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A B S T R A C T

Distributed real-time systems often rely on clock synchronization. However, the achievement of precise syn-
chronization in Wireless Sensor Networks (WSNs) is hampered by competing design challenges, which finally
causes many WSN hardware platforms to rely on low frequency clock crystal for local timebase provision.
Although this solution is inexpensive and with a remarkably low energy consumption, it limits the resolution at
which time can be measured. The FLOPSYNC synchronization scheme was then introduced to compensate for
possible quartz crystal imperfections. The main limitation of FLOPSYNC is that it does not account for the effects
of quantization. In this paper we propose a switched control variant of the base FLOPSYNC scheme to address
quantization explicitly in the compensator design, providing clock synchronization in cost-sensitive WSN node
platforms with a minimal additional overhead. Experimental evidence is given that the approach reaches a
synchronization error of at most 1 clock tick in a real WSN.

1. Introduction

The increasing pace of smart applications and devices to handle
complex issues is nowadays growing alongside with the demand for
connectivity. Recent studies estimate the Internet of Things (IoT) to
count 6.4 billion devices (excluding smartphones, tablets and compu-
ters), with a forecast of up to 21 billion by 2020 [1]. Communications
are crucial in this arena, and in particular, Wireless Sensor Networks
(WSNs) proliferate. Tiny, inexpensive, low-power WSN nodes will thus
become ubiquitous, as an enabling technology for IoT [2,3].

For the correct operation of WSNs, a major challenge is accurate
time synchronization [4,5]. This is required to ensure reliable com-
munication links, but also for location/proximity estimation [6], energy
efficiency [7,8], mobility [9], and wherever WSN nodes coordination –
possibly with real-time tasks – is required. Moreover, since most WSN
nodes operate on battery and synchronization must be guaranteed
continuously, energy-efficient solutions are in order [10].

Requirements are not equally tight in any application, however. To
reduce costs, when high timing precision is not needed, low-resolution
clocks can be a viable choice [11,12]. In such cases, to reduce the
synchronization quality detriment, solutions able to push precision to
the limits are needed.

We here present a synchronization mechanism that minimizes the
effect of quantization on the synchronization error, with a minimal
overhead. The work is cast in the framework of multi-hop master-slave
clock synchronization, i.e., when the WSN is composed by a master that
holds the reference clock, and of a number of slaves that must syn-
chronize their clocks to the master.

A preliminary conference version of this paper has been presented
in [13]. The present manuscript extends [13] in several directions.
More precisely, a characterization of the behavior of the proposed
synchronization mechanism in terms of invariant set is given together
with an intuitive explanation and some illustrative plots. Implementa-
tion of the scheme on typical WSN hardware is detailed. Finally, a more
extensive simulation study is provided.

2. The synchronization problem

In master-slave clock synchronization, timing information is dis-
seminated to the WSN by one master node. In a single-hop WSN this
happens by direct communication. In multi-hop WSNs, flooding
schemes [14,15] allow for the said dissemination irrespectively of the
network topology, and within a very small amount of time. The dis-
seminated packets may contain a timestamp of the master clock, or
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timing information can be implicit if packets are flooded periodically
over a contention-delay-free MAC [16].

Upon receiving master time information, the slaves can correct their
local time, and in the WSN literature this action is called clock syn-
chronization. However, the slaves also need to faithfully follow with the
master time in between two subsequent arrivals of master information;
this is called skew compensation [17–19], as NTP defines the skew as the
derivative of the synchronization error with time. The skew can how-
ever vary with time as well, for example owing to temperature varia-
tions, and its derivative with time is named drift. It is possible to
compensate for drift, see e.g. [16,20], and also for the packets’ radio
propagation delay [21,22] if ultra-high precision synchronization is
needed (the delay is about 1 µ s each 300 m traveled by the signal).

Master-slave schemes may have many different features, but in-
variantly need to timestamp incoming packets with the local clock.
Timekeeping in WSN nodes is done by a dedicated hardware timer/
counter aboard the node processor, that is read to know the time, and
allows to set interrupts for generating events. Incoming packet time-
stamping can thus be done by reading the hardware counter in the
packet reception interrupt handler [14], or by using a hardware input
capture module [15,16] that takes a counter snapshot upon reception.
In any case, the finite frequency of the local hardware counter in-
evitably introduces quantization in packet timestamping, and the entity
of this quantization increases as the counter frequency is decreased.

