commitment from others. In this work, this interaction is used by
agents to make themselves known to each other. In principle, other agents
could be able to evaluate the trustworthiness of the broadcasting agent by
examining the following: (i) is the information useful, and (ii) is it true?

2. One-to-one dialogue. Agent ai misses specific information, and queries aj .
In this case, a one-to-one dialogue is being established, in which one party
expects a reply from the other, so that it is able to fill its knowledge gaps.
The validity of the information aj provides could be evaluated, as well as its
perceived helpfulness to ai.

3. One-to-one delegation. Similarly to one-to-one dialogue, a kind of dialogue
is established in this case as well, in the form of a request to complete a task.
This means that ai will ask aj to perform an activity on which a′is success
with respect to a task depends. In general, ai could be still able to succeed
by itself, but with a lower probability. ai is able to evaluate the behaviour of
aj based on (i) its perceived helpfulness and (ii) shown expertise. aj as well
will perform an evaluation in order to determine whether to assist ai. This
type interaction is as well implemented in this paper.

4. One-to-many dialogue/delegation. There are two ways to interpret this sce-
nario. (i) There could be a chain of one-to-one interaction which emerges,
e.g. ai asks aj , which asks ak and so on. In this paper, such kind of chains
can emerge. (ii) An agent can start parallel interactions with a number of
other agents (B,C, etc.) by asking each of them to perform some specific
subtask.

Johnson et al. [2] consider in their work soft and hard interdependencies
between agents. Each level of interaction described in the previous paragraph
could refer to either depending on the concrete scenario. For instance, a non-
committal broadcast message could contain an alarm (e.g. ”There is fire in x
corridor”) and be decisive for the outcome of a task (and even well-being of
the agents). Thus it represents a hard interdependence. However, an ordinary
informational message (e.g. ”path from x1 to x2 is blocked”) if disregarded could



only delay the execution of some task without hindering its success. As a result,
it can be considered as a soft interdependence. Furthermore, the difference with
Barber et al. [29] is that the decision to assist another agent lies on the agent
itself. This means that, ai can ask to delegate a task to aj , and aj reasons and
decides whether to accept such delegation.

3.3 Agent Organization and Autonomy

Agent organization will have an impact on how autonomy is shaped for each
individual agent that makes up the population. There are two possibilities. (i)
There is a hierarchy between agents which could be predefined or could emerge
(e.g Barber et al. [29] consider how environmental conditions could be used to
evaluate which hierarchy fits best a specific scenario). (ii) Agents are peers with
each other.

In the first case, an agent ai which is a superior of aj is able to delegate to
aj any task it sees fit with some assurance that aj will comply. Delegating to aj
does not necessarily mean that ai cannot perform the task by itself. It can very
reasonably be assumed that ai is able to perform the task but simply prefers to
conserve its resources, and ask aj instead. aj on the other hand either has some
freedom in which it can refute to obey ai (e.g. what ai asks endangers aj in ways
that may or may not have been foreseen by ai) or it does not and it will always
have to comply. As a result, in general aj will be dependent on the will of ai,
given that the power relations between them hold.

In the second case, ai and aj are peers, thus no power relations between them
can be assumed. If ai needs help, it will make a request to aj , which in turn will
decide based on its willingness to give help whether to assist ai. As such, it is
ai which depends on the will of aj . Nevertheless other factors might come into
play. If ai has been helping aj in the past, then the latter could be more inclined
to return the favor, thus becoming easier to interfere with. Furthermore, the
motives of aj might not be genuine (help ai because it has helped me), but they
could in fact be more along the lines of: help ai so it can continue helping me in
the future.

Note that, some form of dependence between agents is present in both sce-
narios. Moreover, dependence always constitutes a risk [36]. Even when there are
power relations, an agent choosing to delegate to another, is choosing to depend,
and thus is giving away some of its autonomy. The agent that delegates might
be able to do the task by itself, if another agent fails. However, if the output of a
task is expected within a certain time, then a delay could mean failure. On the
other hand, if the agent cannot perform the task by itself, then it is even more
dependent on the agent it asks for help. Therefore, the level of autonomy cannot
always be well defined and can be blurred. In this paper, agents are assumed to
be peers.



Fig. 5: Agent model extended to include two more states: regenerate and
out of order

3.4 The AA Agent (C2)

The agent model described in Section 3.1 has been extended with respect to
two dimensions. (i) Two more supporting states have been added (Figure 5),
the regenerate and out of order states respectively. If the agent reaches critical
levels of battery (the start-up energy level, and the critical level are arbitrarily
specified before runtime) it will switch to the out of order state, and immedi-
ately from that state it will switch to regenerate where the recharge process is
simulated. Next, the agent will switch to either idle or interact (if there are any
requests pending). The agent can go to out of order from any other state (in
principle from regenerate as well). From the implementation perspective, ROS
services (for one-to-one interaction) have been switched with the ROS action
server mechanism. The limitation of the current implementation is that the ex-
ecution of a task in the execute state is simulated as a singular step, by pausing
the system for a finite amount of time (which represents the completion time for
a task). As a result, an agent reasons on whether it should ask for help at the
beginning of each task.

