
Monitoring of Clock Synchronization in
Cyber-Physical Systems: A Sensitivity Analysis

Elena Lisova, Elisabeth Uhlemann, Johan Åkerberg, Mats Björkman
Mälardalen University, Västerås, Sweden

{elena.lisova, elisabeth.uhlemann, johan.akerberg, mats.bjorkman}@mdh.se

a benign and a malign behavior. Therefore, several network
states include a situation when there is only a suspicion about
an anomaly or an attack being deployed, but the confidence
level is low. In this case, the quarantine state can be used, in
which additional indicators are monitored in order to increase
the probability of anomaly detection and capture different
aspects of network behavior.

This work uses a monitor approach with three network
states, normal, quarantine and anomaly detected, as introduced
in [1]. Note that the analysis presented in this work is made
under the assumption of IEEE 1588 being used to establish and
maintain clock synchronization, similar to [1]. The monitor
switches states based on inputs, called indicators. An indicator
is a value obtained by monitoring, which usually has two
thresholds, a low and a high. Although monitoring can be used
for many purposes, the work herein considers its configuration
related to security and, in particular, targeting protection of
clock synchronization for cyber-physical systems (CPS). An
embedded system is a type of CPS, and as such, timing is an
essential asset as these systems interact with their surrounding
environment. To this end, a set of indicators for monitoring
clock-synchronization and a way to threshold them were
proposed in [2]. However, although a general way to threshold
the indicators was considered, it is not straightforward how to
generalize the outcome of the analysis and thereby estimate
the efficiency of each indicator. There are two main sources of
uncertainties. Firstly, each particular application has its own
parameters, functionality and precision, which dictates the load
for each node, and thereby, defines, e.g., for how long an
adversary needs to perform an attack to cause consequences or
how many components that needs to be faulty in order to affect
safety. Secondly, an adversary model was used as an input
for some indicators in [2], and thus, the considered adversary
strategies and attack space limit the approach and affects the
outcome of the analysis. Therefore, a sensitivity analysis is
needed to determine how different inputs are affecting the
thresholds for the indicators to be able to generalize the
results. The contribution of this work is an analysis of monitor
indicators and an investigation of their applicability. Within the
analysis, the dependencies of the thresholds of the indicators
with respect to adversary model and use case are investigated.
To identify connections to a use case specification, an example
of a CPS is considered. The outcome of the analysis allows to
generalize the applicability of different indicators and identify
limitations of the approach, i.e., providing grounds for further

Abstract—Clock synchronization is a core asset to protect
when securing cyber-physical systems with a time-triggered
architecture. One of the most challenging attacks to protect
against is a delay attack, where an adversary delays one of
the synchronization messages, making node offset calculations
incorrect for keeping clocks synchronized. One way to detect
a breach of clock synchronization is by monitoring the offsets
calculated in a node according to the clock synchronization
algorithm. The analysis in this work assumes that the distributed
nodes need to share the same notion of time and for this reason,
uses the IEEE 1588 standard. Using this approach, a monitor
needs to make a decision about if and when a node is under
attack, in which case rules and methods for decision making
should be put in place. There are many aspects to consider when
setting thresholds for the monitored values in order to make
such a decision. In this work we conduct an analysis of monitor
indicators and an investigation of their applicability. Further, we
identify dependencies within the proposed monitoring approach
and conduct a sensitivity analysis of the parameters needed to
make a decision about a system being under attack. The analysis
outcomes allow to identify important parameters to consider
while thresholding indicators and enables a greater generality
in their applicability.

Index Terms—clock synchronization; offset monitoring; indi-
cators; sensitivity analysis; IEEE 1588

I. INTRODUCTION

Having a monitor in the network of embedded systems
has several benefits; i t c an i ncrease t he l evel o f s afety i n the
system, e.g., by detecting component failures, and/or the level
of security in the system, e.g., by detecting an attack being
deployed. A monitor used for safety reasons detects system
states leading to possible hazards, with the goal to prevent or
at least mitigate the consequences. A monitor used for security
purposes detects malicious actions in the network with the goal
to suppress adversary actions and their consequences. Thus,
the actions required from a monitor to cover both domains
are similar and thus a monitor can be used to increase the
dependability for safety-critical embedded systems.