To limit energy consumption by the counter, its frequency has to be
limited with respect to typical CPU clocks—consider that the CPU can
be set to “deep sleep” to save power, but the timekeeping timer cannot
be stopped to not lose the notion of time. Briefly, in WSN nodes it is
common to have the CPU clocked at several megahertz, while the
timekeeping timer runs at just 32768 Hz [11], a frequency for which
inexpensive and ultra low-power quartz crystals are available.

To tackle the tradeoff between timing resolution and consumption,
the Virtual High-resolution Time (VHT) algorithm [7] was introduced.
This synchronizes a high-frequency timer, turned off in deep sleep, with
a low frequency timer always active. This solution has been used to
achieve high synchronization precision and ultra-low consump-
tion [16], but requires a hardware support that is not common in WSN
nodes.

The main requirements for VHT are a high-frequency timer clocked
with a stable oscillator, and hardware support for timestamping an edge
of the low-frequency clock with that high-frequency timer. In [7] this
problem is solved in hardware, and a VHDL realization is also proposed.
Recently, nodes appeared with this support [23], but widely employed
nodes [24], such as the TelosB [11], are not VHT-capable.

This is far more than a legacy issue. Cost-sensitive IoT applications
may not justify the additional cost of VHT support. Thus, obtaining
accurate synchronization using low-frequency clock timers is a relevant
research topic, with the potential to enable low-cost, real-time capable
WSN platforms.

To evidence that synchronization with a high- and a low-frequency
clock are two different scenarii, we present a test in which two nodes are
synchronized with the FLOPSYNC-2 [16] scheme on the Wand-
Stem [23] WSN node platform. This platform has VHT support, which
made it possible to compare the synchronization quality, in the two
cases with and without VHT, on the same hardware. The tests were
done with a 10s synchronization period, and the reported error samples
are taken at the end of each period.

The top plot in Fig. 1 shows the results with a high-frequency timer,
while the bottom one shows the low-frequency timer case. The high-
frequency timer has a resolution of 20.8 ns (gray area), but the standard
deviation of the synchronization error is 164 ns (dashed lines), a sig-
nificantly higher value. The reason is that at high frequencies, the os-
cillator phase noise jitter and the packet transmission jitter from the
radio transceiver, are greater than the quantization-induced error [16].
On the contrary, with the low-frequency timer, the error standard de-
viation is 24.6 µ s (dashed lines), i.e., lower than the 30.5 µ s timer

resolution (gray area). Interestingly, the error shows a regular pattern
with only three values – 0 and ± 1 timer tick – evidencing that the
quantization-induced error magnitude is greater than the noise sources.

The clock synchronization algorithm we propose herein, includes a
switching control scheme that minimizes the effect of quantization on
the synchronization error. The proposed solution is therefore applicable
and useful in all the cases where quantization is the major source of
error.

3. The FLOPSYNC synchronization scheme

In this section we formalize the problem, point out the sources of
quantization, and review the original FLOPSYNC synchronization
scheme as proposed in [18].

3.1. Problem formalization

Time synchronization in a distributed system is a well known and
studied problem in computer science [25–28], and has recently gained
attention in the control community as well [8,29]. We here limit the
scope to the master-slave case in which the master floods the WSN with
synchronization packets at a fixed period T, constant and known net-
work-wide. Furthermore, we assume the presence of a fast flooding
scheme like Glossy [15], so that medium access contention introduces
no uncertainty in the transmission time. Finally, synchronization is
achieved by individual controllers aboard each slave node, that only
receive packets from the master.

The synchronization error at the kth synchronization time kT,
∈k , is

= −e k t k t k( ): ( ) ^ ( ),

where t(k) denotes the master clock at the kth synchronization, and t k^ ( )
the slave estimate of the master clock. As the error accumulates over
time, during each time interval +kT k T[ , ( 1) ] the synchronization error
dynamics is ruled by

+ = +e k e k d k( 1) ( ) ( ), (1)

where d(k) is a disturbance that accounts for different phenomena,
briefly discussed later on, and characterized as

∫= −
+

d k
δ τ

f
dτ( )

( )
,

kT

k T f

o

( 1)

