
Journal never presented on conference:

Hard Real-Time Guarantees in Feedback-based Resource Reservations

Alessandro V. Papadopoulos
Mälardalen University, Sweden

Martina Maggio
Lund University, Sweden

Alberto Leva
Politecnico di Milano, Italy

Enrico Bini
University of Turin, Italy

1. Introduction

Resource reservation servers [1], [2] provide application
isolation, enforcing the periodic allocation of a resource
budget — mainly used to control CPU allocation. Usually,
when the budget is exhausted, servers release the CPU.
However, some circumstances may prevent the immediate
CPU release. This article proposes the use of feedback to
compensate for run-time budget variations. As a result of
the use of feedback, the system is capable of allocating a
target budget also in the presence of runtime circumstances
that were originally unaccounted for.

The use of feedback in resource management problems
was also investigated by Stankovic et al. [3], Cervin and
Eker [4], Lu et al. [5], and Abeni et al. [6], among others.
In these works, feedback was used to adapt the resource
allocation to a time-varying workload with soft real-time
constraints (the typical application was multimedia). In this
paper, instead, we assume that the load generated by the
applications is known and has hard deadlines. Feedback is
used to compensate for run-time events, which may induce
deviations with respect to the target budget allocation.

The journal article [7] illustrates the Self-Adaptive
Server (SAS). Its analysis allows us to offer hard real-
time guarantees, using the concept of “supply bound func-
tions” [8], [9], [10].

2. Supply bound functions

The supply bound function sbf(t) abstraction is a con-
venient way to model the minimum amount of resource
provided by resource reservation servers in any interval of
length t. Let s : R → {0, 1} be the indicator function of
any resource allocation over time. The sbf(t) is such that

∀t0, t, sbf(t) ≤

∫ t0+t

t0

s(τ) dτ. (1)

This means that at least sbf(t) resource is available to the
application in any interval of length t.

A convenient model of a server schedule is given by a
sequence of supply intervals, interleaved with a sequence of
idle intervals. The lengths of the supply intervals are repre-
sented by the sequence {S(k)}k=1,2,..., while lengths of idle
intervals are represented by the sequence {Z(k)}k=1,2,....

Without loss of generality, we set the time t = 0 at the
instant when the first resource supply S(1) starts. Figure 1
illustrates the resource provisioning over time according to
this notation.

t = 0

S(1) S(2) S(3)

Z(1) Z(2)

Figure 1. Budget provisioning in servers.

The derivation of a valid supply function sbf(t) satisfy-
ing (1) is made by standard techniques [8]. The following
Lemma applies well known results adapting them to the
introduced notation of S(k) and Z(k).

Lemma 1 (Lemma 1 in [7]). A server characterized by a se-
quence of supply intervals of length {S(k)}k=1,2,... and
idle intervals of length {Z(k)}k=1,2,... has the following
supply bound function

sbf(t) = min {t− σZ(n), σS(n)} , t ∈ In, n ∈ N (2)

with the sequence of intervals {In}n∈N defined as

In=

{

[

0, σZ(1)
)

n = 0
[

σZ(n)+σS(n− 1), σZ(n+ 1)+σS(n)
)

n ≥ 1
(3)

and with

σS(n) = inf
n0

n0+n−1
∑

k=n0

S(k), σZ(n) = sup
n0

n0+n−1
∑

k=n0

Z(k), (4)

properly extended at n = 0 with σS(0) = σZ(0) = 0.

The sbf(t) of (2) is illustrated in Figure 2. On top, the
intervals In are drawn.

I0 I1 I2

sbf(t)

t
σS(1)

σZ(1)

σS(2)

σZ(2)

σS(3)

σZ(3)

Figure 2. An example of supply bound function.

The expression of sbf(t) in (2) generalizes other resource
models. For example, by setting the minimum sum of n
consecutive budgets as σS(n) = nQ and the maximum sum
of n consecutive idle intervals as σZ(n) = n(P−Q)+D−Q,
the resulting sbf(t) of (2) is equivalent to the supply function
of the EDP resource model [11] with budget Q, period P ,
and deadline D.

3. The Self-Adaptive Server (SAS)

In an ideal periodic server, a budget Q̄ is allocated every
period P̄ . The real allocation may differ from the ideal
one, due to disturbances caused by: (i) the usage of shared
resources, preventing the processor release when the budget
is expired; (ii) an application self-suspending earlier than
the budget completion; (iii) synchronization with I/O event;
(iv) the presence of a system tick, forcing scheduling events
to occur at predetermined instants; and many other causes.
These disturbances disrupt the ideal behavior of the periodic
server, undermining real-time guarantees.