(ii) The agent’s adaptive autonomous behaviour is shaped by the willingness
to interact which is composed of the willingness to give help (δ), and the willing-
ness to ask for help (γ). The willingness to ask for help represents the probability
that an agent will ask another for assistance given its current circumstances (in
this case, dependencies are assumed to rise during runtime – in contrast to C1).
Moreover, the factors assumed to influence each facet of the willingness to in-
teract have been analyzed, and a corresponding computational model has been
proposed from which δ and γ are calculated. The calculation is done according
to algorithms 1 and 2.a. The notation used in both has the following meaning:
b - battery, e - equipment, k - knowledge, ai - abilities, n t - tools, µ - agent
performance, eR - environmental risk, t p - task progress/trade-off, aR - per-
ceived agent risk (complementary to perceived helpfulness). The notations with



the subscript t refer to abilities, resources needed by the task. In the cases when
it misses it refers to what the agent has at its disposition.

Algorithm 1 Agent’s reasoning process on when to ask for help

procedure Reasoning on asking for help(b, e, k, a, t, µ, eR, t p, a R)
γ ← γ0
if b− bt < bmin or et 6⊂ e or kt 6⊂ k or at 6⊂ a or tt 6⊂ tt then. Consider internal

resources
γ ← 1
return γ

else
γ ← γ − 5∆γ
if eR increase then . Consider environment risk

γ ← γ +∆γ
else

γ ← γ −∆γ
if a R increase then . Consider agent risk

γ ← γ −∆γ
else

γ ← γ +∆γ
if µ increase then . Consider own performance

γ ← γ −∆γ
else

γ ← γ +∆γ
if t p good then . Consider task progress

γ ← γ −∆γ
else

γ ← γ +∆γ

return γ

3.5 ROS

The Robot operating system (ROS) [37] serves the role of a middleware by im-
plementing different communication mechanisms such as: (i) publish/subscribe,
(ii) services, and (iii) action servers. A ROS executable is called a node. Nodes
publish and subscribe to channels referred to as topics. Nodes are able to find
each other through the ROS master, which serves the purpose of a name domain
system. Once a node is up, it will register itself with the master, which in turn
connects the nodes when required. Services are point to point communications
between one client and one server. Action servers improve on services by allow-
ing the server node to send progress feedback to the client after an initial server
call.

In this work, in both C1 and C2 configurations, agents are composed of two
ROS nodes. The main agent node contains the logic, and the message processing



Algorithm 2.a Agent’s reasoning process on when to give help

procedure Reasoning on giving help(b, e, k, a, t, µ, eR, t p, aR)
δ ← δ0
if b− bt < bmin then . Consider internal resources

δ ← 0
return δ

else
δ ← δ +∆δ
if et 6⊂ e then . Consider internal resources

δ ← δ −∆δ
else

δ ← δ +∆δ

if kt 6⊂ k then . Consider internal resources
δ ← δ −∆δ

else
δ ← δ +∆δ

if at 6⊂ a then . Consider internal resources
δ ← δ −∆δ

else
δ ← δ +∆δ

if tt 6⊂ t then . Consider external resources
δ ← δ −∆δ

else
δ ← δ +∆δ

if eR increase then . Consider environment risk
δ ← δ −∆δ

else
δ ← δ +∆δ

if aR increase then . Consider agent risk
δ ← δ −∆δ

else
δ ← δ +∆δ

if µ increase then . Consider own performance
δ ← δ +∆δ

else
δ ← δ −∆δ

if t p good then . Consider task progress
δ ← δ +∆δ

else
δ ← δ −∆δ

return δ

unit node handles published data from other agents. Nodes are written in the
python language, which is supported in ROS (alongside other supported lan-
guages such as C++ and Java). In C1, the services are used to implement the
one-to-one delegation interaction. In C2, service calls are replaced with action
server calls. At present there is no substantial difference between the two imple-



Algorithm 2.b Reasoning on δ with perceived helpfulness

procedure Additional reasoning on δ(a R, a S,C)
δ ← δp . δp calculated in Algorithm 2.a
if aR >= 0.5 and C <= 0.5 then

δ ← LOW
else if (aR < 0.5 and C <= 0.5) or (aR < 0.5 and C > 0.5) then

δ ← δ + k ∗∆step
else if aR >= 0.5 and C > 0.5 then

if a S < 3 then
δ ← δ −∆δ

else
δ ← LOW

mentations in the code. Nevertheless, the transition was made in order to allow
more flexibility for future development.

4 Perceived Helpfulness

This paper extends the ideas presented and discussed in previous work [7] by
including in the agent’s reasoning, characteristics of the population in which
the agent operates. These additions take place in Configuration 2. One such
characteristic is the perceived helpfulness of the whole population of agents (or
the part of the population with which an agent is able to communicate and
interact with). This is the target in this work. The perceived helpfulness of the
population is referred to as part of its culture. Other facets can be part of agents’
culture, such as perceived willingness to ask for assistance. However, the latter
is not treated here.

Assume an agent ai found in an environment among other agents (no partic-
ular hierarchy is imposed). During its operation, ai sends to and receives from
others help requests. Continuously, upon each request, ai has to decide whether
to help or turn down the request. Moreover, ai will need to depend on other
agent on particular circumstances. Previously, it has been showed that an agent
configuration with high willingness to give help, in situations where dependencies
are low (i.e. it asks for help in few cases), results in the highest number of tasks
completed (performance measure) for the whole population [7]. It is reasonable
to think that such a population will succeed with respect to the number of tasks
completed.

Note that, it is not always possible to assume that an agent will find it-
self among agents configured in the same manner. As such, an agent ai with
〈δ0 = 1.0, γ0 = 0.0〉, operating around a population of agents configured oppo-
sitely, i.e. 〈δ0 = 0.0, γ0 = 1.0〉, will be exploited and will not get the assistance
it needs from its selfish peers. Therefore, ai needs to take into account the be-
haviour of individual agents as well as the whole population, so that it can
conserve its resources when faced with exploiters.