(2)

where fo is the nominal frequency of the slave clock, and δf(t) the
(continuous-time) variation of that frequency caused by manufacturing
tolerances, aging, thermal stress, and short-term jitter. The minus sign
in (2) is because δf>0 makes the local clock advance, while (1)

Fig. 1. Experimental result showing the synchronization error using the high frequency
timer (top graph) and low frequency timer (bottom graph) on the WandStem node. Note
the different time units on the vertical axis.
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contains d(k) with the plus sign for convenience.
Notice that all the uncertainty is confined in the way the dis-

turbance d(k) is generated. Based on (1), a controller can be designed to
reject d(k) with a very little computational overhead, see e.g., [18].

The phenomena in d are briefly listed below, and can be counter-
acted by considering their different time scales.

• Tolerances due to imperfections in the quartz crystals manu-
facturing result in a constant frequency errorδf .

• Aging is a phenomenon that acts on a time scale of days, while
reasonable values for the synchronization period T are seconds or
minutes, hence this can be safely thought of as a constant dis-
turbance contribution as well, and eliminated at steady state – like
the effect of imperfections – by integral control.

• The temperature dependence of crystals is a major source of variable
disturbance [7]. However, in virtually any operating condition, a
WSN undergoes either abrupt but sporadic thermal stress episodes
like shade-sunlight transitions, or environmental variations that are
slow when compared to the thermal dynamics of typical nodes. The
controller of [18] can be extended to compensate for abrupt thermal
variations [16], but in between such events, this disturbance con-
tribution can be assumed constant as well.

• Short-term jitter acts on the time scale of electronic noise, hence it is
too fast to compensate, and provides the ultimate bound for the
achievable synchronization quality. However, as anticipated, in this
work we are addressing the case where quantization is a greater
source of error than jitter.

The above disturbance characterization allows to focus on opti-
mizing the controller for the constant d case, although the proposed
controller will obviously still be able to cope with (reasonably) variable
disturbances.

3.2. The FLOPSYNC synchronization scheme with quantizers

In [18], the FLOPSYNC scheme was proposed. FLOPSYNC in-
troduces a corrective action u to compensate for the sources of the
synchronization error e:

+ = + +e k e k u k d k( 1) ( ) ( ) ( ), (3)

with u is computed with a Proportional Integral (PI) controller.
The control scheme performance is limited by the presence of a

quantization on both the synchronization error e (controlled variable
that should be driven to zero) and the output of the clock correction
algorithm u (corrective action that should drive the synchronization
error to zero).

As for the former quantization, the hardware counter is incremented
on the active edge of its clock, while asynchronous events – such as
packet arrivals – can occur at any time between two edges. The re-
ported timestamp will thus be the value of the counter as last in-
cremented by the edge preceding the event. Thus, hardware time-
stamping works like the floor operator on the synchronization error e.

As for the latter quantization, it occurs when the output u of the
clock correction algorithm, computed using floating point or fixed point
numbers, is converted back to the tick resolution. This is done in soft-
ware, however, hence one can choose the quantization function—for
example, the round operator.

Summarizing, we have two sources of quantization. One is physi-
cally constrained to act as the floor operator, acts on the synchroniza-
tion error e, and depends on the clock resolution. The other is software-
configurable, acts on the corrective action u, and depends on the ar-
ithmetic precision of the used architecture.

Without loss of generality, we conduct the following treatise as if
the resolution of the clock were the unity. Re-scaling for a different
quantum is just the same as changing the time unit. As for the control
resolution, it is configurable and here is set equal to the clock

resolution. This design choice will be motivated in Section 4 (see
Remark 1).

At this point, we need to define the required operators. Given a real
number z, we denote by sign(z) the sign function, by ⌊z⌋ the floor op-
erator, and by ρ(z) the round operator, with =ρ (0.5) 1, and

− = −ρ ( 0.5) 1. We also define the rounding error for the real number z as
= −z ρ zΔ : ( )z . Notice that the rounding error is always bounded as
≤Δz

1
2 .