For many embedded systems, it is critically important to
detect, in time, a breach of system safety or security to be
able to prevent or mitigate the consequences. In the case of
safety, this is typically done by switching the system into a safe
state and taking necessary precautions. In the case of security,
a quarantine state is often used. To make a decision whether
a system has malfunctioning components or behavior, various
indicators can be monitored and corresponding thresholds can
be used. However, as there are also natural disturbances in net-
works, it is not always straight forward to distinguish between

monitor enhancements.
Section 2 introduces the necessary background about the

use case: CPS and clock synchronization, whereas Section
3 presents the adversary and monitor models, together with
the use case and its corresponding indicators. The general
sensitivity analysis of the monitor indicators is conducted in
Section 4, whereas Section 5 presents a sensitivity analysis
on a particular example of a CPS. A discussion about the
approach and its applicability is presented in Section 6 and
finally, Section 7 concludes the paper.

II. MONITORING USE CASE

A. Cyber-Physical Systems

In CPS, computations and physical processes are combined
in order to provide new services enabled by the control
loops between these two instances. CPS include a wide range
of applications: semi-autonomous vehicles, advanced control
systems, distributed robotics, health monitoring systems, etc.
Such systems open up new possibilities, e.g., for the next
generation of transportation systems, they can enable vehicle
health monitoring, as well as its (semi)-autonomous func-
tionalities [3]. Communications in CPS is an example of
networks with real-time requirements, implying that they have
time as a functional requirement. CPS with a time-triggered
architecture require nodes within them to follow a schedule
for message exchange and in order to maintain a common
notion of time, clock synchronization is the foundation on
which such an architecture is built upon. Therefore, in time-
triggered CPS clock synchronization can be considered as one
of the main system assets, since if it is breached, the whole
network is disrupted. The price of its breach is especially high
for safety-critical applications, where a system failure could
have catastrophic consequences. Thus, for such systems, clock
synchronization protection should be addressed.

B. Clock Synchronization

The notion of time is important for networks supporting
real-time requirements. Each node usually has its own clock,
but no matter how costly, each clock has a natural drift
and with time, the difference between different clocks can
be significant. Clock synchronization is typically established
and maintained by a clock synchronization algorithm. There
are several widely used algorithms such as Precision Time
Protocol (PTP) and Network Time Protocol (NTP). PTP is
a part of the IEEE 1588 standard [4] commonly used in
industrial applications. The standard has some optional secu-
rity guidelines in Annex K, however, these are not sufficient
considering the criticality of the asset [5], e.g., since the
protocol cannot cope with a delay attack [6]. PTP, considered
as an example in this work, is a master slave algorithm. A
slave is considered synchronized if the difference between its
time and a grand master (GM) time is below the boundaries
set, offsetmax (light-green dotted lines in Fig. 1). An offset is
calculated and a correction is performed periodically, i.e., each
resynchronization interval (RI). According to PTP, the offset is
calculated via timestamps obtained during a message exchange

Fig. 1. Clock synchronization under different types of a delay attack
between a slave and a GM. IEEE 1588 can be breached by a
delay attack, i.e., if an adversary delays one of the messages
used to calculate the offset, it will change the value of the
calculated offset, and thereby causing a "correction" into a
wrong value. As time is relative for the individual node, it
will not realize that the offset is incorrect and thereby it will
be brought into unsynchronized state. Clock synchronization
protection and the enhancement of current standards is con-
sidered by many researchers. For instance, Gaderer et al. [7]
developed general guidelines for making the 1588 standard
fault-tolerant, e.g., by on-the-fly-time-stamping and allowing
asymmetrical delays. A delay attack is identified as a general
threat towards time protocols in packet-switched networks [8].
One of the ways to cope with a delay attack is a multipath
strategy [9]. However, this approach will require changing
the standard and also introduces additional communicational
overhead. We have proposed another method that can work
on top of the standard and complement it to provide security
guarantees for clock synchronization which is essential for
safety-critical applications [2]. A monitor approach was then
developed to cope with delay attacks.

III. MONITOR AND ADVERSARY MODELS

To conduct a sensitivity analysis and determine dependen-
cies between indicator thresholds, we need appropriate models
of the monitor and the adversary. In addition, we need a
specific use case to define the set of indicators to be monitored.