We compensate for these variations with feedback,
proposing the Self-Adaptive Server (SAS) [7]. A SAS server
aims to provide a budget Q̄, every period P̄ . At every
round, the SAS server allocates resource non-preemptively.
At the k-th activation round the actual amount of service
time S(k) may differ from the set value for the desired
budget allocation Q(k). We denote the difference — i.e., the
disturbance — by εS(k) = S(k)−Q(k). S(k) is therefore
both the service time and the length of the supply interval
during k-th round. Figure 3 shows the control logic of a
SAS server.

L z−1

z−1

Q(k)Q̄ + + + S(k)

−

εS(k)
+

+

Figure 3. Block diagram of the controller of SAS servers.

The logic is on purpose very simple, to avoid consuming
too much computation time in executing the control logic
itself, and boils down to the following equations.

S(0) = Q(0) = Q̄, (5)

S(k + 1) = Q(k) + εS(k), (6)

Q(k + 1) = Q(k) + L(Q̄− S(k)). (7)

In absence of disturbances — when εS(k) = 0 — the
allocated budget S(k) is constantly equal to the target value
Q̄, as desired. When disturbances occur, the controller gain
L adjusts the budget in response to deviations from the target
value Q̄. If L ∈ (0, 1) the controlled system is stable and
capable of rejecting constant disturbances [7].

A condition of interest is when N SAS servers coexist
and are scheduled in loop, as shown in Figure 4. By assum-
ing, that the first server is the one under analysis, while the
servers from the second to the N -th are the “adversaries”,

�
�
�
�

���
���
���
���

���������
���������
���������
���������

���
���
���
���

��������
��������
��������
��������

S1(1) S2(1) SN (1)

S(1) Z(1)

S1(2) S2(2) SN (2)

S(2) Z(2)

S1(3)

S(3)

Figure 4. N servers in loop.

i.e., the time allocated to them is the idle time for the first
server, then the intervals Z(k) of idle time are exactly the
sum of the N − 1 server budgets. The hypothesis of serving
N servers in loop implies that all the N servers share a
common period P̄ . The journal article [7] demonstrates that
the dynamics of the N -servers case is analogous to the
one of (5)–(7) with a suitable replacement of the involved
variables. Next, we show that it is possible to offer real-
time guarantees on the resource allocation by means of the
supply bound function.

4. Supply function of SAS servers

The definition of sbf(t) of Lemma 1 depends on the
values of σS(n) and σZ(n) of (4). However, we need to
clarify how to compute the expressions of (4) for SAS

servers. First, disturbances εS(k) and εZ(k) :=
∑N

i=2 εi(k)
must be bounded, a bound often being easy to derive.

∀k ∈ N, |εS(k)| ≤ ε̄S, |εZ(k)| ≤ ε̄Z. (8)

If disturbances are not bounded, it is not possible to guar-
antee any service time, with any resource allocation policy.
With bounded disturbances, the quantities σS(n) and σZ(n),
necessary to define the supply function from (2), are:

σS(n) = inf
|εS(k)|≤ε̄S ,n0

n0+n−1
∑

k=n0

S(k),

σZ(n) = sup
|εZ(k)|≤ε̄Z ,n0

n0+n−1
∑

k=n0

Z(k).

(9)

The controller governing both the supply and idle inter-
vals is a linear time-invariant (LTI) system. The linearity of
the dynamics and the bounds of (8) enables to find σS(n)
and σZ(n), which are the key ingredients for computing the
sbf(t) via Lemma 1.

Theorem 2 (Theorem 1 in [7]). Given a SAS server with
controller gain L, let g(k) be the response to step
disturbance, and let the disturbances εS(k) and εZ(k) be
bounded by ε̄S and ε̄Z, respectively, as in (8). Then:

σS(n) = nQ̄− ε̄S N (n, L) (10)

σZ(n) = n(P̄ − Q̄) + ε̄Z N (n, L), (11)

with

N (n, L) =

∞
∑

k=0

|g(k)− g(k − n)|. (12)

The combination of Lemma 1 with the expressions of σS(n)
and σZ(n) of Theorem 2 allows the derivation of sbf(t) as a

function of the gain L of the controller. The relationship
between the controller gain L of SAS servers and the
delivered supply function is given through the expression
N (n, L) of (12). In Figure 5, we plot N (n, L) for the values

of L ∈ {0, 14 ,
1
2 ,

3
4 , L

⋆}, with L⋆ = 3−
√
5

2 , while in Figure 6
the supply function sbf(t), as characterized in Lemma 1, is
drawn for L ∈ {0, 14 ,

3
4 , L

⋆}.