In order to aid the agent such that it is not exploited, Algorithm 2.a is
extended through Algorithm 2.b. The main behaviour expected to be produced
by this extension is the following. If an agent ai finds itself in a selfish society
then, if the perceived helpfulness of the particular agent aj asking for help is
below a given threshold, ai will lower its δ to a value as low as 0.1, which
means that if it will help with a probability 0.1. Conversely, if aj ’s perceived
helpfulness is above a given threshold, then independently of the population,
ai will increase its δ by k ∗ ∆step. The reason behind such choice is that, ai
should not penalize other helpful agents, even though the agent population it
resides in is selfish. Finally, if the agent population is helpful, i.e. if the perceived
helpfulness is above a given threshold, although aj ’s perceived helpfulness is low,
then ai penalizes aj only after a certain number of unhelpful interactions. Thus,
aj is given the chance to change its behaviour so as to become more helpful.

5 Simulations

This section describes the simulation setups and results for configurations 1 and
2 of the agent model.

5.1 Setup and Results for C1

C1 Setup The agents are implemented as ROS nodes [37] and interact through
the publish/subscribe mechanisms and services. The simulation is limited to
three types of interactions, the non-committal broadcast (implemented through
ROS publish/subscribe), and the one-to-one delegation (implemented through
ROS services), and the emergent chain of one-to-one delegations. The agents
make themselves continuously known to each other by broadcasting their identity
and the list of tasks the are able to execute. Note that, agents are not assumed
to have the same global goals. Thus each one has its own objective, however can
put its capabilities to the service of others if the need arises.

Simulations were setup in order to investigate the utility of the agent popula-
tion. Utility is measured on two levels, (i) the degree of completion of dependent
tasks (CD), and (ii) the degree of dropped tasks (DD). Dependent tasks are tasks
which depend on other tasks in order to have a higher chance for a successful
outcome. As such, CD is calculated by dividing the number of dependent tasks
completed over the number of dependent tasks attempted (Equation 1).

CD =
Depend Tasks Completed

Depend Tasks Attempted
(1)

DD is calculated by dividing the number of dropped tasks over the number of
attempted tasks (Equation 2).

DD =
Tasks not Completed

Tasks Attempted
(2)



Two parameters were manipulated in the tests, the dependency degree between
tasks, and the willingness to give help (δ). The former refers to the percentage
of tasks (in a given set) that depend on other tasks for a higher probability of
success. The latter represents the probability that an agent will assist another
agent when requested.

In the simulations there are 10 tasks that are defined as abstract entities. Each
task is simulated as a for loop which runs for a specific amount of iterations.
The list of tasks an agent is able to do is a subset of 10 tasks. More than one
agent is able to execute the same task. As a result, there is diversity with respect
to whom an agent can ask for help. On each run of the simulation, the same
agent provides the same set of tasks. Moreover, the dependencies between tasks
are given before-hand. In this work, the dependence is limited to one task, as
opposed to many. An agent asking for help will wait ∆t = 60sec before dropping
the request. This value is given before runtime and is assumed equal to all agents.

Three sets of simulation runs were conducted. Each set includes three in-
dependent runs for the same fixed parameters: population size (popsize), de-
pendency degree (depdeg), and Greek delta δ. Simulation set 1: δ is static, i.e.
does not change throughout one simulation run, and popsize takes the values
10 and 30 for separate runs. The parameter δ takes its values in the segment
[0.0, 0.25, 0.5, 0.75, 1.0]. Depdeg takes values in [10%, 25%, 50%, 75%, 100%]. Sim-
ulations were ran for both population sizes, for each combination of δ and depen-
dence degree. The combination of all three parameters means that the first set
consists of 50 simulation runs. Simulation set 2: popsize is fixed to 10, whereas
δ is in a finer grained segment [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. The
segment for depdeg is the same as in the previous set. Simulation set 3: popsize
is equal to 10, however in this case δ is dynamic, i.e. it changes during runtime.
The initial values of δ are in the segment [0.0, 0.3, 0.5, 0.7, 1.0]. In the final set,
two simulations were run, (i) only one agent has dynamic δ, (ii) all agents have
dynamic δ. The segment for depdeg remains the same.

During all simulation runs, agents can decide to perform a task ti, or can
receive a request for that task. At the beginning of a task, the agent checks the
list of dependencies. If there is any such dependency, then the agent chooses
whom to ask for assistance, by consulting its list of known agents which are able
to perform ti. The selection is done in the following way. The agent perceived
as the most helpful in the past is chosen with probability 0.7, or random with
probability 0.3. The 0.3/0.7 ratio is arbitrary. This scheme helps the agents to
explore their options. The perceived helpfulness (ph) of an agent is computed by
dividing the times it has given a response over the total times it was requested
for help (Equation 3).

ph =
Requests Handled

Total Requests
(3)

C1 Results The simulations were conducted in order to verify the hypothesis
that agents with dynamic willingness to give help complete more of their de-
pendent tasks as compared to agents with static willingness. The corresponding



results are visualized as heat maps (Figure 6), in which the x-axis represents
the depdeg, an the y-axis represents δ, and the intensity of the color represents
the percentage of completed tasks summed over all agents in the population,
computed as a mean over the three independent runs.

