
Demonstrating Development of Software Architecture of Multi-core Real-time
Vehicular Systems

Alessio Bucaioni∗†, Federico Ciccozzi∗, Antonio Cicchetti∗, Saad Mubeen†∗, Mikael Sjödin∗,
Mattias Gålnander†, John Lundbäck† and Kurt-Lennart Lundbäck†

∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden
† Arcticus Systems AB, Järfälla, Sweden

∗{name.surname}@mdh.se
†{name.surname}@arcticus-systems.com

Abstract—We present a demonstrator for the model- and
component-based development of the software architecture of
multi-core real-time vehicular systems using the industrial
modelling language Rubus Component Model and its inte-
grated development environment Rubus-ICE. We demonstrate
various stages of the development process such as modelling
of the software architecture, automatic generation of code,
simulation and testing.

I. BACKGROUND – THE RUBUS CONCEPT

Due to the need of higher computational power [1] and
safety [2], always more vehicular embedded systems are
realised by means of parallel platforms notably multi-core
ones. In this scenario, it is paramount that development
strategies for vehicular embedded software and the sup-
porting tools are able to efficiently deal with the multi-
core specific challenges such as, separation of software
from hardware modelling, support for software to hardware
allocation, etc. Rubus is a collection of methods, theories
and tools for the model- and component-based development
of predictable, timing analysable and synthesisable control
functions in resource-constrained embedded systems [3] [4].
Rubus is developed by Arcticus Systems AB 1 in close
collaboration with Mälardalen University. Through the years,
it has been adopted by several Original Equipment Manu-
facturer (OEM), Tier-1 and Tier-2 companies (such as Volvo
Construction Equipment 2, BAE Systems Hägglunds 3, Ho-
erbiger 4, etc.) for the development of vehicular embedded
software. The Rubus concept is based around the Rubus
Component Model (RCM), a domain-specific modelling
language used for representing the software functions, the
hardware platform, the software to hardware allocation and
the real-time properties of the vehicular embedded software
under development. The Rubus concept features a complete
development environment, Rubus-ICE , which includes the
following:

1http://www.arcticus-systems.com
2https://www.volvoce.com
3http://www.baesystems.com/en/home
4https://www.hoerbiger.com

• Designer: A graphical modelling tool based on RCM.
It creates a set of XML-files containing the software
architecture ad the deployment information related to
selected Run-Time Environment (RTE) and target.

• Analyzer: A graphical off-line and on-line analysis tool.
The off-line analysis includes tasks and network mes-
sages response time analysis, shared stack analysis and
end-to-end distributed response-time and delay analy-
sis [5]. The on-line analysis reads execution traces from
the target environment via a communication channel.

• Inspector: A graphical testing tool for software- and
hardware-in-the-loop testing.

• Simulator: A graphical simulation environment for con-
trolling the execution of the embedded software from
high-level simulation tools such as LabView, Simluink,
etc.

• Build tools: compiler, linker, and plug-ins launcher.
• Synthesizer: A code-generation tool which generates

the execution framework for a specific RTE-platform.

II. DEMONSTRATION OF DEVELOPMENT PROCESS

We demonstrate the applicability of RCM and the usage
of Rubus-ICE by modelling a distributed real-time vehic-
ular application on multi-core. The vehicular application
consists of two nodes running the Rubus operating system
and connected via a Controller Area Network (CAN) and
is inspired by industrial applications. We demonstrate the
following steps during the development.

1) Modeling: Designing of the software architecture,
hardware platform and software to hardware allocation of
the modelled vehicular application.

2) Analysis: Performing different types of analysis avail-
able in Rubus-ICE such as the end-to-end response-time and
delay analysis and stack-memory analysis.

3) Synthesis: Automatic code-generation for the run-time
infrastructure (execution framework).

4) Simulation and Testing: Controlled execution of the
modelled vehicular application in a simulated environment
from Simulink. Testing of the modelled vehicular application
at various hierarchical levels.



REFERENCES

[1] R. N. Charette, “This car runs on code,” IEEE Spectrum,
vol. 46, no. 3, p. 3, 2009.

[2] ISO 26262-1:2011: Road Vehicles in Functional Safety.
http://www.iso.org/.

[3] “Rubus ICE-Integrated Development Environment,”
http://www.arcticus-systems.com.

[4] “Rubus models, methods and tools,” http://www.arcticus-
systems.com.

[5] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-
to-end response-time and delay analysis in the industrial tool
suite: Issues, experiences and a case study,” in Computer
Science and Information Systems, vol. 10, no. 1, pp 453-482,
January 2013.