Coming back to FLOPSYNC, since the control action is quantized,
(3) becomes

+ = + +e k e k ρ u k d k( 1) ( ) ( ( )) ( ), (4)

where u is determined from the quantized measurements of the syn-
chronization error ⌊e⌋, by the discrete-time PI controller

+ = + ⌊ ⌋ − ⌊ + ⌋u k u k e k α e k( 1) ( ) ( ) ( 1) (5)

where α is the only design parameter.
Fig. 2 shows the FLOPSYNC control scheme, where P is the pro-

cess (4), and R the controller (5). Substituting (5) into (4) we get

+ = +
+ − + ⌊ − ⌋ − ⌊ ⌋

e k e k d k
ρ u k e k α e k

( 1) ( ) ( )
( ( 1) ( 1) ( ) )

In the original formulation of FLOPSYNC in [18] both quantizers
were just neglected in the controller design, and relegated to im-
plementation-related accidents. With no quantization in place, by re-
placing the expression for u(k) in (4) with that given by (5) with k in
place of +k 1 and then using − + − = − − −e k u k e k d k( 1) ( 1) ( ) ( 1)
(derived from (4)), we get:

+ = − + − + − +
= − + − −

e k α e k e k u k d k
α e k d k d k

( 1) (1 ) ( ) ( 1) ( 1) ( )
(2 ) ( ) ( ) ( 1)

which corresponds to an asymptotically stable system if 1< α<3. For
a constant disturbance = − =d k d k d( ) ( 1) , the scheme makes the
synchronization error converge to zero, with a rate that depends on α.

When quantizers come into play, the synchronization error still
(ideally) converges to zero, but quite intuitively, it is not possible to
discriminate from zero errors that are below the clock resolution.
Moreover, d is integrated over time according to (4). The integrated
residual disturbance is not detectable on the quantized output ⌊e⌋ until
it exceeds the clock resolution. This makes the controller react when-
ever the quantization of the integrated residual disturbance switches to
1 or − 1. As a result, the controlled system enters a limit cycle of am-
plitude 2. An example of this effect is illustrated in Fig. 3, with =α 1.4,

= =d k d( ) 3 , and the control system initialized with =e (0) 2,
=u (0) 0.

Fig. 2. The FLOPSYNC synchronization scheme with quantizers.

Fig. 3. The impact of quantization on the synchronization error in the FLOPSYNC
scheme.

F. Terraneo et al. Journal of Systems Architecture 80 (2017) 77–84

79



This paper proposes a switched control scheme that reduces the just
evidenced effect of quantization, steering the system to a limit cycle of
an amplitude that is half of that obtained with the bare FLOPSYNC
control scheme as proposed in [18]. The solution presented herein has
the additional advantage of sticking to simple controllers, easy to im-
plement in an embedded device, with very low computational and
memory overhead.

4. The proposed FLOPSYNC-QACS synchronization scheme

In this section we describe FLOPSYNC-QACS, the variant to
FLOPSYNC that we propose to improve its performance in the presence
of quantization.

The FLOPSYNC-QACS controller is composed of a linear and a
switched component. The linear part is described by

+ = ⌊ ⌋ − ⌊ + ⌋u k e k α e k( 1) ( ) ( 1)͠ (6)

and generates signal u,͠ which is fed into the switched part that com-
putes the control input u as

+ = ⎧
⎨⎩

+ + ⌊ + ⌋ ≠
+ + ⌊ + ⌋ =

u k
u k u k e k

ρ u k u k e k
( 1)

( ) ( 1), if ( 1) 0
( ( )) ( 1), if ( 1) 0,

͠
͠ (7)

depending on the quantized synchronization error measurement ⌊e⌋.
The resulting switched control scheme is represented in Fig. 4, where ∼R
is the linear component (6), P the synchronization error dynamics (4),
and −z 1 the unitary delay operator.

The switched control system dynamics is characterized in terms of
the evolution in time of the variables e and u as

⌊ + ⌋ = ⌊ + + ⌋ =

⎧
⎨⎩

+ = + +
+ = + ⌊ ⌋

⎧
⎨⎩

+ = + +
+ = + ⌊ ⌋ − ⌊ + + ⌋

e k e k ρ u k d k

e k e k ρ u k d k
u k ρ u k e k

e k e k ρ u k d k
u k u k e k α e k ρ u k d k

if ( 1) ( ) ( ( )) ( ) 0

( 1) ( ) ( ( )) ( )
( 1) ( ( )) ( )

else
( 1) ( ) ( ( )) ( )

( 1) ( ) ( ) ( ) ( ( )) ( ) , (8)

which are obtained from (4) and (7) with replaced by its expression in
(6). Apparently, the computational complexity of the proposed solution
is limited to measuring ⌊ + + ⌋ = ⌊ + ⌋e k ρ u k d k e k( ) ( ( )) ( ) ( 1) and to
computing the control action u as per the applicable alternative in (8),
based on the measured quantized value of ⌊ + ⌋e k( 1) .