Outcomes from the first set of simulation runs are shown in Figures 6a, 6b,
6d, and 6e. It is possible to observe that for low dependence degree (10%),
agents with a low willingness to give help (0.0), complete roughly 30% of their
dependent tasks. This figure agrees with the probability that an agent is able
to achieve a task by itself, when asking for help has failed. On the contrary,
agents with willingness to give help, complete more dependent tasks, without
noticeably impacting DD. Moreover, popsize does not show to have an impact
on neither CD (Figures 6a, 6b) nor DD (Figures 6c, 6d). This is the reason why
popsize equal to 10 was used in the remaining simulations. The outcomes for
the second set of simulation runs (given in c and f) are consistent with the first
set.

The third set of simulation runs covers the case in which δ is dynamic. As
such, in the y-axis for Figures g, j are shown δ’s initial values, δinit. It is observed
that for lower dependence degree, the population as a whole accomplishes more
dependent tasks, thus CD increases, as compared to the static δ scenarios. This
holds for both cases, i.e. only one agent has dynamic δ (Figures 6g, 6i) and
all agents have dynamic δ (Figures 6h, 6j). Furthermore, the maximum CD is
reached in the case where all agents have dynamic δ . On the other hand, as
the dependence degree increases, so does DD and this is consistent through the
three sets of runs. When all tasks depend on some other task (i.e. dependence
degree is equal to 100%), DD reaches its maximum value, and CD is circa 0.3,
which represents the probability for an agent to accomplish the task by itself.

The parameter DD influences the willingness to give help, and as a result the
behaviour of the agent (as is observed in Figures 6a, 6b). In these simulations,
two thresholds θlow = 0.3 and θhigh = 0.7, are used in order to regulate δ as a
function of DD as follows. If DD is higher than θhigh, then δ will decrease with
a step of δstep = 0.05. If DD is lower than θlow, then δ will increase with the
same δstep. If DD lies between θlow and θhigh, the agent will compare the current
DD with the one before. If such difference is bigger than 0.01 in absolute value,
then δ will be updated, i.e. will increase if DD has gone down, and decrease
otherwise.

5.2 Setup and Results for C2

C2 Setup Agents are implemented as ROS nodes [37]. The communication
between them is realized by using (i) the publish/subscribe mechanism in ROS
and (ii) a tailored action server mechanism able to handle multiple requests at
once which extends ROS’s Simple Action Server implementation. Agents contin-
uously broadcast their identity and list of tasks they can perform to each other
through the publish/subscribe. In order to issue requests for help (one-to-one
communications), agents use the action-server mechanism.



(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Fig. 6: Heat maps of CD and DD utility measures, for simulations with static δ
and dynamic δ, and different popsize [7]. (a) CD for popsize = 10 with static
δ. (b) CD for popsize = 30 with static δ. (c) CD for popsize = 10 with finer
resolution of static δ. (d) DD for popsize = 10 with static δ. (e) DD for popsize
= 30 with static δ. (f) DD for popsize = 10 with finer resolution of static δ. (g)
CD for popsize = 10, one agent with dynamic δ. (h) CD for popsize = 10, all
agents with dynamic δ. (i) DD for popsize = 10, one agent with dynamic δ. (j)
DD for popsize = 10, all agents with dynamic δ.



Agent behaviour was studied in three different simulation scenarios in order
to verify the three hypotheses H1, H2, and H3. The first scenario (S1) addresses
H1. The population of agents contains one individual with 〈δ0 = 1.0, γ0 = 0.0〉,
while the rest is configured with 〈δ0 = 0.0, γ0 = 1.0〉. Thus one agent has high
willingness to give help and low willingness to ask for help, whereas the rest
of the population has low willingness to give help and high willingness to ask
for help. The values in the tuples change during the simulation. Two types of
simulations are ran. (i) All agents calculate their δ based on Algorithm 2.a. The
simulation time is equal to ts = 1h. (ii) All agents calculate their δ by applying
to Algorithm 2.a the extension provided in 2.b. In this case simulation time is
ts = 3h. This is to ensure that enough interactions take place for the agents to
be able to adapt.

The second scenario (S2) addresses H2. The opposite agent configuration is
shown, i.e. one agent is configured with 〈δ0 = 0.0, γ0 = 1.0〉, while the others
start off with 〈δ0 = 1.0, γ0 = 0.0〉. In this case, an agent with low willingness
to give help and high willingness to ask for help is put among agents with
high willingness to give help and low willingness to ask for help. Two types
of simulations are ran. (i) All agents calculate their δ through Algorithm 2.a,
and (ii) all agents calculate their δ by applying to Algorithm 2.a the extension
provided in 2.b.

In the final scenario (S3 which addresses H3), half of the population is
configured with 〈δ0 = 1.0, γ0 = 0.0〉, while the other half is configured with
〈δ0 = 0.0, γ0 = 1.0〉. As in the previous scenarios, two types of simulations are
run. (i) All agents calculate their δ by using Algorithm 2.a. (ii) All agents cal-
culate their δ by applying to Algorithm 2.a the extension provided in 2.b.