0 5 10 15 20 25
0

5

10

15

n

N
(n
,L

)

L = L⋆ L = 0 L = 1/4

L = 1/2 L = 3/4

Figure 5. Value of N (n,L), for some L.

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800

t

sbf(t)
L = L⋆

L = 1/4
L = 3/4
L = 0

Figure 6. Supply function of SAS servers when P = 60, Q = 20, and
ε̄S = ε̄Z = 3.

Observing Figure 6, for small values of t the supply
function sbf(t) is larger when L = 0, which corresponds not
to compensate for disturbances. However, such a choice is
not capable to asymptotically guarantee the target bandwidth
of Q̄/P̄ . Instead, any controller with L ∈ (0, 1) can guarantee
the asymptotic bandwidth of Q̄/P̄ . Among these values, the

choice of L = L⋆ = 3−
√
5

2 ≈ 0.38197, it is the optimal
value since it achieves the asymptotically largest possible
supply bound function sbf(t) [7].

Finally, we find the condition which guarantees that
all budgets are always non-negative. In fact, as it can be
observed in (10), for large ε̄S the supply function can indeed
be negative, meaning that the necessary compensation may
exceed the budget. Next Lemma establishes an upper bound
on the maximum controllable disturbance.

Lemma 3 (Lemma 3 in [7]). If the disturbance ε̄S and the
budget Q are such that

ε̄S
Q

≤
1

N (1, L)
, (13)

then it is always σS(n) ≥ 0.

Previous Lemma is a feasibility condition: if condi-
tion (13) does not hold, then the control policy of SAS

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L

1/N (n,L)

Figure 7. Maximum disturbance handled by SAS servers.

servers may require a negative (infeasible) server budget. In
Figure 7 we plot 1/N (n,L) as function of L. If the maximum
disturbance ε̄S which needs to be compensated is larger than
half of the target budget Q, then SAS servers are not suited.

In conclusion, we can assert that the controller gain
which maximizes the linear lower bound of the sbf(t) is

L⋆ = 3−
√
5

2 . Although the linear lower bound is used to
drive the design of the SAS server, the exact sbf(t) of (2)
can be used to guarantee real-time tasks running within the
SAS server. Hence, the guarantee test does not suffer from
the typical approximation error of the linear lower bound.

References

[1] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity re-
serves: An abstraction for managing processor usage,” in Proceedings

of the 4th Workshop on Workstation Operating Systems. IEEE, 1993,
pp. 129–134.

[2] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proceedings of the 19th IEEE Real-Time

Systems Symposium, Madrid, Spain, Dec. 1998, pp. 4–13.

[3] J. A. Stankovic, C. Lu, and S. H. Son, “The case for feedback control
in real-time scheduling,” in Proceedings of the Euromicro Conference

on Real-Time, York, U.K., Jun. 1999.

[4] A. Cervin and J. Eker, “Feedback scheduling of control tasks,” in
Proceedings of the 39th IEEE Conference on Decision and Control,
2000, pp. 4871–4876.

[5] C. Lu, T. F. Abdelzaber, J. A. Stankovic, and S. H. Son, “A feedback
control approach for guaranteeing relative delays in web servers,” in
Proceedings of the 7th IEEE Real-Time Technology and Applications

Symposium, 2001, pp. 51–62.

[6] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
reservation-based feedback scheduler,” in Proceedings of the 23rd

IEEE Real-Time Systems Symposium, Austix (TX), USA, Dec. 2002,
pp. 71–80.

[7] A. V. Papadopoulos, M. Maggio, A. Leva, and E. Bini, “Hard real-
time guarantees in feedback-based resource reservations,” Real-Time

Systems, vol. 51, no. 3, pp. 221–246, Jun. 2015.

[8] A. K. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in Proceedings of the 7th IEEE Real-Time Technology and

Applications Symposium, Taipei, Taiwan, May 2001, pp. 75–84.

[9] G. Lipari and E. Bini, “Resource partitioning among real-time ap-
plications,” in Proceedings of the 15-th Euromicro Conference on

Real-Time Systems, Porto, Portugal, Jul. 2003, pp. 151–158.

[10] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Proceedings of the 24th Real-Time Systems

Symposium, Cancun, Mexico, Dec. 2003, pp. 2–13.

[11] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis frame-
work using EDP resource models,” in Proceedings of the 28th IEEE

International Real-Time Systems Symposium. Tucson, AZ, USA:
IEEE Computer Society, 2007, pp. 129–138.

