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Abstract

Considering the ubiquitousness of software in modern vehicles, its increased
value and development cost, an efficient software development became of par-
amount importance for the vehicular domain. It has been identified that early
verification of non functional properties of vehicular embedded software such
as, timing, reliability and safety, is crucial to efficiency. However, early verifi-
cation of non functional properties is hard to achieve with traditional software
development approaches due to the abstraction and the lack of automation of
these methodologies.

This doctoral thesis aims at improving efficiency in vehicular embedded
software development by minimising the need for late, expensive and time con-
suming software modifications with early design changes, identified through
timing verification, which usually are cheaper and faster. To this end, we in-
troduce a novel model-driven approach which exploits the interplay of two
automotive-specific modelling languages for the representation of functional
and execution models and defines a suite of model transformations for their au-
tomatic integration. Starting from a functional model (expressed by means of
EAST-ADL), all the execution models (expressed by means of the Rubus Com-
ponent Model) entailing unique timing configurations are derived. Schedula-
bility analysis selects the set of the feasible execution models with respect to
specified timing requirements. Eventually, a reference to the selected execution
models along with their analysis results is automatically created in the related
functional model to allow the engineer to investigate them.

The main scientific contributions of this doctoral thesis are i) a metamodel
definition for the Rubus Component Model, ii) an automatic mechanism for the
generation of Rubus models from EAST-ADL, iii) an automatic mechanism for
the selection and back-propagation of the analysis results and related Rubus
models to design level and iv) a compact notation for visualising the selected
Rubus models by means of a single execution model.
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Sammanfattning

Eftersom programvaran är allestädes närvarande i fordon är kostnadseffektiv
mjukvaruutveckling för fordon avgörande. Det anses att tidig verifiering av
icke-funktionella egenskaper hos fordonsmjukvaran, såsom till exempel tim-
ing, pålitlighet och säkerhet, som avgörande för kostnadseffektiv mjukvaru-
utveckling. Emellertid är tidig verifiering av icke-funktionella egenskaper svårt
att uppnå med traditionella mjukvaruutvecklingsmetoder på grund av bristande
abstraktion och automatisering.

Denna avhandling syftar till att förbättra effektiviteten hos mjukvaruutveck-
ling för fordon genom att ersätta behovet av sena, dyra och tidskrävande mjuk-
varuändringar med tidiga, billiga och snabba designändringar som drivs av
timingverifiering. Vi introducerar en modelldriven metod för utveckling av
inbyggd mjukvara för fordon på plattformar med en eller flera kärnor. Meto-
den guidar utvecklaren till acceptabla lösningar som identifieras genom sche-
manläggningsanalys.
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Chapter 1

Introduction

In modern vehicles, more than 80% of innovation comes from the use of spe-
cial purpose computers [1] which comprise of embedded software executing
on embedded processors (embedded systems). Considering the growing com-
plexity of embedded systems, their development cost and lead-time, effective
software development methodologies is of paramount importance in the vehic-
ular domain [1] [2]. Researchers and practitioners agreed that abstraction and
automation, the founding pillars of Model Driven Engineering (MDE), could
be game changers towards the achievement of such a goal [3]. MDE is an en-
gineering paradigm which aims at improving the software development using
models and model transformations. Models allow to focus on specific aspects
of the software using concepts pertaining to the problem domain rather than
constructs pertaining to the underlying technology [3]. Model transformations
offer automation in the form of model manipulation (e.g., code-generation) [4].
In the last decade, MDE has been increasingly adopted in the vehicular domain
bringing the introduction of several domain-specific modelling languages both
from industry and academia. Currently, vehicular embedded software can be
described by means of functional models from which execution models1 are
derived. Functional models provide a structured representation of the vehicle’s
functions in terms of software functions and interaction among them. Often,
they are expressed by means of architectural languages such as the Electron-
ics Architecture and Software Technology Architecture Description Language
(EAST-ADL) [5]. Execution models enrich functional models with platform-

1In the remainder of this thesis we refer to terms execution models and implementation models
as synonyms.
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4 Chapter 1. Introduction

and execution- information such as control flows and worst-case execution
times and they are used as the base for verification of non functional prop-
erties such as timing. Generally, execution models are derived from functional
models and expressed by means of domain-specific modelling languages or
component models such as the AUTomotive Open System ARchitecture (AU-
TOSAR) [6] or the Rubus Component Model (RCM) [7]. However, exist-
ing approaches to support models integration in the development of vehicular
embedded systems are still immature and the translation between functional
and execution models is mainly performed manually. This lack of automation
makes the translation of execution models cumbersome thus defers the verifica-
tion of non functional properties to the last stages of the development process
when modification on the software can be 40 times more expensive than the
same modifications during the design of the software [8]. In this scenario, pro-
viding automation to support model integration would enable an early verifica-
tion of the non functional properties of the vehicular embedded software. This
would allow the engineer to take evidence-based decision during the design of
the software when modifications generally require less effort and expense than
the same modifications on an almost ready-to-deliver software.

In this doctoral thesis, we define a novel model-driven approach for ve-
hicular embedded systems which supports the development and architectural
exploration of system-designs with temporal awareness ensured by means of
timing analysis. The proposed approach discloses the opportunity of improv-
ing the efficiency of the software development of vehicular embedded sys-
tems by replacing the need for late, expensive and time consuming software
product modifications with early design changes, which are usually cheaper
and faster. Starting from a functional model (expressed by means of EAST-
ADL), model transformations generate a set of execution models (expressed
by means of RCM). As there might be multiple ways to map elements be-
tween models, a source functional model can not be univocally translated into
a single correspondent execution model [9]. While most of the current model
transformations only consider one particular strategy out of the possible alter-
natives (of which developers have little or no control) [10], in the proposed
approach, model transformations derive all the possible execution models en-
tailing meaningful and unique configurations of modelling elements, from a
timing perspective. We draw on existing schedulability analysis for evaluat-
ing the appropriateness of the generated execution models with respect to the
specified timing requirements. Eventually, model transformations create a ref-
erence to the selected execution models along with their analysis results for
enabling timing-aware design decisions. In order to ease the visualisation of
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the selected execution models, we provide the engineer with a compact and in-
tensional notation able to represent all of them by means of a single model. The
proposed approach can be generally applied to non functional properties. How-
ever, we centred the approach on timing as it is one of the foremost concerns
in the development of real-time systems as vehicular systems (let us think, for
instance, to an untimely operation of an airbag or the anti-lock braking system
which can cause the loss of lives). Moreover, timing-related issues are a perfect
example of those usually discovered at late stages of the development and yet
with a great impact on the system design.

1.1 Thesis Contribution
The main scientific contributions of this doctoral thesis are the following:

• A metamodel definition for RCM, called RubusMM, comprising mod-
elling elements for representing software, timing constraints, occurrences
and events, execution platform and software to hardware allocation.

• A mechanism for the automatic generation of the execution models, ex-
pressed using RubusMM, from a set of starting functional models and
requirements, expressed using EAST-ADL.

•

• A mechanism that performs the analysis, selection and back-propagation
of the RCM models which meet the specified set of timing requirements.

• A compact notation for visualising the set of the back-propagated RCM
models by means of a single RCM model with uncertainty points.

1.2 Thesis Outline
The remainder of this thesis is organised as follows. Chapter 2 introduces the
technical concepts used throughout the thesis. Chapter 3 describes the research
goals, challenges and contributions of the thesis. Chapter 4 describes the re-
search methodology and validation. Chapter 5 discusses the literature related
to the work and contributions in this thesis. Chapter 6 draws conclusions and
future directions. The second part of the thesis consists of Chapter 7 through
Chapter 11 and describes the research contributions in terms of the included
scientific publications.





Chapter 2

Preliminaries

In this section, we introduce the fundamental technical concepts used through-
out this thesis.

2.1 Embedded Systems
An embedded system is a special-purpose computer system which is embed-
ded in the system it controls [11]. Often, it interacts with its environment by
means of sensors and actuators. Embedded systems are ubiquitous in elec-
tronic items, ranging from microwaves ovens to industrial process controllers.
In modern vehicles, embedded systems replace or augment most of the vehi-
cle’s mechanical and hydraulic parts and implement many safety features, e.g.,
anti-lock braking system. Often, embedded systems have to meet real-time re-
quirements as in the case of the collision avoidance systems. In this case, an
embedded system is defined as real-time embedded system and it is expected
to interact with its environment in a timely manner [12]. That is, its output
is only acceptable when it is functionally correct and is delivered within the
specified time.

2.2 Schedulability Analysis
Real-time embedded systems require evidences that their output will be deliv-
ered at the time that is suitable for the environment they interact with. Schedu-
lability analysis is a priori timing analysis technique which provides evidence

7



8 Chapter 2. Preliminaries

on whether each function in the system is going to meet its timing require-
ments [13]. In this thesis, we leverage a mature schedulability analysis tech-
nique called end-to-end response-time and delay analysis [14]. The analysis
calculates upper bounds on the end-to-end response times and delays of chains
of tasks and messages in the system.

2.3 Model Driven Engineering
Model Driven Engineering is a software engineering paradigm which aims at
raising the abstraction of the software development by shifting the focus from
code to models [3]. To this end, MDE promotes models and model manipu-
lations as first-class citizens in the development process. Models represent an
abstraction of the system and help an expert to focus on system characteris-
tics of interest, while hiding the others [3]. An example could be modelling
functional behaviours, while hiding hardware-specific details. Valid models
can be specified in accordance to the set of rules and constraints described by
so-called metamodels [3]; valid models are said to conform to their respec-
tive metamodel. Within MDE, a software system can be developed by means
of model manipulations. That is, abstract models are refined into more de-
tailed models, until code is generated. Model manipulations are performed by
means of model transformations. Automated model transformations are pro-
grams which automatically translate source models into target models while
ensuring their conformance to their respective metamodels [4].

2.4 EAST-ADL
EAST-ADL is an architectural description language which captures the essen-
tials of vehicular systems concerning their documentation, design, analysis and
synthesis. EAST-ADL is composed of ten different packages, each of which
addresses different aspects of these systems and their development. In this doc-
toral thesis, we leverage concepts from the structure, requirements and timing
packages. The structure package provides for the specification of the soft-
ware architecture in terms of basic elements and interactions among them. The
structure package makes use of four abstraction levels which ensure separation
of concerns through the development process. The abstraction levels are: ve-
hicle, analysis, design and implementation. Such a separation is only concep-
tual and some modelling elements span over several abstraction levels. In this
doctoral thesis, we specify the functional models by means of the functional
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design architecture, hardware design architecture and allocation concepts from
the EAST-ADL design level. The functional design architecture describes how
the software functions interact. The hardware design architecture describes the
physical architecture of the vehicular embedded system. The allocation de-
scribes the mappings between the elements of the functional design architec-
ture and the hardware design architecture. The timing package provides for the
modelling of the timing constraints stemming from the non functional require-
ments. In this doctoral thesis, we use the elements from the timing package for
the specification of the timing events, occurrences and constraints within the
functional models. The requirement package provides the means for describ-
ing the properties of a vehicular embedded system and their verification. In this
doctoral thesis we make use of elements from the requirements package for the
back propagation of the generated execution models and their schedulability
analysis results to the related EAST-ADL model.

2.5 Rubus Component Model

Rubus Component Model is a modelling language for the predictable develop-
ment of resource-constrained embedded real-time systems developed by Arcti-
cus Systems AB1 in collaboration with Mälardalen University. Currently, it
is used by several OEM, Tier-1 and Tier-2 companies in the vehicular domain
(e.g., Volvo Construction Equipment, BAE Systems Hagglunds, Hoerbiger and
Knorr Bremse) as the modelling language for representing execution models
and in cooperation with architectural languages such as EAST-ADL. Currently,
RCM supports the modelling of software architecture, execution platform, allo-
cation information and timing properties of vehicular embedded systems [15].

Within RCM, the embedded software architecture is modelled by means
of software circuit (SWC) elements and interactions among them. A SWC
encapsulates a software function. SWCs can be grouped in composite ele-
ments called Assemblies. As the main goal of RCM is to support the pre-
dictable development of vehicular embedded systems, timing properties and
constraints are pivotal in the language and they can be specified at different
hierarchical levels. Within RCM, the execution platform is modelled by means
of node, core and partition elements. Allocation information can be specified
among any two elements of the software architecture and execution platform.
In this doctoral thesis, we provide a canonical metamodel definition for RCM,

1https://www.arcticus-systems.com

https://www.arcticus-systems.com
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namely RubusMM, as part of our research contribution. Moreover, we employ
RubusMM for the specification of execution models.

2.6 Uncertainty
In software engineering, uncertainty is a meta-property caused by the lack of
knowledge or unresolved decisions [16]. In this thesis, we adopt a language-
centric approach for managing uncertainty, i.e., multiple models, which is able
to generate at once and represent the entire solution space of the generated
models in the intensive form of a model with uncertainty [9].



Chapter 3

Research Goal, Challenges
and Contributions

This chapter discusses research goal, research challenges and research contri-
butions.

3.1 Research Goal
Timing verification is essential and unavoidable for the development of real-
time embedded systems such as vehicular embedded systems. However, re-
searches show that timing verification is more efficient when it is performed
earlier during the development process as modifications during the last stages
of the development can be 40 times more expensive than the same modifi-
cations during the design of the software [8]. To this end, we believe that
enabling timing verification at design level, by means of integration through
model transformations, can improve the efficiency of the software develop-
ment of vehicular embedded systems. In fact, timing verification results could
be used for driving the design process and replacing the need for late, expensive
and time-consuming software modifications with earlier design modifications,
which are usually cheaper and faster. The overall goal of this research work
is to improve the efficiency of the software development of vehicular embed-
ded systems by supporting the development and architectural exploration of
system-designs with temporal awareness. More precisely, we aim at provid-
ing automation for the generation of execution models, expressed by means

11
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of RubusMM, starting from functional models, expressed by means of EAST-
ADL. In addition, we aim at providing an automatic support for the selection
of the generated RCM models that meet the specified timing requirements as
well as for their back-propagation and visualisation at design level.

3.2 Research Challenges

Starting from the research goal, we derived the following research challenges
(RCs) and used them as main drivers for the research work presented in this
doctoral thesis.

RC 1. Definition of a metamodel for RCM. Currently, vehicular embedded
software can be described through various modelling languages such as EAST-
ADL and RCM. Consequently, MDE seems a natural choice for enabling the
automatic integration among the languages. Metamodels and model transfor-
mations are the founding pillars of MDE and they serve for regulating the
specification of models and for automating their manipulations, respectively.
Therefore, in order to enable a full-fledged MDE approach, it is paramount
to provide a metamodel definition to all the languages involved in the soft-
ware development of vehicular embedded systems. Before this research effort,
RCM did not have a canonical metamodel specification, but it rather relied on
a textual language specification.

The challenge is the definition of a metamodel for RCM comprising mod-
elling elements for representing software and the execution platform architec-
tures, the timing constraints, occurrences and events of the vehicular embedded
system and the software to hardware allocation. In particular, the metamodel
should be defined bearing in mind backward compatibility with legacy RCM
artefacts and should not entail any modification to the Rubus run-time layer.

RC 2. Definition of a mapping between EAST-ADL and RCM metamod-
els. Timing verification is crucial task in the development of vehicular em-
bedded systems. However, it gives meaningful results only when applied on
execution models as functional models do not entail detailed, e.g., timing, con-
trol and allocation information. One way to leverage timing verification results
at design level, is the definition of an automatic and transparent process for
the generation of RCM models from EAST-ADL models. However, due to the
different levels of abstraction between EAST-ADL and RCM, there might be
multiple ways to generate RCM from EAST-ADL models.
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In this context, the challenge is two-fold. On the one hand, we need to de-
fine an automatic process able to generate the RCM models containing all the
needed software architecture, timing, control and allocation information. On
the other hand, this process should be able to generate all the possible RCM
models entailing meaningful and unique timing as well as allocation configura-
tions as opposed to considering only one particular generation strategy [9] [10].

RC 3. Definition of a mechanism for unveiling the feasible RCM models
at design level. Once the RCM models have been generated and the schedu-
lability analysis performed, the RCM models satisfying the specified timing
requirements must be unveiled at design level for enabling timing-aware de-
sign decision. Here the challenge is two-fold. On the one hand, the generated
RCM models must be compared against the specified timing requirements and
back-propagated at design level. On the other hand, it is crucial that all the
RCM models satisfying the specified timing requirements are back-propagated
at design level and represented in a convenient notation, which highlights the
models’ commonalities and differences for aiding possible manual investiga-
tions. In fact, at this point, the selection can not be automated and it can only be
made by manually investigating the set of selected RCM models considering
perhaps additional non functional properties.

3.3 Research Contributions

Early verification of non functional requirements can positively affect the effi-
ciency of the development of vehicular real-time embedded systems. Currently,
early verification of non functional requirements is hard to achieve due to the
lack of automation supporting models integration and analysis. For instance,
let us consider a typical development process as described by the flowchart
in Figure 3.1. In this setting, as meaningful non functional analysis (such as
timing) must be run on execution models, the engineer is required to create
one manually. The non functional analysis of interest is run on the manually
created model and the result is verified against the given set of requirements.
If the specified non functional requirements are not met, the engineer is has to
iterate the process, modify or create a new execution model until a compliant
one is found. Since the process of creating and verifying execution models
is expensive, it is not leveraged early in the development process for having
quick and early feedback on the design level models. To boost early verifica-
tion, in this thesis we propose a novel model-driven approach for the devel-
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Figure 3.1: Development process without the proposed approach

opment of vehicular real-time embedded systems supporting early verification
of non functional properties. Let us consider a development process equipped
with the proposed approach as described by the flowchart in Figure 3.2. In
this setting, all meaningful execution models are automatically generated from
the design model and analysed by means of model transformations, at once.
Considering a set of non functional requirements, model transformations are
responsible for the selection and back propagation of the best execution model
(or set of models), too. Besides relieving the engineer from the manual defini-
tion of execution models, the proposed approach enables early verification at
design level. In addition, while in the manual process several iterations may be
needed to reach a compliant execution model, the proposed approach generates
all meaningful execution models and identifies the best one(s) automatically in
one single iteration.

As timing requirements are crucial for our domain of interest and timing-
related issues are typical problems arising very late in the development process,
in this thesis we center the proposed approach on timing. In particular, the
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Figure 3.2: Development process equipped with the proposed approach

main contribution of this doctoral thesis is a model-driven approach supporting
the development and architectural exploration of system-designs with temporal
awareness ensured by means of schedulability analysis. Figure 3.3 provides a
graphical representation of the proposed approach.

The proposed approach leverages the interplay of EAST-ADL and RCM
as the modelling languages for expressing functional and execution models,
respectively, and a suite of 6 model transformations. The first step of the pro-
posed approach is the automatic generation of RCM models representing the
software architecture and its timing properties and constraints from an EAST-
ADL functional design architecture equipped with EAST-ADL timing con-
straint modelling elements. Such a generation is entrusted to the FDA2RCM
model transformation. As there could be multiple ways of generating RCM
models from an EAST-ADL functional design architecture, the FDA2RCM
model transformation generates, in a single execution, all the RCM models
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entailing unique timing and control flow information. The second step of the
proposed approach is the automatic generation of an RCM model representing
the execution platform from an EAST-ADL hardware design architecture and it
is performed by the HDA2RCM model transformation. At this point, as RCM
describes the execution platform at a different level of abstraction compared
to EAST-ADL, manual refinements of the generated RCM model represent-
ing the execution platform may be needed in order to, e.g., specify cores and
partitions in the case of vehicular embedded systems for multi-core. This is a
necessary step as detailed execution platform models are pivotal for the spec-
ification of the software allocation information which, in turn, affects schedu-
lability analysis. The next step of the proposed approach merges the generated
RCM software and execution platform models to obtain a set of complete RCM
models where the software allocation information can be specified. This step
is performed by the MERGE model transformation. The specification of the
allocation information on the merged RCM models is entrusted to two model
transformations, namely A2RCM and ALLOCATION. The former is respon-
sible for translating the allocation information from the EAST-ADL allocation
model. The latter is responsible for generating RCM models entailing those
allocation configurations that can not be directly derived from the EAST-ADL
allocation model as in the case of, e.g., allocation of software to core and parti-
tion elements. As there could be multiple unique allocation configurations, the
ALLOCATION model transformation generates, in a single execution, all the
RCM models entailing unique allocation information. At this point, schedula-
bility analysis is run on the generated RCM models. If none satisfies the set
of specified timing requirements, the engineer is notified about the inability of
the initial EAST-ADL model to satisfy its timing requirements. Otherwise, the
RCM models satisfying the specified timing requirements are propagated back,
together with their analysis results, at the design level by the BP model trans-
formation and visualised as a single RCM model with uncertainty. Figure 3.3
provides a breakdown of the main contribution in specific research contribu-
tions (RCOs) while Table 3.1 shows the relation between them and the RCs.

RCO 1 - RubusMM. This contribution, marked as 1 in Figure 3.3, provides
a metamodel definition for RCM as a needed step for enabling integration
through model transformations. In fact, RCM was originally thought for pro-
viding modelling purposes, but it did not feature any model driven mechanism,
i.e. automation in terms of model transformation. RubusMM has been de-
fined through a two-step process. In the first step, we reverse-engineered the
RCM specification with the aim of restoring the separation of concerns lost
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Figure 3.3: Research Contributions
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during the evolution of the component model. As a side effect, this allowed
us to maximise backward compatibility with legacy RCM artefacts. This ac-
tivity resulted in the addition of modelling elements such as connectors and
threads as well as in the refinement of hierarchical structures. In the second
step, we extended RubusMM for the modelling of vehicular embedded sys-
tems on single- and multi-core platforms. This extension includes modelling
elements for representing the execution platform and the software to hardware
allocation information. It is important to note that the extension does not af-
fect backward-compatibility as it does not modify any hierarchical structure.
Currently, RubusMM is defined as an Ecore model, within the Eclipse Model-
ing Framework1 (EMF), and comprises modelling elements for representing i)
the software architecture and timing constraints, occurrences and events, ii) the
execution platform and iii) the software to hardware allocation information.

This contribution provides a solution to RC 1. Paper A presents the reverse-
engineered version of RubusMM while Paper D presents the extended
RubusMM for single- and multi-core.

RCO 2 - Mechanism for the automatic generation of execution models.
This contribution, marked with 2 in Figure 3.3, provides an automatic mech-
anism for the generation of RCM models from EAST-ADL models. This is
fundamental for enabling timing-aware design decision by integration through
model transformation.

This contribution comprises a set of five model transformations namely
FDA2RCM, HDA2RCM, MERGE, A2RCM and ALLOCATION. The contri-
bution brought by them is two-fold. On the one hand, they provide automatic
generation of RCM models, which are the input for schedulability analysis.
On the other hand, they provide generation of all the meaningful RCM models
from an initial EAST-ADL model.

The FDA2RCM transformation provides for the generation of RCM mod-
els representing the software architecture and its timing constraints from an
EAST-ADL functional design architecutre equipped with EAST-ADL timing
constraints. In a nutshell, it translates the elements of the EAST-ADL func-
tional design architecture to RCM software elements. Additionally, it pro-
vides automatic generation of all control flow and timing elements in the RCM
models. Since such a translation can produce multiple RCM models entailing
unique configurations of control flow and timing elements, FDA2RCM gener-
ates, in a single execution, all of them. This is possible thanks to a bidirectional

1http://www.eclipse.org
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model transformation language, namely the Janus Transformation Language
(JTL) [17]. JTL is a constraint-based bidirectional model transformation lan-
guage specifically tailored to support one-to-many model transformations by
generating all the possible models, at once. JTL adopts a Query/View/Trans-
formation (QVT) relation-like syntax [18] and relies on the Answer Set Pro-
gramming (ASP) [19], which is a declarative programming language based on
the answer set (model) semantics of logic programming. The ASP solver, by
means of a deductive process, finds and generates in a single execution all the
models that are consistent with the transformation rules. For instance, the ap-
plication of the FDA2RCM transformation to the simplified EAST-ADL func-
tional design architecture depicted in Figure 3.4a produces the four simplified
RCM models depicted in Figure 3.4a .

It is worth to mention that JTL supports the specification of logic con-
straints, which can be used for narrowing the number of generated models
and tailoring their generation for specific purposes. In the specific case of the
FDA2RCM model transformation, we employed logic constraints for generat-
ing RCM models entailing valid configurations of control flow and timing ele-
ments, only. For instance, in the case of the simplified EAST-ADL functional
design architecture in Figure 3.4a, the logic constraints prevent the generation
of the four RCM models where software function Function 1 was not triggered
by an independent clock.

The HDA2RCM transformation provides generation of the RCM model
representing the execution platform from an EAST-ADL hardware design ar-
chitecture. It is implemented by means of JTL and translates the EAST-ADL
node, connectors and port elements into corresponding elements in RCM. More-
over, in order to conform to the RCM hierarchy of execution platform elements,
for each generated RCM Node element, a Core and a Partition element are
created, too. In fact, compared to EAST-ADL, RCM describes the execution
platform at a different level of abstraction by using core and partition concepts.
Please note that, the engineer can still manually refine the generated RCM ex-
ecution platform model by using the RCM Core and Partition elements.

The MERGE transformation merges the generated RCM models represent-
ing software architecture and execution platform for allowing the translation
of the allocation information from EAST-ADL. MERGE is implemented as a
QVT Operational (QVT-O) transformation which performs a weaving of the
RCM models, where the modelling elements of the RCM execution platform
model are linked to the System element of the RCM software model through
its Node reference. The translation of the allocation information is entrusted
to the A2RCM transformation. A2RCM is an in-place transformation writ-
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(a) Example of a Functional Model

(b) 4 of the 8 RCM Execution Models for the EAST-ADL Model in Figure 3.4a

ten in QVT-O and that sets the reference isAllocated of the RCM Allocatable
elements starting from the allocation information expressed by means of the
EAST-ADL Function Allocation elements.

Due to the different level of abstraction between RCM and EAST-ADL,
complete allocation information for the RCM models can not be directly de-
rived from an EAST-ADL Allocation. In this context, the ALLOCATION
transformation provides automation means for the generation of the allocation
information in the RCM models when a direct translation from EAST-ADL is
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not possible. The engineer is required to set which software elements must
be allocated to which execution platform elements. (e.g., Assembly to Core,
Assembly to Partition, SWC to Core). Based on the engineer choice, the AL-
LOCATION transformation automatically generates, in a single execution, all
the RCM models which entail unique allocation configurations of RCM Allo-
catable to Allocator elements. Similar to FDA2RCM, this is implemented as a
JTL model transformation. It is worth to note that logic constraints can be ap-
plied for reducing the number of generated RCM models when, e.g., allocation
information is already available.

This contribution provides a solution to RC 2. Paper B provides an initial
version of this automation mechanism consisting of the FDA2RCM transfor-
mation only. Paper E discusses this contribution in its complete version.

RCO 3 - Back-propagation of analysis results to design level. This contri-
bution, marked as 3 in Figure 3.3, enables the selection of the generated RCM
models satisfying the specified timing requirements and their back-propagation
to design level. This represents the last step in the process of enabling timing-
aware design decisions.

The contribution is embodied by BP, an in-place model transformation,
which takes as input the generated RCM models, their schedulability analysis
results and the set of specified timing requirements. First, BP compares the
analysis results with the specified timing requirements and discards those not
fulfilling the requirements. Afterwards, it adds to the initial EAST-ADL model
the elements from the requirements package for the validation of the software.
Finally, it enriches the added elements with the references to the folders con-
taining the selected RCM models and their analysis results. Currently, BP is
defined as a QVT-O transformation.

This contribution provides a solution to RC 3. Paper B and Paper E discuss
the initial and enhanced version of this contribution, respectively.

RCO 4 - Compact visualisation of multiple Rubus models. Multiple RCM
models can be selected and back propagated to design level and no further
selection can be automated as all selected RCM models have equally good
schedulability analysis results. This contribution, marked as 4 in Figure 3.3,
provides a mechanism for the compact representation of all these equally good
RCM models in terms of their commonalities and distinctions by means of a
single RCM model with uncertainty points. The intent is to allow the engineer
to deal with the set of selected RCM models as if they were a single model and
enable further selection based on, e.g., architectural choices or other relevant



22 Chapter 3. Research Goal, Challenges and Contributions

non functional properties. Such a representation is achieved by employing u-
RubusMM, which is a revised version of RubusMM endowed with uncertainty
elements. This is done by employing the metamodel-independent technique
presented in [9]. More precisely, an automated model transformation defined
in u-JTL [9] is responsible for the generation of u-RubusMM starting from
RubusMM.