Every simulation was repeated for a population size popsize equal to 10 and
30. In all cases the difficulty of the simulation, i.e. the probability that an agent
needs the assistance of another agent for a task, is set to a low value equal to 0.2.
The perceived willingness to help of an agent aj is calculated through Equation
3 by an agent ai,

ph =
rs

rg
(4)

where rs - total number of requests ai has sent to aj , rg - number of acceptance
responses gotten from aj . The agent to ask for help is chosen according to the
following rules. As long as an agent ai has a list of agents with which it does
not have any past experience, it will choose randomly one of them. This is
to ensure that an agent creates a past history with all the others early on in
the simulation. Otherwise, the agent will choose randomly with a probability
P1 = 0.4 and according to Equation 5 with probability P2 = 0.6,

β = max({ph1, ...phi, ...phn}) (5)

where phi - perceived helpfulness of agent i, n - number of agents. Agent risk
in this paper is expressed as 1 − ph. The culture variable ak is calculated by
averaging on the perceived willingness of all agents with which there is past



experience, as given in Equation 6,

C =

∑k
i=1 phi
k

(6)

where phi - perceived helpfulness of agent i, k - number of agents with which there
is past experience. The agent’s own performance is calculated as in Equation 7.

µ =
tc

ta
(7)

where tc - total tasks completed, ta - total tasks attempted. The variables for
environmental risk and task progress do not change during the course of the
simulation. Thus their effect on willingness does not change as well. Environ-
mental risk is kept at a value equal to 0.2, and influences δ by +∆step, and γ
by −∆step, where ∆step = 0.05. Moreover, since reasoning on γ is done only at
the beginning of a task, the agent cannot measure progress for itself, and thus
the variable will affect γ by −∆step. Finally, since tasks are presently simulated
as atomic steps, task trade-off has not been considered in these simulations.

C2 Results The results shown in this subsection are taken as a mean over three
independent runs, in which all parameter settings are the same, and visualized
through bar plots. Moreover, for every simulation scenario, results corresponding
to agents with the same initial configuration are averaged.

Figures 7 and 8 display results which address H1. Figure 7 shows the nu-
merical values for a population of agents with popsize = 10, whilst figure 8 for
popsize = 30. It is evident that the agent 〈δ0 = 1.0, γ0 = 0.0〉 (figure 7, left side)
adapts to the selfish population by comparing the rR/rRA ratio in figure 7 (a)
and (b). Note also that agents 〈δ0 = 0.0, γ0 = 1.0〉 flood each other with the high
number of requests made. Observing the bottom graphs in (a) and (b), it is pos-
sible to estimate how much an agent works for itself and for others by comparing
daO/daNO ratios. Agent 〈δ0 = 1.0, γ0 = 0.0〉 attempts dominantly more depen-
dent tasks for others in (a), while the opposite is true in (b). This is reflected
in the numbers for completed dependent tasks by comparing dco/dcNO ratios.
Thus, H1 holds in the implemented scenario for both popsize = 10, 30.

Figures 9 and 10 show results which address H2. Figure 9 gives the values
for a population of agents with popsize = 10, whilst 10 for popsize = 30. Note
that, by comparing the dc/dnc ratio in figure 9 (a) and (b), the selfish agent
〈δ0 = 0.0, γ0 = 1.0〉 completes less dependent tasks in a society which will not be
blindly helpful, but will tune helpfulness towards those individuals that respond
in kind. As a result, the rest of the population (〈δ0 = 1.0, γ0 = 0.0〉) will continue
to do very well and will, after a period of learning, stop helping the selfish agent.
Figure 9 (c) considers a scenario in which the selfish agent 〈δ0 = 0.0, γ0 = 1.0〉
adapts to the population of agents by becoming more helpful, thus it performs
better than the agent in (b). To get the two different behaviours, the factor k
in Algorithm 2.b was taken equal to 4 in (b), and 8 in (c). Figure 10 shows that
the selfish agent completes a higher percentage of dependent tasks. The reason



is argued to be the size of the population. It can take a population longer to
adapt to a selfish individual because more of the required interactions need to
take place. Until that point is reached, the selfish agent will do fairly well. Thus,
H2 also holds in the implemented scenarios.

Figures 11 and 12 show results which address H3. Figure 11 gives the values
for a population of agents with popsize = 10, whilst 12 for popsize = 30. Note
that agents using Algorithm 2.b adapt to the part of the population configured
to exploit. Moreover, a helpful agent will achieve more tasks in average than
its opposite. This holds for both population sizes. Nevertheless, overall perfor-
mance for the helpful agents falls (if compared with results in figures 9 and 10).
This is because, the algorithm to choose an agent to ask for help does always
pick from the entire population of agents, helpful and selfish combined. A finer
selective method could be applied, so that helpful agents always pick between
each other. The effects of the population size in the completed dependent tasks
is mildly present, however it is not dominant. Thus, H3 also holds in the current
implementation.

6 Discussion

The work presented in this paper describes an agent model that exhibits adaptive
autonomous behaviour by manipulating its willingness to interact, which in turn
is composed by the willingness to give help (δ) and the willingness to ask for help
(γ). The willingness to interact is expressed with probabilities in order to model
the non-deterministic aspect of interactions. In some cases the agent might be
completely sure that it needs help, e.g. lacks one of the abilities required for
a task. However, in other cases this may not happen. For instance, assume an
agent which is progressing slowly on a task. Its willingness to ask for help will
increase. However, let us also assume that the agent is among rather unhelpful
or unsuccessful agents. This element will decrease the willingness because the
probability that those agent will be helpful now is low. In this scenario, the
agent’s willingness is influenced by contradicting factors that do not necessarily
lead to a deterministic choice. There is a risk associated in choosing to ask or not
ask for help. Consequently, the willingness to ask for help implicitly assesses this
risk, and such assessment is probabilistic. In economics, this kind of parameter
is used to model risk tolerance [38]. Agents which are representatives of business
entities, sign contracts with other entities based on their willingness. Signing
some contracts might be not allowed and thus subject to fines. The latter are
considered punishment for undesired behavior. The higher the fines, the higher
the risk is of signing a contract with an agent.