A. Monitor Model

The monitor considered in this work consists of three
network states as demonstrated in Fig. 2. Normal State (NS)
is the usual operational state of the system. Quarantine State
(QS) is a state used when there are suspicions about safety
or security being jeopardized, but not confirmed. Finally,
Anomaly Detected State (ADS) is a state used when the
monitor is assured that the network is under attack or that there
is a failure that could lead to a hazard. The monitor is capable
of switching states based on a set of inputs, or so-called
indicators. An indicator is a value obtained by monitoring that
has two thresholds, a low and a high. Indicators are separated

Fig. 2. Network states and connections between them
into two groups: main indicators that are monitored constantly,
and additional indicators that are checked only in QS. Thus,
the following rules are used to make a decision, Fig. 2:
Rule 1. If a certain number, KQS of the main indicators
are above their corresponding low threshold, the system is
switched into QS.
Rule 2. If more than KQS of the indicators are above their
low thresholds, the system is switched into ADS.
Rule 3. If a certain number KADS , where KQS < KADS , of
their indicators is above the corresponding high threshold, the
system is switched into ADS.
Rule 4. If any of the cases described below is true, the system
is switched from QS mode to ADS:

1) If there are positive indicators of network anomaly
according to the additional indicators deployed in QS;

2) If Rule 2 or Rule 3 can be applied.

B. Adversary Model

In this work we consider three types of imposed delay.
For each type we formulate the attack space, i.e., the consid-
ered values of delays with respective probabilities. The three
different types of delay attacks when deployed at tdep, are
presented in Fig. 1. During the attack, a delay is imposed
every RI, thus different types of delay attacks refer to how
the imposed delay varies from one RI to another. A Constant
Delay (CD) is the case when the delay is the same, dCD in
each RI. When the delay is increasing each RI in a linear
fashion, dLID, it is called a Linearly Increasing Delay (LID).
Finally, a Random Delay (RD) is a situation when the delay
value, dRD, is chosen randomly from an interval of values
allowing to bring a targeted node into a unsynchronized state.
• CD. We assume that the value of CD is chosen from a
predefined set of delays with size NCD:

DCD = {dCD,j}NCD
j=1 ,

NCD∑
j=1

pCD,j = 1. (1)

• LID. In case of LID we define a set of possible steps,
therefore the value of the delay at a particular RI depends
on the chosen step and a number of RI, i:

DLID = {i · dLID,j}NLID
j=1 ,

NLID∑
j=1

pLID,j = 1. (2)

• RD. Values for RD are chosen according to a uniform
distribution from an interval, where even the lowest value
brings a node into unsynchronized state, i.e., it is bigger than

2· offsetmax:

DRD ∈ [dminRD , d
max
RD], pRD,dRD

=
1

dmaxRD − dminRD

. (3)

A delay attack should be persistent since as soon as a
delay is not imposed anymore, the algorithm will calculate a
correct offset and the clocks will become synchronized again.
The time needed for attack consequences to become apparent
depends on the particular node being under attack, and there-
fore the adversary needs to keep the node in unsynchronized
state for ttar to reach its goal, i.e., to disrupt the network
and cause significant consequences [2]. Also for LID, there
is a certain minimum time needed to actually breach clock
synchronization, tbreach, as it is showed in Fig. 1.

C. Use Case Parameters and Indicators

To identify dependencies between thresholds and use case,
we need parameters that are relevant for both. The following
parameters are considered:
• Generic Boundaries: offsetmax, and RI duration. These two
parameters are dictated by an assumed upper limit of the clock
drift and node criticality. The first one determines how often
the correction should be done so that the clock has the required
precision, which in turn is determined by the criticality of the
use case, the particular node load and functionality.
•Window Size: W. Calculations of offset values are done based
on a set of historic values contained within a window. The
window is sliding, i.e, in each RI, a new value is added and
the oldest one is discarded.
• Offset Mean: σreal. This parameter is defined by the network
topology and can be estimated if the offset history is available.
Thresholds derived from it, needs to be reevaluated after each
new network reconfiguration.
• Nature Distribution Parameter: λ. We assume that delays
occurring due to natural disturbances in the network follows
an exponential distribution [10], with the parameter λ.