This contribution provides a solution to RC 3. Paper C provides further
details about u-RubusMM.

Table 3.1 shows the relation between RCOs and RCs.

Research Challenges
RC 1 RC 2 RC 3

Research Contributions

RCO 1 X X
RCO 2 X X
RCO 3 X
RCO 4 X

Table 3.1: Research Contributions in Relation to the Research Challenges

3.4 Papers Contribution

This section lists the papers included in the thesis and shows the relations be-
tween them and the RCOs, as discussed in Section 3.3, in Table 3.2 .

Research Contributions
RCO 1 RCO 2 RCO 3 RCO 4

Papers

A X
B X X
C X X
D X
E X X X

Table 3.2: Included papers in Relation to the Research Contributions
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3.4.1 Paper A

A Metamodel for the Rubus Component Model: Extensions for Timing
and Model Transformation from EAST-ADL. Alessio Bucaioni, Saad Mu-
been, Federico Ciccozzi, Antonio Cicchetti, Mikael Sjödin. IEEE Access (impact
factor: 3.244). December, 2016.

Abstract –According to the Model-Driven Engineering paradigm, one of the
entry requirements when realising a seamless tool chain for the development
of software is the definition of metamodels, to regulate the specification of
models, and model transformations, for automating manipulations of models.
In this context, we present a metamodel definition for the Rubus Component
Model, an industrial solution used for the development of vehicular embedded
systems. The metamodel includes the definition of structural elements as well
as elements for describing timing information. In order to show how, using
Model-Driven Engineering, the integration between different modelling levels
can be automated, we present a model-to-model transformation between mod-
els conforming to EAST-ADL and models described by means of the Rubus
Component Model. To validate our solution, we exploit a set of industrial au-
tomotive applications to show the applicability of both the Rubus Component
Model metamodel and the model transformation.

Status. Published.

Personal Contribution. The research work presented in this paper was done
in collaboration with all the authors. However, I was the main contributor and
driver. More specifically, I i) reverse-engineered the RCM language , ii) pro-
vided a canonical metamodel definition to RCM, called RubusMM and iii) ex-
tended RubusMM with the modelling elements for the integration with EAST-
ADL.

3.4.2 Paper B

Anticipating Implementation-Level Timing Analysis for Driving Design-
Level Decisions in EAST-ADL. Alessio Bucaioni, Antonio Cicchetti, Fede-
rico Ciccozzi, Romina Eramo, Saad Mubeen, Mikael Sjödin. 1st International
Workshop on Modelling in Automotive Software Engineering (MASE) (accep-
tance rate: 41%) co-located with the ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Systems (MODELS). Ottawa,
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Canada. September, 2015.

Abstract – The adoption of model-driven engineering in the automotive domain
resulted in the standardization of a layered architectural description language,
namely EAST-ADL, which provides means for enforcing abstraction and sepa-
ration of concerns, but no support for automation among its abstraction levels.
This support is particularly helpful when manual transitions among levels are
tedious and error-prone. This is the case of design and implementation levels.
Certain fundamental analyses (e.g., timing), which have a significant impact
on design decisions, give precise results only if performed on implementation-
level models, which are currently created manually by the developer. Dealing
with complex systems, this task becomes soon overwhelming leading to the
creation of a subset of models based on the developers experience; relevant
implementation-level models may therefore be missed. In this work, we de-
scribe means for automation between EAST-ADL design and implementation
levels to anticipate end-to-end delay analysis at design level for driving design
decisions.

Status. Published.

Personal Contribution. The research work presented in this paper was done
in collaboration with all the authors. However, I was the main contributor and
driver. More specifically, I i) defined the methodology, ii) implemented its
composing tasks and iii) applied the solution to the running example.

3.4.3 Paper C

Handling Uncertainty in Automatically Generated Implementation Mod-
els in the Automotive Domain. Alessio Bucaioni, Antonio Cicchetti, Fe-
derico Ciccozzi, Saad Mubeen, Alfonso Pierantonio, Mikael Sjödin. 42nd Eu-
romicro Conference Series on Software Engineering and Advanced Applica-
tion (SEAA) (acceptance rate: 36%). Limassol, Cyprus. September, 2016.

Abstract – Models and model transformations, the two core constituents of
Model-Driven Engineering, aid in software development by automating, thus
taming, errorproneness of tedious engineering activities. In many cases, the
result of these automated activities is an overwhelming amount of information.
This is the case of one-to-many model transformations that, e.g. in model-
based design-space exploration, can potentially generate a massive amount of
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candidate models (i.e., solution space) from one single source model. In our
scenario, from one design model we generate a set of possible implementa-
tion models on which timing analysis is run. The aim is to find the best model
from a timing perspective. However, multiple implementation models can have
equally good analysis results. Therefore, the engineer is expected to investigate
the solution space for making a final decision, using criteria which fall outside
the analysis’ criteria themselves. Since candidate models can be many and
very similar to each other, manually finding differences and commonalities is
an impractical and error-prone task. In order to provide the engineer with an
expressive representation of models’ commonalities and differences, we pro-
pose the use of modelling with uncertainty. We achieve this by elevating the
solution space to a first-class status, adopting a compact notation capable of
representing the solution space by means of a single model with uncertainty.
Commonalities and differences are thus represented by means of uncertainty
points for the engineer to easily grasp them and consistently make her decision
without manually inspecting each model individually.

Status. Published.

Personal Contribution. The research work presented in this paper was done
in collaboration with all the authors. However, I was the main contributor and
driver. More specifically, I i) provided RubusMM with the uncertainty notation
and ii) applied the solution to the running example.

3.4.4 Paper D

Technology-preserving transition from single-core to multi-core in mod-
elling vehicular systems. Alessio Bucaioni, Saad Mubeen, Federico Ciccozzi,
Antonio Cicchetti, Mikael Sjödin. 13st European Conference on Modelling
Foundations and Applications (ECMFA) (acceptance rate: 38%). Marburg,
Germany. July, 2017.

Abstract – The vehicular industry has exploited model-based engineering for
design, analysis and develop of single-core vehicular systems. Next generation
of autonomous vehicles will require higher computational power, which can
only be provided by multi-core platforms. Current model-based solutions and
related modelling languages, originally conceived for single-core, can not ef-
fectively deal with multi-core specific challenges, such as core-interdependency
and allocation of software to hardware. In this paper, we propose an extension
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to the Rubus Component Model, core of the Rubus model-based approach, for
the modelling, analysis and development of vehicular systems on multi-core.
Our goal is to provide a lightweight transition of a model-based approach from
single-core to multi-core, without disrupting the current technological assets in
the vehicular domain.

Status. Published.

Personal Contribution. The research work presented in this paper was done
in collaboration with all the authors. However, I was the main contributor and
driver. More specifically, I i) extended RubusMM with the modelling elements
for representing the execution platform and the software to hardware allocation
information and ii) conducted the running example.

3.4.5 Paper E
A Model-based Approach for Vehicular Systems. Alessio Bucaioni, Lorenzo
Addazi, Antonio Cicchetti, Federico Ciccozzi, Romina Eramo, Saad Mubeen,
Mikael Sjödin. MRTC Report MDH-MRTC-321/2017-1-SE. Västerås, Swe-
den. December, 2017. Submitted for journal publication.

Abstract – This paper introduces a novel model-based approach for the soft-
ware development of vehicular embedded systems. The proposed approach
discloses the opportunity of improving efficiency of the development process
by providing support to identify viable design solutions with respect to selected
non functional requirements. To this end, it leverages the interplay of two mod-
elling languages for the vehicular domain whose integration is achieved by a
suite of model transformations. An instantiation of the methodology is dis-
cussed for timing requirements, which are among the most critical ones for
the development of vehicular systems. The applicability of the methodology is
demonstrated as proof of concepts on industrial use cases performed in coop-
eration with our industrial partners.

Status. Under review.

Personal Contribution. The research work presented in this paper was done
in collaboration with all the authors. However, I was the main contributor and
driver. More specifically, I i) defined the methodology and iii) applied the so-
lution to the running example.
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Research Methodology and
Validation

This chapter discusses research methodology and validation.

4.1 Research Methodology
Collaborative research between industry and academia is a great example of
how research in software engineering is often stimulated by problems arising
from the use of software in the real life [20]. In this respect, the research
presented in this thesis was conducted in a partnership between Mälardalen
University and Arcticus Systems with the collaboration of Volvo Construction
Equipment, Saab Avionics Systems and BAE Systems. For this research, we
adopted a methodology being an adaptation of the model for technology trans-
fer described in [21]. Figure 4.1 gives a graphical representation of the adopted
research methodology. We began by assessing the state-of-the-art, the state-of-
the-practice and the industrial demands with the aim of defining a research
goal. During these stage, we identified several research challenges connected
to the main research goal. For each elicited challenge, we investigated the
state-of-the-art and practice withe the aim of identifying a possible solution, if
none existed. After performing the investigation, we defined a candidate solu-
tion. In this stage, the industrial partners played a crucial role as they provided
early and quick feedbacks ensuring that the candidate solution was realistic
and could fit current practices and industrial needs. The validation the of each
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Figure 4.1: Research Methodology

candidate solution required three steps. During the academic validation, each
solution was evaluated in the university by means of case study performed by
researchers. Eventually, we used the finding acquired during the academic val-
idation for refining the existing solutions or defining new research challenges.
For instance, this was the case of RubusMM, whose definition described in
Paper A was refined in the definition given in Paper D. During the static vali-
dation, we presented the candidate solutions to the industrial partners in a series
of dedicated meetings and workshops. The aim of this step was to collect feed-
backs regarding the usability and scalability of each solution. The feedbacks
acquired during the static validation were sued for for refining the existing so-
lutions or defining new research challenges as in the case of the visualisation
mechanism described in RCO 4. In fact, the challenge of having an intensional
and convenient notation for representing a multitude of models as one model
with uncertainty arose only when the generation mechanism described in RCO
2 was able to generate a set of RCM models. Eventually, we performed the
dynamic validation by means of industrial projects and experiments.

4.2 Validation

The work presented in this doctoral thesis and its contributions have been eval-
uated progressively as prescribed by the research methodology in Section 4.1.

With respect to RubusMM, we verified its consistency, expressiveness and
applicability against several industrial system designs such the Brake-By-Wire
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(BBW) [15], Steer-By-Wire (SBW) [22], Intelligent Parking Assist (IPA) [23],
etc. Moreover, the industrial partners played a key role in providing feedbacks
regarding the its industrial relevance.

Apart from RubusMM, the remaining contributions are implemented by
means of model transformations. In this respect, the three validation steps de-
scribed in the research methodology helped us in discussing some interesting
properties of the model transformations, such as syntactic and semantic cor-
rectness, complexity, termination and performance [24]. With syntactic cor-
rectness, we refer to the ability of a transformation to produce valid target
models when executed on valid source models [24]. Such a property holds for
the transformations presented in this thesis and we demonstrated it by means
of the case studies done during the academic and dynamic validation. With
the term semantic correctness, we refer to the ability of a transformation to
produce semantically valid target models [24]. Such a property holds for the
transformations presented in this thesis and one way we entrusted it was to
define the transformations by means of a precise and finite set of rules map-
ping EAST-ADL to RCM elements without altering, violating or colliding the
structural hierarchies of the languages. Moreover, the semantic of the gener-
ated RCM models was validated by the practitioners during the static validation
and by the leveraged schedulability analysis. We considered two dimensions
for the transformations complexity which are the intricacy and the number of
the generated RCM models. During the static validation, we conveyed that
the generated RCM models have equal complexity of manually defined ones.
Although some of the model transformations can theoretically produce multi-
ple RCM models, during the academic and dynamic validation we were able
to demonstrate that the transformations always terminate1 in few seconds and
produce only a limited number of RCM models. Moreover, the transformations
could be refined by the engineer on the basis of the specific system and the so-
lution space can be reduced by adding constraints that operate on the possible
mapping policies.

We believe that the automation introduced by the proposed approach dis-
closes the opportunity to improve the efficiency of the software development
process by means reduced need for late modifications on the software. In par-
ticular, model transformations allow to cut the development time while en-
suring the compliance with the non functional requirements of the vehicular
embedded software. Without the proposed approach, in fact, the development
would progress incrementally with team of engineers manually defining exe-

1Please note that, providing a formal proof on the transformations’ termination is outside the
scope of this thesis.
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cution models until a suitable one, from a non functional perspective, is found.
On the contrary, with the proposed approach, the execution models are auto-
matically generated and non functional requirements verified at once allowing
the engineers to focus and reason only on the compliant models. By enabling
early verification, the proposed approach discloses the opportunity of reducing
late modifications on the vehicular software, which empirical studies showed
to be generally more expensive than modifications during the design of the
software [8]. In fact, by adopting the proposed approach, the engineer is ei-
ther notified on the non compliance of the starting EAST-ADL model to the
set of the considered non functional requirements or notified with the set of
the compliant RCM models with which proceed for the development. In the
former scenario, late modifications are prevented while in the latter they are
not needed.

In this thesis, given the importance of timing properties during the design
and development of vehicular real-time embedded systems, we centred the pro-
posed approach on timing. However, we recognise that further non functional
properties such as memory usage, energy efficiency, and so forth, play an im-
portant role during the development of these systems. In this respect, it is
worth to note that the proposed approach proposed can be instantiated to con-
sider further properties, as long as they are measurable and comparable at the
EAST-ADL and RCM levels of detail. Additionally, other properties can be
exploited for selecting multiple RCM models having equally good timing per-
formance or can be considered from the initial stages of the generation process
of the possible solutions. In both cases, the proposed approach would need to
be extended only in terms of specific model transformations for the generation
of the related non functional properties of interest.



Chapter 5

Related Works

This doctoral thesis deals with the research problem of supporting a timing-
aware model driven development of distributed vehicular embedded systems
on single- or multi-core platforms. Hereafter, a number of relevant similar
approaches are discussed.

AUTOSAR [6] is an industrial initiative to provide a standardised soft-
ware architecture for the development of vehicular embedded systems. In the
TIMMO and TIMMO2USE projects, AUTOSAR was provided with a tim-
ing model [25]. However, the AUTOSAR timing model does not distinguish
between the control and the data flows at the application software level, a dis-
tinction that is fundamental for providing early timing verification [26]. A
framework to specify the end-to-end timing constraints and analyse the corre-
sponding end-to-end delays [27, 28, 29] was proposed in the aforementioned
projects too.

There are some works [30] [31] that aim at supporting end-to-end timing
analysis of the higher-level abstraction models. These works heavily rely on the
availability of legacy models and favour the bottom-up development approach
when the existing systems are extended. Unlike our methodology, these works
are not applicable to the top-down development approach. Another work [26]
refines timing requirements between the design and implementation levels to
support the timing analysis at the implementation level. Unlike our methodol-
ogy, this work performs manual translation of the software architecture from
the design level to the implementation level. However, this work can be used
complementary to our work by running the timing analysis of the implementa-
tion level models that are automatically generated by our methodology.
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Often, AUTOSAR is used in cooperation with EAST-ADL as a modelling
language for the implementation level. Even if EAST-ADL entails abstrac-
tion and separation-of-concerns, there is no specific automation support for
interconnecting the abstraction levels in the structure package, e.g., between
design and implementation levels. As a consequence, schedulability analysis
and their results have to be tackled and tracked back manually by the engi-
neer due to the abstraction gaps between the different levels. These tasks can
be time-consuming and error-prone, especially when considering the complex-
ity of modern vehicular systems [32]. On the contrary, in this doctoral thesis
we propose to leverage automation through model transformations to keep the
consistency between the different abstraction levels. The abstraction gaps nat-
urally introduce multiple choices, which are managed by an appropriate trans-
formation language (JTL). Moreover, AUTOSAR does not provide means for
modelling the execution platform [33].

CHESS is a cross-domain framework for the design of component-based
embedded systems, including vehicular systems [34]. CHESS features a spe-
cific UML profile obtained as a combination of different languages, e.g., MAR-
TE and SysML. The framework provides modelling of embedded software for
early analysis, such as dependability and schedulability, as well as for code
generation, monitoring and back-propagation. Currently, CHESS does not sup-
port the design space generation and does not provide means for representing
uncertainty in the development process.

Vehicular embedded systems, especially when considering autonomous driv-
ing and networks of vehicles, are often referred to as cyber-physical systems
(CPS) [35]. In the recent years, several approaches dealing with CPS de-
velopment by adopting multi-paradigm modelling techniques and leveraging
simulation mechanisms to perform early analysis of systems have been pro-
posed [36, 37]. Although the work presented in this doctoral thesis does not
exploit simulation techniques, it does not prevent the use of simulation mech-
anisms to analyse and select the generated design alternatives with respect to
non functional properties of interest.

Given the ubiquity of software, there exists a corpus of literature devoted
to the design of embedded systems and posing a special focus to non func-
tional requirements. In this respect, several works are based on the use of
general-purpose languages such as UML and the UML profile for MARTE [38]
as alternatives to domain-specific languages like, e.g., AUTOSAR and RCM.
GASPARD is a MARTE-based framework for the design of parallel embedded
systems [39]. It prescribes a workflow made-up of subsequent analyses and
refinement steps, from higher to lower abstraction levels. Similar to the pro-
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posed approach, the analysis at lower levels are meant to produce feedback for
the design activities and the process is automatised by means of model transfor-
mations. Compared to our approach, GASPARD seems to tackle different non
functional aspects which can be complementary to timing. Moreover, GAS-
PARD does not provide for the compact representation of the design space.
MARTE is adopted also in [40] to design the high-level architecture of the
software system and for the code generation. It uses UML for modelling the
software components and MARTE for modelling the hardware and the soft-
ware to hardware allocations. One major difference with respect the proposed
approach is that timing requirements are verified by means of simulations on
the generated code and not starting from functional models. In [41], the au-
thors propose a technique to specify tasks and their allocation to cores. The
technique is based on MARTE and allows to perform simulation and task al-
location optimisation based on the execution whereas the approach proposed
in this doctoral thesis statically generates all the possible allocation configura-
tions.





Chapter 6

Conclusions and Future
Works

The work presented in this thesis describes a timing-aware model-driven ap-
proach for the software development of vehicular embedded systems. In par-
ticular, it tackles the problem of guiding the engineer in taking timing-aware
decisions at design level when modifications are generally less expensive than
modifications at later stages of the development. The overall contribution of
this thesis can be broken down into four main research contributions, which
are: i) a metamodel definition for RCM, ii) a set of model transformations for
the generation of RCM from EAST-ADL models, iii) a mechanism for the au-
tomatic selection and back-propagation of the generated RCM models to the
design level and iv) a visualisation mechanism for representing the set of the
generated RCM models as on RCM models with uncertainty, only.

The formalisation of the RCM metamodel is pivotal for leveraging the pro-
posed approach. The set of model transformations provide automation means
for integrating EAST-ADL and RCM, avoiding manual, time-consuming and
error-prone activities. In general, the integration between EAST-ADL and
RCM requires the generation of a number of RCM models which can rapidly
grow exponentially with respect to the number of software components in the
software architecture and their allocation. We proposed to solve this by lever-
aging the properties of a constraint-based transformation language, JTL, to
automatically derive all the possible RCM models entailing meaningful and
unique timing and allocation configurations. By doing so we could leverage
schedulability analysis at design level avoiding the problem of manually iden-
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tifying a suitable RCM model, in terms of timing characteristics. In addition to
replace the need for late and expensive modifications, the proposed approach
also discloses the opportunity of employing expensive resources, such as engi-
neers, more efficiently allowing them to focus only on the design activities ex-
ploiting schedulability analysis results without having to investigate nor man-
ually edit execution models. The selection and back-propagation mechanism
together with the visualisation mechanism provide a powerful tool for the iden-
tification of the best RCM models in terms of timing characteristics thus for
taking timing-aware design decisions.

Despite the generation of the RCM models is transparent to the engineer
and it can be guided through logic constraints, issues about scalability and per-
formance may remain open when dealing with complex functional models. In
this respect, one of the main future investigation direction encompasses the
study of a smarter generation process which could reduce the number of the
generated RCM models. To this end, one possible solution could be the use
of more (domain-)specific logic constraints. Another possible solution to a
smarter generation could be to extend the proposed methodology for the op-
timisation of further system properties, e.g., memory demands. In fact, our
experience showes that, besides timing, other relevant system properties need
to be dealt with at design level and can be used for pruning the space of the
generated RCM models. To summarise, schedulability analysis can represent
one step in an exploration chain, where the solution spaces are sequentially
investigated based on different system properties [42].
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Abstract

According to the Model-Driven Engineering paradigm, one of the entry re-
quirements when realizing a seamless tool chain for the development of soft-
ware is the definition of metamodels, to regulate the specification of models,
and model transformations, for automating manipulations of models. In this
context, we present the metamodel for an industrial component model, the
Rubus Component Model, which is used by several international companies
for the development of vehicular embedded systems. The metamodel includes
the definition of structural elements as well as elements for describing tim-
ing information. In order to show how, using Model-Driven Engineering, the
integration between models can be automate, we present a model-to-model
transformation between models conforming to the automotive domain-specific
architecture description language EAST-ADL and models described with the
Rubus Component Model. We also conduct an automotive-application case
study to show the applicability of the Rubus Component Model metamodel
and the model transformation.
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7.1 Introduction

During the last decades, industrial demands on vehicular embedded systems
have been constantly evolving causing an increment of the related software
complexity. It has been estimated that current vehicles can have more than 70
embedded systems running up to 100 million lines of code [1]. On the one
hand, industry needs efficient processes to cope with the size of these systems
for optimizing software development cost and time-to-market. On the other
hand, most of vehicular embedded systems have extra-functional properties,
e.g., timing requirements and constraints, which have to be taken into account
from the early stages of the development. In fact vehicular embedded systems
are real-time systems [2], meaning that they must deliver their functionality
within their timing deadlines. Consequently, timing requirements are crucial
for these systems. In this context, traditional software development processes
have shown strong limitations.

Component Based Software Engineering (CBSE) has been acknowledged
as an effective practice to deal with the increasing complexity of modern em-
bedded software [3] by promoting software development at a higher level of
abstraction relying on the definition and reuse of atomic units of composition,
i.e., software components. Additionally, CBSE allows to express timing prop-
erties, e.g., by annotating the software components with properties and con-
straints (e.g., worst-case execution time) thus enabling timing analysis, e.g.,
end-to-end response time and delay analysis [4].

AUTOSAR [5] and the Rubus Component Model (RCM) [6], to name a
few, are examples of component models (CMs) used within the vehicular do-
main. Lately, AUTOSAR has become part of the EAST-ADL initiative [7].
EAST-ADL is an architecture description language (ADL) which provides con-
cepts and methods for managing and organizing the various artifacts produced
along the software development of vehicular embedded systems [8]. It pro-
motes the separation of concerns through a top-down software development
process relying on four different abstraction levels, i.e., vehicle, analysis, de-
sign and implementation level. In the latter level, EAST-ADL makes use of
AUTOSAR. Both EAST-ADL and AUTOSAR, embracing the Model-Driven
Engineering (MDE), have been provided with metamodel definitions. MDE
is a paradigm that intends software development as the process of designing
and refining models, starting from higher and moving towards lower levels of
abstraction, via the so-called model transformations.

While EAST-ADL has been proven successful in coping with the soft-
ware complexity and size of industrial embedded software, it still provides
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limited support for dealing with timing requirements. In fact, by employing
AUTOSAR at implementation level, most of the timing, implementation and
communication details are neglected. This information is necessary for build-
ing software timing models used for verifying timing requirements.

In this context, an increasing number of vehicular manufacturers are us-
ing RCM as a complementary technology in EAST-ADL based processes. In
this case, in order to allow a smooth interplay between different languages in
these processes, proper automation is needed for the translation among the var-
ious artifacts specified using, e.g., RCM and EAST-ADL. This aspect is even
more crucial when considering that, in practice, manual translations are not
only tedious, time consuming and error-prone, but even unfeasible in most of
the cases due to the size and complexity of the models involved. To this end,
MDE has been proven effective in reducing the software development cost and
time to market [9] while automating the whole development process. In order
to embrace the MDE paradigm and benefit from its advantages, it is neces-
sary to define proper metamodels for any modeling language (e.g., component
models) involved in the development process together with proper model trans-
formations devoted manipulations of models, taking into account the need of
modeling both functional and extra-functional concepts.

In this paper, we define a metamodel for RCM, that is used for the soft-
ware development of vehicular real-time embedded systems. The metamodel
is defining according to the following main goals:

backward compatibility: the metamodel should allow an easy migration of
legacy RCM artifacts into the new modeling environment;

maintainability: the metamodel should enable a better management of RCM
updates and refinements;

extensibility: the metamodel should disclose the opportunity to integrate in a
smooth way RCM modeling environment in a typical automotive appli-
cation development chain.

To this end, we first present the definition of metamodeling elements repre-
senting the software architecture. Then, we extend the metamodel with con-
cepts representing timing constraints and properties for different type of delays
in event chains. Instead of discussing the complete timing package in RCM,
we focus on the elements representing the latest timing constraints (and cor-
responding timing information and analyses) introduced and practically used
within the automotive industrial domain, i.e., the age and reaction delays [10,
7, 11, 4]. Moreover, we show how the integration between EAST-ADL and
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RCM can be automated using the MDE paradigm, by presenting a model-to-
model transformation from the EAST-ADL Design level to RCM (DL2RCM)
together with a case study which mimics a typical industrial scenario.

The rest of the article is organized as follows. Section 7.2 presents the
context of this work together with its related works. Section 7.3 introduces
the RCM metamodel and extensions for timing elements. Section 7.4 shows
the DL2RCM transformation while Section 7.5 discusses its applicability on
a case study. Finally, Section 7.6 highlights the benefits of having a proper
metamodel for RCM while Section 7.7 draws conclusions and discusses future
works.

7.2 Background and related work

7.2.1 MDE and CBSE in the Automotive Domain

MDE is a paradigm which aims at raising the level of abstraction of software
development by focusing on modeling activities rather than coding. In this
context, MDE promotes models and model transformations as first-class citi-
zens.

Models represents an abstraction of the system under development, from
a particular point of view [12]. The set of rules and constraints needed for
building a valid model is specified in the so-called metamodel. Formally, a
metamodel defines the abstract syntax of a given model, or set of models; the
relation between metamodel and models is called conformance. Model trans-
formations represent the means of refinement by which models are manipu-
lated [13]. In fact, model transformations translate a source model into a target
model keeping their conformance to the respective metamodel intact.

According to the MDE paradigm, starting from a model and by means of
model transformations it is possible to automatically obtain a variety of arti-
facts, such as new models, code, etc. In this context, the entire software de-
velopment can be seen as a transformation process where low level abstraction
models are automatically obtained by means of model transformations from
higher-level abstraction models.

Within the automotive domain, the adoption of MDE and CBSE paradigms
led to the standardization of an architectural description language, namely
EAST-ADL [7]. EAST-ADL proposes a view over the development process
composed by four different abstraction levels. Figure 7.1 shows the abstraction
levels together with methodologies and languages used at each one of them.
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Figure 7.1: EAST-ADL abstraction levels

The vehicle level is the highest abstraction level and captures information
regarding the system’s functionality. In this level, feature models can be used
for showing what the system provides in terms of functionality. Also, these
models are decorated with requirements. The vehicle level is also known as
end-to-end level as it serves to capture requirements and features on the end-
to-end vehicle functionality.

At the analysis level, vehicle functions are expressed, using formal nota-
tions, in terms of behaviors and interfaces. Yet, design and implementation
details are omitted. The artifact developed at this level is called Functional
Analysis Architecture. At this stage, high level analysis for functional verifica-
tion can be performed.

At the design level, the analysis-level artifacts are refined with design-
oriented details: while the analysis level does not differentiate among software,
middleware and hardware, the design level explicitly separates them. Alloca-
tion of software functions to hardware nodes is expressed at this level too. The
artifacts developed at this level include Functional Design Architecture and
Hardware Design Architecture.

At the implementation level, artifacts introduced at the design level are re-
fined with implementation details. The output of this level is a complete soft-
ware architecture which can be used for code generation. At this stage compo-
nent models, e.g., RCM, AUTOSAR, are used to model the system in terms of
components and interactions among them.