Let the disturbance be constant and equal to =d k d( ) , k≥ 0. We
define the disturbance rounding error

= −d ρ dΔ ( ),d (9)

and the residual control input signal

= +u k u k ρ d( ) ( ) ( ), (10)

which is zero when the control input perfectly counteracts the quan-
tized value of the disturbance.

The proposed FLOPSYNC-QACS control scheme is able to reduce the
amplitude of the limit cycle for the quantized output ⌊e⌋ from 2 to 1.
This is actually evident in Fig. 5, where an example of possible evolu-
tion of the system is shown, for =α 11/8, when = −Δ 0.2d and the
switched control system is initialized at =e (0) 0, and =u (0) 2. The left

column present the results obtained with FLOPSYNC, while the right
column presents the results obtained with FLOPSYNC-QACS. The top
graphs in Fig. 5 show the phase plot of the system, with the green
square indicating the initial condition. The central and bottom graphs
represent the time evolution of the state variables e and u and their
quantized version.

In the case of FLOPSYNC-QACS, after the state enters the red area in
the top plot, it ends up in one time step (and keeps evolving forever) in
an invariant set where the quantized variables ⌊e(k)⌋ and ρ u k( ( )) have
an excursion of amplitude equal to 1. This same behavior can be ob-
served for other values of α, which are given in Theorem 4.1 together
with the characterization of the red area (Eq. (11)).

Theorem 4.1. Let the design parameter α be chosen within( )1, 3
2 . Suppose

that at some time h the state variables e and u of system (8) satisfy:

⎧

⎨

⎪⎪

⎩
⎪⎪

< <

≤ − <

− < <

e h

α u h sign

u h

0 ( ) 1

1 ( ) (Δ ) 3
2

1
2

( ) 1
2

,

d

(11)

where = +u h u h ρ d( ) ( ) ( ). Then,

⌊ ⌋ ∈ = −e k ρ u k sign sign( ( ) , ( ( ))) {(0, 0), ( (Δ ), (Δ ))},d dI

for all k> h. Moreover,I is the smallest invariant set for ⌊ ⌋e ρ u( , ( )), when
system (8) evolves starting from (11).

The proof of Theorem 4.1 (here omitted) can be obtained by
adapting the proof in [30] to the case when ρ(e) is replaced with ⌊e⌋.

In [30], we performed a numerical reachability analysis study and
showed that if 5/4< α<3/2 and |Δd|< 0.5, then, the invariant set in
Theorem 4.1 is globally attractive, i.e., it will be eventually reached
from any initial condition. For =Δ 0.5,d global attractiveness does not
hold true and the system may end up in an invariant set where the
amplitude of the excursion for the quantized state is 2, while for
|Δd|≠ 0.5 and 1< α≤ 5/4 only invariant sets where the excursion
amplitude is 1 appear.

We can then conclude that the proposed switched scheme performs
better than the bare FLOPSYNC control scheme proposed in [18] for
almost all Δd values.

Remark 1 (control resolution). Note that in both modes of operationFig. 4. The FLOPSYNC-QACS synchronization scheme.

Fig. 5. Comparison between FLOPSYNC (left column) and FLOPSYNC-QACS (right
column). The top graph shows the phase plot in the state variables e and u . The lower
plots show the time evolution of the state variables and their quantized versions.
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in (8), the synchronization error e is obtained by integrating the signal
+ρ u d( ) . Ideally, the control action u should be set so as to compensate

exactly for the disturbance but this is hampered by the presence of the
round quantizer. The process then integrates the residual disturbance

+ρ u d( ) and the controller realizes that the disturbance is not
compensated exactly only when the process output e reaches the
quantization threshold, since only at that point the measured
synchronization error ⌊e⌋ will jump to either 1 or −1. ⌊e⌋ is then
brought back to zero, and the same kind of behavior is observed over
and over, thus resulting in a cycle for ⌊e⌋ with a unitary amplitude.
Improving the control resolution would not have any impact on the
control scheme performance in terms of amplitude of this cycle: The
time needed for the process output e to reach the quantization threshold
will be larger, but still a cycle of amplitude 1 for ⌊e⌋ will be observed.