Several indicators are suitable for clock synchronization
monitoring. A node calculates an offset each RI, therefore,
its mean and standard deviation can be monitored in order
to identify a new trend in these values caused by an attack.
Next, the window used to calculate statistics is an indicator
too, as it can help to get additional assurance regarding the
presence of a new trend, by scaling down the range of samples
used for calculation. Finally, if the trend detection problem
is formulated using detection theory, the Neyman-Pearson
criterion provides one more indicator to consider [2].

Note that the offset considered in an analysis is the real
offset, i.e., the value represented by the distance between a line
and the x axis in Fig. 1, while an offset that is calculated as a
result of the protocol is different (this offset is demonstrated
by the vertical parts of time dependency in Fig. 1, i.e, the
jump performed each RI). Therefore, an analysis based only
on calculated values is limited to a prediction and reasoning of
an adversary behavior [1]. To use an outcome of the analysis
for attack detection, a reference about a possible real offset is
needed, e.g., via a peer-to-peer check of clocks within the same
time domain. However, under the assumption of this check

taking place, the analysis of indicators remains the same and
the sensitivity analysis is still valid.

IV. A SENSITIVITY ANALYSIS

This section provides a brief description of the indicators
followed by an analysis demonstrating their dependencies with
respect to the adversary model.

A. Mean and Standard Deviation

Statistical characteristics of the true offset, that can be
obtained from a measured one if there is a drift reference,
are the mean and standard deviation. These can be used as
indicators and calculated using a window W, as it is presented
below:

σ =
1

W

W∑
i=1

offseti, (4)

σ =

√∑W
i=1(offseti − σ)2

W − 1
. (5)

According to the approach described in III-A, there should be
two thresholds for every indicator, one lower and one higher.
For the mean and standard deviation, the method to set these
thresholds is to investigate their attack component, i.e., the
component of an indicator value caused by the delay imposed
by an adversary, and based on use case characteristics define at
which RI the attack needs to be detected after being deployed.
To set thresholds, the part of the indicators that are caused by
an attack component of the offset can be separated [2]. For
simplicity, we assume that the attack component of the offset
before the attack is deployed, is equal to zero:

σattack =
1

W

W∑
i=1

offsetattack,i, (6)

σ2
attack =

∣∣∣ 1

W − 1

W∑
i=1

[
(σattack,i − offsetattack,i)2+

+2σreal,i · ·offsetreal,i
(σattack,i
offsetreal,i

− offsetattack,i
offsetreal,i

−

−σattack,i
σreal,i

+
offsetattack,i

σreal,i

)]∣∣∣.
(7)

Eq.(6–7) show that the attack components of both indicators
are proportional the value of the delay, as offsetattack,i is
proportional to the delay imposed at the i-th RI. Therefore, the
choice of the range of delays, i.e., its minimum and maximum
values, affects the outcome of thresholding. The range of
delays should be dictated by the use case specification, e.g.,
for CD, the range should be starting from a value close to the
minimum one required to break clock synchronization, i.e., 4·
offsetmax, and should be going up till when a further increase
does not bring any significant change. For instance, if the
network has time-slot based channel access, a node being in a
unsynchronized state will start accessing the wrong slot. Once
this happens, a further increase of the value of the offset does
not matter as such. The attack components of both indicators
also depend on the window size, however, this dependency is
exploited by considering the window size as an indicator.

The attack component of the standard deviation depends
on σreal. Therefore each time a route of the messages is
reconfigured, the thresholds have to be recalculated. Moreover,
as σreal depends on λ, the thresholds for the standard deviation
should be recalculated in case of using the system in a
drastically different environment.

B. Neyman-Pearson Criteria and Detection Coefficient
The problem of attack detection, i.e., a detection of an

offset attack component, can be formulated though detection
theory and in particular the Neyman-Pearson lemma. The
threshold obtained based on the Neyman-Pearson criterion we
call Neyman-Pearson threshold [2]. In order to derive a high
and a low threshold, the latter needs to be scaled with a trust
coefficient, e.g., 60% for the low threshold and 100% for high.
The Neyman-Pearson threshold, TNP , can be calculated via a
detection coefficient [1] for a particular type of delay attack
based on an adversary model, e.g., for LID it can be calculated
as follows:

TNP =
(NLID∑
j=1

(eλ · i · dLID,j · pLID,j)
)W

. (8)

Eq.(8) is transformed further in a form allowing to determine
how the threshold depends on the size of the considered
delay space, i.e., NLID. For simplification, we assume that
the probability of choosing one of the delays from the set is
uniform, i.e, that pLID,j = 1

NLID
, as there are no obvious

reasons to prefer a specific one. To assess the difference
between situations when the two various sets of delays are
considered, we compare the thresholds for the two following
sets: (i) set 1 with delays of size N ; (ii) set 2 with delays of
size N+1 containing all delays from the previous set and one
more value, dLID,N+1. A comparison of thresholds for these
two cases boils down to the following inequality:

(1 +
1

N
) · (edLID,1−dLID,N+1 + . . .+ edLID,N−dLID,N+1) ≶ 1.