AUTOSAR is an industrial initiative to provide standardized software ar-
chitecture for the software development of vehicular embedded systems. Within
AUTOSAR, the software architecture is defined in terms of software compo-
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nents (SWCs) and Virtual Function Bus (VFB). VFB handles the virtual in-
tegration and communication among SWCs, hiding low-level implementation
details. AUTOSAR describes the software at a high level of abstraction focus-
ing on the functional and structural aspects of the architecture. Also, it does
not distinguish between data and control flow, as well as between inter- and
intra-node communication.

Lately, AUTOSAR has been provided with a timing model within the two
EU research projects TIMMO [14] and TIMMO-2-USE [15], respectively. To
this end, TIMMO provides a predictable methodology and language, called
TADL [16] for expressing timing requirements and constraints. TADL is in-
spired by MARTE [17], which is a UML profile for modeling and analysis
of real-time and embedded systems. The TIMMO methodology makes use
of EAST-ADL and AUTOSAR interplay, where the former is used for the
software structural modeling, while the latter is used for the implementation.
TIMMO-2-USE [15], a follow up project, presents a major redefinition of
TADL in TADL2 [10]. The purpose of this project is to include new func-
tionality for supporting the AUTOSAR extensions regarding timing model.
Although both TIMMO and TIMMO-2-USE attempt to annotate AUTOSAR
with a timing model, AUTOSAR is still not expressive enough for represent-
ing timing, implementation and communication information of the software
architecture.

In this context, an increasing number of vehicular manufacturers are con-
sidering RCM as an alternative to AUTOSAR within the EAST-ADL based
methodology. RCM supports both model- and component-based development.
The main goal of RCM is to express the software architecture in terms of soft-
ware functions and interactions among them. In RCM, the basic entity is the
so-called software circuit (SWC) which represents the lowest-level hierarchical
element in RCM and encapsulates basic software functions. Each SWC is de-
fined by its behavior and interface. Interfaces manage the interactions among
SWCs via ports. RCM distinguishes between data and control flow. Therefore,
the interfaces have two types of ports: data ports for the data flow and trigger
ports for the control flow. The SWC is characterized by run-to-completion se-
mantics meaning that, upon triggering, it reads data from the data input ports,
executes its behavior and writes data on the data output ports.

SWCs can be grouped and organized in assemblies, decomposing the sys-
tem in a hierarchical manner. Modes are used to represent different configura-
tions of the software architecture. Target entities are used for grouping modes
that are deployed on the same Electronic Control Unit (ECU). Moreover, they
provide details regarding hardware and operating system. Node is a hardware
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and operating-system independent abstraction of a target entity. Finally, Sys-
tem is the top-level hierarchical entity, which describes software architecture
for the complete vehicular system.

RCM facilitates analysis and reuse of components in different contexts by
separating functional code from the infrastructure that implements the execu-
tion environment. Compared to AUTOSAR, RCM allows the developer to
specify and handle timing information at design time. It also distinguishes be-
tween data and control flow as well as inter- and intra-node communication.
To this end, RCM has been recently extended with special network interface
components for modeling the inter-node communication [18]. The RCM pipe-
and-filter communication mechanism is very similar to the AUTOSAR sender-
receiver communication mechanism. In short, RCM was specifically designed
for expressing all the low-level information needed for extracting the timing
model from the software architecture.

7.2.2 End-to-end timing models and analyses

End-to-end timing analysis is a key activity for the verification and validation
of vehicular real-time systems. Therefore, a tool chain that is used for the
model- and component-based development of vehicular systems shall support
such an analysis. In turn, to support timing analysis an appropriate system
view, called end-to-end timing model, should be extracted from the software
architecture. In particular, an end-to-end timing model comprises of timing
properties, requirements, dependencies and linking information concerning all
tasks, messages and task chains in a distributed embedded system under analy-
sis1. It is mainly composed of two models namely a timing model and a linking
model. In order to elaborate this, consider a task chain distributed over three
nodes connected by a network as shown in Figure 11.3. The system timing
model captures all the timing information about the three nodes and the net-
work. Whereas the linking model includes all the linking information in the
task chains, including the control and data flows.

The analysis engines use these models for performing end-to-end timing
analyses. We refer the reader to [4] for further details about the end-to-end
timing analyses. The analysis results consist of response time of tasks and
messages as well as system utilization. Also, the analysis calculates end-to-
end response times and delays. The end-to-end response time of a task chain is
equal to the elapsed time between the arrival of a stimulus, e.g., the brake pedal

1We refer the reader to [18] for details about the timing model.
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Figure 7.2: Example showing end-to-end response time

sensor input in the sensor node, and the response to it, e.g., the brake actuation
signal in the actuation node as shown in Figure 11.3.
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Figure 7.3: A task chain with independent activations of tasks

Within a task chain, if the tasks are triggered by independent sources, then
it is important to calculate different types of delays such as age and reaction.
An age delay corresponds to the freshness of data. It finds its importance in
control systems used in the vehicles. Whereas, the reaction delay corresponds
to the first reaction for a given stimulus. This delay finds its application in body
electronics in the vehicles.

In order to explain these delays, consider a task chain in a single-node
system as shown in Figure 11.4. There are two tasks in the chain denoted by
τ1 and τ2. The tasks are triggered by independent clocks of periods 25ms and
5ms respectively. Let the Worst-Case Execution Times (WCETs) of these tasks
be 2ms and 1ms respectively. τ1 reads data from the register Reg-1 and writes
data to Reg-2. Similarly, τ2 reads data from the Reg-2 and writes data to Reg-
3. Since, the tasks are activated independently with different clocks, there can
be multiple outputs (Reg-3) corresponding to one input (Reg-1) to the chain as
shown by several uni-directional arrows in Figure 11.5. The age and reaction
delays are also identified in Figure 11.5. These delays are equally important in
distributed embedded systems.

We consider the end-to-end timing model that corresponds to the holis-
tic schedulability analysis for distributed embedded systems [19]. Stappert et
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Figure 7.4: Example showing end-to-end delays

al. [20] described end-to-end timing constrains for multi-rate automotive em-
bedded systems. In [11], Feiertag et al. presented a framework (developed as
part of the TIMMO project) for the calculations of end-to-end delays. A scal-
able technique, based on model checking, for the computation of end-to-end
latencies is described in [21].

7.2.3 Paper contributions

Compared with RCM, AUTOSAR describes the software architecture at higher
level of abstraction; it focuses on the functional and structural aspects of the
software architecture hiding low-level timing information, such as control flow.
Neglect timing, implementation and communication information hampers end-
to-end timing analysis. In [22] we propose RCM as an alternative to AU-
TOSAR in an EAST-ADL based methodology and we discuss its use for en-
abling end-to-end timing analysis. Moreover, in [4], we provide a method for
extracting timing models and perform end-to-end timing analysis of component-
based vehicular embedded systems.

This paper extends our previous work [23] where we present the metamodel
definition of the architectural elements in RCM and discusses the transforma-
tion process from RCM to AUTOSAR [5]. However, the definition of meta-
modeling elements for representing timing properties and constrains is miss-
ing. In this paper we complement our previous work by including metamodel-
ing elements representing timing properties and constraints for different types
of delays that can be specified in single-node as well as distributed embedded
systems. We provide a model-to-model transformation from the design-level
models described using EAST-ADL to RCM model exploiting the extended
metamodel. In addition, we conduct an automotive application case study to
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show the applicability of the extended metamodel as well as the transforma-
tion process. Eventually, we validate the metamodel expressiveness by means
of several real-life automotive use-cases.

7.3 Providing a metamodel for RCM

In this section, we describe the RCM metamodel. For the sake of readability,
we divide and present the metamodel in four fragments. However, the four
fragments can be combined for an holistic view of the metamodel by matching
metaclasses with the same names.

Figure 7.5 shows the metamodel’s backbone. The top metaclass is System,
which acts as a container for the whole architecture. System, as all the meta-
classes in the metamodel, inherits from the abstract metaclass NamedElement.
A System element contains one or more elements of type Node. A Node ele-
ment is a hardware and operating-system independent abstraction of a Target
element; it groups all the software architecture elements which realize a spe-
cific function. Its reference activeTarget defines which target, among those
specified, is active for a certain node. Target is a hardware and operating-
system specific instance of a Node; it serves for modeling the deployment of
the software architecture. This means that, it contains all the functions to be
deployed on the same ECU. Consequently, a Node can be realized by different
Target elements, depending on the hardware and the operating system used for
the deployment, for example, PowerPC with Rubus Operating System, Simu-
lated target with Windows operating system.

A Target element contains one or more elements of type Mode. A Mode
represents a specific application of the software architecture as, for instance,
start-up or low-power mode. A Mode element might contain elements of type
Circuit and Assembly. A Circuit is the lowest-level hierarchical element which
encapsulates basic functions. It contains an element of type Interface and one
or more elements of type Behavior. An Interface groups all the data and con-
trol ports of a certain circuit while a Behavior contains the code to be executed
from the specific Circuit. The reference activeBehavior is used for specifying
which behavior is active for the related circuit. Assembly elements do not add
any semantics to the architecture: they are used for grouping and organizing
circuits and assemblies in a hierarchical fashion. Both the metaclasses Connec-
torData and ConnectorTrig inherit from the abstract metaclass Connector. A
Connector realizes the actual communication between two ports. Connector-
Data and ConnectorTrig metaclasses are used for modeling the communication
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Figure 7.5: Fragment of the RCM metamodel representing the backbone ele-
ments

between data ports and control ports, respectively.
RCM explicitly separates data and control flow. Figure 7.6 shows the meta-

model fragment containing the concepts used for modeling the data flow. The
abstract metaclass PortData models a generic data port. It has three attributes:
dataPassingMethod specifies how data is passed to the port, dimension ex-
presses the size of the port while initialValue specifies its initial value. The
metaclass PortData is specialized by the metaclasses PortDataIn and Port-
DataOut, which model an input and output data port, respectively. They are
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Figure 7.6: Fragment of the RCM metamodel representing the data flow ele-
ments

contained in the Interface and the Assembly metaclasses for modeling the data
communication among circuits and assemblies, respectively. As aforesaid, the
metaclass ConnectorData is used for modeling the actual communication be-
tween two data ports. In this respect, the references sourcePort and targetPort
are used for specifying the ports involved in the communication.

Figure 7.8 shows the metamodel fragment containing the concepts that can
be used to represent the control flow. The metaclasses PortTrigIn and Port-
TrigOut describe an input trigger port and an output trigger port, respectively.
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Figure 7.7: Fragment of the RCM metamodel representing the control flow
elements

They both inherit from the metaclass PortTrig, which describes a generic trig-
ger port. Modes, assemblies and interfaces are composed of input and output
trigger ports for modeling the control flow among modes, assemblies and cir-
cuits, respectively. The ConnectorTrig metaclass inherits from the abstract
metaclass Connector. It has two references, sourcePort and targetPort, used
for modeling the actual communication between trigger ports. Clock and Sink
elements are responsible to start and end the execution of a software circuit,
respectively.
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Figure 7.8: Fragment of the RCM metamodel representing the timing con-
straints and properties for different types of delay in event chains

Figure 7.8 depicts an excerpt of the RCM metamodel containing the met-
alements representing timing constraints and properties for different types of
delays in event chains. The notion of different delay types is meaningful in
multi-rate systems where components in the event chain can be triggered with
independent clocks. Hence, there can be multiple occurrences of response cor-
responding to a single occurrence of stimulus in the chain. In RCM, these con-
straints are specified by means of two model elements placed at the beginning
and at the end of the event chain.
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The metaclasses which represent the data reaction constraint are DataRe-
actionStart and DataReactionEnd, while the metaclasses which model the data
age constraint are the DataAgeStart and DataAgeEnd. DataAgeStart and DataRe-
actionStart inherit from the abstract metaclass DataStart, while DataAgeEnd
and DataReactionEnd inherit form the abstract metaclass DataEnd. The dead-
line attribute of the DataEnd metaclass specifies the maximum value for the
related reaction along the enclosed chain. DataStart and DataEnd inherit from
the abstract metaclass Data, which models a generic delay constraint. It con-
tains a data input port and a data output port, meaning that the data traveling
along the data chain must traverse the delay constraint for activating it.

7.4 DL2RCM model transformation

In this section we present DL2RCM, a model-to-model transformation from
the EAST-ADL Design Level metamodel to RCM. The intent is to show how,
having a proper metamodel for RCM, it is possible to realize a seamless thus
complement EAST-ADL with the RCM’s timing analysis capabilities. In Sec-
tion 7.2, we showed how the EAST-ADL methodology (EAST-ADL comple-
mented by AUTOSAR at the implementation level) uses the four abstraction
levels for implementing a top-down development process. In this respect, we
presented RCM and AUTOSAR to be technologies used at the last abstraction
level, i.e., implementation level. In our previous work we proposed RCM as an
alternative to AUTOSAR within an EAST-ADL development methodology. To
this end, we believe it is crucial to show that RCM fully integrates within the
EAST-ADL methodology. That is, considering the EAST-ADL four abstrac-
tion levels, it is possible to synthesize an EAST-ADL Design Level model to a
RCM model.

The DL2RCM transformation is used for performing such an integration
automatically. The benefits of realizing this in an automatic manner become
more visible when considering that the involved technologies, EAST-ADL and
RCM, are used for representing complex architectures, for which manual trans-
lations are not only tedious, time consuming and error-prone, but they might
even become unfeasible.

The DL2RCM transformation is a unidirectional model-to-model transfor-
mation from the EAST-ADL Design Level metamodel to the RCM metamodel.
The latter has been presented in Section 7.3. The former has been described
in [7] and implemented as a UML profile within the Eclipse Papyrus project
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2. Figure 7.9 shows the extract of the EAST-ADL metamodel containing the
concepts entailed by the DL2RCM transformation3.

Figure 7.9: Fragment of the EAST-ADL metamodel for Function Modeling at
the design level

The relation underneath the transformation is non-bijective meaning that
the involved metamodels do not have the same expressiveness. In this respect,
in order to preserve as much information as possible, assumptions are needed

2http://eclipse.org/papyrus/
3The explanation of theEAST-ADL metamodel is outside the scope of this work. The interested

reader may refer to [7]
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EAST-ADL elements RCM elements Conditions/Assumptions

Model
(hierarchy of) System, Node,

Target, Mode

If we consider all the EAST-ADL
abstraction levels then the
hierarchy is not necessary

DesignFunctionPrototype Assembly
If the associated DesignFunctionType

is not elementary

DesignFunctionPrototype
(hierarchy of) Circuit,

Interface
If the associated DesignFunctionType

is not elementary
FunctionConnector ConnectorData
FunctionFlowPort PortData

AgeConstraint DataAgeStart, DataAgeEnd

ReactionConstraint
DataReactionStart,
DataReactionEnd

ConnectorTrig, PortTrig,
Clock, Sink

EAST-ADL does not explicitly model
the control flow. Therefore these RCM elements
are deducted considering the whole architecture

Table 7.1: Main relations holding in the DL2RCM transformation

when defining the relations composing the transformations. Table 7.1 summa-
rizes the main relations together with their assumptions. The interested reader
can find a detailed discussion on the assumptions and the constraints used for
defining the DL2RCM transformation in [22].

Algorithm 1 shows the DL2RCM transformation in pseudocode. The MO-
DEL2SYSTEM function is the starting function of the transformation. It is
responsible for translating an EAST-ADL Model element into a hierarchy of
RCM elements consisting of System, Node, Target and Mode elements (line 2).
This step can be skipped when considering all EAST-ADL abstraction levels,
since the RCM elements would be translated from the equivalent EAST-ADL
elements. In our case, since we are considering just the EAST-ADL design
level, this step is needed to build a correct hierarchy in the RCM model, con-
forming to the RCM metamodel.

One of the major difficulties in defining the DL2RCM transformation is that
EAST-ADL implements the type-prototype pattern: a DesignFunctionProto-
type element is considered to be a specific instance of the DesignFunctionType
element which in turn might contain other prototypes and connectors realizing
its inner architecture (see Figure 7.9). This means that the inner architecture
of a prototype is defined through its related type. Such a pattern, not lever-
aged in RCM, required additional effort in designing the transformation, as
each DesignFunctionPrototype has to be checked against its type before to be
transformed. These negligible low-level details are omitted from the pseu-
docode in Algorithm 1 for the sake of readability. For the same reason, in the
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Algorithm 1 DL2RCM transformation

1: function MODEL2SYSTEM(Model m)
2: Mode mo = CREATEHIERARCHY(m);
3: FDP(m.functionalDesignPrototype,mo)
4: TC2TC(fdp,mo)
5: end function
6:
7: function FDP(FunctionalDesignPrototype fdp,Mode mo)
8: if fdp is not elementary then
9: Assembly a = CREATEASSEMBLY(fdp,mo);

10: for connector in fdp do
11: C2C(connector , a)
12: end for
13: for part in fdp do
14: if part is not elementary then
15: Assembly as = DP2A(part , a);
16: else
17: Circuit ci = DP2C(part , a);
18: end if
19: end for
20: else
21: Circuit c = CREATECIRCUIT(fdp,mo);
22: end if
23: end function
24:
25: function C2C(FunctionConnector fc, Assembly a)
26: ConnectorData con = CREATECONNECTORDATA(fc, a);
27: for end in fc do
28: if end .functionPrototype is not elementary then

pseudocode we make use of helper functions (e.g., CREATEHIERARCHY,
CREATEASSEMBLY) which are responsible for the creation of the related
elements and their inner architecture.

The FDP function is responsible for translating an EAST-ADL Design-
FunctionPrototype element into a RCM Assembly or Circuit element depend-
ing on whether its related DesignFunctionType is an elementary element, mean-
ing that it does not contain any other DesignFunctionProtype element. In the
case it is not an elementary element (line 14), all the contained DesignFunc-
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Algorithm 1 DL2RCM transformation

29: Assembly as = DP2A(end .functionPrototype, a);
30: if end .functionPort is FunctionFlowPort then
31: if e.functionPort is in then
32: ConnectorTrig conTC

=CREATECONTROLFLOWIN(fc, a);
33: PortDataIn pdi = CREATEPORT-

DATAIN(fc.functionPort , as);
34: else
35: ConnectorTrig conTS = CREATECON-

TROLFLOWOUT(fc, a);
36: PortDataOut pdo = CREATEPORT-

DATAOUT(fc.functionPort , as);
37: end if
38: else
39: end if
40: else
41: Circuit c = DP2C(e.functionPrototype, as);
42: if end .functionPort is FunctionFlowPort then
43: if end .functionPort is in then
44: ConnectorTrig conTC = CREATECON-

TROLFLOWIN(fc, a);
45: PortDataIn pdi = CREATEPORT-

DATAIN(fc.functionPort , c);
46: else
47: ConnectorTrig conTS = CREATECON-

TROLFLOWOUT(fc, a);
48: PortDataOut pdo = CREATEPORT-

DATAOUT(fc.functionPort , c);
49: end if
50: else
51: end if
52: end if
53: end for

tionProtype elements are transformed too. This translation is performed in two
steps. First, FDP calls the C2C function on all its FunctionConnector elements
(lines 10-12), for the translation of the elements connected via connectors. Af-
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Algorithm 1 DL2RCM transformation

54: end function
55: function DP2A(DesignFunctionPrototype dfp, Assembly a)
56: Assembly as = CREATEASSEMBLY(dfp, a);
57: for connector in dfp do
58: C2C(connector , a)
59: end for
60: for part in dfp do
61: if part is not elementary then
62: Assembly as1 = DP2A(part , as);
63: else
64: Circuit c1 = DP2C(part , as);
65: end if
66: end for
67: return as;
68: end function
69:
70: function DP2C(DesignFunctionPrototype dfp, Assembly a)
71: Circuit c = CREATECIRCUIT(dfp, a);
72: ConnectorTrig conTC = CREATECONTROLFLOWIN(dfp, c, a);
73: ConnectorTrig conTS = CREATECONTROLFLOWOUT(dfp, c, a);
74: return c;
75: end function
76:
77: function TC2TC(FunctionalDesignPrototype fdp,Mode mo)
78: for tc in fdp do
79: Event startTC = tc.scope.stimulus;
80: Event endTC = tc.scope.response;
81: ConnectorData conS = FIND(mo.assembly , startTC );
82: ConnectorData conE = FIND(mo.assembly , endTC );

terwards, the FDP function calls DP2A or DP2C on its spare DesignFunction-
Protype elements; if they are elementary elements then they are transformed
into circuits by the DP2C function (line 17), otherwise they are transformed
into assemblies through the DP2A function (line 15).

The C2C function translates an EAST-ADL FunctionConnector element
into a RCM DataConnector element. More precisely, for each FunctionCon-
nector element, the C2C function creates a DataConnector element (line 26)
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Algorithm 1 DL2RCM transformation

83: if tc is AgeConstarint then
84: DataAgeStart startA = CREATEDATAAGESTART(tc);
85: DataAgeEnd endA = CREATEDATAAGEEND(tc);
86: ASSIGNPORTS(startA, endA, conS , conE )
87: else
88: end if
89: if tc is ReactionConstarint then
90: DataReactionStart startR = CREATEDATAREACTION-

START(tc);
91: DataReactionEnd endR = CREATEDATAREACTIO-

NEND(tc);
92: ASSIGNPORTS(startR, endR, conS , conE )
93: else
94: end if
95: end for
96: for part in fdp do
97: TC2TC(part ,mo.assembly)
98: end for
99: end function

together with the connected Assembly/Circuit elements by calling the functions
DP2A (line 29) and DP2C (line 41), respectively. Port elements are created and
connected accordingly (lines 33, 36, 45, 48). Control flow information is not
explicitly modeled at EAST-ADL design level. Therefore, we assume that each
SWC is triggered independently. To this end, the C2C function generates the
needed Clock (lines 32, 44) and Sink (lines 35, 47) elements together with the
ConnectorTrig elements.

With a logic similar to FDP, functions DP2C and DP2A translate an EAST-
ADL DesignFunctionPrototype into RCM Circuit and RCM Assembly, respec-
tively.

The function TC2TC is responsible for translating the timing (age and reac-
tion) constraints. Starting from the outer DesignFunctionPrototype, it iterates
on all the specified timing constraints (line 78). For each of them, it uses the
start and end events (stimulus and response in Figure 7.9) for searching, within
the RCM model, the connector attached to the port and specified by the stim-
ulus or response events (lines 79-82). After DataAgeStart, DataReactionStart,
DataAgeEnd andDataReactionEnd elements are created (lines 84, 85, 90, 91),



7.5 Application to the steer-by-wire system 67

they are connected to the related data ports (lines 86, 92).

7.5 Application to the steer-by-wire system

In order to show the applicability of the DL2RCM transformation, we provide
a part of the Steer-By-Wire (SBW) system case study. It is a vehicular fea-
ture that substitutes most of the mechanical and hydraulic components with
electronic components in the steering system of a vehicle.

A partial architecture of the SBW system is shown in Figure 7.10. There are
two ECUs (rest of the ECUs are not shown for simplicity) that are connected
to a single Controller Area Network (CAN) bus. The Steering Control (SC)
ECU receives inputs from steering angle, steering torque and vehicle speed
sensors. It also receives a CAN message from the Wheel Control (WC) ECU.
It sends two CAN messages: one carries steer angle and torque signal; while
the other carries feedback signals. Based on all the inputs, it calculates the
feedback steering torque and sends it to the feedback torque actuator which is
responsible for producing the turning effect of the steering. Similarly, the WC
ECU receives inputs from wheel angle and torque sensors. Depending upon
these signals and CAN messages received from the SC ECU, it calculates the
wheel torque and produces actuation signals for the wheel actuators. It also
sends one CAN message carrying wheel torque signal.

Controller Area Network (CAN)

Feedback 
Steering 
Torque

Steer 
angle
Steer 
torque

Steer
Control
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Vehicle 
speed
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Signal
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Figure 7.10: Architecture of the steer-by-wire system

For the sake of simplicity and intuitive presentation of the transforma-
tion, the simplified internal software architecture of WC ECU is modeled with
EAST-ADL using EAST-ADL Rubus Designer4 as shown in Figure 7.11.

4http://www.arcticus-systems.com
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There are four Software Components (SWCs)5 in the simplified software
architecture. We specify two timing constraints, namely age and reaction using
TADL2. These constraints put a restriction of 20 ms on the time between the
acquisition of sensor signals at the WC ECU and the production of wheel actu-
ation signals by the actuator SWC. These constraints are internally referenced
to the components on which they are specified. For convenience, the start and
end points for these constraints are identified using the solid-line arrow, as
shown in Figure 7.11.

SWC: Sensor 
signals

SWC: wheel 
controller

SWC: actuatorSWC: signals 
filter

Age and Reaction Constraints

Software 
Component (SWC)

Actuator 
Component

SWC: Sensor 
signals

SWC: wheel 
controller

SWC: actuatorSWC: signals 
filter

Software circuit Clock

Trigger sink5 ms
10 ms 5 ms 5 ms

Data sink

Figure 7.11: Software architecture of WC ECU modeled with EAST-ADL and
TADL2

Figure 7.12 shows the Ecore model conforming to the EAST-ADL design
level metamodel depicted in Figure 7.9. By applying the DL2RCM transfor-
mation presented in Section 7.4, the Ecore model in Figure 7.13 is obtained.
Please note that, the model in Figure 7.13 is conforming to the RCM meta-
model. Without going into the details of the transformation process, it can be
easily noted how the RCM elements were translated from the related EAST-
ADL elements. For instance, the RCM SWC SFN FT it has been translated
from the EAST-ADL DesignFunctionType SFN FT by means of the C2C func-
tion. The same applies to all the RCM elements.

A representation, given in Rubus Designer concrete syntax, of the model
showed in Figure 7.13, is presented in Figure 7.14. The specified TADL2 tim-
ing constraints (i.e., Age and Reaction) in Figure 7.11 are also translated to
RCM timing constraints shown by “Age Start”, “Age End”, “DR Start” and
“DR End” objects in Figure 7.14.

5An SWC corresponds to a Software Component and a Software Circuit in EAST-ADL and
RCM respectively.
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Figure 7.12: Serialized model of the EAST-ADL WC ECU architecture

We assume that all tasks corresponding to the four SWCs in Figure 7.14
have equal priorities. Moreover, we consider these tasks to be the highest prior-
ity tasks in the WC ECU. The worst-case execution times of these components
are selected between the range 60 µs - 2000 µs. The analysis engines calculate
the age and reaction delays for only those component chains (represented by
task chains at runtime) on which the timing constraints are specified (there is
only one component chain in Figure 7.14 on which these delays are specified).
The calculated age and reaction delays are 5360 µs and 15360 µs respectively.
A comparison between the specified constraints and calculated delays shows
the system satisfies the specified timing constraints.

7.6 Evaluation and discussion
The work discussed in this article finds its motivation and application context
within the modernisation efforts done by Articus Systems AB devoted to port
RUBUS toolset into a proper model-driven development environment. In this
respect, as mentioned so far, defining appropriate metamodels is a fundamen-
tal step towards enabling the implementation of MDE techniques. As a conse-
quence, the RCM metamodel has been developed with precise goals in mind,
as follows:

backward compatibility: the metamodel should allow an easy migration of
legacy RUBUS artifacts into the new modeling environment;
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Figure 7.13: Serialized model of the RCM WC ECU architecture

maintainability: the metamodel should enable a better management of RCM
updates and refinements;

extensibility: the metamodel should disclose the opportunity to integrate in
a smooth way RUBUS modeling environment in a typical automotive
application development chain.

The first requirement has been addressed by reverse engineering the internal
representation of RCM into the RUBUS tool, where the metamodeling activity
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Figure 7.14: Translated software architecture of WC ECU in RCM

both polished some redundancies due to the lower level of abstraction repre-
sentation of modeling entities and optimised model traversals. These activi-
ties resulted in the addition of 6 elements and the refinement of 5 elements
hierarchies. The metamodel illustrated in this paper has been tested and val-
idated against several existing industrial system designs, e.g., modeling of i)
Autonomous Cruise Control System that consists of 4 nodes (ECUs), 17 assem-
blies and 36 SWCs [4]; and ii) Intelligent Parking Assist System that consists
of 2 nodes and 42 SWCs [24]. Moreover, ongoing work is addressing the incre-
mental substitution of current features with replacements implemented through
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model-based mechanisms. In the long run, this migration will produce a new
RUBUS modeling environment entirely based on metamodels, appropriate ren-
dering of model entities, and model transformations.