5. Implementation of FLOPSYNC-QACS

In this section we describe how FLOPSYNC-QACS can be efficiently
implemented on typical WSN hardware. To do so, we first have to
briefly review the FLOPSYNC synchronization scheme, which is com-
posed of two main parts.

The first part is implemented at the MAC (Medium Access Control)
level. Its task is to periodically take over the ordinary MAC used for the
applications, and switch the radio control to the flooding scheme used
to receive and rebroadcast the synchronization packet. The flooding
scheme we adopt is Glossy [15], which was extensively proven capable
of making synchronization packets reach all the nodes of a realistically-
sized, multi-hop WSN in a practically negligible time. From the time-
stamped arrival time of the synchronization packet, the clock syn-
chronization error is measured, and the controller is run to compute the
correction u. This quantity is used both to decide the expected arrival
time for the next synchronization packet, and as the input to the second
part of FLOPSYNC.

This second part is implemented at the operating system level. Its
role is to employ the correction provided by the controller to offer
timestamping and clock services to the running applications.
FLOPSYNC-QACS does not introduce changes to this part compared to
FLOPSYNC, hence the matter will not be explained further.

A simplified version of the aforementioned first part is shown in
Listing 1. The code paths to handle packet losses have been omitted, to
better focus on the control law. The implementation of the said law is a
task that a short time (called the receiver window) before the expected
arrival time for a synchronization packet, disables the ordinary MAC,
sets the radio to receive mode, and timestamps the packet et its arrival.
The packet is then rebroadcast, as required by Glossy, and after that the
synchronization error is computed as the difference between the ex-
pected and the actual arrival time. Due to the limited hardware timer
resolution the actual arrival time has a finite resolution as well, hence
computing the error introduces the first quantization in the control
loop.

The control law is easy to implement using fixed point arithmetic,
which is a notable advantage, as most WSN nodes lack hardware
floating point support. The computed correction u, still in fixed point
form, is then converted to an integer number using the rounded_division
function, which is necessary as the C/C++ division operator does not
perform arithmetic rounding. Computing the actually applied control
therefore introduces the second quantization.

The switched part of the controller is implemented as a single if
statement, selecting either the quantized or fixed point correction, de-
pending on the error value.

The last part of the task computes the receiver window based on the
error value – the interested reader can find information about this step
in [16], suffice here to say that this is motivated by minimizing the
radio ON-time for energy efficiency – and then re-enables the ordinary
MAC layer. This done, the FLOPSYNC-QACS task is suspended till the

next synchronization.

6. Experimental and simulation results

The performance gains provided by FLOPSYNC-QACS have been
tested both in a real WSN node and in simulation. In Section 6.1 we
show a representative example of the performed experimental tests, to
testify the correct operation of the technique in practice. In Section 6.2
we then summarize the results of a simulation campaign, in which the
operation of FLOPSYNC with and without the proposed switched con-
trol scheme is compared. The use of simulation is necessary for this
purpose, as it is the only way to compare the two algorithms in the
exact same conditions.

6.1. An experimental test

Experimental testing aims at assessing the performance improve-
ment yielded by the proposed FLOPSYNC extension in a real-world
setting. The main point is that in the theoretical analysis the dis-
turbance has been considered constant, whereas real disturbances are
actually varying. However, if their time-variability occurs at a timescale
that is much longer than the control sampling time, then, results of our
analysis should still be valid. The test presented in this section shows
that this is indeed the case.

We implemented the base FLOPSYNC and FLOPSYNC-QACS
schemes on a WSN composed of WandStem [23] nodes, that employ
ARM Cortex-M3 microcontrollers running at 48 MHz, and CC2520
radio transceivers operating in the 2.4 GHz band. One of these nodes is
shown in Fig. 6. The control algorithms are implemented in C++ in
the Miosix [31] microcontroller operating system. The synchronization
period T is 60 s. The hardware timers of the nodes have a measurement
and actuation resolution (also called tick) of 30.5 µ s, which is the
source of quantization, and it is normalized to 1. For our implementa-
tion, we set =α 11/8 as in Listing 1, since this value preserves stability
of the closed-loop linear dynamics and satisfies the condition on α re-
quired for Theorem 4.1 to hold.