(9)
If Eq.(9) is solved with "less", then adding dLID,N+1 into
consideration lowered the threshold, whereas if it is solved
with "greater", then oppositely the threshold was increased.
Eq.(9) cannot be unambiguously solved in a general way,
however we can point out several cases when it is possible.
If dLID,N+1 is greater than all delays from the set 1, Eq.(9)
is solved with "greater". If dLID,N+1 is less than all delays
from set 1, Eq.(9) is solved with "less" for a large enough N .
In other words, adding a delay that is above the maximum one
from the already considered set, will increase the threshold;
adding a delay that is below the minimum one from the already
considered set, will lower the threshold. The outcome of the
intermediate cases depends on N and the particular value of
the delay. However, a similar trend to the one described in
Sec. IV-A can be observed, namely that when choosing a
set of delays to consider, it is important to define a valid
range of delays. This threshold dependency from the natural
distribution is quite obvious, as the greater λ is, the higher
the threshold is, which correlates with the fact that the more
network disturbance, the higher the malicious deviation needs
to be in order to be detected.

Fig. 3. A Collision Avoidance System
The case of CD can be analyzed in a similar fashion, as its

detection coefficient is similar. Therefore, we only consider
the RD case below. The threshold for the RD case can be
calculated based on a detection coefficient for RD:

TNP =
(ed

min
RD

(dmaxRD − dminRD)

(
eλ·(d

max
RD −dmin

RD − 1
))W

. (10)

If the range of RD is fixed, i.e., [dmaxRD − dminRD] = const,
then the greater the minimum value, the higher the threshold.
If the minimum delay is fixed, i.e., dminRD = const, then the
threshold’s dependency from the range of delays has the same
character as f(x) = ex−1

x , where x > 0. For the defined
range of x values, this function is constantly growing and has
a limit equal to 1 at x = 0. Therefore, for this case we have
a minimum threshold that equals ed

min
RD ·W ·λ. The greater the

range of delays, the higher the threshold, and the same goes
for the dependency of λ.

C. Window Size

Having the window size as an indicator was initially pro-
posed as an additional indicator deployed only in QS. This
indicator is used in addition to the ones considered above,
as when varying the window size, the monitor still checks
the mean, standard deviation or the Neyman-Pearson criterion.
Therefore, all dependencies identified for the other indicators
are relevant for the window size as well.

V. A USE CASE SPECIFIC SENSITIVITY ANALYSIS

An example of an CPS is considered to illustrate thresholds
dependencies for a particular use case.

A. Use case — a Collision Avoidance System

A Collision Avoidance System based on a time-triggered
architecture is an example of a CPS from the automotive do-
main and used to investigate the dependencies of the indicators
with respect to a particular use case. As it is shown in Fig. 3,
the system consists of (i) a switch managing connections and
following a schedule, (ii) a camera, CAM, located in the front
part of a vehicle, (iii) two locators - one in the front, and one in
the rear part of the vehicle, and (iv) an Electronic Control Unit
(ECU). The camera sends pictures of the road in front of the
vehicle to the ECU, so that the latter can estimate a situation.
The ECU also gets information from locators, that estimate
the distance from the vehicle to the nearest object in a certain
direction. Locators send data only if an object is detected
within a specified range. The camera in its turn sends data

constantly within specified time-slots. Once the ECU makes
a decision that the current situation is potentially dangerous,
it sends a signal to the outer dependency of this system, e.g.,
a steering control system. The system has a time-triggered
architecture, i.e., channel access is time-based and there is a
schedule for data transactions. Nodes in the system are using
the IEEE 1588 standard for clock synchronization. We assume
that a time slot duration is 100 µs [11], RI is 50 ms and that a
clock drift is 10−2 s/s, i.e., up to 0.1 µs deviation every 1 ms.
Therefore, the synchronization boundaries, offsetmax, can be
set with a 2 µs safety gap and be equal to 7 µs.