With respect to the maintainability aspect, by building-up the development
environment on the RCM metamodel allows to decouple modeling concepts
from their rendering and the automated features provided as part of the tool.
This means that extensions/refinements of RCM cause modifications of the
current metamodel, which in turn trigger co-evolutions of interconnected arte-
facts [25]. Despite managing metamodel evolutions is not always straightfor-
ward, having an explicit link between RCM changes and metamodel manip-
ulations allows to perform an impact analysis of the refinements and to pre-
cisely locate where changes will affect existing artefacts. Notably, especially
in industrial contexts it is not unfrequent the need for local customisations of
tools requiring ad hoc adaptations. On the one hand by using a higher level of
abstraction approach allows e.g. to un/hide modelling elements, augment/re-
duce the number of modelling views, and so on. On the other hand, the need
for metamodel modifications limits the dangerous practice of hardcoding cus-
tomisation directly on the implementation code of the modelling environment,
which hinders its maintainability in the long run.

The last requirement targets the general trend of incrementally adopting
higher abstraction level approaches to deal with the development of industrial
systems (see also the discussion that follows in the remainder of this section).
In particular, it requires RUBUS to be open enough to be integrated in a tool
chain. The proposed metamodel-based solution supports tool integration con-
texts by permitting the definition of model transformations acting as import/-
export utilities from a tool to another. The transformation from EAST-ADL to
RCM and its application illustrated in Section 7.4 and 7.5, respectively, are a
practical demonstration about the tool integration potentials disclosed by the
adoption of a model-driven approach. Writing and testing the tool integration
transformation is a one time effort; then the translation can be used for all the
models produced by means of the same tools, as long as the metamodels are not
modified. Also from a performance perspective, the transformation operates in
negligible time. In fact, the transformation operates in 40ms, where 39ms are
due to the loading of the involved models and 1ms is due to the transformation
execution.

From a broader perspective, introducing higher level of abstraction ap-
proaches to the development of complex systems is an indisputable trend in
modern software engineering practice. In this respect, industry is very often
facing the issue of integrating new, task-specific tools, with the rest of legacy
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systems and development environments. In particular, if the constellation of
adopted tools does not integrate in a seamless chain, manual effort is required
to close the gap between tools and perform needed translations. Even if feasi-
ble, this practice can reveal as time-consuming and error-prone in the long run,
especially when the size of the system grows and there are semantics aspects
involved in the mapping. On the one hand, model transformations allow to au-
tomate the translation process; on the other hand, by using a transformation as
tool integration solution provides traceability of translations. Traces not only
allow to explicitly represent the correspondences between one tool and another,
but they also enable the propagation of information from one domain-specific
perspective to another. Notably, in the case study presented in Section 7.5 the
forward transformation allows to get an RCM model from EAST-ADL, and
carries by the rationale underlying the mapping across these two languages.
Moreover, the trace links created during the transformation process allow, for
example, to map timing analysis results back to EAST-ADL models.

7.7 Conclusions and future work

In the last twenty years, CBSE has enhanced the software development for
vehicular embedded systems. Nevertheless, industry needs to move further to-
wards a seamless development chain for reducing software development costs
and time-to-market. Intertwining of MDE and CBSE has been proven to be
effective towards this goal.

In this work, by exploiting the interplay between MDE and CBSE, we
took initial steps towards the realization of the aforesaid seamless develop-
ment chain. In details, we i) motivated the usage of RCM within the vehicular
domain, by highlighting its unique features against existing CMs, ii) formal-
ized a metamodel based on RCM comprising the concepts able to represent
both the software architecture and the related timing constraints,, iii) presented
a model-to-model transformation between EAST-ADL Design level and RCM
and iv) discussed a case study which mimics a typical industrial scenario.

The formalization of the metamodel serves as base for embracing the MDE
vision as well as for restoring the separation of concerns which has been lost
during the evolution of the RCM. Due to space limitations, we did not dis-
cuss the complete RCM timing package, but we rather focused on the elements
representing the most recent timing constraints, information and analyses in-
troduced and practically used within the industrial automotive domain.

The DL2RCM transformation outlines the potential benefits gained in hav-
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ing a proper metamodel for RCM, in terms of compliance with the EASTADL
based methodology.

As future works, we plan to minimize the assumptions needed in perform-
ing the transformation, by using model transformation languages able to fully
and practically support non-bijective model transformations. Additionally, we
will consider the possibility of using these non-bijective model transformations
for design-space exploration. Finally we will, together with our industrial part-
ners, cover the identification of additional languages used along the software
development for the vehicular embedded systems, with the aim of formaliz-
ing their metamodels and hence enable model transformations for supporting a
more extensive tool chain. The work in this paper is supported by the Swedish
Knowledge Foundation (KKS) and Swedish Research Council (VR) within the
projects FEMMVA and SynthSoft. We thank our industrial partners Arcticus
Systems AB and Volvo CE, Sweden.
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A. Sandberg, D. Servat, R. T. Kolagari, M. Törngren, et al. 11 the east-adl
architecture description language for automotive embedded software. In
Model-Based Engineering of Embedded Real-Time Systems, pages 297–
307. Springer, 2011.

75



76 Bibliography

[9] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. Assessing the
state-of-practice of model-based engineering in the embedded systems
domain. In Model-Driven Engineering Languages and Systems, pages
166–182. Springer, 2014.

[10] Timing Augmented Description Language (TADL2) syntax, semantics,
metamodel Ver. 2, Deliverable 11, Aug. 2012.

[11] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional
Framework for End-to-End Path Delay Calculation of Automotive Sys-
tems under Different Path Semantics. In Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (CRTS), dec.
2008.
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Abstract

The adoption of model-driven engineering in the automotive domain resulted
in the standardization of a layered architectural description language, namely
EAST-ADL, which provides means for enforcing abstraction and separation
of concerns, but no support for automation among its abstraction levels. This
support is particularly helpful when manual transitions among levels are te-
dious and error-prone. This is the case of design and implementation levels.
Certain fundamental analyses (e.g., timing), which have a significant impact
on design decisions, give precise results only if performed on implementation
level models, which are currently created manually by the developer. Dealing
with complex systems, this task becomes soon overwhelming leading to the
creation of a subset of models based on the developers experience; relevant
implementation level models may therefore be missed. In this work, we de-
scribe means for automation between EAST-ADL design and implementation
levels to anticipate end-to-end delay analysis at design level for driving design
decisions.
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8.1 Introduction

The importance of software is growing in practically all industrial sectors. In
the automotive domain, software is used, e.g., for improving the safety of the
vehicle, the driving experience, and the comfort of the passengers. The elec-
tronic system of a modern car can be composed of more than 70 embedded
systems running up to 100 million lines of code [1]. As a consequence, devel-
opment of these systems is a daunting task. Especially painful is to make late
discoveries, during testing, that the software system does not deliver a service
of acceptable quality w.r.t. timing errors and delays that cause suboptimal per-
formance of important systems such as engine- or stability-control. Thus, early
analysis of expected timing-behaviors and feasibility of architectural decisions
w.r.t. timing requirements would be very welcome as support for design deci-
sions. In this paper we propose a technique to achieve early timing1 analysis.

Among the many methodologies advocating abstraction, separation of con-
cerns, and automation as powerful instruments for dealing with complexity of
software development, Model-Driven Engineering (MDE) has progressively
gained industrial attention in the past 15 years [2]. In automotive, the adoption
of MDE resulted in the standardization of a layered architectural description
language, namely EAST-ADL [3].

EAST-ADL proposes a top-down approach relying on four different ab-
straction levels, i.e., vehicle, analysis, design and implementation, and it pro-
vides abstraction and implicitly ensures separation of concerns through the dif-
ferent engineering phases2. Each abstraction level, except implementation, is
equipped with a specific modeling language. At implementation level EAST-
ADL proposes the adoption of existing modeling languages, e.g., AUTOSAR3

or the Rubus Component Model (RCM) [4]. Due to its high precision timing
analysis [5], we consider RCM as the reference modeling language exploited at
implementation level. EAST-ADL provides mediums for achieving abstraction
and separation of concerns, but it does not come with explicit support for au-
tomation among the different abstraction levels. The lack of this crucial means,
imperative for a full-fledged MDE approach, leads to a scattered development
process where consistency among artefacts is a burden for the developer to
bear.

1Although other relevant extra-functional properties and related analyses exist, the focus of this
work is on timing-related properties and analysis.

2In the remainder of the paper we will refer to design level models simply as design models
and to implementation level models as implementation models.

3http://www.autosar.org/

http://www.autosar.org/
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Due to the lack of detailed timing information (e.g., control flow ports,
clocks, to mention few) [5] at design level, timing analysis cannot be per-
formed on design models, which indeed need to be translated to implemen-
tation models equipped with needed timing details (e.g., clocks). This trans-
lation is usually done manually, driven by the developer’s experience and, due
to size and complexity of the task, it often considers a one-to-one mapping
only. This, besides being tedious and error-prone, may lead to the loss of rel-
evant implementation-model candidates when dealing with complex industrial
systems.

In this work, we discuss a methodology which provides automation means
for seamlessly linking EAST-ADL design and implementation levels to enable
end-to-end delay analysis at design level4 for supporting design decisions. The
importance of exploiting implementation level analysis for taking design de-
cisions resides in the fact that it is more accurate than design level analysis,
which usually provides estimations and does not suffice industrial needs. The
initial idea was introduced in [6], while in this work we focus on its enhance-
ment, concrete implementation and deployment in the automotive context.

The rest of the paper is organized as follows. In Section 8.2 we present
related work documented in the literature. In Section 8.3 we describe a running
example taken from the automotive domain, and in Section 8.4 we apply the
proposed methodology to it. In Section 8.5 we discuss benefits and limitations
of the proposed methodology and conclude the paper in Section 10.7.

8.2 Related Work

Model-based approaches supporting timing analyses can be distinguished be-
tween those detached from design models, e.g. [7], and those deriving (part
of) the necessary information from the design, like [8, 5]. In general, the lat-
ter have the advantage of avoiding discontinuities due to the abstraction gap
between design and analysis [9], even though they have to deal with the in-
trinsic issue of evaluating multiple implementation choices [10, 11]. Some
approaches propose manual mappings to reduce uncertainty between architec-
tural and intermediate models, which is tedious and error-prone when dealing
with hundreds of implementation alternatives. Other approaches introduce au-
tomation by specifying a predefined one-to-one mapping between architectural
and intermediate model elements, like [12] and in a broader way the refinement

4For design level we mean the EAST-ADL design level throughout the paper.
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process prescribed by the Model-Driven Architecture standard5. Even though
this alleviates time and error-proneness issues of manual approaches, it still
relies on a predefined mapping, while in general different implementation al-
ternatives, for the same design, should be evaluated [11].

Our solution proposes to generate a set of possible implementations, each
of which entailing (possibly) different timing characteristics. Then, end-to-end
delay analysis is run to evaluate them in terms of their timing characteristics
and to select the best candidate(s). In this way, relevant design decisions can be
anticipated before the final implementation is reached. It is worth noting that a
similar mechanism could be realized, notably, by adopting other non-bijective
transformation languages, architectural languages (e.g., AADL [13]), and/or
other model-based timing analyses approaches (e.g., Simulink6 or MARTE7).
However, some preconditions should hold: i) the transformation language sho-
uld fully support non-bijectivitness; ii) the architectural language shall provide
adequate support for timing information at design level of abstraction; iii) the
timing analyses shall keep their reliability by relying on the sole design level
information (plus the alternatives generated during the derivation process).

The mechanism of implementation models generation resembles the gen-
eral concept of design-space exploration (DSE) [14], and in particular rule-
based DSE [15]. Our approach performs an exhaustive generation of imple-
mentation models, enriched with timing details, as derivable from the sys-
tem architecture designed through EAST-ADL, and constrained by domain-
specific rules. Therefore, as opposed to typical DSE, the generation is not
meant to provide optimization hints at architectural level [12], rather it shows
the best (timing configuration) result given a certain system architecture as
input. This procedure is technically identified as quality-driven model trans-
formations [16, 17].

8.3 A Running Example: the Steer-by-wire Sys-
tem

A steering system in a vehicle employs mechanical and hydraulic components
between wheels and steering wheel. The Steer-by-wire (SBW) system, which
we leverage as running example, replaces most of these components with elec-
tronic ones.

5http://www.omg.org/mda/
6http://www.mathworks.com/products/simulink/
7http://www.omg.org/spec/MARTE/

http://www.omg.org/mda/
http://www.mathworks.com/products/simulink/
http://www.omg.org/spec/MARTE/
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We model the SBW system at the EAST-ADL design level with the help of
the Rubus-ICE8 tool suite. In the hierarchy of a design model, the leaf element
is the so-called design function prototype (DFP). EAST-ADL implements the
type-prototype mechanism, meaning that a DFP represents a specific instance
of design function type, which defines the type. Within EAST-ADL, DFPs
communicate through function ports, which are linked via function connectors.

It should be noted that one of the main goals of this example is to demon-
strate the validity of the proposed methodology. Therefore, in order to better
understand the transformation and corresponding selection process, we only
consider the internal software architecture of the SC ECU as depicted in Fig-
ure 8.1. The internal software architecture of the SC ECU consists of six DFPs.

Steer Angle is responsible for acquiring the steer angle sensor input.
It passes the acquired values to Steer Angle Preprocessing. The pre-
processed steer angle signal is passed toInput Processing. which also
receives the speed of the vehicle from Vehicle Speed. Input Proces-
sing passes the processed input data to FB Steer Torque Computation,
which in turn produces the feedback steering torque and passes it to Steer Se-
nsation Actuator, which produces the signals for the steering actuator.

The WCETs specified on Steer Angle, Steer Angle Preproces-
sing, Input Processing, Vehicle Speed, FB Steer Torque Com-
putation and Steer Sensation Actuator are 120, 200, 280, 120,
1200 and 100 µs, respectively. Since the implementation details are not avail-
able at the design level, the WCETs are estimated based on the expert’s judge-
ments. The following timing requirement is specified too:
• “The calculated age and reaction delays shall not exceed 25 ms and

35 ms, respectively.”
Within EAST-ADL, timing requirements are specified by timing constraints [18].
Therefore, there are two end-to-end delay constraints, namely age and reaction,
specified on the software architecture of the SC ECU as shown in Figure 8.1.

The values of the age and reaction constraints are 25 ms and 35 ms respec-
tively.

8.4 Applying the methodology
Design models do not contain the timing information (e.g., control flow) needed
for running end-to-end delay analysis. Therefore, in order to leverage this anal-
ysis at design level, we propose to automatically translate design to implemen-

8http://www.arcticus-systems.com

http://www.arcticus-systems.com
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Figure 8.1: Internal software architecture of SC ECU at design level.

tation models, which contain the needed timing information. Such a translation
is non-bijective, meaning that multiple implementation models can be valid
translations of a given design model. To this end, the proposed methodology
generates all the meaningful (from an analysis perspective) implementation
models.

The approach, depicted in Figure 8.2, leverages the interplay of model-
driven techniques and model-based analysis and it consists of four main phases,
namely transformation, end-to-end delay analysis, filtering and propagation.
Starting from a design model of an automotive functionality, the approach gen-
erates a set of corresponding meaningful implementation models (transforma-
tion phase, 1 in Figure 8.2) enriched with timing elements whose values are
set at generation time by the developer or via configuration files. At this point,
end-to-end delay analysis is run on the generated models resulting in a set of
analysis results (end-to-end delay analysis phase, 2 in Figure 8.2). These re-
sults are checked against a non-empty set of timing constraints derived from the
timing requirements expressed on the vehicle functionality. The result which
better meets the given timing constraints is selected (filtering phase, 3 in Fig-
ure 8.2); note that multiple results might be equally good and thereby selected.
Eventually, the selected candidates are propagated back to the design level by
means of annotations to the design model (propagation phase, 4 in Figure 8.2).

8.4.1 Transformation Phase
The transformation phase relies on a model-to-model transformation, called
DL2RCM, between the EAST-ADL design level and RCM metamodels. DL-
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Figure 8.2: Methodology supporting delay analysis at design level.

2RCM is a non-bijective transformation realized within the Eclipse Modeling
Framework (EMF)9 using the Janus Transformation Language (JTL) [19].

JTL is a constraint-based bidirectional model transformation language specif-
ically tailored to support non-bijectivity by generating all the possible solu-
tions at once. It adopts a QVTr-like syntax and allows a declarative specifi-
cation of relationships between MOF models. The language supports object
pattern matching, and implicitly creates traces to record what occurred during
a transformation execution. The JTL implementation relies on the Answer Set
Programming (ASP) [20], which is a type of declarative programming able
to address hard (primarily NP-hard) search problems and based on the model
(answer set) semantics of logic programming. The ASP solver finds and gen-
erates, in a single execution, all the possible models which are consistent with
the transformation rules by a deductive process.

The DL2RCM transformation consists of 28 rules mapping design ele-
ments to correspondent implementation elements. In the hierarchy of an RCM
implementation model, which represents the transformation’s output format,
a software circuit (SWC) is the leaf element and encapsulates basic software
functions. RCM distinguishes between data and control flow therefore a SWC
has data port and trigger port. Within RCM, Data connectors link data ports
while Trigger connectors link trigger ports. Clocks and trigger sinks are used
to initiate and terminate the execution of a SWC, respectively.

Listing 8.1 depicts a fragment of the DL2RCM transformation10, which is
expressed in the textual concrete syntax of JTL and applied on models given by

9http://www.eclipse.org/modeling/emf/
10Implementation available at http://jtl.di.univaq.it/downloads/DL2RCM.

zip

http://www.eclipse.org/modeling/emf/
http://jtl.di.univaq.it/downloads/DL2RCM.zip
http://jtl.di.univaq.it/downloads/DL2RCM.zip
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means of their Ecore representation in EMF. In particular, the following rules
are defined:

– C2C, which maps a function connector to both a data and trigger con-
nectors and triggers the transformation of the connected DFPs;

– E2C, which maps a DFP, connected via a function connector, to a SWC;
– E2CCS, which maps a DFP, connected via a function connector, to a

SWC equipped with a clock and a sink.
The when and where clauses specify conditions on the relation. For instance,
the where clause on Line 17 selects the function ports linked by the considered
function connector and triggers the subsequent rules.

E2C and E2CCS define a non-bijective portion of the transformation. In
fact, a DFP connected via a connector may be mapped to either a SWC or
a SWC equipped with a clock and a sink. This means that, from one single
design model, the transformation is able to generate multiple implementation
models, each of which containing a unique control flow.

1 transformation DL2RCM(dl:designlevel, rcm:RCM) {
2 relation C2C {
3 name, id: String;
4 checkonly domain dl con : designlevel::FunctionConnector

{
5 name=name,
6 id=id
7 };
8 enforce domain rcm a : RCM::Assembly {
9 connectorData = cd:RCM::ConnectorData {

10 name=name,
11 id=id+"_d",
12 sourcePort = RCM::PortDataOut { ... },
13 targetPort = RCM::PortDataIn { ... }
14 },
15 connectorTrig = ...
16 };
17 where { (con.ends->select(end |

end.functionPort.oclIsKindOf(designlevel::
18 FunctionFlowPort) and
19 end.designFunctionPrototype.isOfType.isElementary=true)
20 ->forAll(end | E2C(end,a) and E2CCS(end,a) )); }
21 }
22 relation E2CCS {
23 name2, id2: String;
24 checkonly domain dl e :

designlevel::FunctionConnectorInstanceReference {
25

26 designFunctionPrototype = dfp
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:designlevel::DesignFunctionPrototype {
27 name=name2,
28 id=id2
29 }};
30 enforce domain rcm a : RCM::Assembly {
31 clock = clk: RCM::Clock {
32 name=name2+’_clock’,
33 name=id2+’_clock’
34 },
35 sink = snk: RCM::Sink {
36 name=name2+’_sink’,
37 name=id2+’_sink’
38 },
39 circuit = cir :RCM::Circuit {
40 name=name2,
41 id=id2,
42 interface = int :RCM::Interface {
43 name=name2+’_interface’,
44 id=id2+’_interface’
45 }}};
46 where { ... }}
47 relation E2C {
48 ...
49 }}

Listing 8.1: Fragment of the DL2RCM transformation in JTL.

The DL2RCM model transformation, applied to our design model in Fig-
ure 8.1, generates 64 implementation models 11 (one of them is depicted in
Figure 8.3). However, considering the end-to-end delay analysis we want to
perform, we are only interested in the combinations of those DFPs that are
enclosed by the start and end points of the timing constraints.

To this end, we added an OCL logic constraint (shown in Listing 8.2) to
the DL2RCM transformation for reducing the set of generated implementation
models. It imposes the selection of the implementation model alternatives in
which Steer Angle, Vehicle Speed and Steering Sensation Actuator are trans-
formed by the E2CCS rule.

1 Circuit.allInstances()->excluding(self.getConstrainedSWC())
2 ->select(c:Circuit | c.getClock().oclIsUndefined()
3 and c.getSink().oclIsUndefined())

Listing 8.2: Logic constraint applied to the DL2RCM transformation.

11Each SWC can be transformed either via the E2C rule or via the E2CCS rule.
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Therefore by enforcing the bijectivity on the Steer Angle, Vehicle Speed
and Steering Sensation Actuator, the DL2RCM transformation generates 8 im-
plementation models12.

Figure 8.3: Generated implementation model example.

8.4.2 End-to-end Delay Analysis Phase

In this phase, we predict the timing behavior of each generated implementation
model by performing the end-to-end delay analysis [21, 5]. We are interested
in the calculations of two different delays, namely age and reaction [5]. Age
delay is important in control applications where the interest lies in the freshness
of received data. Reaction delay is used to determine the first reaction time for
a given stimulus. Our focus is on the Controller Area Network (CAN) which
is a event-triggered serial communication bus protocol. We do not use global
time stamps (that require tracking of global chronological time) to predict the
timing behavior. Instead we use response-time analysis and end-to-end delay
analysis. We refer the reader to [21, 5] for the details about the calculations of
age and reaction delays.

Once the analysis has been performed on each generated implementation
model, the analysis results, which include calculated age and reaction delays
for each individual implementation model as shown in Table 8.1, are forwarded
to the filtering phase.

12All the combinations of the Steer Angle Preprocessing, Input Processing and
FB Steering Torque Computation are generated by not enforcing bijectivity.
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Delay Analysis (µs) Delay Analysis (µs)
Age Delay Reaction Delay Age Delay Reaction Delay

Model

(a) 26020 30020

Model

(e) 26020 30020
(b) 26020 42020 (f) 26020 42020
(c) 18020 22010 (g) 18020 18020
(d) 2020 10020 (h) 18020 18020

Table 8.1: Delay Analysis Result for the generated implementation models.

For calculating age and reaction delays, the methodology employs the tim-
ing analysis engines implemented in the Rubus-ICE.

8.4.3 Filtering and Propagation Phases

The filtering phase consists of two cascaded filters: the elimination filter and
the selection filter. The timing analysis results are provided as input to the
elimination filter together with the non-empty set of timing constraints. In our
example, the elimination filter compares the analysis results of each implemen-
tation model with the specified age and reaction constraints of 25 and 35 ms
respectively. The implementation models identified as (a), (b), (e) and (f) in Ta-
ble 8.1 violate one or both timing constraints; hence, they are discarded. The
remaining models, which satisfy the specified timing constraints (i.e., (c), (d),
(g) and (h)), are forwarded to the selection filter.

The selection filter selects the best implementation model based on the re-
quirement concerning the type of application, also received as input. To this
end, an application i) contains only single-rate chains, or ii) contains multi-rate
chains. In our example, the system shall be developed using multi-rate chains.
This means that the implementation models that contain single-rate chains be-
tween start and end points of the specified timing constraints are negligible.
Therefore, the models identified in Table 8.1 as (c), depicted in Figure 8.3, and
(g) are selected13. Finally, the models and their analysis results are propagated
back to the design model (as annotations done by text-to-model transforma-
tions).

13The selection filter selects the implementation model with shorter age and reaction delays. In
our case two models have same analysis results, thus they are both selected.
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8.5 Discussion

Running and leveraging implementation level analysis at higher abstraction
levels (e.g., design) brings multiple advantages. First of all, it can help the
designer in taking architectural decisions based on much more precise feed-
back than common design level analysis, which, being based on estimated or
guessed properties, are usually just conceived as complementary to implemen-
tation level analysis in industrial settings. Moreover, it allows the developer to
only focus on design activities exploiting implementation level analysis results
without having to investigate nor manually edit implementation models, which
are automatically produced and transparent to the developer.

We employ JTL to generate multiple implementation models from one de-
sign model by providing different combinations of implementation elements,
derived from the design model, and timing elements, added by the transfor-
mation. Clearly, the generation of all possible combinations, besides being
unnecessary in most scenarios, becomes soon unbearable from a scalability
perspective when dealing with complex systems of industrial size. For this
reason, we exploit JTL’s capability of entailing ASP logic constraints for nar-
rowing the generation space.

We provide a set of default constraints to prune solutions that are evidently
meaningless for our analysis. This means that we can enable support for the
generation of different classes of models by providing different default con-
straints. Nonetheless, default constraints do not prevent the generation of dimly
meaningless solutions nor high transformation time in case of very complex de-
sign models. While the first issue can be solved through analysis and filtering
mechanisms, the latter demands additional user-defined constraining based on
the specific modeled functionality.

It is interesting to note that the methodology may propagate more than one
generated implementation model, along with its timing analysis results, to the
design model. This happens only when those results are equally good. In this
case, the designer is given the possibility to select among them.

By considering the general development scenario, through our method-
ology it is possible to disclose the opportunity of shortening time-to-market
and leverage expensive resources (e.g., architects, timing experts) more effi-
ciently. More concretely, the simple software system illustrated in this work
contains more than fifty components, seventeen in the SC ECU and ten in each
of the four WC ECUs. This means that starting from such an architecture a de-
signer willing to manually define a proper implementation model would face
a space of 257 possible alternatives. It becomes evident that having an auto-
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mated mechanism that is able to derive those alternatives and select the best
one(s) brings a gain in terms of time, costs and risks in the construction of the
implementation.

8.6 Conclusion
The approach proposed in this paper tackles the problem of identifying a suit-
able implementation choice, in terms of timing characteristics, starting from
the software architecture. In general this issue requires the consideration of
a number of alternatives that grows exponentially with the number of soft-
ware components in the architecture. We proposed to solve this by adopting
a quality-driven model transformation approach and defining a precise map-
ping between EAST-ADL design and implementation models (defined in terms
of the Rubus Component Model). Since in general the mapping of design to
implementation models equipped with timing elements is non-bijective, we
leveraged the properties of a constraint-based transformation language, JTL,
to automatically derive all the meaningful implementation alternatives. Sub-
sequently, generated implementation models are classified in terms of timing
results enabling the selection of the best implementation model candidate(s)
derivable from the input design model.

The experiment we conducted in collaboration with industrial partners in
automotive showed promising results w.r.t. time gains and reduction of possi-
ble errors in the creation of a suitable implementation model. Despite the gen-
eration and selection processes are transparent to the developer, issues about
scalability remain open. In particular, the size of the problem could reach
a point such that the generation of implementation alternatives would be in-
tractable. In this respect, a main future investigation direction encompasses the
study of smarter generation rules. Another line of research will be devoted to
the study of combining the optimisation of multiple system (especially extra-
functional) properties.
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Abstract

Models and model transformations, the two core constituents of Model-Driven
Engineering, aid in software development by automating, thus taming, error-
proneness of tedious engineering activities. In most cases, the result of these
automated activities is an overwhelming amount of information. This is the
case of one-to-many model transformations that, e.g. in design-space explo-
ration, can potentially generate a massive amount of candidate models (i.e.,
solution space) from one single model. In our scenario, from one design model
we generate a set of possible implementation models on which timing analysis
is run. The aim is to find the best model from a timing perspective. How-
ever, multiple implementation models can have equally good analysis results.
Therefore, the engineer is expected to investigate the solution space for making
a final decision, using criteria which fall outside the analysis’ criteria them-
selves. Since candidate models can be many and very similar to each other,
manually finding differences and commonalities is an impractical and error-
prone task. In order to provide the engineer with an expressive representation
of models’ commonalities and differences, we propose the use of modelling
with uncertainty. We achieve this by elevating the solution space to a first-class
status, adopting a compact notation capable of representing the solution space
by means of a single model with uncertainty. Commonalities and differences
are thus represented by means of uncertainty points for the engineer to easily
grasp them and consistently make her decision without manually inspecting
each model individually.
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9.1 Introduction
Model-Driven Engineering (MDE) [1] is rapidly evolving in academia and
have gained considerable foothold in industrial software-development projects.
While model transformations can relieve software developers from significant
engineering effort and mitigate errors typical of manual translations, they can
also potentially create an overwhelming amount of information. Especially,
design-space exploration techniques, characterised by one-to-many model trans-
formations, have the potential to generate hundreds, thousands, or more, can-
didate solutions (i.e., models) from one single model. Despite automated anal-
yses can be employed for evaluating the appropriateness of each candidate so-
lution – as done in our previous work [2] – their usefulness for the engineer
can be limited as the solution space is never really unveiled in the process.
In fact, while the analysis refines the solution space by sorting out solutions
not complying to given requirements, the engineer still has multiple choices
and remains uncertain about the one to take: a decision can only be made by
manually inspecting and comparing all candidate models. However, since can-
didate models can be very similar to each other, a manual traversing of the
solution space is impractical and error-prone. This is worsened by the fact that
the number of alternatives, as well as their size, may grow exponentially for
several reasons, e.g., more complex source models.