In the first part of this paper (C1), the agent consists only of δ, which is
calculated based on the agent’s own performance. In the second part (C2), im-
plements the whole willingness to interact behaviour. Additionally in C2, the
perceived helpfulness of the population is used as an additional input in the
calculation of δ. In this way, agents who are configured to be helpful can reduce
exploitation by other agents which will not respond to helpfulness in kind. Algo-



(a)

(b)

Fig. 7: Results for S1, for popsize = 10. Notation: c/nc - completed/not com-
pleted tasks (c - blue bottom bar, nc - top red bar), dc/dn - dependent com-
pleted/dependent not completed tasks, sc/sn - completed self-generated/not
completed self generated, r/rA - request received/requests accepted, rA/rS -
requests accepted/requests succeeded (as perceived by the agent who is help-
ing, daO/daN - dependent self-generated tasks attempted/dependent not self-
generated tasks attempted, dcO/dcN - dependent self-generated completed/ de-
pendent not self-generated completed). (a) Agents update δ with Algorithm 2.a.
(b) Agents update δ with the extension proposed in Algorithm 2.b. Figures on
the left correspond to the agent 〈δ0 = 1.0, γ0 = 0.0〉, while those on the right are
averaged over the agents 〈δ0 = 0.0, γ0 = 1.0〉



(a)

(b)

Fig. 8: Results for S1, for popsize = 30. Notation same as Figure 7. (a) Agents
update δ with Algorithm 2.a. (b) Agents update δ with the extension proposed
in Algorithm 2.b. Figures on the left correspond to the agent 〈δ0 = 1.0, γ0 = 0.0〉,
while those on the right are averaged over the agents 〈δ0 = 0.0, γ0 = 1.0〉



(a)

(b)

(c)

Fig. 9: Results for S2, for popsize = 10. Notation same as Figure 7. (a) Agents
update δ with Algorithm 2.a. (b) Agents update δ with the extension proposed
in Algorithm 2.b. Figures on the left correspond to the agent 〈δ0 = 0.0, γ0 = 1.0〉,
while those on the right are averaged over the agents 〈δ0 = 1.0, γ0 = 0.0〉. (c) ...



(a)

(b)

Fig. 10: Results for S2, for popsize = 30. Notation same as Figure 7. (a) Agents
update δ with Algorithm 2.a. (b) Agents update δ with the extension proposed
in Algorithm 2.b. Figures on the left correspond to the agent 〈δ0 = 0.0, γ0 = 1.0〉,
while those on the right are averaged over the agents 〈δ0 = 1.0, γ0 = 0.0〉



(a)

(b)

Fig. 11: Results for S3, for popsize = 10. Notation same as Figure 7. (a) Agents
update δ with Algorithm 2.a. (b) Agents update δ with the extension proposed
in Algorithm 2.b. Figures on the left correspond to the average of half the pop-
ulation of agents with 〈δ0 = 1.0, γ0 = 0.0〉, while those on the right are averaged
over the other half 〈δ0 = 0.0, γ0 = 1.0〉



(a)

(b)

Fig. 12: Results for S3, for popsize = 30. Notation same as Figure 7. (a) Agents
update δ with Algorithm 2.a. (b) Agents update δ with the extension proposed
in Algorithm 2.b. Figures on the left correspond to the average of half the pop-
ulation of agents with 〈δ0 = 1.0, γ0 = 0.0〉, while those on the right are averaged
over the other half 〈δ0 = 0.0, γ0 = 1.0〉



rithm 2.a was extended through 2.b and used in the simulations, however other
similar algorithms could be implemented that achieve the same end. Algorithm
2.b is purely experience based, and thus agents will need to experience a certain
number of interaction before the learning takes place. Moreover, its efficiency –
number of interactions needed for the learning – depends on the size of the pop-
ulation, as well as the ratios of selfish and unselfish agents. Furthermore, only
two types of agents are used, 〈δ0 = 0.0, γ0 = 1.0〉 and 〈δ0 = 1.0, γ0 = 0.0〉. It can
be argued that a mixed population will have additional effects on the results
presented here.

This work also relates to computational trust models for multi-agent systems.
The reason is that, the willingness to interact is used when deciding to depend
upon another, and allowing others to depend on one as well. According to Falcone
et al. [39], by trusting, an agent has made a decision to rely on another. The
other way around, i.e. allowing others to depend on one, could also be argued
as a case for trust. The agent that is helping, is putting its resources in the
service of another. It is reasonable to think that help should go more towards
those who have returned the favour. There is a fair amount of trust models in the
literature, as well as classifications based on different criteria for them [40]. These
models typically are experience-based (judging on personal direct interactions),
reputation-based (judging based on third party opinions), or combined [40].

The aim of future work is to investigate the concept of agent culture and
trust more thoroughly. Apart from perceived helpfulness, other characteristics
could be used, for example perceived expertise, or perceived load. There is a
difference between perceived helpfulness and perceived expertise. The latter is
a better measure for successful outcomes of tasks. Assume an agent ai which
asks for help an agent aj , and aj accepts to help. However, being willing to
help does not guarantee success, in fact agent aj can fail for any reason. From
this perspective, a flaw of perceived helpfulness as an indicator of helpfulness
becomes apparent. As a result, a combined measure of perceived helpfulness and
expertise can give a better picture of the agents taken as individuals and as
a whole. Nevertheless, the degree of load of agents can help refine the measure
even further. Consequently, the problem that arises is how can an agent estimate
the load of other agents, taken individually and as a whole. The perceived load
could be combined with the perceived willingness to ask for help from a specific
agent and be used in its analysis, and that of the whole population. The imple-
mentation of the agent has to be expanded so that task execution is simulated
through separate steps, so as to be interrupt-able, so that it represents a more
realistic scenario. Another desired feature for the system is to enable the agent
to deal with several dependencies at the same time.