B. Use Case Dependencies

The particular use case along with the choice of commu-
nication structure, set the boundaries and the RI duration.
These values define which delay values can be used to breach
clock synchronization, e.g., the minimum delay for CD and
RD or a breaching time for the LID attack. In the considered
example, the minimum delay value for CD is greater than
4 · offsetmax, i.e., 28 µs. The maximum delay that makes
sense to consider is defined by the time-slot duration. From
an adversary perspective, once the offset exceeds the time-
slot duration, there is no difference to further exceed. The
node functionality sets the time that the node should be in a
unsynchronized state for an adversary to succeed, i.e., ttar. In
the considered example, the camera sends information with a
high frequency, as a situation on the road can change very fast
considering the vehicle speed. Therefore, to have significant
consequences, it is enough to miss one time-slot during a
vehicle operational phase. We can assume that the camera
messages are scheduled every other time-slot, thus being in
a unsynchronized state for more than 100 µs is not acceptable
for the system to fulfill its functional requirements. Locators
are using their time-slots (every other that is not occupied by
the camera), only if there is an object detected. Consequently,
if there is no detected object, i.e., in case of driving during
late night on a highway, a locator in a unsynchronized state
would not be noticed by the system. Therefore, for locators
ttar depends on the operational situation, but this on average
is longer than for the camera.

VI. DISCUSSION

The conducted analysis regarding an adversary model,
shows that it is a necessity to determine valid limits for the
values of the imposed delays. This fact implies a necessity to
know a particular use case in order to specify an adversary
model. A threat model includes an adversary model as well as
a use case specification [12]. However, to calculate thresholds
for when the monitor should switch states, requires a deeper
level of use case specification, i.e., the network topology
should be specified together with node functionalities. In
the best case, a schedule is provided such that the node
communication pattern and frequency of sending and receiving
messages can be estimated. Moreover, as it was demonstrated
in Sec. IV, the standard deviation attack component depends
on the offset mean, which in turn depends on a route between a
GM and a slave used for PTP protocol message exchange. This

limits the flexibility of the method, although it is reasonable
to expect a security solution being tightly use case dependent.
A way to improve the flexibility is to automate the calculation
of thresholds or cardinally relax this connection by imposing
requirements on the degree of indicator inter-dependency in
the process of indicator development.

Another indirect outcome of the analysis is that it provides
grounds for an indicator generalization. By analyzing a specific
use case, we can identify which indicators are relevant and
which can be used efficiently as main or as additional indica-
tors. As identified in Sec. IV, indicator thresholding is heavily
connected to the use case and the adversary model. However,
the indicator applicability relates not to a particular value of a
threshold, but to a trend in indicator behavior, which is iden-
tified by its general analysis [2]. Therefore, we can conclude
that the results on indicator applicability can be generalized,
but not their effectiveness, which should be investigated for
each particular use case. For instance, as standard deviation
thresholds require knowledge about the communication link
between a GM and a slave, it can be used as an additional
indicator, since its threshold calculation can be done only when
entering the QS and thus a network reconfiguration during
the NS would not require its recalculation. The mean in turn
requires less amount of information about the specific use case
and adversary model, and therefore it is a good candidate for
being a main indicator. Finally, the Neyman-Pearson criterion
is in between mean and standard deviation regarding required
input, as it does depend on the adversary model, but does not
require data about the particular communication link. Thus,
this indicator can be used in as both states.

The monitor analyzed in this work is a type of Intrusion
Detection System (IDS) [13], which can be used for a general
application [14]. Even though the proposed monitor use case
is narrowed down to clock synchronization handling here, it is
possible to extend it to cover other assets of CPSs following
a similar approach, e.g., to develop new relevant indicators
or to re-evaluate the applicability of already developed ones.
The considered indicators and the different ways to threshold
them are based on simple equations, and therefore we analyzed
them using standard mathematical approaches and do not
formalize the analysis further [15]. Risk evaluation and cost
assessment of the monitor [16] are outside the scope of this
work, however it can be a logical step in further investigations
of its development. The basics of the monitor strategy from a
risk and cost perspective were considered in [2], thus possible
work extensions can be built upon the identified requirements.