In this paper, we propose the use of modelling with uncertainty in order
to explicitly represent the uncertainty that typically accompanies many stages
of the development process [3]. More specifically, we revise our methodol-
ogy [2] in order to accommodate a compact notation capable of representing
the solution space by means of a single model (with uncertainty). The intent
is to provide the engineer with an expressive representation of all candidate
models with their commonalities and distinctions by means of uncertainty
points. The engineer can therefore easily grasp the differences among can-
didate models and consistently make her decision without manually inspect-
ing each model individually. Such a support is provided by employing the
metamodel-independent technique presented in [4]. Moreover, an industrial
application from the automotive domain is used to illustrate the advantages of
the proposal.

Outline. The remainder of the paper is organised as follows. Section 11.2 illus-
trates the context of this work, while the subsequent section describes a moti-
vating examples taken from the automotive domain. Section 9.4 introduces the
uRubus metamodel, i.e., execution models with uncertainty. Section 10.6 dis-
cusses the pros and cons of modelling with uncertainty. Section 10.3 presents
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related work documented in literature while Sect. 10.7 draws conclusions and
future work.

9.2 Background
In the automotive domain, the adoption of models and MDE led to the stan-
dardisation of an architectural description language, called EAST-ADL [5].
EAST-ADL proposes a top-down development approach relying on four ab-
straction levels – vehicle, analysis, design and implementation – which im-
plicitly ensure separation of concerns through the engineering phases. Each
abstraction level is described by means of metamodelling constructs and hides
unnecessary information from lower abstraction levels. EAST-ADL has been
developed with particular focus on the functional and structural modelling.
However, it does not focus on execution and timing modelling [6]1. To this
end, EAST-ADL is usually complemented, at implementation level, with addi-
tional notations that explicitly support execution and timing modelling. Among
other alternatives, Rubus Component Model (RCM) [7] is a modelling lan-
guage which gained industrial recognition as an EAST-ADL complementary
technology. RCM was developed by Arcticus Systems2 in collaboration with
Mälardalen University and it is currently used by several international compa-
nies, e.g., Volvo CE3, BAE Systems4, for execution and timing modelling of
distributed resource-constrained real-time software systems. EAST-ADL pro-
vides means for abstraction and separation of concerns, but it does not provide
explicit support for automation among the different abstraction levels.

Therefore, in our previous work [2], we have described a methodology for
seamlessly linking the modelling language used at EAST-ADL design level and
RCM with the aim of enabling high-precision timing analysis5 at EAST-ADL
design level. The methodology before this contribution, depicted in Fig. 9.1,
leveraged model-driven techniques as follows. Starting from an EAST-ADL
design model, the methodology generated the set of all the corresponding mean-
ingful Rubus models, which represented our candidate solutions. The gener-

1Lately, EAST-ADL has been extended for supporting the modelling of timing require-
ments [5].

2https://www.arcticus-systems.com
3http://www.volvoce.com/dealers/sv-se/swecon/Pages/homepage.

aspx
4http://www.baesystems.com
5In the remainder of the paper, high-precision timing analysis is referred simply as timing

analysis

https://www.arcticus-systems.com
http://www.volvoce.com/dealers/sv-se/swecon/Pages/homepage.aspx
http://www.volvoce.com/dealers/sv-se/swecon/Pages/homepage.aspx
http://www.baesystems.com
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Figure 9.1: Original methodology supporting timing analysis

ation was performed by means of a model transformation defined in JTL [8]
that non-deterministically generated all the models satisfying the constraints
encoded in the transformation itself. At this point, timing analysis was run on
the generated Rubus models resulting in a set of analysis results. These results
were checked against a non-empty set of timing requirements expressed on
the vehicle functionality. The result which better met the given timing require-
ments was selected and the corresponding Rubus model was conveyed back6

to the engineer. It is worth noting that, when selecting among analysis results,
multiple results and thereby Rubus models could be selected if timing require-
ments were met. However, when this happened, the engineer was required
to manually inspect the set of filtered Rubus models annotated with analysis
results individually. From a broader perspective, this operation is frequent in
human-in-the-loop processes where domain knowledge is needed to meet deci-
sions that cannot be made by the tools. Therefore, providing (semi-) automated
support that prevents the engineer from manually traversing the solution space
is key to success.

To this end, we realised that there was need for our methodology to en-
tail a compact notation to represent the solution space (e.g., Rubus models) by
means of a model with uncertainty. In such a representation, model differences

6Back-propagation was achieved through in-place model transformations that annotated filtered
Rubus models with related analysis results.
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are enucleated in uncertainty points that provide the engineer with a straight-
forward locality for understanding how models differ one with another.

9.3 Motivating Scenario

Let us apply the methodology introduced in Sect. 11.2 on the automotive appli-
cation called Intelligent Parking Assist (IPA) system. The IPA system assists
drivers in parking their vehicles. To this end, it uses a warning system, com-
posed of a set of proximity sensors and backup cameras, for detecting obstacles
and calculating optimum manoeuvres.

Figure 9.2: Partial software architecture of the two nodes in IPA system at the
design-level of EAST-ADL.

For the sake of simplicity, we consider only a portion of the software archi-
tecture consisting of two nodes, namely IPAssistant and Actuator connected to
a single network that implements the Controller Area Network (CAN) proto-
col [9] (Fig. 9.2). Figure 9.2 depicts the EAST-ADL design level model of the
partial software architecture7. In the hierarchy of an EAST-ADL design model,
the so-called design function prototype (DFP) represent a specific instance of
a vehicle functionality8. The partial IPA architecture consists of seven DFPs
in a chain. Proximity Sensor DFP, Input Process DFP, Path Calculator DFP
and CAN Send DFP DFPs are part of the software architecture of the IPAssis-
tant node. The remaining three DFPs in the chain, CAN Receive DFP, Con-
trol DFP and Brake Actuator DFP are part of the software architecture of the

7We have modelled the IPA system with the help of Rubus ICE [10]
8EAST-ADL implements the type-prototype pattern. Therefore, a DFP represents a specific

instance of a design function type, which defines its type. the complete explanation of the EAST-
ADL metamodel is not in the scope of this work. The interested reader is referred to [5] for details
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(1)

(2)

(3)

(4)

Software Circuit Clock

Connector data

Connector trigger

Data ports

Trigger ports

Timing constraints
Timing constraints

Figure 9.3: 4 of the 32 Rubus models generated from the EAST-ADL model

Actuator node. Please note that CAN Send SWC sends a network message
that is received by CAN Receive SWC. There is a periodic constraint of 10 ms
that is specified on each DFPs in the chain. However, the information about
whether each DFPs is activated independently or by its predecessor is not avail-
able. The following timing requirement is specified too:

• “The calculated age and reaction delays [11] shall not exceed 20 ms and
15 ms, respectively.”

Within EAST-ADL, timing requirements are specified by timing constraints [12].
Therefore, there are two timing constraints, namely Data Age (AgeChain2) and
Data Reaction (DRChain2), that are specified from the input flow port of In-
put Process SWC to the output flow port of Control SWC as shown in Fig. 9.2.

So far according to our original methodology (Fig. 9.1), the EAST-ADL
model in Fig. 9.2 is transformed in 32 Rubus models. The first 4 Rubus mod-
els9 are depicted in Fig. 9.3. In the hierarchy of a Rubus model, a software
circuit (SWC) encapsulates basic software functions. RCM distinguishes be-
tween data and control flow therefore a SWC has data and trigger ports. Within
RCM, data connectors link data ports while trigger connectors link trigger
ports. Clocks and trigger sinks are used to initiate and terminate the execu-
tion of a SWC, respectively. A simplified version of the Rubus metamodel

9The interested reader can find the whole set of artefacts at http://www.mrtc.mdh.se/
SEAA2016.

http://www.mrtc.mdh.se/SEAA2016
http://www.mrtc.mdh.se/SEAA2016
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is presented in Sect. 9.4. All these models differ from each other depending
upon whether a SWC is activated independently by a clock element or by its
preceding SWC. Considering the age constraint of 20 ms specified in Fig. 9.2,
only 14 out of 32 Rubus models satisfy it whereas only 1 Rubus model satisfies
the specified reaction constraint of 15 ms9. Despite the automated analysis has
filtered the solution space, there are still 14 Rubus models which must be in-
spected by the engineer for deciding which one should be selected for proceed-
ing in the development process. However, with the current support, such an
inspection might be a daunting task as the selected Rubus models greatly over-
lap one with another. For instance, let us consider the Rubus models marked
with (1) and (2) in Fig.9.3. The only difference between these two models is
on how the Control SWC SWC is activated: in the model marked with (1) it
is activated from a clock element, while in the model marked with (2) is ac-
tivated from its preceding SWC. If these small differences are hard to catch
when dealing with a reasonably small number of models and model elements,
they are nearly impossible to spot when dealing with hundreds or thousands
models and model elements.

Figure 9.4: New methodology supporting timing analysis and uncertainty

Contribution. In order to ease the inspection of the solution space represented
by Rubus models, we enhanced our methodology (Fig. 9.4) by introducing
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the u-Rubus metamodel, a compact notation to represent the solution space
by means of a single u-Rubus model (that can represent uncertainty). Un-
certainty points are employed for representing commonalities and distinctions
of the Rubus models. The u-Rubus metamodel was generated by means of
an automated transformation defined in the revised version of JTL, which we
hereafter call u-JTL [4]. Since our timing analysis is currently not able to run
on u-Rubus models, we exploit a concretiser operator (in the sense of [3]) pro-
vided by u-JTL that, starting from a u-Rubus model, returns all Rubus models
encoded in it and on which timing analysis can be run. Analysis results are
then back-propagated as annotations to the u-Rubus model through an in-place
model transformation.

9.4 u-Rubus
In this section, we present the u-Rubus metamodel. Such a modeling notation
is obtained by endowing Rubus with uncertainty elements in order to deal with
the multitude of Rubus models presented above. The intent is to provide the
engineer with a representation that permits to deal with a set of Rubus models
as if they were a single model and do reasoning with all the possible models at
the same time.

Figure 9.5: A Rubus metamodel fragment

With reference to the small Rubus fragment9 in Fig. 9.5, an execution
model consists of Circuit(s), that have exactly one Interfacewith Con-
nector(s). In turn, connectors can be either ConnectData or Connector-
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Figure 9.6: A u-Rubus Metamodel fragment

Trig to denote data- and control-flow linking a circuit to another. In Fig. 9.3
part of the Rubus models generated with a JTL program with the original
methodology are shown. In many cases it has been observed that generated
models share most of their model elements, making engineer’s life harder as
comprehending the differences among the models is not always straightfor-
ward.

Recently, the JTL language has been given an intensional semantics in or-
der to generate models with uncertainty [4]. Transformations, instead of de-
livering myriads of models, can generate models with uncertainty, i.e., models
denoting multiple possibilities. As a result, engineers do not need to manu-
ally compare models to discern between them anymore, but rather they can
combine the variants associated to uncertainty points to explore the solution
space. In order to consistently represent uncertain elements, i.e., elements that
are optional or mutually exclusive, the Rubus metamodel has to be extended
with additional constructs. This is performed by an automated transformation
(see [13]) that, starting from uRubus, generates the u-Rubus metamodel shown
in Fig. 9.6 as follows:

i) any class in Rubus is added to u-Rubus; in addition

ii) auxiliary classes Uclass and Iclass, with class and Uclass subclasses of
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Iclass, are added to u-Rubus;

iii) association uVariants : Uclass �−→ class is added to u-Rubus;

iv) for each association a : class1 �−→ class2 in Rubus, an association a :
class1 �−→ Iclass2 is added to u-Rubus.

In particular, the procedure can also be illustrated in term of pattern rewriting
rules as illustrated in Fig. 9.7. The first three steps (i-iii) realize the mapping
from the source to the target pattern in the first row, while the last step (iv) is
represented in the second row. For instance, when the first mapping is applied
to Circuit in Rubus, then it is propagated to u-Rubus together with the newly
created UCircuit and ICircuit metaclasses as shown in Fig. 9.6. The
UCircuit metaclass represents uncertainty points where to anchor multiple
alternative Circuit instances. Whereas, the role of the IInterface is to
let the propagated interface composition in u-Rubus to refer to either a single
Interface instance or to multiple instances through the UInterface (as subclass
of IInterface).

As aforementioned, the new methodology makes use of u-Rubus mod-
els for representing the solution space as for instance illustrated in Fig. 9.8.
In particular, the green elements u1, . . . , u5 are UConnectorTrig uncer-
tainty points representing two (mutually excluded) connectors each: a timed
one triggered by a clock element, say u′i, and another directly triggered by the
preceding circuit, say u′′i . Such a model represents an overall number of 25

Rubus models10. Currently the timing analysis can only be performed on sets
of individual Rubus models, therefore the multivalued concretisation operator
(see [14]), part of the u-JTL environment, and defined as

concr : uRubus→ P(Rubus),

returns the set of all Rubus models encoded in the corresponding u-Rubus
model. It is worth noting that the original JTL transformation, in charge of
generating a set of Rubus models from an EAST-ADL model, did not have to
be modified to generate u-Rubus models. This is due to the fact that the new
u-JTL transformation engine is semantically equivalent to the one of JTL, al-
though the way models are represented is different. Once the Rubus models
are obtained by concretising the u-Rubus model, we can perform timing anal-
ysis. Without being too specific, the outcome of such an analysis is a subset of
Rubus models satisfying given timing requirements.

10The overall number comes from the number of possible variants (2) to the power of the number
of the connector uncertainty points ui (5).
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source pattern target pattern

#1

#2

Figure 9.7: Rubus to u-Rubus mappings

Each Rubus model obtained by means of the concr operator is univocally
identified by the variants chosen for each uncertainty point ui. For instance, in
the case shown in Fig. 9.8 the Rubus model with only clock elements is given
by the 5-tuple< u′1, . . . , u

′
5 >. Therefore, the tuples identifying all the models,

which satisfied the timing analysis, are translated back into annotations in the
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Figure 9.8: The u-Rubus model generated by u-JTL representing the solution
space

u-Rubus model together with analysis results.
Besides being able to better locate the differences among the models, the

main advantage of this proposal consists in harnessing the possibility to rea-
son with all the models as a whole. In fact, the engineer can search through
the models, which passed the timing analysis, by discarding those with char-
acteristics non conforming to criteria that fall outside the analysis itself. For
instance, in the context of the automotive application presented in Sect. 9.3,
timing variations are of crucial relevance that the engineer cannot neglect. At
times, it might be very important to prefer models presenting more indepen-
dent clocks because they can better accommodate the branching and merging
of data along the chain. Also, independent clocks suit better to SWCs having
more than one data input port. On the other hand, it might be desirable in some
other models to have dependent activation of SWCs receiving messages from
the network, e.g., CAN Receive SWC in Fig. 9.8 as they ensure that fresh data
from the network traverses through the rest of the model.

9.5 Discussion

In this paper, we have proposed a compact notation for representing a solution
space by means of a model with uncertainty. We have described how the pro-
posed notation can ease the esploration of the solution space, especially when
candidate solutions display minimal variations among themselves. This con-
tribution enhances our methodology for seamlessly linking EAST-ADL and
RCM. More specifically, the notation, addressed as Rubus with uncertainty
(u-Rubus), allows the developer to inspect the solution space represented by
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the set of Rubus models automatically generated from a single EAST-ADL
design level model as valid implementation alternatives. In the scenario pre-
sented here, timing analysis is run on the initial set of generated Rubus models.
Thus, the set of valid alternatives, from a timing perspective, is selected. These
alternatives can be very similar to each other, and it may be hard for the en-
gineer to effectively compare them and comprehend how they differ one with
another. This difficulty is exacerbated by the number of alternatives (as well as
the their modelling elements) that may grow exponentially due to, e.g., loose
timing requirements. u-Rubus spawns the means for the engineer to grasp at
a glance the solution space of interest through a compact visualisation of un-
certainty points represented in a single model. The exploration of the solution
space remains manual. In fact, this contribution represents a first step towards
an analysis-based and semi-automatic design-space exploration mechanism for
guiding the engineer towards selecting the most suitable Rubus model among
a possibly huge set of alternatives. We have already started investigating the
possibility to extend our methodology (Fig. 9.9) for running timing analysis
on a u-Rubus model instead of the set of Rubus models. Doing so, we would
be able to entirely act on u-Rubus model, from start to end, with no need for
concretising/de-concretising mechanisms from/to a u-Rubus model. Moreover,
with a u-Rubus model as sole artefact, we could be able to provide an analysis
mechanism that, while analysing the candidate solutions (in terms of the u-
Rubus model) also gives the possibility to the engineer to interactively decide
upon uncertainty points (when and whether she wishes so) based on partial
analysis results.

While we showed how u-Rubus can be exploited for investigating the so-
lution space of Rubus models representing timing, this does not necessarily
means that a decision on a single alternative must always be taken. In fact, the
idea of a compact notation can be exploited for successively exploring the solu-
tion space of models in relation to various properties. Let us imagine that tim-
ing and power consumption are two properties of interest. The engineer could
start with running timing analysis for reducing the solution space. u-Rubus
for timing (shown in this paper) would then be exploited for selecting among
equally good alternatives (from a timing perspective). It can happen that, even
with the help of u-Rubus, the engineer is not able or does not want to solve all
the uncertainty points. At this point, unsolved uncertainty points, representing
a set of Rubus models, would be analysed to measure expected power con-
sumption. The results of this analysis will provide the engineer with additional
information for her to decide in two ways: i) by decorating the model that
instantiates u-Rubus for timing with power-related details (if timing-related
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Figure 9.9: Future methodology supporting timing analysis for uncertainty

details are still needed) or ii) by creating a specifically generated u-Rubus for
power consumption to switch the focus of investigation and selection to power
only (in case decisions on timing are considered established). To summarise,
timing analysis can represent one step in a potential exploration chain [15],
where solution spaces are successively investigated based on different proper-
ties prioritisation.

9.6 Related Work
The problem of generating, analysing, and optimising multiple design alter-
natives has been largely investigated and is usually referred to as design-space
exploration (DSE) [16]. Rule-based DSE [17, 18] can be considered as a possi-
ble implementation of the exploration in a MDE context: the space of available
solutions is expressed in terms of a model and transformations are used to de-
rive the corresponding alternatives. Depending on the characteristics of those
models and transformations, in [15] the authors introduced a catalog of explo-
ration patterns: our approach complies to the model generation pattern, that
is it performs an exhaustive derivation of implementation models (lower level
of abstraction), enriched with timing details, as derivable from the system ar-
chitecture designed through EAST-ADL, and constrained by domain-specific
rules. The generation is not meant to provide optimisation hints/solutions at
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architectural level [19]; rather, it implements a quality-driven model transfor-
mation [17, 20] to select all the suitable (timing configuration) results given a
certain system architecture as input.

In general, the goal of DSE mechanisms is reaching an optimal solution
in terms of certain properties of interest, therefore the available works usu-
ally focus on generating appropriate candidates in an effective way. Moreover,
based on user’s choice and/or heuristics, potential solutions are pruned and
the exploration is driven towards optimal alternatives. Abdeen et al. [18] pro-
pose to combine genetic algorithms with rule-based DSE in order to achieve
a domain-independent multi-objective optimisation process. The approach is
fully automated, hence aiming at reaching the optimal solution without user
intervention. Instead, in [21] the authors embed search-based mechanisms in
a model transformation language to generate optimal models as solutions to
design problems. Generated models are evaluated through specific metrics,
typically encoded in the transformation as rules and constraints. User’s input
is mentioned as a solution evaluation possibility, however no further clarifica-
tion is given with respect to dealing with the presentation of the alternatives.

In Schätz et al. [17] rule-based DSE for the development of embedded sys-
tems is supported by means of a declarative generation approach. A model
transformation mechanism hosted in Prolog is exploited to both define explo-
ration rules and constrain the set of suitable alternatives. Differently to our
approach, the user has to mentally render the set of available choices and write
corresponding predicates to narrow down the solution space, which in our opin-
ion can be a more complex task than visually comparing the generated alterna-
tives.

The DESERT tool [22] provides support for DSE based on constraints,
where the exploration and pruning rules have to be manually defined by the
user. Similarly to our proposal, DESERT offers a more compact representa-
tion of available design alternatives in terms of ordered binary decision di-
agrams. However, this approach translates to an element-by-element choice
which is devoted to the selection of a sigle preferred solution among the gen-
erated ones. Instead, our models with uncertainty allow to examine a solution
as a whole and to keep multiple design alternatives until the necessary matu-
rity was achieved to take a more constrained decision. In this respect, Kang
et al. [23] advocate the need of cost-effective DSE by avoiding the exploration
of design aspects irrelevant for a certain phase of the design process. In fact,
depending on the maturity of the design, some alternatives might look equiv-
alent to the user whom is not yet concerned with some of the details about
the system that are changed. The authors introduce also a tool, FORMULA,
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supporting a user-defined equivalence specification among solutions that guar-
antees the sole generation of non-isomorphic alternatives with respect to the
existing equivalence relationships. The uncertainty representation introduced
in this work supports FORMULA’s vision in the sense that we permit to keep
some choices open until a definitive decision can be taken. Moreover, the def-
inition of uncertainty itself can be exploited as a definition of aspects to be
explored, and uncertainty resolution techniques [24] can be used as alternative
generation mechanism.

There exists a number of additional approaches, such as [25, 26, 27] to
mention a few, which propose generic representations of the solution space tai-
lored to DSE from different perspectives, i.e. targeting multiple optimisation
aspects. Notably, Saxena and Karsai [25] introduce a generic DSE framework
based on the extension of a domain-specific language for exploration purposes.
Such extension is then translated to an appropriate intermediate format that can
be exploited by multiple constraint solvers to compute disparate optimisations.
The resulting solutions are listed and can be visualised in the tool, however a
one-by-one browsing of the alternatives might be difficult to handle for the user,
especially when their number grows and the difference between them was min-
imal. A similar approach is adopted in Octopus [27], a tool that supports DSE
for software intensive embedded systems. A domain-specific model is trans-
lated towards a DSE tailored intermediate representation, which is exploited to
perform several exploration tasks as analyses, searches, and diagnostics. The
underlying goal is to implement an iterative development and refinement of
the application model until the desired set of properties is completely satisfied.
The intermediate representation can be also exploited to perform optimisations
through parametrisation of selected properties, however the management of the
potential uncertainty raised by the optimisation is not discussed in the work.

GASPARD [26] is a framework for the development of massively parallel
embedded systems, and shares several solution mechanisms with what is de-
scribed in our contribution. In particular, GASPARD provides a higher abstrac-
tion level modelling support based on UML and the MARTE profile; starting
from such design level, the framework prescribes a workflow made-up of sub-
sequent analyses and refinement steps, from higher to lower abstraction levels.
Similarly to the automotive development process described in this paper, some
analyses and refinements can be performed at the (EAST-ADL) design level,
while others require lower abstraction details (notably timing). Moreover, the
transition from higher to lower abstraction levels naturally raises the issue of
managing multiple lower level alternatives for the same higher level model. In-
deed, also in [26] the authors advocate for a refinement process able to support
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the growing number of alternatives that should be reduced step-by-step by an
analysis method and the corresponding pruning of inadequate solutions. How-
ever, the authors do not provide any detailed discussion about the management
of multiple alternatives at each step, and the refinement process seems to rely
on the selection of a single candidate for each level of abstraction. In such a
context, exploiting models with uncertainty would disclose the opportunity of
keeping equally good alternatives for the next (lower) abstraction level, until
an analysis would definitively discard a certain solution.

9.7 Conclusion and Future Work
As software systems increase in size, complexity and heterogeneity there is a
growing consensus on the need to leverage existing techniques, methods, and
tools across abstraction. In the context of automotive software, model-based
techniques underpin analyses that typically refine solution spaces, which con-
sists of hundred, thousand, or more candidate solutions. Nevertheless, often
the engineer might want to comparatively inspect the models in order to con-
sider additional requirements that fall outside those taken into account by the
analyses. In this paper, we enhance our previous methodology by introducing
the u-Rubus metamodel: a compact notation for formalizing the whole solution
space in terms of models with uncertainty. The advantages of the proposal con-
sists in letting the engineer i) to reason about multitudes of models as a whole;
and ii) to better locate the differences among the models for identify models
fulfilling criteria dictated by the engineer’s domain expertise. This work rep-
resents a first attempt in leveraging abstraction and automation in design space
exploration. Future work will investigate how timing analysis for individual
Rubus models can be lifted to u-Rubus models in order to have better analysis
performance and provide the engineer with more immediate feedback.
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Anne Etien, Philippe Marquet, and Jean-Luc Dekeyser. A model-driven
design framework for massively parallel embedded systems. ACM Trans.
Embed. Comput. Syst., 10(4):39:1–39:36, November 2011.

[27] Twan Basten, Martijn Hendriks, Nikola Trčka, Lou Somers, Marc Geilen,
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Abstract

The vehicular industry has exploited model-based engineering for design, anal-
ysis, and development of single-core vehicular systems. Next generation of au-
tonomous vehicles will require higher computational power, which can only be
provided by parallel computing platforms such as multi-core electronic control
units. Current model-based software development solutions and related mod-
elling languages, originally conceived for single-core, cannot effectively deal
with multi-core specific challenges, such as core-interdependency and alloca-
tion of software to hardware. In this paper, we propose an extension to the
Rubus Component Model, central to the Rubus model-based approach, for the
modelling, analysis, and development of vehicular systems on multi-core. Our
goal is to provide a lightweight transition of a model-based software develop-
ment approach from single-core to multi-core, without disrupting the current
technological assets in the vehicular domain.

Keywords.Model-based engineering, metamodelling, multi-core, vehicular do-
main, embedded systems, real-time systems.
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10.1 Introduction
Software is ubiquitous in our society. In automotive, vehicles have transi-
tioned from being mechanics-intensive to software-intensive systems [1]. For
instance, the throttle control system of a modern vehicle is realised by means of
Electronic Control Units (ECUs), sensors, and actuators, connected by several
networks, and run by software, which replace the mechanical linkage between
the accelerator pedal and the throttle. The current trend in the vehicular do-
main is towards vehicles capable of autonomously driving. While most of the
current vehicular systems still employ single-core ECUs, the tendency is to
switch to ECUs equipped with multi-core microprocessors. In fact, next gen-
eration vehicles, particularly autonomous ones, are expected to require higher
computational power, which can only be provided by multi-core solutions.

On the one hand, the shift to multi-core impacts the way vehicular software
is designed, analysed and developed. Current model-based solutions, specifi-
cally tailored to single-core, are not as effective when dealing with multi-core
specific challenges, such as core-interdependency and allocation of software to
hardware. On the other hand, the vehicular industry cannot prescind from the
current technological assets for many reasons, among which:

Legacy. It has been estimated that up to 90% of the software in a new vehicle
release can be reused from previous releases when using model-based
engineering [2].

Organisation. Original Equipment Manufacturers (OEMs) suppliers define
their technological assets based on decennial contracts with Tier-1 and
Tier-2 suppliers. Changes to these assets shall not affect these contracts.

Certified run-time support. Functional safety [3] is paramount for the safety
criticality in vehicles [4]. Current model-based solutions rely on cer-
tified development environments and real-time operating systems [5].
Typically, the certification process adds a development cost overhead
between 25 and 100%, and it lasts for several years [6].

We have investigated the extension of Rubus [7], a commercial model-based
approach for vehicular single-core systems, to multi-core with the intent of not
disrupting the current vehicular technological assets related to it. Our hypothe-
sis is two-fold. (H1) Abstraction provided by models and automation provided
by model transformations can be a game changer in the development of multi-
core applications. Abstraction permits to detach software functional modelling
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from multi-core hardware modelling and software/hardware allocation mod-
elling. Automation can support the developer in taking important decisions,
such as how to allocate tasks to available cores in order to maximise a specific
quality aspect [8]. (H2) A lightweight transition of a model-based approach
from single-core to multi-core which does not affect critical aspects such as
certified run-time support and lastingness of legacy applications is possible.