Application domains that motivate this research include but are not limited
to search and rescue, agriculture, and other areas in which autonomous systems
can assist, and sometimes replace, human labour due to the challenging working
conditions. It may be desired for these systems to be deployed far from the
operator, and work in conditions where the communication with the former
can be unreliable. Also, it may be desired that the systems operate by aiding



each other as the needs arise. This means that agents need to reason about
when and how to interact with each other. The AA agent described in this
paper represents one possible approach that can be applied in these types of
application. Moreover, the modeling is done on a high-level, and hence is not
task specific in fact tasks are defined in abstract terms.

7 Conclusion

In this paper it is shown, through computer simulations, how the adaptive au-
tonomous behaviour of an agent can be tailored to reflect the culture of the
population within which it operates, such that the exploitation of the agent can
be decreased. Firstly, it is shown how an agent highly willing to give help, can
adapt to agents configured oppositely, and thus lower its exploitation. Secondly,
when an unhelpful agent is introduced into a helpful population, it will be able
to exploit up until the point in which the rest of the agents will have created
a history of negative past experiences. The dependence on the population size
is also present in the simulation results, i.e. one selfish agent will be able to
succeed for longer in bigger populations because more interactions are needed.
Nevertheless, if the agent can change its behaviour from selfish to unselfish, it
will outperform agents which are more inflexible. Finally, when the population
is split in half between selfish and unselfish agents, the latter is still able to de-
crease it exploitation after enough interactions have taken place. However, since
the algorithm to select the agent is such that it will always pick from the whole
pool, the performance of unselfish agents decreases as well, compared to the sce-
nario in which the latter dominates. A finer selection algorithm could address
this issue.

References

1. Hardin, B., Goodrich, M.A.: On using mixed-initiative control: A perspective for
managing large-scale robotic teams. In: Proceedings of the 4th ACM/IEEE inter-
national conference on Human robot interaction. pp. 165–172. ACM (2009)

2. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., Van Riemsdijk, B.,
Sierhuis, M.: The fundamental principle of coactive design: Interdependence must
shape autonomy. In: Coordination, organizations, institutions, and norms in agent
systems VI, pp. 172–191. Springer (2011)

3. Fong, T., Thorpe, C., Baur, C.: Collaborative control: A robot-centric model for
vehicle teleoperation, vol. 1. Carnegie Mellon University, The Robotics Institute
(2001)

4. Brookshire, J., Singh, S., Simmons, R.: Preliminary results in sliding autonomy for
assembly by coordinated teams. In: Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on. vol. 1, pp. 706–
711. IEEE (2004)

5. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels
of human interaction with automation. IEEE Transactions on systems, man, and
cybernetics-Part A: Systems and Humans 30(3), 286–297 (2000)



6. Castelfranchi, C.: Founding agent’s ’autonomy’ on dependence theory. In: Proceed-
ings of the 14th European Conference on Artificial Intelligence. pp. 353–357. IOS
Press (2000)

7. Frasheri, M., Çürüklü, B., Ekström, M.: Towards collaborative adaptive au-
tonomous agents. In: 9th International Conference on Agents and Artificial In-
telligence 2017 ICAART, 24 Feb 2017, Porto, Portugal (2017)

8. Lewis, B., Tastan, B., Sukthankar, G.: An adjustable autonomy paradigm for
adapting to expert-novice differences. In: Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. pp. 1656–1662. IEEE (2013)

9. Muszynski, S., Stückler, J., Behnke, S.: Adjustable autonomy for mobile teleop-
eration of personal service robots. In: RO-MAN, 2012 IEEE. pp. 933–940. IEEE
(2012)

10. Birk, A., Pfingsthorn, M.: A hmi supporting adjustable autonomy of rescue robots.
In: Robot Soccer World Cup. pp. 255–266. Springer (2005)

11. Goodrich, M.A., Olsen, D.R., Crandall, J.W., Palmer, T.J.: Experiments in ad-
justable autonomy. In: Proceedings of IJCAI Workshop on Autonomy, Delegation
and Control: Interacting with Intelligent Agents. pp. 1624–1629 (2001)

12. Lin, L., Goodrich, M.A.: Sliding autonomy for uav path-planning: Adding new
dimensions to autonomy management. In: Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems. pp. 1615–1624. In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2015)

13. Dorais, G., Bonasso, R.P., Kortenkamp, D., Pell, B., Schreckenghost, D.: Ad-
justable autonomy for human-centered autonomous systems. In: Working notes of
the Sixteenth International Joint Conference on Artificial Intelligence Workshop
on Adjustable Autonomy Systems. pp. 16–35 (1999)

14. Kortenkamp, D., Keirn-Schreckenghost, D., Bonasso, R.P.: Adjustable control au-
tonomy for manned space flight. In: Aerospace Conference Proceedings, 2000 IEEE.
vol. 7, pp. 629–640. IEEE (2000)

15. Calhoun, G.L., Goodrich, M.A., Dougherty, J.R., Adams, J.A.: Human-autonomy
collaboration and coordination toward multi-rpa missions. Remotely Piloted Air-
craft Systems: A Human Systems Integration Perspective p. 109 (2016)