In the test, three nodes are used. One plays the role of the master,
broadcasting synchronization packets. Out of the other two, one runs
the bare FLOPSYNC scheme, and the other the FLOPSYNC-QACS

Listing 1. FLOPSYNC-QACS controller.
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switched variant of the scheme. The nodes are placed in an office en-
vironment, and, hence, they are exposed to radio interference from
local wireless networks and to temperature variations like those en-
countered in a typical indoor setting with standard climatization. In
order to show the long-term behavior of the system in the face of slowly
varying disturbances, the experiment was set to last 20 h. Results are
not specific to the experiment duration. We chose it so as to cover a
time window large enough for the WSN to experience a (slow) variation
in the disturbance that makes it switch between the two invariance sets
in Theorem 4.1 that are associated to the two signs of the disturbance
rounding error.

Fig. 7 shows both the quantized synchronization error in ticks (top
plots), and the quantized control variable (bottom plots) for FLOPSYNC
(left column) and its switched version (right column). The horizontal
axes report the experiment time in hours. The −[ 1, 1] synchronization
error range is highlighted in both top plots with a gray area. The
transient leading the error to approach the gray area can be estimated
from the data to last approximately 6 periods (i.e., minutes) in both the
bare and the FLOPSYNC-QACS case. Notice that in the case of FLOP-
SYNC, the gray area is practically covered by the quantized synchro-
nization error trajectory. This is because the quantized synchronization
error oscillates within the set −{ 1, 0, 1} with an excursion of amplitude
2.

In the case of FLOPSYNC-QACS, the quantized synchronization
error first switches within the set −{ 1, 0}, then, after a brief transient, it
switches within {0, 1}. For practically the whole experiment, the
quantized synchronization error has an excursion of amplitude 1. More
in details, the error lies in either −{ 1, 0} or {0, 1} for 97% of the time.

We compare the two results by computing the Root Mean Square
(RMS) performance index of the quantized synchronization error, that
is defined as:

∑⌊ ⌋ = ⌊ ⌋
=

−
RMS e

H
e i( ) 1 ( )

i

H

0

1 2

where H is the number of samples collected in the experiment.
The RMS computed in the case of bare FLOPSYNC is 0.946, while

the RMS computed for FLOPSYNC-QACS is 0.740, i.e., about 22% less
than with bare FLOPSYNC. This means that in FLOPSYNC-QACS the
quantized synchronization error ⌊e⌋ is equal to zero more times than in
FLOPSYNC.

Note that the values taken by ρ(u) in the two nodes are different,
possibly owing to the manufacturing tolerance of each clock crystal that
results each in an unique offset (i.e., a different disturbance value) to
compensate. This is, however, not relevant for the purpose of the test.

In summary, we can conclude that the proposed control scheme
results in a lower RMS error magnitude in a practical setting, where the
disturbance is not rigorously constant.

Relying on the theoretical analysis presented in this paper, it is
possible to analyze a bit more in detail the experimental results. In
particular, focusing on the FLOPSYNC-QACS case, we see that, after the
initial settling, the quantized synchronization error enters the invariant
set of Theorem 4.1 and is kept in the set −{ 1, 0} for about 17 h. During
this time span, we can guess that the rounding error of the disturbance
Δd is negative and that it does not change sign—even though it might
have varied. In fact, the evolution of ρ(e) is compatible with the in-
variant set associated with Δd<0, yielding ∈ρ u( ) {0, 1}. Within the
same time span, it is possible to observe that ρ(u) switches in the set
− −{ 12, 11}, and since = − +ρ u ρ d ρ u( ) ( ) ( ) by Eq. (10), we can con-
clude that the quantized value of the disturbance is =ρ d( ) 12.

After about 17 hours from the beginning of the experiment, the
evolution of the quantized synchronization error changes, and it settles
to the invariant set of Theorem 4.1 associated with Δd>0, yielding

∈ −ρ u( ) { 1, 0}. We can therefore conclude that Δd changed its sign.
Since the value of ρ(u) still switches in the set − −{ 12, 11}, but now

∈ −ρ u( ) { 1, 0}, we can conclude that the quantized value of the dis-
turbance is now =ρ d( ) 11. This entails that the disturbance decreased
crossing 11.5.