In model-based engineering, metamodels play a pivotal role as they de-
fine the set of available modelling entities and relationships for representing
the software architecture and its quality attributes. Moreover, they enable au-
tomation via model transformations. However, it is essential that metamod-
els effectively prescribe the type system, the structure, and the behaviour of
domain-specific applications [9]. In [10] we have discussed some modelling
languages (among which Rubus Component Model) used for single-core ve-
hicular applications and highlighted the issues arising when using them for
modelling multi-core applications. In particular, existing structural hierarchies
lack concepts for representing multi-core aspects (e.g., cores and partitions)
and do not provide explicit support for core-interdependency and allocation of
software to hardware.

In this paper, we propose an extension to the Rubus Component Model
(RCM) [11], core of the Rubus approach, to support multi-core. This repre-
sents the first crucial step in the transition from single-core to multi-core. The
contribution of the proposed extension is two-fold. We provide a modelling
language able to prescribe type system, structure, and behaviour of multi-core
applications (C1). In particular, the proposed extension comprises modelling
elements for representing the software architecture, the hardware platform, and
the software to hardware allocation. We ensure backward compatibility with
legacy single-core applications modelled with RCM and do not entail any mod-
ification to the Rubus run-time layer, the Rubus Kernel (C2).

The remainder of the paper is structured as follows. Section 10.2 intro-
duces RCM and motivates its selection as well as its extension. Section 10.3
presents a comparison between existing related approaches documented in the
literature and our solution. Section 10.4 describes the proposed solution in all
its constituents. Section 10.5 describes the application of the proposed solution
to an industrial vehicular application. Section 10.6 and Section 10.7 discuss the
benefits and limitations of our solution and conclude the paper, respectively.



10.2 The Rubus Component Model 123

10.2 The Rubus Component Model

There are several modelling languages used in the vehicular domain, such as
RCM, AUTOSAR [12], ProCom [13], COMDES [14], AADL [15], to name a
few. These languages were not conceived to deal with the complexity of pre-
dictable vehicle software specifically developed to run on multi-core platforms.

We focus on RCM and its extension for multi-core due to the following rea-
sons. RCM is a good candidate to overcome the issues related to predictability
thanks to its statically synthesised communication as well as its predictable and
fine-grained execution model [16]. RCM uses pipe-and-filter communication
and distinguishes between the control and data flows among its software com-
ponents. In [17], we showed that these two features are central for providing
early timing verification of the modelled system, e.g., by supporting end-to-end
timing analysis [18]. Another reason for focusing on RCM is the small run-
time footprint of the developed software (automatically generated from RCM
models) as compared to other languages [17].

RCM is developed by Arcticus Systems AB1 in collaboration with Mälardal-
en University. Through the years, RCM has been adopted by several OEM,
Tier-1 and Tier-2 companies (e.g., Volvo Construction Equipment, BAE Sys-
tems Hägglunds, Hoerbiger and Knorr Bremse) for the development of embed-
ded real-time software. RCM provides the Rubus Kernel, a dedicated real-time
operating system, which is available for different processor architectures and
certified according to the ISO 26262 [5] standard ASIL D (Road vehicle –
Functional Safety) from Safety Integrity AB2.

RCM was originally thought for providing modelling purposes, but it did
not feature model-based mechanisms, i.e. automation in terms of model trans-
formation. In order to achieve a full-fledge model-based approach, in [19]
we reverse-engineered the RCM specification in order to express it in a more
canonical form, a metamodel, which we called RubusMM. RubusMM included
concepts for expressing software architectures and concepts for describing tim-
ing information of vehicular single-core applications. In this paper, we extend
RubusMM to enable modelling of software applications for multi-core.

1https://www.arcticus-systems.com
2http://www.safetyintegrity.se

https://www.arcticus-systems.com
http://www.safetyintegrity.se
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10.3 Related Work

AUTOSAR [12] is an industrial initiative to provide a standardised software ar-
chitecture for the development of vehicular software systems. Since the emer-
gence of AUTOSAR 4.0, multi-core support is part of the standard. Simi-
lar to RCM, AUTOSAR describes the application software by means of self-
contained units called software components which are mapped to the ECUs.
At the application software level, AUTOSAR does not distinguish between the
control and the data flows. In [17], we discussed how this feature is central for
providing early timing verification of the modelled system. AUTOSAR does
not provide means for modelling the execution platform [20]. Recently, sev-
eral works on the use of AUTOSAR for multi-core have been proposed both
from industry and academia. However, their main focus is on the adaptation of
the AUTOSAR run-time support rather than on specific modelling challenges
such as, e.g., allocation of the software components. In [21], the authors in-
vestigated the use of AUTOSAR for virtualised architecture and they identified
some challenges on the use of AUTOSAR for multi-core. They concluded that
additional features for the dynamic allocation of the software were needed.
In [22] and [23], the authors evaluated AUTOSAR systems realised with a
centralised architecture where the layered architecture was entirely allocated to
one of the available cores only. Both the approaches were able to demonstrate
that the behaviour of the multi-core software system and its footprint did not
significantly vary from the corresponding single-core configuration. However,
in both approaches, the uneven distribution of the workload among the cores
led to performance and timing verification issues. In [24] and [25] the authors
described AUTOSAR systems based on virtualised architectures where hyper-
visors coordinate multiple software systems with same or different real-time
operating system(s). The use of hypervisors complicates early timing verifi-
cation as it introduces additional complexity. From a footprint point of view,
the virtualised architecture may lose its efficiency as each software system can
carry a different real-time operating system. Both approaches rely on certified
versions of AUTOSAR systems. In the AMALTHEA project [26], AUTOSAR
standardised software architecture and methodology are used as a base for a
development methodology aiming at reducing the effort in exchanging dtata.

Besides technologies specific to the vehicular domain, several works have
discussed the use of the UML language and its profile MARTE [27]. Be-
ing general-purpose, these technologies are often used as complementary to
domain-specific languages as, e.g., AUTOSAR and RCM. In [28], the authors
present the VERTAF/Multi-core UML-based framework for the development
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of multi-core software. Within VERTAF/Multi-core, the software system is de-
scribed by means of UML class diagrams, timed state machines and sequence
diagrams. Model transformations are used for generating extensions to these
models for checking the viability of the design with respect to schedulability
and conformance to the specifications. In [29] and [30] MARTE is used for
representing the high-level architecture of the software system and as enabler
for code-generation. In the first approach, UML is used for modelling the soft-
ware components while MARTE is used for modelling hardware and software
to hardware allocations. Starting from these models, code is automatically gen-
erated and timing verification through simulation is run. The second approach
focuses on the system deployment of component-based systems. MARTE is
used for modelling high level description models from which different models
representing allocations of components are generated by means of code gener-
ation. In [8], MARTE is used for describing a task model and the allocations
of tasks to cores for combined simulation- and execution-based task alloca-
tion optimisation. In [31] the authors introduce a MARTE-based framework,
named GASPARD, for the design of parallel embedded systems. Herrera et
al. [32] discuss a framework for the design space exploration of embedded sys-
tems based on MARTE. The framework, called COMPLEX, uses MARTE for
describing the different architecture solutions composing the design space.

AADL [15] is an architecture description language developed for the avionic
domain, but currently used for modelling embedded systems in general. Simi-
larly to RCM, AADL provides multi-core support and a clear separation of con-
cerns between software and hardware elements. However, unlikely to RCM,
the software architecture is described at a lower level of abstraction in terms
of, e.g., Processes and Threads.

10.4 Extending Rubus Component Model for
Multi-core

In this section, we describe the extension to RCM for modelling vehicle soft-
ware on multi-core. The extension is formalised by means of metamodelling.
We compare the extended RCM with its previous definition, given in [19], thus
highlighting differences and commonalities. The extension comprises the ad-
dition of modelling packages, classifiers, features, and relations as well as the
modification of some hierarchical structures.

With respect to the previous definition, we have introduced packages for
ensuring a better separation of concerns, improving the understandability of
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the metamodel, and simplifying future extensions. The RubusMM packages
involved in the extension are RCM COMMON, RCM HW and RCM SW3.
RCM HW contains the elements for modelling the hardware platform: Target,
Allocator, Core, and Partition. RCM SW contains the elements for modelling
the software architecture: Allocatable, Mode, Assembly, and Software Circuit.
RCM COMMON contains elements which are common to different packages
as, for instance, System and port elements. Fig. 10.1 shows a fragment of
RubusMM containing elements from RCM HW for modelling the hardware
platform. System represents the system under development. As all the el-

Figure 10.1: Fragment of the RCM HW package for modelling the hardware
platform.

ements in RubusMM, it inherits from the abstract metaclass NamedElement
which provides two attributes: name and ID. We extended System with the
reference timingConstraint for enabling the specification of timing constraints,
occurrences and events which are used for timing verification.4 These con-
straints are used for running timing analysis, but we employed them for auto-

3The complete explanation of RubusMM is not in the scope of this work. The interested reader
may refer to [19].

4TimingConstraint and other elements from different RCM packages are not part of this exten-
sion. However, they are put in relation to the extension as they contribute to a holistic view of the
language and its peculiarities.



10.4 Extending Rubus Component Model for
Multi-core 127

matically generating the set of RCM models satisfying a given set of timing
requirements too [33].

A System contains one Network, one or more Target elements, and one or
more Mode elements. A Network element models all the messages exchanged
among the Node elements. It has two attributes, protocol and speed, which
specify the protocol (e.g., Controlled Area Network (CAN) [34]) and the speed
of the network in Kbit/s, respectively. A Target is a hardware-specific element
which represents a processor architecture. The definition of Target has been
extended with the references timingConstraint, portIO, and portNetwork. por-
tIO and portNetwork model the peripherals and the inter-node communication,
respectively.

In the previous definition of RubusMM, Target contained Mode, represent-
ing the software application. However, the containment relation between Tar-
get and Mode was too restrictive for modelling multi-core applications. Such
a containment prescribed in fact that Mode elements, representing software,
were structurally contained by hardware, represented by Target elements. Al-
though not providing a clear separation between software and hardware, this
structural containment suited the single-core case, since allocation of software
to hardware was not variably split across different cores. Modelling for multi-
core demanded more flexibility, since allocation of software to hardware is a
variability point, which can hardly be represented by a structural containment.

In order to provide such a flexibility, while ensuring backward compatibil-
ity with legacy RubusMM models, we have modified the existing hierarchy as
follows. We have added the metaclasses TargetLegacy and TargetNew, both in-
heriting from the abstract metaclass Target. TargetLegacy represents a legacy
(single-core) ECU and it contains one or more Mode elements. This contain-
ment is specified through the reference mode. TargetNew represents a single-
or multi-core ECU and contains one or more Core elements, which in turn
can contain Partition elements. Both Core and Partition elements inherit from
the abstract metaclass Allocator, representing hardware elements to which soft-
ware elements, represented by the metaclass Allocatable, can be allocated. The
metaclasses Allocator and Allocatable, together with the reference isAllocated,
provide the flexible mechanism for the allocation of software to hardware that
we needed, without any structural containment.

The metaclass Target provides the following attributes: speed, which spec-
ifies its speed in MHz, and type, which specifies whether it is a physical or
a simulated target. A simulated target represents the simulation of the actual
target processor in a host environment such as Windows or Linux.

Both TargetLegacy and TargetNew inherit speed and type. Moreover, Tar-
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getNew provides additional multi-core specific attributes. numberOfCores spec-
ifies the number of cores composing the TargetNew and it is used by the model-
based timing analysis and to automatically allocate software to hardware. The
reference core links Core elements to their respective TargetNew. Core may
contain Partition elements. The attribute numberOfPartitions specifies the
number of partitions within a Core and the reference partition links them to
the Core. The attribute criticalityLevel specifies the safety criticality level ac-
cording to the ISO 26262 standard. There are four criticality levels (A to D) in
this standard. A is the lowest criticality level, whereas D is the highest critical-
ity level (the Rubus Kernel supports and is certified for all of them). Hence, the
Partition element allows to develop multi-criticalitysoftware systems, where
some parts of the software architecture are more critical than the others. Target,
TargetLegacy, TargetNew, Core, Partition, Allocator, Allocatable, as well as
their attributes and related references were not part of the previous RubusMM
definition.

Fig. 10.2 shows a fragment of the RubusMM containing elements from the
RCM SW and the RCM COMMON packages for modelling the software archi-
tecture. In RCM a software circuit, represented in RubusMM by SWC, is the

Figure 10.2: Fragment of the RCM SW package for modelling the software
architecture.

lowest-level hierarchical element that encapsulates basic software functions. A
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SWC contains one Interface which groups all its ports. As RubusMM distin-
guishes between the data and control flows, an Interface containsPortData and
PortTrig elements. The PortData elements manage the data communication
among SWC deployed on the same Target. The PortTrig elements manage the
activation of the SWC elements.

A PortNetwork is a port for the data communication of SWC elements de-
ployed on different Target elements. The PortData elements of a Core are
referenced to the PortData elements of the SWCs allocated on that Core. Sim-
ilarly, the PortNetwork elements of a Node are referenced to the PortNetwork
elements at SWC level. An Assembly groups SWC and Assembly elements in a
hierarchical fashion.

Its reference timingConstraint enables the specification of timing constraints,
occurrences and events which are used for timing verification. With respect to
the previous definition, SWC and Assembly have been extended with the in-
heritance relation from the abstract metaclass Allocatable. A Mode groups
Assembly and SWC elements and it is used for modelling a specific applica-
tion of the software architecture (e.g., start-up or error mode). The attribute
globalReference serves for creating a reference among all the Mode elements
contributing to the same application. With respect to its previous definition,
Mode has been extended with the inheritance relation from the abstract meta-
class Allocatable. The metaclasses Allocatable and Allocator together with the
reference isAllocated enable the specification of the allocation of software to
hardware. More precisely, an Allocatable element can be deployed to an Allo-
cator element by setting the isAllocated reference. Allocatable, Allocator, and
related references were not part of the previous RubusMM definition.

10.5 Modelling the Brake-by-wire System

In this section, we leverage the extended RubusMM for modelling the Brake-
by-wire (BBW) vehicular application. The BBW system is a stand-alone brak-
ing system equipped with an anti-lock braking (ABS) function, which allows
to control the brakes through electronic means. To this end, it does not employ
any mechanical connection between the brake pedal and the brake actuators.
Fig. 10.3 depicts the block diagram of the BBW system.
A sensor, attached to the brake pedal, acquires the signal expressing the posi-
tion of the pedal. The signal is sent to a computational unit which translates
it into a brake torque. A sensor on each wheel acquires the signal expressing
the speed of the wheel. The speed of each wheel, together with the computed
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Figure 10.3: Block diagram of the BBW system.

Figure 10.4: RubusMM model representing the software architecture of the
BBW system.

brake torque, is sent to a computational unit which calculates the brake torque
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for each wheel. Also, the speed of each wheel is sent to a computational unit
which calculates the speed of the vehicle. The speed of the vehicle and the
brake torque of each wheel are used from the ABS units for calculating the op-
timal brake torque for each wheel for avoiding locking the brakes. Finally, the
actuators on the wheels produce the actual brake. Fig. 10.4 shows a RubusMM
model depicting the software architecture of the BBW system.

The model consist of 16 software circuits where i) Brake Pedal models
the software operating the sensor on the brake pedal, ii) Speed FR, Speed FL,
Speed RR, and Speed RL model the software operating the speed sensors on
the wheels, iii) Brake Torque, Brake Controller, Speed Estimator, ABS FR,
ABS FL, ABS RR, and ABS RL model the software on the computational units
and iv) Brake FR, Brake FL, Brake RR, and Brake RL model the software op-
erating the actuators on the wheels.

In order to show how the extended RubusMM supports the modelling of
multi-core applications (H1), while ensuring backward compatibility with le-
gacy single-core applications (H2), we propose two different deployment con-
figurations. In the first configuration, the BBW system is deployed to a MPC5744P
microcontroller, which is a 32-bit unicore microcontroller designed for vehic-
ular applications.

Figure 10.5: Serialisation of the BBW system deployed to a unicore microcon-
troller.

Fig. 10.5 shows an Ecore serialisation of such a configuration. Note that, ac-
cording to what described in Section 10.4 regarding the modelling of legacy
applications, the deployment on single-core is expressed leveraging the con-
tainment relation between the ’TargetLegacy’ MPC574xP and the ’Mode’ ele-
ment Operational.

In the second configuration, the BBW system is deployed to an Infineon
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SAK-TC299TP-128F300S BBmicrocontroller, which is a tri-core microcon-
troller developed for applications with high demands of performance and safety.

Figure 10.6: Serialisation of the BBW system deployed to a tri-core microcon-
troller.

Fig. 10.6 shows an Ecore serialisation of this configuration. In this case, the
deployment information is modelled by means of the ’isAllocated’ reference
expressed between ’Allocatable’ and ’Allocator’ elements. More precisely, the
software circuits modelling the sensors, the computation units and the actuators
of the two front wheels (WheelSpeed FR, WheelSpeed FR, Abs FR, Abs FL,
Brake FR, Brake FL) are allocated to Core 1 of the SAK-TC299TP-128F300S
BB target, as shown by the arrow in the top-right corner of Fig. 10.6. Simi-
larly, the SWCs modelling the sensors, the computation units and the actuators
of the two rear wheels (WheelSpeed RR, WheelSpeed RR, Abs RR, Abs RL,
Brake RR, Brake RL) are allocated to Core 2 of the SAK-TC299TP-128F300S
BB target. The remaining SWCs modelling the computational units are allo-
cated to Core 3 of the SAK-TC299TP-128F300S BB target. As discussed in
Section 10.4, the extended RubusMM leverages a clearer separation of con-
cerns between software and hardware elements as well as an explicit and more
flexible allocation mechanism. Let us suppose that the allocation specified in
Fig. 10.6 does not satisfy a given set of fault-tolerance requirements. One way
of addressing this would be to model a lockstep [35] configuration of the BBW
system where each core runs a copy of the complete software, in parallel. In
order to model such an allocation with the extended RubusMM, it is sufficient
to allocate all software circuits composing a ’Mode’ to each single ’Core’.
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10.6 Lesson Learned

In this paper, we have proposed an extension to RCM for modelling next gen-
eration of vehicular multi-core systems (H1). The main challenge faced during
the extension of RCM was how to introduce the new modelling elements with-
out affecting the lastingness of legacy RCM applications (H2). In the first def-
inition of RCM, pragmatic choices for more efficient modelling and analysis
of single-core applications were made when defining the language. In addition
to not providing clear separation of concerns between hardware and software,
these choices complicated the extension of RCM, as in the case of the contain-
ment relation between Target and Mode discussed in Section 10.4. In fact, that
structural containment, although dramatically simplifying model navigation for
analysis and code generation purposes in case of single-core applications, did
not suit variability of software to hardware allocation in the multi-core case. In
this respect, the proposed extension prescribes an allocation mechanism which
is more flexible and apt to be automated by means of model transformations.
Please note that, we have previously provided RubusMM with support for vari-
ability modelling [36]. This feature can be very valuable for representing sets
of allocations of software components to multiple cores, all in a single model
with variability points representing allocations.

To maximise backward compatibility, we introduced the new modelling
elements as leaves in the metamodel hierarchy, as in the case of, e.g., Core
and Partition. This choice could demand additional modelling effort as the
engineer can be required to model the entire hierarchy in order to design valid
models from scratch. This can be mitigated by tooling features, allowing the
modeller to directly model a leaf, while automatically generating the path to
the model root populated with a set of default values.

In Section 10.2, we have pointed out early timing verification as one of
the main reasons which made RCM very appreciated in the vehicular domain
and its extension for multi-core compelling. In this respect, when extending
RCM, we have explicitly addressed timing verification by allowing the spec-
ification of timing constraints, occurrences and events at several levels of the
structural hierarchy by means of the references timingConstraint. This ensures
full compatibility with the existing model-based timing analysis provided by
Rubus. Moreover, it enables the use of the most recent timing analysis for ve-
hicular embedded systems on multi-core [37]. Without the extension provided
in this paper, the timing analysis for multi-core would not have been possible
in Rubus due to the missing structural and timing information.

Functional safety is paramount for the safety criticality of vehicular sys-
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tems. For being adopted in the vehicular domain, model-based solutions must
provide certified run-time support, e.g., real-time operating system, along with
modelling languages able to capture all the characteristics of a vehicular ap-
plication. The Rubus Kernel is certified according to the ISO 26262 stan-
dard ASIL D while Rubus ICE (i.e., the development environment supporting
Rubus) is undergoing the same certification. In this respect, we have extended
RCM according to the virtualisation design option, as described in [38], which
enables the reuse of the certified Rubus Kernel. On the one hand, the reuse of
the Rubus Kernel makes also the explicit modelling of the memory not nec-
essary since the mapping of data ports to physical memory is handled by the
Rubus Kernel itself. On the other hand, this makes the current definition of
RCM not suited for approaches where explicit modelling of the memory is
pivotal. Moreover, despite the Rubus Kernel footprint is significantly small,
the virtualised design option increases the overall footprint of the developed
vehicular application since each core or partition can host a separate instance
of the Rubus Kernel.

10.7 Conclusion and Future Work

In this paper, we have discussed the extension of the Rubus Component Model
for modelling vehicular multi-core applications while ensuring backward com-
patibility with legacy single-core applications. The proposed extensions also
support the modelling of multi-criticality applications on single- as well as
multi-core platforms. We have leveraged an industrial vehicular application to
validate the proposed extension, also in terms of backward compatibility.

One line of future work will investigate how to support the analysis and ver-
ification of vehicular embedded systems with multi-criticality levels on multi-
core with respect to predictable timing behaviour. Moreover, we will investi-
gate how to adapt the certified Rubus Kernel for providing run-time support to
these systems on multi-core. Another line of future work will investigate how
to provide automatic support for the allocation of software to hardware. In par-
ticular, we are developing model transformations that, starting from a model
with no modelled allocations and a set of timing constraints, produce a set of
models featuring the set of different allocations of software to hardware opti-
mised for satisfying the set of timing constraints. We are planning to represent
the set of generated models by means of the compact notation presented in [36].
Such a notation uses modelling with variability for representing a multitude of
models with one single model with variability points.



10.7 Conclusion and Future Work 135

Acknowledgments
The work in this paper is supported by the Swedish Knowledge Foundation
(KKS) through the PreView and MOMENTUM projects, and by the Swedish
Research Council (VR) through the SynthSoft project. We thank our industrial
partners Arcticus Systems, Volvo Construction Equipment and BAE Systems
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Saad Mubeen, and Mikael Sjödin. Anticipating Implementation-Level
Timing Analysis for Driving Design-Level Decisions in EAST-ADL. In
International Workshop on Modelling in Automotive Software Engineer-
ing, September 2015.

[34] ISO 11898-1. Road Vehicles Interchange of Digital Information
Controller Area Network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.

[35] Stefan Poledna. Fault-tolerant real-time systems: The problem of replica
determinism, volume 345. Springer Science & Business Media, 2007.

[36] Alessio Bucaioni, Antonio Cicchetti, Federico Ciccozzi, Saad Mubeen,
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Abstract

This paper introduces a novel model-based approach for the software devel-
opment of vehicular embedded systems. The proposed approach discloses the
opportunity of improving efficiency of the development process by providing
support to identify viable design solutions with respect to selected non func-
tional requirements. To this end, it leverages the interplay of two modelling
languages for the vehicular domain whose integration is achieved by a suite of
model transformations. An instantiation of the methodology is discussed for
timing requirements, which are among the most critical ones for the develop-
ment of vehicular systems. The applicability of the methodology is demon-
strated as proof of concepts on industrial use cases performed in cooperation
with our industrial partners.

Keywords – Model-driven development; vehicular embedded systems; EAST-
ADL; component model; model transformations.
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11.1 Introduction

As vehicles transitioned from being mechanical-intensive to software-intensive
systems [1], a cost-effective software development became paramount in the
vehicular domain. Researchers and practitioners agreed that abstraction and
automation, the founding pillars of Model-Driven Engineering (MDE), could
be game changers towards the achievement of a cost-effective software devel-
opment process as they contribute to shorten the development time and employ
expensive resources more efficiently [2]. To this end, several domain-specific
modelling languages were introduced both for designing the vehicular software
and for representing its non functional properties such as timing. Among other
languages, the Electronics Architecture and Software Technology Architecture
Description Language (EAST-ADL) has been developed by the automotive in-
dustry to support modelling of vehicular functions and both their software re-
alisation and desired non functional properties [3]. Within EAST-ADL, the
system modelling is performed at four different levels of abstraction which are
vehicle-, analysis-, design- and implementation-level (from highest to lowest
abstraction level). The requirements on the vehicle functionality of the system
are captured at the vehicle level. At the analysis level, the system is defined in
terms of abstract functional architecture with a provision for high-level analy-
ses. Typically, the vehicular software is modelled at the design level by means
of function, hardware and allocation models. At the implementation level, the
design models are enriched with detailed execution information on e.g., tim-
ing (worst-case execution time, etc.). The implementation models are defined
by means of other languages, such as the AUTomotive Open System ARchi-
tecture (AUTOSAR) [4] or the Rubus Component Model (RCM) [5]. Often,
implementation models are used as the base for code synthesis. However, sup-
port to models integration (e.g., among EAST-ADL and RCM models) in the
development of vehicular embedded systems is still scarce and the translation
from design- to implementation-level is mainly performed manually. Too of-
ten, this lack of automation defers the verification of non functional properties
to the last phases of the development process. Empirical research shows that
modifications during these phases can be 40 times more expensive than the
same modifications done during the design of the software and can introduce
inconsistencies if they are not properly back propagated [6].

In this context, our hypothesis is that providing automation for model in-
tegration would enable early verification of non functional requirements (e.g.
timing requirements) during the design of vehicular embedded systems thus
improving the cost-efficiency of their development. In fact, early verification
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of non functional requirements would limit the need for expensive modifica-
tions on the almost ready-to-deliver software, and automation would reduce
the overall development time as well as enhance the use of expensive (engi-
neering) resources.

In this paper, we propose a solution for early verification of non functional
requirements by introducing MoVES, a model-driven methodology for the de-
velopment of distributed vehicular real-time embedded systems on single- and
multi-core platforms. Considering the importance of timing in the develop-
ment of vehicular real-time systems, as acknowledged by several international
projects and industrial initiatives (TIMMO-2-USE1 and AUTOSAR2.), the pro-
posed methodology is instantiated to support the development and architectural
exploration of system-designs with temporal awareness. MoVES leverages the
interplay of EAST-ADL and RCM for expressing functional and implementa-
tion models, respectively. Moreover, it features a fully automated mechanism
defined in terms of six different model transformations that describe precise
relationships between EAST-ADL and RCM. In particular, starting from the
EAST-ADL function and hardware models, model transformations generate
a set of RCM models. Model transformations automatically generate alloca-
tion information on the RCM models from the EAST-ADL allocation model,
too. As there might be multiple implementation models for the same design,
a source EAST-ADL model cannot be univocally translated into a single tar-
get RCM model [7]. Currently, most approaches only consider one particular
model out of the many possible alternatives [8]. In this work, we leverage
the properties of a constraint-based transformation language, the Janus Trans-
formation Language [9] (JTL), to automatically derive all the possible RCM
models entailing meaningful and unique timing and allocation configurations.
Timing analysis is run on the generated RCM models. Eventually, model trans-
formations propagate the generated RCM models and the related timing verifi-
cation results to the design level for enabling timing-aware design decisions. It
is important to note that, the process of generating and analysing RCM models
is transparent to the engineer and can be guided by means of logic constraints.
Moreover, the engineer does not have to manually define or investigate RCM
models, but rather select the preferred RCM models from the set of the auto-
matically generated ones. We validated MoVES through a set proof of concepts
conducted in tight cooperation with our industrial partners in the automotive
domain. These showed promising results in terms of i) applicability of the
methodology and ii) reduction of late modifications at implementation level.

1https://itea3.org/project/timmo-2-use.html
2https://www.autosar.org

https://itea3.org/project/timmo-2-use.html
https://www.autosar.org
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The main scientific contributions brought by MoVES are:

• a mechanism for the automatic translation of design models into imple-
mentation models,

• a mechanism for the automatic allocation of software to hardware, and

• a mechanism for the back-propagation of the verification results and re-
lated implementation models to design models.