16. Barnes, M.J., Chen, J.Y., Jentsch, F.: Designing for mixed-initiative interactions
between human and autonomous systems in complex environments. In: Systems,
Man, and Cybernetics (SMC), 2015 IEEE International Conference on. pp. 1386–
1390. IEEE (2015)

17. Stubbs, K., Hinds, P.J., Wettergreen, D.: Autonomy and common ground in
human-robot interaction: A field study. IEEE Intelligent Systems 22(2) (2007)

18. van der Vecht, B., Dignum, F., Meyer, J.C.: Autonomy and coordination: Control-
ling external influences on decision making. In: Web Intelligence and Intelligent
Agent Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM International Joint Con-
ferences on. vol. 2, pp. 92–95. IEEE (2009)

19. Landén, D., Heintz, F., Doherty, P.: Complex task allocation in mixed-initiative
delegation: a uav case study. In: International Conference on Principles and Prac-
tice of Multi-Agent Systems. pp. 288–303. Springer (2010)

20. Kim, S., Kim, M., Lee, J., Hwang, S., Chae, J., Park, B., Cho, H., Sim, J., Jung,
J., Lee, H., et al.: Team snu’s control strategies for enhancing a robot’s capability:
Lessons from the 2015 darpa robotics challenge finals. Journal of Field Robotics
(2016)

21. Farinelli, A., Raeissi, M.M., Brooks, N., Scerri, P., et al.: Interacting with team ori-
ented plans in multi-robot systems. Autonomous Agents and Multi-Agent Systems
pp. 1–30 (2016)



22. Côté, N., Canu, A., Bouzid, M., Mouaddib, A.I.: Humans-robots sliding collabora-
tion control in complex environments with adjustable autonomy. In: Proceedings
of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence and Intelligent Agent Technology-Volume 02. pp. 146–153. IEEE Computer
Society (2012)

23. Chitalia, Y., Zhang, W., Hyun, B., Girard, A.: A revisit-based mixed-initiative
nested classification scheme for unmanned aerial vehicles. In: American Control
Conference (ACC), 2014. pp. 1793–1798. IEEE (2014)

24. Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M.: Toward an ontology
of regulation: Socially-based support for coordination in human and machine joint
activity. In: International Workshop on Engineering Societies in the Agents World.
pp. 175–192. Springer (2006)

25. Bradshaw, J.M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J.,
Bunch, L., Chambers, N., Galescu, L., Jeffers, R., et al.: Kaa: policy-based ex-
plorations of a richer model for adjustable autonomy. In: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems. pp.
214–221. ACM (2005)

26. Scerri, P., Pynadath, D.V., Tambe, M.: Towards adjustable autonomy for the real
world. Journal of Artificial Intelligence Research 17(1), 171–228 (2002)

27. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Foundations
and trends in human-computer interaction 1(3), 203–275 (2007)

28. Suzanne Barber, K., Goel, A., Martin, C.E.: Dynamic adaptive autonomy in multi-
agent systems. Journal of Experimental & Theoretical Artificial Intelligence 12(2),
129–147 (2000)

29. Martin, C., Barber, K.S.: Adaptive decision-making frameworks for dynamic multi-
agent organizational change. Autonomous Agents and Multi-Agent Systems 13(3),
391–428 (2006)

30. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., Van Riemsdijk, M.B.,
Sierhuis, M.: Coactive design: Designing support for interdependence in joint ac-
tivity. Journal of Human-Robot Interaction, 3 (1), 2014 (2014)

31. Klien, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten chal-
lenges for making automation a” team player” in joint human-agent activity. IEEE
Intelligent Systems 19(6), 91–95 (2004)

32. Tambe, M.: Agent architectures for flexible. In: Proc. of the 14th National Conf.
on AI, USA: AAAI press. pp. 22–28 (1997)

33. Laird, J.E.: The Soar cognitive architecture. MIT Press (2012)

34. Schurr, N., Marecki, J., Tambe, M.: Improving adjustable autonomy strategies
for time-critical domains. In: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1. pp. 353–360. International
Foundation for Autonomous Agents and Multiagent Systems (2009)

35. McGill, S.G., Yi, S.J., Yi, H., Ahn, M.S., Cho, S., Liu, K., Sun, D., Lee, B., Jeong,
H., Huh, J., et al.: Team thor’s entry in the darpa robotics challenge finals 2015.
Journal of Field Robotics (2016)

36. Castelfranchi, C., Falcone, R.: Principles of trust for mas: Cognitive anatomy,
social importance, and quantification. In: Multi Agent Systems, 1998. Proceedings.
International Conference on. pp. 72–79. IEEE (1998)

37. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5. Kobe (2009)



38. Cardoso, H.L., Oliveira, E.: Adaptive deterrence sanctions in a normative frame-
work. In: Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT’09.
IEEE/WIC/ACM International Joint Conferences on. vol. 2, pp. 36–43. IEEE
(2009)

39. Falcone, R., Castelfranchi, C.: Social trust: A cognitive approach. In: Trust and
deception in virtual societies, pp. 55–90. Springer (2001)

40. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open
multi-agent systems: a review. Artificial Intelligence Review 40(1), 1–25 (2013)

8 Appendix

The source code to replicate the C1 simulations is publicly available on github,
under the following URL. Whereas, for C2 simulations the source code is avail-
able under the following URL: https : //github.com/gitting−around/gitagent.git.
Finally, the simulations for this paper were conducted on HP EliteBook 840 lap-
top with Ubuntu 14.04 and ROS Indigo.