VII. CONCLUSIONS

The analysis conducted in this work focuses on indicators
and thresholds used by a monitor for switching states when
it detects that clock synchronization is under attack. The
analysis shows a strong dependency on some particular values
of thresholds derived by the use case and the adversary model.
For the Standard Deviation indicator, thresholds for its attack
component also depend on the network topology, implying
that this indicator is best used as an additional one, as then

its threshold recalculation is not needed during NS in case
of network reconfiguration. Thresholding the Mean indicator
requires less details about the network, and therefore it can be
used as a main indicator. Neyman-Pearson thresholding has a
higher level of dependency on the use case compared to Mean
but less compared to Standard Deviation, therefore it can be
used in both roles and assigned depending on other factors that
are outside the scope of this work, e.g., a risk assessment.

Future work includes detection rate calculation to complete
the evaluation of the monitor, investigation of how the pro-
posed set of indicators can be used and their effectiveness for
other clock synchronization protocols. Also an investigation
on more effective ways of detecting offset perturbations with
a significantly small slope should be conducted.

ACKNOWLEDGMENTS
The research leading to these results has received funding

from The Knowledge Foundation through the SIDUS project
20130086 READY and from the SafeCOP project funded from
the ECSEL Joint Undertaking under grant agreement n692529,
and from National funding.

REFERENCES

[1] E. Lisova, E. Uhlemann, W. Steiner, J. Åkerberg, and M. Björkman,
“Game theory applied to secure clock synchronization with ieee 1588,”
in Proceedings of ISPCS, Sept 2016, pp. 1–6.

[2] E. Lisova, E. Uhlemann, J. Åkerberg, and M. Björkman, “Delay attack
versus clock synchronization - a time chase,” in Proceedings of ICIT,
March 2017, pp. 1136–1141.

[3] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, pp. 161–166, 2011.

[4] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–269, July 2008.

[5] A. Treytl and B. Hirschler, “Security flaws and workarounds for ieee
1588 (transparent) clocks,” in 2009 International Symposium on Preci-
sion Clock Synchronization for Measurement, Control and Communica-
tion, Oct 2009, pp. 1–6.

[6] M. Ullmann and M. Vögeler, “Delay attacks - implication on ntp and
ptp time synchronization,” in Proceedings of ISPCS, Oct 2009, pp. 1–6.

[7] G. Gaderer, H. Muhr, M. Horauer, and T. Sauter, “Extending ieee 1588 to
fault tolerant clock synchronization 2004,” in Proceedings of the WFCS,
2004, pp. 353–359.

[8] T. Mizrahi, “Security Requirements of Time Protocols in Packet
Switched Networks,” RFC 7384, Oct. 2014.

[9] ——, “A game theoretic analysis of delay attacks against time synchro-
nization protocols,” in Proceedings of ISPCS, Sept 2012, pp. 1–6.

[10] S. H. Lin, T. C. Lee, and M. F. Gardina, “Diversity protections
for digital radio-summary of ten-year experiments and studies,” IEEE
Communications Magazine, vol. 26, no. 2, pp. 51–63, Feb 1988.

[11] W. Steiner, “An evaluation of smt-based schedule synthesis for time-
triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium, Nov 2010, pp. 375–384.

[12] E. Lisova, E. Uhlemann, J. Åkerberg, and M. Björkman, “Towards
secure wireless ttethernet for industrial process automation applications,”
in Proceedings of ETFA, Sept 2014, pp. 1–4.

[13] M. Garuba, C. Liu, and D. Fraites, “Intrusion techniques: Comparative
study of network intrusion detection systems,” in Proceedings of ITNG
2008, April 2008, pp. 592–598.

[14] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, “An intelligent
intrusion detection system (ids) for anomaly and misuse detection in
computer networks,” Expert Systems with Applications, vol. 29, no. 4,
pp. 713 – 722, 2005.

[15] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller,
“Formalizing sensitivity in static analysis for intrusion detection,” in
Proceedings IEEE SSP, May 2004, pp. 194–208.

[16] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok, “Toward cost-
sensitive modeling for intrusion detection and response,” J. Comput.
Secur., vol. 10, no. 1-2, pp. 5–22, Jul. 2002.