The rest of the paper is organised as follows. Section 11.2 sets the back-
ground for this research work along with its contributions and relations with
authors’ previous work. Section 11.3 describes the methodology and its con-
stituents. Section 11.5 describes the application of the methodology on a run-
ning example mimicking industrial settings. Section 11.6 discusses strengths
and weakness of the proposed methodology. Section 11.7 describes related
approaches documented in the literature and compares them to our solution.
Finally, Section 11.8 concludes the paper.

11.2 Background
MDE is a discipline which aims at improving software development by em-
ploying abstraction and automation by using models, metamodels and model
transformations [2]. Metamodels formalise the requirements, the structure and
the behaviour of software systems within a particular domain. Models allow
to design software systems declaratively using the elements and the concepts
formalised by the metamodels, thus using constructs pertaining to the problem
domain rather than constructs pertaining to the underlying technology. Model
transformations are automatic means for analysing models and for synthesis-
ing new artefacts (models, source code, etc.) from a set of source models [10].
In the automotive domain, as vehicle transitioned from being mechanical- to
software-intensive systems [11], MDE has gained industrial recognition as
demonstrated by several international initiatives and projects, such as EAST-
ADL [3], RCM [5] and AUTOSAR [4].

In the followings, we describe the background of this research work and its
contribution in terms of the modelling languages and the model-based timing
analysis leveraged for the definition of MoVES. In particular, in Section 11.2.1
and in Section 11.2.2 we introduce and describe the main elements of the
EAST-ADL and RCM languages, respectively. In Section 11.2.3 we discuss
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the leveraged timing analysis, while in Section 11.2.4 we detail the contribu-
tions presented in this paper and put them in relation to the authors’ previous
work.

11.2.1 EAST-ADL
EAST-ADL is a modelling language which captures the essentials of vehic-
ular Electrical and Electronic (E/E) systems concerning their documentation,
design, analysis and synthesis. EAST-ADL is specified through ten different
packages, each of which addresses different aspects of vehicular E/E system
and their development. In the proposed instantiation of the methodology, we
leverage specific concepts from the structure, requirements and timing pack-
ages3.

The structure package serves for the specification of the software architec-
ture in terms of basic elements and interactions among them. In order to ensure
separation of concerns through the development process, the structure pack-
age makes use of four abstraction levels, which are vehicle, analysis, design
and implementation. However, such a separation is only conceptual and some
modelling elements can span over several abstraction levels. MoVES connects
to the design level and more specifically to the FunctionalDesignArchitecture,
HardwareDesignArchitecture and Allocation concepts.

Within EAST-ADL, a FunctionalDesignArchitecture describes how soft-
ware functions interact. At this level, software functions are represented by
means of DesignFunctionPrototype elements linked by FunctionConnector el-
ements. A DesignFunctionPrototype is typed to a DesignFunctionType ele-
ment which specifies its interface, in terms of FunctionPort elements, and its
inner architecture, in terms of additional DesignFuntionPrototype elements.
Within EAST-ADL, a HardwareDesignArchitecture describes the physical ar-
chitecture of the vehicular embedded system. The basic modelling entity is
the HardwareComponentPrototype which is typed to a HardwareComponent-
Type. The HardwarePortConnector elements model the communication be-
tween two or more HardwareComponentPrototype elements by connecting the
related HardwarePort elements. An EAST-ADL Allocation model consists of
a set of FunctionAllocation elements binding AllocatableElement to Alloca-
tionTarget elements. AllocatableElement is an abstract superclass which spec-
ifies the elements that can be allocated. DesignFunctionPrototype and Func-
tionConnector are defined as extensions of the AllocatableElement superclass.

3Please note that the complete explanation of EAST-ADL is outside the scope of this work.
The interested reader can refer to [3].
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Figure 11.1: Simplified EAST-ADL model containing concepts from the
EAST-ADL structure, timing and requirements packages

Similarly, AllocationTarget is an abstract superclass which specifies to which
elements an AllocatableElement can be allocated. HardwareComponentPro-
totype and HardwarePortConnector elements are defined as extensions of the
AllocationTarget class. Within the proposed methodology, the concepts from
the function, hardware and allocation models are used by the model transfor-
mations for the automatic generation of RCM models, as described later.

In this work, we show an instantiation of MoVES focusing on the veri-
fication of timing requirements. Therefore, let us see how the timing require-
ments and properties are modelled within EAST-ADL. The EAST-ADL timing
package contains concepts for modelling the timing constraints stemming from
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the extra-functional requirements. Within EAST-ADL, a timing constraint is
modelled by means of TimingConstraint elements, which are associated to De-
signFunctionPrototype elements. The specification of the timing constraints is
realised using two Event elements, which mark the scope of the related timing
constraint and are contained within an EventChain element. The EventChain
and Event elements are used by the proposed methodology for the specification
of automatically generated timing constraints in the RCM models.

The requirement package offers means for describing the properties that
the vehicular embedded system has to possess and their verification. To this
end, the requirement package is further divided into two sub-packages which
are UseCases and VerificationValidation. MoVES leverages specific concepts
from the latter only. Within the VerificationValidation package, the VVCase el-
ements represent concrete test activities which are associated to theDesignFuc-
ntionPrototype elements. A VVCase is modelled in terms of the VVProcedure
and an VVLog elements which represent the adopted verification and valida-
tion technique and its description, respectively. A VVLog element is modelled
in terms of a VVActualOutcome element, which specifies the actual output of
the verification and validation activity. The proposed methodology uses the
VVLog elements for back propagating the RCM models together with their
timing verification results to the related EAST-ADL model.

Figure 11.1 shows a simplified EAST-ADL model represented as a block
diagram using the EAST-ADL concepts discussed above. The model depicts
a DesignFunctionPrototype called Function, which is allocated to a Hard-
wareComponentPrototype called ECU. The Function and ECU elements are
typed to the related DesignFunctionType and HardwareComponentType, re-
spectively. Accordingly, ECU is an atomic node while Function is composed
by two sub-functions called SubFunction 1 and SubFunction 2 connected via
a FunctionConnector called Connector. Additionally, Function is associated
with a VVCase called Case and a timing constraint called TimingConstraint.

11.2.2 RCM
RCM is a modelling language for the predictable development of resource-
constrained embedded real-time systems developed by Arcticus Systems4 in
collaboration with Mälardalen University. With respect to the EAST-ADL
structural abstraction levels, RCM acts at the implementation level and it is
currently used by several OEM, Tier-1 and Tier-2 companies (e.g., Volvo Con-
struction Equipment, BAE Systems Hägglunds, Hoerbiger and Knorr Bremse)

4https://www.arcticus-systems.com

https://www.arcticus-systems.com


11.2 Background 151

Figure 11.2: Simplified RCM model

in the vehicular domain. In its current definition, RCM provides support for the
modelling of the software architecture, the execution platform, the allocation
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information and the timing properties of vehicular embedded systems5 [12].
Within RCM, the embedded software architecture is modelled by means of the
Software Function (SWC) elements and interactions among them. An SWC is
the lowest-hierarchical element, which encapsulates basic software functions,
and is defined by a Behaviour and an Interface elements. The Interface element
is responsible for grouping the ports of a SWC. As RCM distinguishes between
data and control flows among SWCs, an interface element contains two kinds
of port: data and control. The interactions among SWCs are modelled by
means of Connector elements. SWCs can be grouped in Assembly elements
for constructing the software architecture in a hierarchical manner. SWCs and
Assembly elements are contained in Mode elements, which are means for dis-
tinguishing different states or conditions in a system. For example, a system
can execute the start-up mode when bootstrapping and afterwards shifts to the
operational mode. Mode elements are contained within Application elements,
which represent independent software functionalities of the system. Appli-
cation elements provide means for isolating different software functionalities
as well as for specifying the safety-criticality level in accordance to the ISO
26262 standard for the functional safety of road vehicles [13]. We refer to the
RCM software models as the RCM models which contain the modelling el-
ements for representing the software architecture, only. As the main goal of
RCM is to provide support for the development of predictable vehicular em-
bedded systems, timing properties and constraints are pivotal in the language,
and they can be specified at different hierarchical levels of the software archi-
tecture (Application, Mode, Assembly). Timing constraints are modelled by
Timing Constraint elements which are specified on the data ports of the re-
lated software element. Within RCM, the execution platform of the vehicular
embedded system under development is modelled in terms of Node, Core and
Partition elements. A Node element models the specific processor architecture
and defines a unique run-time environment for the software architecture. A
Node element contains one or more Core elements, which model the process-
ing or computing unit of a Node element. Similarly, Core elements can contain
one or more Partition elements, which represent the logical division of a Core
elements into multiple computing resources. We refer to the RCM execution
platform models as the RCM models which contain the modelling elements for
representing the execution platform, only. Allocation information is modelled
by means of the isAllocated relation specified between any two Allocatable
and Allocator elements. Allocatable is an abstract superclass which specifies

5Please note that the complete explanation of the RCM language is outside the scope of this
work. The interested reader can refer to [12].
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the RCM software elements that can be allocated. Application, Mode, Assem-
bly and SWC elements are defined as extensions of the Allocatable superclass.
Similarly, Allocator is an abstract superclass which specifies to which execu-
tion platform element an Allocatable element can be allocated. Node, Core and
Partition elements are defined as extensions of the AllocationTarget class.

Figure 11.2 shows a simplified RCM model represented as a block diagram
using the RCM concepts described above. In particular, the model depicts a
System called System which consists of a Node called ECU and an Application
called Application. ECU is modelled as a single-core and single-partition node.
Application is modelled by means of a Mode called Operational which con-
tains an Assembly called Function. The internal architecture of the Assembly
consists of two SWCs, called SubFunction 1 and SubFunction 2, connected
by two Connector elements, called ConnectorData and ConnectorTrig, for the
data and the control flows, respectively. A TimingConstraint element is speci-
fied between the data output port of SubFunction 1 and the data input port of
SubFunction 2.

11.2.3 Timing Analysis

Many vehicular embedded systems are constrained by stringent timing require-
ments that must be satisfied during their development. End-to-end timing anal-
ysis is a well-established technique to verify the timing requirements that are
specified on these systems. Such an analysis must be integrated to the tool
chain that is used for the model- and component-based development of these
systems. In order to support the timing analysis an appropriate system view,
called end-to-end timing model, should be extracted from the software archi-
tecture of the system under analysis. The end-to-end timing model consists
of two models, namely timing model and linking model. The timing model
includes the timing properties (e.g., priorities, periods, worst- and best-case
execution times, offsets and jitter) and timing requirements (e.g., deadlines
and delay constraints) regarding all tasks, messages and task chains in the dis-
tributed embedded system. On the other hand, the information about links,
dependencies, control flows (activation information) and data flows (informa-
tion regarding data exchanges) among tasks and messages in all task chains are
captured in the linking model. For example, consider a task chain shown in
Figure 11.3. The chain is distributed over three nodes that are connected by
a network. The system timing model includes all the timing information (dis-
cussed above) in the three nodes and the network. Whereas, the linking model
includes all the linking information (discussed above) in the chain that initiates
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Task1 Task2 Task3 Task4

Sensor Node Actuation NodeComputation Node

Network

End-to-end Response Time

Brake 
Pedal
Sensor

Brake 
Actuator

Figure 11.3: Example showing end-to-end response time

at Task1 in the Sensor Node and terminates at Task4 in the Actuation Node.
It should be noted that the end-to-end timing model discussed above is in line
with the classical timing model for distributed embedded system [14, 15, 16].
The analysis engines use the end-to-end timing model to analyse the timing
behavior of the system. In this paper we consider the end-to-end timing analy-
sis given in [15, 17]. The analysis has been implemented in several industrial
tools, e.g., [17]. The analysis results consist of response times of tasks and
messages as well as system utilization. The analysis also calculates end-to-
end response times and delays. The end-to-end response time of a task chain is
equal to the elapsed time between the arrival of a stimulus, e.g., the brake pedal
sensor input at the sensor node and the corresponding response, e.g., the brake
actuation signal at the actuation node as shown in Figure 11.3. If the tasks in a
chain are activated independently (e.g., by periodic clocks) then various types
of end-to-end delays must also be computed to verify the timing behavior of
the system. Age and Reaction are two such delays that are commonly found
in vehicular embedded systems. The age delay in a task chain corresponds to
the freshness of the data that is available at the output of the chain. This delay
finds its importance in the control systems domain in vehicles. Whereas, the
reaction delay in a task chain corresponds to the first reaction at the output of
the chain for a given stimulus at the input of the chain. This delay finds its
application in the body electronics domain in vehicles. In order to explain the
age and reaction delays, consider a task chain in a single-node system as shown
in Figure 11.4.

The chain consists of two tasks, namely τ1 and τ2. The tasks are activated
by independent clocks of periods 25 milliseconds and 5 milliseconds respec-
tively. Assume that the Worst-Case Execution Times (WCETs) of these tasks
are 2 milliseconds and 1 millisecond respectively. Task τ1 reads data from reg-
ister Reg-1 and writes data to Reg-2. Similarly, task τ2 reads data from Reg-2
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1tReg-1 2tReg-2 Reg-3

Period = 25 Period = 5

WCET = 2 WCET = 1

Figure 11.4: A task chain with independent activations of tasks

and writes data to Reg-3. Since, the tasks are activated independently with
different clocks, there can be multiple outputs (Reg-3) corresponding to any
single input (Reg-1) to the chain as shown by several uni-directional arrows in
Figure 11.5.
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Task
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Task
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PERIOD2 = 5
WCET2 = 1

Reaction delay

Age delay

Figure 11.5: Example showing end-to-end delays

The age and reaction delays are also identified in Figure 11.5. These delays
are equally important in distributed embedded systems.

11.2.4 Paper Contributions in Relation with Authors’ Previ-
ous Work

In this work, we present MoVES, a model-driven methodology for real-time
distributed vehicular systems on single- and multi-core, supporting the devel-
opment and architectural exploration of system designs with temporal aware-
ness. The methodology leverages the interplay of EAST-ADL and RCM and
consists of a fully automated mechanism defined in terms of a set of model
transformations. RCM was originally thought for providing modelling pur-
poses, but it did not feature a canonical definition of the language in terms of a
metamodel. In [18], we reverse-engineered the RCM language and presented
a preliminary metamodel definition of the RCM core elements. In [19], we
provided a complete metamodel definition for RCM for modelling and timing
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analysis of vehicular embedded systems on single-core. In [12] we extended
the RCM metamodel definition for the development of vehicular systems on
multi-core. This extension introduced modelling elements for the representa-
tion of the execution platform and the allocation information. In this paper,
we leverage an even more enhanced version of the RCM metamodel definition
given in [12], which includes the concept of application. Early timing verifi-
cation is paramount in the vehicular domain. To this end, in [20] we proposed
a mechanism for the exploitation of RCM timing capabilities at EAST-ADL
design level. Such a mechanism leveraged the RCM metamodel definition
given in [19] and consisted of a single model transformation for the genera-
tion of the RCM software architecture and timing properties from an EAST-
ADL model, only. Moreover, the mechanism in [19] can not be applied for the
development of vehicular embedded systems on multi-core. In this paper, by
exploiting the new modelling capabilities of RCM, we introduce a methodol-
ogy for the development of real-time distributed vehicular embedded systems
on single- and multi-core, which guides the engineer to viable solutions with
respect to timing requirements. To this end, the presented methodology lever-
ages a refined version of the model transformation described in [20] and intro-
duces i) four new model transformations for the automatic translation of the
EAST-ADL FunctionalDesignArchitecture, HardwareDesignArchitecture and
Allocation to RCM models and ii) a new model transformation that captures
the timing analysis results and the corresponding RCM models and propagates
them to the design level. Finally, we discuss the applicability of the proposed
methodology by leveraging an industrial running example.

11.3 The MoVES Methodology: why?

Among other factors, early verification of non functional requirements can
positively affect the cost-efficiency of the software development for vehicu-
lar real-time embedded systems. Currently, early verification of non functional
requirements is hard to achieve due to the lack of automation supporting mod-
els integration and analysis. For instance, let us consider a typical development
process as described by the flowchart in Figure 11.6 (a).

As meaningful non functional analysis (such as timing) must be run on
implementation models, the engineer is required to create a RCM model man-
ually. The non functional analysis of interest is run on the manually created
RCM model and the result is verified against the given set of non functional re-
quirements. If the specified requirements are not met, the engineer is required
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Figure 11.6: Comparison between a development process without (a) and with
MoVES (b)
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to iterate the process and modify or create a new RCM model until a compliant
one is found. Since the process of creating and verifying implementation mod-
els is expensive, it is not leveraged early in the development process for having
quick and early feedback on the design level models. To boost early verifi-
cation, in this paper we propose MoVES, a novel model-driven methodology
for the development of vehicular real-time embedded systems supporting early
verification of non functional properties.

Let us consider a development process equipped with the proposed method-
ology as described by the flowchart in Figure 11.6 (b). In this setting, all mean-
ingful RCM models are automatically generated from the design models and
analysed by means of model transformations. Given a set of non functional
requirements, model transformations are responsible for the selection and back
propagation of the best RCM model (or set of models), too. Besides relieving
the engineer from the manual and iterative definition of a RCM model, the pro-
posed methodology enables early verification at design level. Moreover, while
several iterations may be needed in the manual process to reach a RCM model
that fulfils non functional requirements, MoVES is able to generate all mean-
ingful RCM models and identify the best one(s) (as shown in Section 11.6)
automatically in one single iteration.

11.4 MoVES for Timing

Timing requirements are crucial for our domain of interest, vehicular real-time
embedded systems, and that timing-related issues are typical problems aris-
ing very late in the development. For this reasons, in this work we discuss
an instantiation of MoVES for supporting the development and architectural
exploration of system-designs with temporal awareness.

MoVES leverages the interplay of EAST-ADL and RCM and provides au-
tomation for their integration by means of six model transformations. Fig-
ure 11.7 gives a graphical representation of the methodology and its composing
tasks.

The first step of the methodology is the automatic generation of the RCM
models representing the software architecture and its timing properties at the
implementation level. Such a generation process is characterised by a one-to-
many mapping meaning that multiple RCM software models can be a valid
translation of an EAST-ADL FucntionalDesignArchitecture, where each of the
RCM model would entail different timing and control flow information. Within
MoVES, this generation is entrusted to the FDA2RCM model transformation.
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Figure 11.7: The MoVES and its composing tasks

In particular, starting from an EAST-ADL FucntionalDesignArchitecture com-
plemented with EAST-ADL timing requirements, FDA2RCM generates, in a
single execution, the set of the corresponding RCM software models equipped
with RCM timing constraints as opposite to a manual generation considering
only one specific solution. The second step of the methodology is the auto-
matic generation of the RCM model representing the execution platform at the
implementation level. This step is performed by the HDA2RCM model trans-
formation which starts from an EAST-ADL HardwareDesignArchitecture and
generates a corresponding RCM execution platform model. As RCM models
the execution platform in a more detailed way than EAST-ADL (RCM employs
the concepts of core and partition), the engineer can manually refine the gener-
ated RCM execution platform models. Detailed execution platform models are
pivotal for the specification of the allocation information which, in turn, affects
timing analysis. The third step of the methodology merges the RCM software
and execution platform models into complete RCM models, where the allo-
cation information can be translated from the EAST-ADL Allocation. To this
end, the MERGE model transformation is responsible for merging each gener-
ated RCM software model with the generated RCM execution platform model.
The result is a set of complete RCM models. The fourth step of the method-
ology is the generation of the allocation information on the complete RCM
models and it is entrusted to the A2RCM model transformation. In particular,



160 Paper E

A2RCM is responsible for the translation of the allocation information from an
EAST-ADL Allocation model to the RCM complete models generated as a re-
sult of the MERGE transformation. Since RCM leverages a more fine-grained
allocation mechanism than EAST-ADL, the methodology, by means of the AL-
LOCATION model transformation, is able to generate additional RCM alloca-
tion configurations that can not be derived from EAST-ADL. At this point, the
RCM models contain all the information needed for the model-based timing
analysis. Once the timing analysis is run6, the analysis results are produced
and collected. The last step of the methodology is the back-propagation of
the analysis results at the design level for enabling timing-aware design deci-
sions and it is performed by the BP transformation. To this end, BP enriches
the initial EAST-ADL model with the analysis results and the related RCM
models such that the engineer can take timing-aware design decision on the
EAST-ADL models without creating or nor editing RCM models.

In the following sections, we present a detailed discussion of each of the
above mentioned model transformations. The complete implementation of
the proposed methodology is available at http://www.mrtc.mdh.se/
MoVES/.

11.4.1 FDA2RCM

FDA2RCM is a one-to-many model-to-model transformation between EAST-
ADL and RCM, which is realised in the Eclipse Modeling Framework (EMF)7

using the Janus Transformation Language (JTL) [9]. JTL is a constraint-based
bidirectional model transformation language specifically tailored to support
non-determinism by generating all the possible target models in a single exe-
cution. Its implementation relies on the Answer Set Programming (ASP) [21],
which is a type of declarative programming able to address hard (primarily
NP-hard) search problems and based on the model (answer set) semantics of
logic programming. The ASP solver is responsible to find and generate, in
a single execution, all the possible target models that are consistent with the
transformation rules following a deductive process. JTL adopts a QVTr-like
syntax and allows a declarative specification of relationships between MOF
models. It supports object pattern matching and automatically creates traces
information to record what occurred during a transformation execution.

6The proposed methodology leverages model-based timing analysis. However, the analysis
itself is not part of the contributions of this work. The interested reader can refer to [17] for further
details.

7https://eclipse.org/modeling/emf/

http://www.mrtc.mdh.se/MoVES/
http://www.mrtc.mdh.se/MoVES/
https://eclipse.org/modeling/emf/
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The FDA2RCM transformation is the starting point of the methodology
and provides for the translation of the software architecture of the vehicular
embedded system under development and its timing properties. An initial ver-
sion of the FDA2RCM transformation is given in [20]. The proposed version
i) extends the one in [20] with new rules for the translation of the EAST-ADL
FunctionalDesignArchitecture elements into the RCM software elements com-
posing the current RCM structural hierarchy (e.g., System, Application, etc.)
and ii) replaces the logic constraints in the pre- and post-conditions of the trans-
formation rules in favour of more compact and understandable transformation
rules. In a nutshell, the FDA2RCM transformation is responsible for trans-
lating the elements of the EAST-ADL FunctionalDesignArchitecture to RCM
software elements. In particular, it maps the EAST-ADL DesignFunctionPro-
totype, FunctionPort, FunctionConnector, AgeConstraint and ReactionCon-
straint elements to the RCM Assembly, SWC, Port, ConnectorData, DataAge
and DataReaction elements, respectively. Additionally, the FDA2RCM trans-
formation provides for the automatic generation of the RCM ConnectorTrig,
Clock and Sink elements representing detailed control flow and timing infor-
mation. As detailed control flow and timing information is not described in the
EAST-ADL FunctionalDesignArchitecture, a single source EAST-ADL Func-
tionalDesignArchitecture can not be univocally translated in a single RCM
model. For instance, the DFP2C and the DFP2CCS rules in Listing 11.1 define
a non deterministic portion of the FDA2RCM transformation where a Design-
FunctionPrototype element can be translated either to a SWC element or to a
SWC element equipped with a Clock and a Sink element.

1 transformation FDA2RCM(dl:designLevel, rcm:RubusMM) {
2 relation DFP2C {
3 name, id:String;
4 checkonly domain dl

ps:designLevel::DesignFunctionPrototype {
5 name = name,
6 id = id,
7 type = t:designLevel::DesignFunctionType {
8 isElementary = true
9 }

10 };
11 enforce domain rcm at:RubusMM::Assembly {
12 circuit = c : RubusMM::Circuit {
13 name = name,
14 id = id
15 }
16 };
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17 where{...}
18 }
19 relation DFP2CCS {
20 name, id:String;
21 checkonly domain dl

ps:designLevel::DesignFunctionPrototype {
22 ...
23 };
24 enforce domain rcm at:RubusMM::Assembly {
25 circuit = c:RubusMM::Circuit {
26 name = name,
27 id = id,
28 interface = i:RubusMM::Interface {...}
29 },
30 clock = clk:RubusMM::Clock {...},
31 sink = snk:RubusMM::Sink {...},
32 connectorTrig = con1:RubusMM::ConnectorTrig {...},
33 connectorTrig = con2:RubusMM::ConnectorTrig {...}
34 };
35 where{...}
36 }
37 }

Listing 11.1: Fragment of the FDA2RCM model transformation in JTL.

In this context, the JTL engine is able to generate, in a single execution, all the
RCM software models entailing different and unique configurations of, e.g.,
SWC, Clock and Sink elements as opposite to a manual translation consider-
ing only a specific model. It is important to notice that, logic constraints can
be applied for narrowing the space of the generated models. For instance, the
execution of the FDA2RCM transformation to the source EAST-ADL model
depicted in Figure 11.8 (a)8 could be narrowed by means of logic constraints
which could guide the generation of RCM models to those entailing valid con-
figurations of SWC, Clock and Sink elements, only.

Accordingly, only the two RCM models in Figure 11.8 (b) and Figure 11.8
(c) would be generated. In the former, the SWC Actuator is activated from the
SWC Sensor through the Connector Connector Trig, while in the latter it is
activated by the independent Clock Clock Actuator.

8For better understandability, we represent EAST-ADL and RCM models by means of a sim-
plified graphical concrete syntax.
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Figure 11.8: Example of simplified source and target models for the
FDA2RCM transformation

11.4.2 HDA2RCM
HDA2RCM is a model-to-model transformation between EAST-ADL and RCM,
which is realised by means of JTL. Together with the FDA2RCM transforma-
tion, HDA2RCM is the staring point of the methodology and provides automa-
tion means for the translation of the execution platform of the vehicular embed-
ded system under development. In fact, execution platform models are pivotal
for the specification of the allocation information which, in turns, affects tim-
ing analysis. Trivially, the over utilisation of a processor or a core can lead to
timing deadline misses.

1 transformation HDA2RCM(dl:designLevel, rcm:RubusMM) {
2 relation AtomicHardwareComponentPrototype2Node {
3 id, name: String;
4
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5 checkonly domain dl hardwareComponentPrototype :
designLevel::HardwareComponentPrototype {

6 id = id,
7 name = name,
8 type = hardwareComponentType : designLevel::Node {...}
9 };

10

11 enforce domain rcm system : RubusMM::System {
12 connectorNetwork = connectorNetwork :

RubusMM::ConnectorNetwork {},
13 node = node : RubusMM::Node {
14 id = id,
15 name = name
16 core = core : RubusMM::Core {
17 ...
18 partition = partition : RubusMM::Partition {...}
19 }
20 };
21 where {...}
22 }
23 }

Listing 11.2: Fragment of the HDA2RCM model transformation in JTL.

The HDA2RCM transformation is responsible for translating the EAST-
ADL HardwareComponentPrototype elements to RCM execution platform el-
ements. In particular, it maps the EAST-ADL Node, HardwarePortConnector
and HardwarePort elements to the RCM Node, ConnectorNetwork and Port el-
ements, respectively. As discussed in Section 11.2, RCM models the execution
platform with a structural hierarchy of elements consisting of Node, Core and
Partition. However, EAST-ADL provides modelling element for the represen-
tation of Node elements, only. Therefore, in order to generate valid RCM mod-
els, the HDA2RCM transformation automatically generates, for each RCM
Node element, a Core and a Partition element, too. Please note that, the engi-
neer can still manually refine the generated RCM execution platform model, if
needed. Listing 11.2 depicts an extract of the HDA2RCM transformation con-
sisting of the transformation rule responsible for the generation of RCM Node,
Core and Partition elements. Figure 11.9 depicts an example of an execution
of the HDA2RCM model transformation. In particular, the EAST-ADL model
depicted in Figure 11.9 (a) and consisting of two connected Node elements,
Node1 and Node2, is translated into the RCM model depicted in Figure 11.9
(b) consisting of two connected Node elements, Node1 and Node2, containing
a Core and a Partition element each.
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Figure 11.9: Example of simplified source and target models for the
HDA2RCM transformation

11.4.3 MERGE and A2RCM

MERGE and A2RCM are two model-to-model transformations realised within
EMF using the QVT Operational (QVT-O) language [22]. Query/View/Trans-
formation (QVT) is a standard set of model transformation languages defined
by the Object Management Group and it is composed by three model transfor-
mation languages, which are QVT-O, QVT Relations and QVT Core. QVT-O
is an imperative language especially designed for writing unidirectional model
transformations when declarative model transformations are hard to specify
due to the absence of direct correspondence between elements of the source
and target models. Thereby, a QVT-O model transformation explicitly spec-
ifies the steps to execute in order to generate a target model starting form a
source one.