In order to better investigate what caused the transition between the
two invariant sets in the experimental results, we performed a simu-
lation study trying to replicate the same behavior with a slowly chan-
ging disturbance. The results of the simulation are shown in Fig. 8,
where on the left column we reported the synchronization error e, the
control signal u and the disturbance d, while on the right column we
reported their quantized versions. We initialized the system at =e (0) 0,

=u (0) 0, and we set =α 11/8, as in the experimental setting.
We selected a disturbance that starts as a constant = =d d 11.6,1 i.e.,

Fig. 6. One of the WandStem WSN nodes used for testing.

Fig. 7. Experimental results comparing bare FLOPSYNC with FLOPSYNC-QACS.
Quantized synchronization error ⌊e⌋ (top plots), and quantized control action ρ(u) (bottom
plots). Fig. 8. Replication of the experimental results with simulated dynamics.
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= − <Δ 0.4 0d . Then from time =k 960 (16 h) the disturbance slowly
decreases linearly up to the value = =d d 11.4,2 i.e., = >Δ 0.4 0d .
Finally, the disturbance keeps constant and equal to d ,2 from time

=k 1080 (18 h). Apparently, the abrupt change of sign of Δd when the
disturbance crosses the threshold of 11.5 at time =k 1020 (17 h) causes
a transient, that is reflected in the quantized version only at time

=k 1038, where the quantized synchronization error oscillates between
−[ 1, 1] and correspondingly the quantized control input oscillates be-
tween − −[ 13, 10]. This is exactly the same behavior that can be ob-
served in the experimental data of Fig. 7.

We can thus conclude that the behavior that appeared in the ex-
perimental results may have been caused by a disturbance similar to the
one presented in the left bottom graph of Fig. 8.

6.2. A comparative simulation campaign

We first present some simulation results comparing the cases when
no quantization is present in the control scheme, when quantization is
present and either FLOPSYNC or its switched extension FLOPSYNC-
QACS is implemented. Notice that in the absence of quantization
FLOPSYNC and FLOPSYNC-QACS coincide. The three plots on the top
of Fig. 9 represent the simulation runs for the three cases for a finite

horizon of 30 synchronization periods. The bottom plot shows the
performance of FLOPSYNC-QACS when a control resolution of 0.5 is
adopted instead of 1 (see Remark 1), e.g., 0.6 is approximated as 0.5
instead of 1. In all plots the error is normalized, i.e., a unit clock re-
solution is assumed. The value used for α is 1.2, and =Δ 1.6,d while the
system state is initialized at =e (0) 0, and =u (0) 0.

While in the absence of quantization the synchronization error
converges to 0 with the designed controller, when quantization is in
place it is not possible anymore to guaranteeing convergence to zero. In
the case of bare FLOPSYNC, the synchronization error oscillates in the
area −[ 1, 1], while in the case of its switched extension, it ends up os-
cillating in the region [0, 1] according to Theorem 4.1. As pointed out
in Remark 1, the oscillation extent does not improve if a higher control
resolution is adopted and only the frequency of the oscillations is af-
fected.

The results presented next refer to a simulation campaign aimed at
investigating the effect of the disturbance magnitude on the synchro-
nization quality, with and without the proposed FLOPSYNC extension.

The campaign was carried out by choosing the values of d reported
in Table 1. For each value of d , the two synchronization schemes, one
with FLOPSYNC and the other with FLOPSYNC-QACS, were initialized
to =e (0) 0 and =u (0) 0, and then subjected to a constant disturbance
of the selected amplitude. Data were collected over a time horizon of

=H 1000 synchronization periods. Table 1 summarizes the results: the
proposed extension decreases the RMS by about 30%.

7. Conclusions and future work

A control-based time synchronization mechanism for WSNs, called
FLOPSYNC-QACS, was proposed for reducing the degradation effect
due to quantization of both corrective actions and synchronization
error. FLOPSYNC-QACS was implemented in a real WSN, and experi-
mental results back up the proposed solution.

As a future work, we plan to conduct additional studies and ex-
perimental analysis so as to evaluate the power consumption requested
by the proposed methodology compared to alternative state-of-the-art
approaches.
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