Once the FDA2RCM and the HDA2RCM transformations are run, a set
of RCM software models and one RCM execution platform model are pro-
duced. In this context, the MERGE transformation is responsible for merging
a RCM software model to the RCM execution platform model with the pur-
pose of creating a complete RCM model where the allocation information can
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Figure 11.10: Example of simplified source and target models for the MERGE
transformation

be translated and refined. In a nutshell, the MERGE transformation performs
a weaving of the RCM models, where the modelling elements of the RCM ex-
ecution platform model are linked to the System element of the RCM software
model through its Node reference. Let us consider the RCM execution plat-
form and software models depicted in Figure 11.10 (a) and Figure 11.10 (b),
respectively. The former consists of a System element called BBW containing
a Node element called Node1, which contains a Core element Core1. Eventu-
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ally, Core1 contains a Partition element called Partition1. The latter consists of
a System element called BBW, which in turns contains an Application element
called Function. Function contains a Mode element called Operational, which
contains an Assembly element called Assembly1. Assembly1 contains a SWC
called Circuit1. Accordingly, the application of the MERGE transformation
would produce the RCM model depicted in Figure 11.10 (c) where the RCM
execution platform elements in Figure 11.10 (a) are integrated into the RCM
software model in Figure 11.10 (b) by means of the Node reference of the Sys-
tem BBW element. A2RCM is an in-place transformation [23] which follows

Figure 11.11: Example of a simplified source and target models for the A2C
transformation

the MERGE transformation and it is responsible for translating the allocation
information from the EAST-ADL Allocation to each of the RCM models gen-
erated from the MERGE transformation. Allocation information is crucial for
the model-based timing analysis as, e.g., the over utilisation of a node or a core
element can result in violating the timing requirements. As discussed in Sec-
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tion 11.2, in EAST-ADL the allocation information is modelled by means of
a set of Function Allocation elements which links the DesignFunctionProto-
type element to the HardwareComponentPrototype element. For instance, the
Function Allocation Allocation1 in Figure 11.11 (a) allocates the DesignFunc-
tionPrototype Function to the HardwareComponentPrototype Node1. In RCM,
the allocation information is specified by means of the isAllocated reference of
the Allocatable elements. Therefore, the A2RCM transformation is responsi-
ble for setting the RCM isAllocated references according to the EAST-ADL
Function Allocation elements. For instance, if we apply the A2RCM model
transformation to the EAST-ADL Allocation depicted in Figure 11.11 (a), we
obtain the RCM model in Figure 11.11 (b). Accordingly, the isAllocated ref-
erence of the Application element called Function is set to the Node element
called Node1.

11.4.4 ALLOCATION

ALLOCATION is a one-to-many, in-place model transformation on the RCM
language realised by means of JTL. As discussed in Section 11.2, compared to
EAST-ADL, RCM leverages a more fine-grained structural hierarchy for the
modelling of the execution platform and the allocation. In particular, within
RCM, any Allocable element (Function, Mode, Assembly and SWC) can be
allocated to any of the Allocator element (Node, Core and Partition). Due to
the different granularity between RCM and EAST-ADL, complete allocation
information can not be directly translated from an EAST-ADL Allocation. In
this context, the ALLOCATION transformation provides automation means for
the generation of the allocation information in the RCM models when a direct
translation from EAST-ADL is not possible. In other words, the ALLOCA-
TION transformation automatically generates the isAllocated reference of the
RCM Allocatable elements and sets it to any of the RCM Allocator elements.
As there can be several allocation strategies, the engineer is required to express
a choice over the preferred one. This can be done by toggling the comments
on the transformation rules which realise the desired allocation strategy (e.g.,
Assembly to Core, Assembly to Partition, SWC to Core, etc.). Based on the
user choice, the ALLOCATION transformation is able to generate, in a single
execution, all the RCM models which entail different and unique allocation
configurations. Similarly to the FDA2RCM, logic constraints can be applied
for narrowing the number of the generated RCM models. This is particularly
useful when partial allocation information is already available (as in case of,
e.g., legacy vehicular systems) or for discarding specific allocation configura-
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tions.

1 transformation ALLOCATION(source:RubusMM, target:RubusMM) {
2

3 relation Assembly2AllocatedAssemblyNode{
4 name, id: String;
5

6 checkonly domain source as:RubusMM::Assembly {
7 name = name,
8 id = id
9 };

10

11 enforce domain target at:RubusMM::Assembly {
12 name = name,
13 id = id,
14 isAllocated = n:RubusMM::Node {...}
15 };
16 }
17 }

Listing 11.3: Fragment of the ALLOCATION model transformation in
JTL.

Listing 11.3 shows a fragment of the ALLOCATION transformation which de-
picts the transformation rule responsible for allocating the Assembly element
to Node element. Accordingly, the JTL engine generates, in a single execution,
all the RCM models entailing different combinations of Assembly to Node el-
ements. That is, the application of the ALLOCATION transformation to the
RCM model depicted in Figure 11.12 (a) generates the two RCM models de-
picted in Figure 11.12 (b) and Figure 11.12 (c). In the former, Assembly1 is
allocated to Node1, while in the latter Assembly1 is allocated to Node2.

11.4.5 BP
BP is an in-place, text-to-model transformation on the EAST-ADL metamodel
realised by means of QVT-O. Within MoVES, BP is the last step for unveil-
ing the RCM models and their related analysis results at the design level thus
for enabling timing-aware design decisions. In fact, once the RCM model and
the analysis results are unveiled at design level, the engineer can easily grasp
the compliance of the starting EAST-ADL models to the specified timing re-
quirements. Even further, she can select the most appropriate RCM model,
among the compliant ones, for proceeding with the development process. The
BP transformation uses the EAST-ADL VVCase modelling element from the
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Figure 11.12: Example of simplified source and target models for the ALLO-
CATION transformation

Requirement package. In particular, it automatically creates the VVLog and
VVActualOutcome modelling elements for the given VVCase element and sets
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their attribute Date, ID and Name. Moreover,the BP transformation is respon-
sible for setting the Text attribute of the EAST-ADL VVACtualOutcome ele-
ment with the URLs of the folders containing the timing analysis results and
the related RCM models.

11.5 Case Study
In this section, we demonstrate the usability of MoVES by developing the
adaptive cruise control system as an extension of the cruise control system. The
cruise control system is a vehicular feature which allows the vehicle to keep a
steady speed to the value provided by the driver. To this end, it employs (at
least) 4 modules: one for communicating/controlling the engine, one for com-
municating/controlling the brakes, one for communicating with the driver’s
instrument cluster and one for the computation. However, the traditional cruise
control system does not take into account traffic information such as presence
of other vehicles or obstacles. The Adaptive Cruise Control (ACC) system is a
vehicular feature which allows a vehicle’s cruise control to adapt the vehicle’s
speed to the surrounding environment. More precisely, once the user sets a tar-
get speed and a time gap for the vehicle, a radar detects slow-moving vehicles
or other obstacles that are in the path of the vehicle. In case an obstacle or a
slower vehicle is detected, the ACC system slows down the vehicle or brakes
to keep the desired distance between the ACC vehicle and the obstacle or the
forward vehicle, where the distance is calculated as a function of the specified
time gap and the speed of the vehicle. When the ACC system detects that the
forward vehicle or the obstacle is no longer in the vehicle’s path, it speeds up
the vehicle to maintain the cruise speed set by the driver. With respect to the
cruise control functionality, the ACC enhances the computation module with
functionalities which provide the adaptive features. Figure 11.13 shows a block
diagram of the ACC system9 that is adapted from [24].

The InstrumentClusterModule is responsible for collecting the user’s in-
puts, such as speed and time gap, and for sending them to the AdaptiveCruiseC-
ontrolModule. The EngineControlModule and the BrakeControlModule are
responsible for sending the information regarding speed and braking of the ve-
hicle to the AdaptiveCruiseControlModule, respectively. AdaptiveCruiseCon-
trolModule is the core of the ACC feature and it is responsible for calculating
the acceleration and the braking of the vehicle in the presence of forward vehi-

9The interested reader can access the full ACC case study implementation at http://www.
mrtc.mdh.se/MoVES/.

http://www.mrtc.mdh.se/MoVES/
http://www.mrtc.mdh.se/MoVES/
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Figure 11.13: Block diagram of the ACC system.

cles or obstacles. In particular, the InputHandler software component is respon-
sible for acquiring and processing the inputs coming from the other modules
and to forward them to the InputProcessing software component. Similarly,
the RadarInput software component is responsible for acquiring and process-
ing the information coming from the radar and forwarding it to the InputPro-
cessing software component. Based on the user inputs on the cruise mode and
considering the presence of a forward obstacle, the InputProcessing software
component is responsible for computing the decision whether the vehicle has to
slow down, speed up or keep a steady speed. It communicates this information
to the OutputHandler software component which, in turn, is responsible for
sending the related brake torque and throttle signal to the BrakeControlModule
and EngineControlModule, respectively.

According to MoVES, the development starts from an EAST-ADL Fucn-
tionalDesignArchitecture, HarwareDesignArchitecture and Allocation models.
Figure 11.14 depicts an extract of the EAST-ADL FucntionalDesignArchitec-
ture for the ACC. In the remainder of this section, for the sake of verbosity, we
adopt a simplified concrete syntax both for the EAST-ADL and RCM models
and omit some modelling elements if of no interest for the discussion.

The modules and their inner architecture are represented by means of the
DesignFunctionPrototype and FunctionFlowPort elements. For instance, the
RadarInput software component is represented by means of the RadarInput De-
signFunctionPrototype element and the RadarIn and RadarOut FunctionFlow-
Port elements. The connections among software components and modules are
represented by means of FunctionConnectorelements connecting the Function-
FlowPort elements. Fo instance, the RadarInput and InputProcessing Design-
FunctionPrototype elements are connected by means of the RadarOut2RadarIn
FunctionConnector connecting the RadarOut and RadarSignal FunctionFlow-
Ports. In addition to the architectural elements, two timing constraints, denoted
by Reaction Constraint T1 and Age Constraint T2, and VVCase element, de-
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Figure 11.14: EAST-ADL FunctionalDesignArchitecture of the ACC system

noted by TimingANalysis, are specified. According to these constraints:
The reaction and age delays between the arrival of the radar signal at the input
of the InputProcessing software component and its delivery to the BrakeCon-
trolModule shall not exceed 25 and 15 milliseconds, respectively. Starting from
the EAST-ADL FucntionalDesignArchitecture in Figure 11.14, MoVES auto-
matically generates RCM software models. In particular, RCM System, Appli-
cation and Mode elements, namely AdaptiveCruiseControl, AdaptiveCruiseC-
ontrol and AdaptiveCruiseControl Operational are generated. The Adaptive-
CruiseControlModule, EngineControlModule, BrakeControlModule and Instru-
mentClusterModule DesignFucntionPrototype elements are translated into RCM
Assembly elements while the InputHandler, RadarInput, InputModeControl,
Processing and Outputhandler DesignFunctionPrototype elements are trans-
lated into RCM SWCs. PortData, ConnectorData and TimingConstraint el-
ements are generated from the EAST-ADL FunctionFlowPort, FunctionCon-
nector and TimingConstraint elements, respectively. Due to the lack of control
flow information in EAST-ADL, RCM PortTrig, ConnectorTrig, Clock and
Sink elements are automatically generated by the FDA2RCM.

However, as there might be multiple ways of specifying these elements, this
generation produces four RCM software models each of which entails different
and unique combinations of RCM PortTrig, ConnectorTrig, Clock and Sink el-
ements. For instance, let us consider the activation of the OutputHandler SWC
in the two RCM models in Figure 11.15. In the RCM model in Figure 11.15
(a), the OutputHandler SWC is triggered by an independent clock whether in
the RCM model in Figure 11.15 (b) it is triggered by its predecessor, InputPro-
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Figure 11.15: Two of the four RCM software models of the ACC system

cessing. Within MoVES, the second step is the translation of the EAST-ADL
HardwareDesignArchitecture model representing the execution platform archi-
tecture. Figure 11.16 depicts the EAST-ADL HardwareDesignArchitecture for
the ACC feature.

Figure 11.16: EAST-ADL HardwareDesignArchitecture of the ACC system

It is realised by means of two Node elements, Node 1 and Node 2, each of
which represents a MPC560XP microcontroller that is a single-core microcon-
troller for vehicular and industrial safety applications10. Two HardwarePort-
Connector elements, Node 12Node 2 and Node 22Node 1, realise the commu-

10http://www.nxp.com/products/automotive-products/

http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
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nication between the two nodes. Starting from the EAST-ADL HardwareDes-
ignArchitecture in Figure 11.16, MoVES generates the RCM model depicted
in Figure 11.17.

Figure 11.17: RCM execution platform model of the ACC system

In particular, the EAST-ADL Node and HardwarePortConnector elements
are translated into RCM Node and NetworkConnector elements. According to
the HDA2RCM transformation, the inner architecture of each generated RCM
model is enriched with a Core and a Partition element. That is, Core 1 and
Partition 1 elements are generated for the RCM Node 1 and Node 2 elements.
Eventually, by means of manual refinements, an additional Partition element,
Partition 2 is added to the RCM Node 2. At this point, MoVES merges the
RCM software and execution platform models and the result is a set of four
complete RCM models where the allocation information from the EAST-ADL
Allocation can be translated. To this end, Figure 11.18 depicts the EAST-ADL
Allocation model for the ACC feature.

The EAST-ADL Allocation model consists of four FunctionAllocation ele-
ments mapping AdaptiveCruiseControlModule to Node 1 and InstrumentClus-
terModule, EngineControlModule and BrakeControlModule to Node 2. Ac-
cordingly, MoVES translates the allocation information on the RCM models
resulting from the MERGE transformation. Figure 11.19 depicts one exam-
ple of RCM model along with the translated allocation information. Conse-
quently, the isAllocated references of the InstrumentClusterModule, Brake-
ControlModule and EngineControlModule assemblies are set to the Node 2
element while the isAllocated reference of the AdaptiveCruiseControlModule

microcontrollers-and-processors/32-bit-power-architecture/ultra-
reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-
mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-
safety-applications:MPC560xP

http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
http://www.nxp.com/products/automotive-products/microcontrollers-and-processors/32-bit-power-architecture/ultra-reliable-mpc56xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP
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Figure 11.18: EAST-ADL Allocation of the ACC system

Assembly elements is set to the Node 1 element. However, as EAST-ADL does
not leverage the concepts of cores and partitions for the modelling of the ex-
ecution platform, the allocation of the InstrumentClusterModule, EngineCon-
trolModule and BrakeControlModule elements can not be refined with respect
to core and partition elements of Node 2. Nevertheless, such an information
can be automatically generated from the ALLOCATION transformation as de-
scribed in Section 11.3. In particular, for the ACC system, we decided to
choose an allocation strategy which allocates Assembly to Partition elements.
Consequently, as there are 8 different ways to allocates the three Assembly el-
ements to the two Partition elements, MoVES generates a final set of 32 RCM
models (8 refined RCM models for each of the 4 RCM models resulting from
the A2C). Eight of the 32 final RCM models are depicted in Figure 11.20.

At this point, model-based timing analysis is run on each of the gener-
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Figure 11.19: RCM model for the ACC system with the allocation information

ated 32 RCM models with the aim of verifying whether the specified reaction
and age constraints are met. Table 11.1 summarises the results of the timing
analysis. Table 11.1 summaries the analysis results for the 32 generated RCM
models. It can be seen that, out of the 32 RCM models of the ACC system, only
16 RCM models satisfy the specified age and reaction constraints. In particu-
lar, MoVES is able to automatically identify the 5 RCM models with the best
timing performances. In this respect, it is important to note that MoVES can be
easily constrained for notifying the engineer only with the best RCM models
rather than with all the compliant ones. Eventually, the VVLog and VVActu-
alOutcome elements are created for the VVCase TimingAnalysis. Moreover,
the attribute Text of the VVActualOutcome is set to the URLs of the folders
containing the generated RCM models and their analysis results. At this point,
the engineer can select any of the 16 RCM models satisfying the specified age
and reaction constraints and continue with the synthesis of the code for the
target platform.
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Table 11.1: Age and Reaction delay analysis results
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Figure 11.20: RCM models for the ACC system with the refined allocation
information

11.6 Discussion and Validation
In this work, we introduced a novel model-driven methodology, MoVES, for
the software development of real-time distributed vehicular embedded systems
on single- and multi-core platforms. Considering the importance of timing, the
proposed methodology supports the development and architectural exploration
of system-designs with temporal awareness. To this end, MoVES leverages the
interplay of two domain-specific modelling languages, EAST-ADL and RCM,
and provides a fully automated mechanism for the generation of the RCM mod-
els containing detailed software, execution platform, timing and allocation in-
formation for schedulability analysis. EAST-ADL has been developed by the
automotive industry and its consortium includes several international automo-
tive companies such as McLaren, Volvo, FIAT, Hyundai, etc. The validation
of the applicability and correctness of EAST-ADL is outside the scope of this
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work, however, the interested reader, can refer to [3]. The RCM metamodel
definition exploited in this work is an extension of the previous definition given
in [12]. Through the years the applicability and correctness of RCM has been
verified against several industrial system designs such as i) the Intelligent Park-
ing Assist (IPA) System [25] (consisting of 2 Node elements and 42 SWCs), ii)
the simplified IPA system [26] (consisting of 2 Node elements and 7 SWCs),
iii) the Steer-by-wire System [20] (consisting of 1 Node and 6 SWCs) and the
Brake-by-wire System [12] (consisting of 3 Node elements and 14 SWCs).
Additionally, its industrial relevance has been acknowledged by our industrial
partners (e.g., Volvo CE, BAE Systems, etc.) through several national and in-
ternational projects [27].

The automation mechanism, core of the MoVES methodology, is realised
by means of a suite of six model transformations. In this respect, the case study
presented in Section 11.5 helps in discussing some interesting properties of the
model transformations, such as syntactic and semantic correctness, complex-
ity, termination and performance. With the term syntactic correctness, we refer
to the ability of a transformation to produce valid target models when executed
on valid source models [24]. Such a property holds for transformations lever-
aged in MoVES and the interested reader can easily check the validity of the
generated RCM models by accessing the MoVES implementation11 With the
term semantic correctness, we refer to the ability of a transformation to pro-
duce semantically valid target models [24]. In this respect, it is important to
note that none of the transformations within MoVES suffer of information loss.
That is, they consist of a precise and finite set of rules for mapping EAST-ADL
to RCM elements without altering, violating or colliding the structural hierar-
chies of the languages. Eventually, the semantic of the generated RCM mod-
els was validated by the leveraged schedulability analysis. We consider two
dimensions for the transformations’ complexity. The first dimension of the
transformations’ complexity refers to the complexity of the generated RCM
models. In this respect, it is important to note that the transformations al-
ways generate RCM models of equal complexity of manually defined RCM
models. The second dimension of the transformations’ complexity refers to
the size of the generated set of RCM models. All the leveraged model trans-
formations, except FDA2RCM and ALLOCATION, are one-to-one. For the
FDA2RCM transformation, if we set n as the number of the software func-
tions enclosed by the timing constraints, then FDA2RCM would generate a
maximum of 2(n−1) RCM models. For instance, in the case of the ACC fea-

11 http://www.mrtc.mdh.se/MoVES/

http://www.mrtc.mdh.se/MoVES/
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ture, despite the EAST-ADL FunctionalDesignArchitecture models 9 software
functions, the FDA2RCM generates only 4 RCM models as the specified age
and reaction constraints enclose 3 software functions. It is important to remark
that, as discussed in Section 11.5, logic constraints can be applied for reducing
the number of the generated RCM models by discarding those models which
entails configurations of timing and control elements that are known to be not
relevant. For the ALLOCATION transformation, if we set k as the number of
RCM Allocator elements and n as the number of the RCM Allocated elements,
then ALLOCATION would generate a maximum of k(n) RCM models. For in-
stance, in the case of the ACC feature, we decided to proceed with an allocation
strategy assigning the n = 3 RCM Assembly to the k = 2 Partition elements.
Accordingly, a total number of 8 RCM models containing unique allocation
configurations was generated. Similar to FDA2RCM, logic constraints can be
specified for narrowing the generation process. For instance, let us consider
the case in which we are not interested in the RCM models containing alloca-
tion configuration where the EngineControlModule Assembly is not allocated
to the Partition 2. In other words, we fix the allocation of the EngineCon-
trolModule Assembly to the Partition 2. In this case, ALLOCATION would
generate only 4 RCM models. Trivially, the transformations’ complexity can
affect the termination and performance properties. Although providing formal
proof on these properties was outside the scope of the work, the case study
showed that all the transformation terminate in few seconds12.

We believe that MoVES discloses the opportunity to improve the cost-
efficiency of software development process by means of i) automation and ii)
reduced need for late modifications on the software. In particular, automation
by means of model transformations allows to cut the development time while
ensuring the compliance with the non functional requirements of the vehicu-
lar embedded software. Without MoVES, in fact, the software development
would progress incrementally with team of engineers manually defining im-
plementation models until a suitable one, from a non functional perspective,
is found. On the contrary, by adopting MoVES, the implementation models
would be automatically generated and non functional requirements verified at
once allowing the engineers to focus and reason only on the compliant ones.
Kurt-Lennart Lundbäck, CEO of Arcticus Systems, on the use of MoVES:

“I feel that autonomous vehicles on multi-core platforms are introducing
a lot more of complexity and concerns. In this domain, automation can be a
game-changer. For us, as a tool and technology providers, it would be partic-

12The case study was run on a 1,7 GHz Intel Core i7 processor, with 8 GB 1600 MHz DDR3
memory.



182 Paper E

ularly beneficial to have automated support for things like ‘allocation’ for re-
ducing the complexity of our tool suite, Rubus ICE, and improve its usability.
For our customers, this can result in lower development effort and improved
confidence in the quality of the software under development.”

It is important to note that MoVES does not introduce accidental complex-
ity in the software development process. In fact, it is true that setting up the
methodology might require an additional effort, but it is a one-time-effort as
opposed to manual processes always requiring constant effort. Moreover, the
engineer would have to deal only with the set of RCM models satisfying the
non functional requirements which, as shown in Section 11.5 for timing, is a
limited number (5 out of the 32 generated RCM models). By allowing early
verification, MoVES discloses the opportunity of reducing late modifications
on the vehicular embedded software, which empirical studies showed to be up
to 40 times more expensive than same modifications during the design of the
software [6]. In fact, by using MoVES, the engineer is either notified on the
non compliance of the starting EAST-ADL models to the set of the considered
non functional requirements or notified with the set of the compliant RCM
models with which proceed for the development. In the former scenario, late
modifications are prevented while in the latter they are not needed.

In this article, MoVES is presented by specifically targeting timing prop-
erties, given the paramount relevance of these properties in the design and de-
velopment of vehicular embedded systems. Nonetheless, there are further non
functional properties that play an important role during the development of
these systems, namely memory usage, energy efficiency, and so forth. In this
respect, it is worth to note that the methodology proposed by MoVES can be
instantiated to consider these and other properties, as long as they are measur-
able and comparable at the EAST-ADL and RCM levels of detail. Additionally,
other properties can be exploited for comparing multiple RCM models having
equally good timing performance and selecting the best available RCM model
solution. Moreover, further non functional properties could be considered from
the initial stages of the proposed workflow to be integrated and used during the
generation process of the possible solutions. In both cases, the MoVES would
need to be extended only in terms of specific model transformations for the
generation of the related non functional properties of interest.
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11.7 Related Work

This article deals with several research problems, here grouped as development
of vehicular software systems, development of multi-core systems, and support
for design-space exploration. In the remainder of this section, for each of the
mentioned problems relevant related works are discussed.

11.7.1 Development of vehicular embedded systems

The growing complexity of nowadays vehicular software demands adequate
approaches for its effective development. AUTOSAR [4] is an industrial ini-
tiative to provide a standardised software architecture for the development of
vehicular software systems. The timing model for AUTOSAR was developed
in the TIMMO and TIMMO2USE projects [28, 29]. In these projects, a frame-
work was developed to specify the end-to-end timing constraints and analyse
the corresponding end-to-end delays [30, 31, 15]. In general, AUTOSAR is
not meant to be used in isolation, but plays the role of the implementation level
as e.g. prescribed by the EAST-ADL. Even if the layered structuring of EAST-
ADL entails abstraction and separation-of-concerns in the development, there
is no specific automation support for interconnecting the different layers. As
a consequence, the results of analysis performed at lower levels of abstrac-
tion, e.g. by means of AUTOSAR, have to be manually tracked back to higher
levels, e.g. design models. More in general, the discontinuities in the devel-
opment process due to the abstraction gaps between the different layers have
to be tackled manually by the developer. This task can be time-consuming
and error-prone, especially when considering the complexity of modern ve-
hicular systems [32]. On the contrary, in this article we propose to leverage
automation through model transformations to keep the consistency between
the different abstraction levels. The abstraction gaps naturally introduce non-
determinism, which is managed by an appropriate transformation language
(JTL). Multi-core architectures are part of the AUTOSAR standard since ver-
sion 4.0. However, AUTOSAR does not distinguish between the control and
the data flows at the application software level, a distinction that is fundamen-
tal for providing early timing verification [33]. Moreover, AUTOSAR does not
provide means for modelling the execution platform [34]. These issues moti-
vate our choice of using RCM as the implementation level for EAST-ADL and
the MoVES methodology. CHESS is a cross-domain framework for the design
of component-based embedded systems, including vehicular systems [35]. It
is based on a combination of different languages, like MARTE and SYSML,
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which gave birth to a specific UML profile. The framework provides modelling
of embedded software for early analysis, such as dependability and schedula-
bility, as well as for code generation, monitoring, and back-propagation. Cur-
rently, the CHESS framework does not provide design-space exploration, nor
it supports uncertainty in the development process. Vehicular systems are often
referred to as cyber-physical systems (CPS) [36], especially when considering
autonomous driving and networks of vehicles (fleets). Several approaches deal
with CPS development by adopting multi-paradigm modelling techniques and
leverage simulation mechanisms to perform early analysis of systems [37, 38].
Even if the analyses presented in this article do not exploit simulation tech-
niques, the MoVES methodology does not prevent the use of simulation mech-
anisms to analyse and select the generated design alternatives with respect to
quality attributes of interest.

11.7.2 Development of embedded systems

Given the ubiquity of software and its mission criticality, there exists a corpus
of literature devoted to the design of embedded systems pertaining to disparate
application domains and posing a special focus to QoS requirements. In this
respect, several works are based on the use of UML and the UML profile for
MARTE [39]. These general-purpose languages might be used as alternatives
to domain-specific (i.e. vehicular) languages as, e.g., AUTOSAR and RCM.
GASPARD is a framework based on MARTE for the design of parallel embed-
ded systems [40]. It provides a modelling support based on UML and MARTE,
and prescribes a workflow made-up of subsequent analyses and refinement
steps, from higher to lower abstraction levels. Similarly to MoVES, some anal-
yses and refinements can be performed at the (EAST-ADL) design level, while
others can only be performed at lower abstraction levels (e.g., timing). Also
for GASPARD moving from higher to lower abstraction levels raises the issue
of managing multiple alternatives. Indeed, in [40] the authors advocate for a
refinement process able to prune inadequate alternatives based on analysis re-
sults. However, the authors do not discuss the management of multiple alterna-
tives, nor provide details about the refinement process that seems to rely on the
selection of a single candidate for each level of abstraction. VERTAF/Multi-
core [41] is a UML-based framework for the development of multi-core soft-
ware. The software system is described by means of UML class diagrams,
timed state machines and sequence diagrams, while model transformations are
used for enabling analysis like schedulability. MARTE is adopted also in [42]
and [43] to design the high-level architecture of the software system and for
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the generation of implementation code. The former approach prescribes the
use of UML for modelling the software components while MARTE is used
for modelling hardware and software to hardware allocations. Moreover, tim-
ing verification is accomplished by running simulations on the automatically
generated code. The latter approach instead targets component-based system
deployment. Components allocations are derived by means of code genera-
tion, which is based on high level description models conforming to MARTE.
In [44], the authors propose a technique to specify tasks and their allocation to
cores. The technique is based MARTE and allows to perform simulation and
task allocation optimisation based on the execution. AADL [45] is an architec-
ture description language initially tailored to the avionic domain but currently
used for modelling embedded systems in general. AADL supports the design
of multi-core embedded software by means of separation of concerns between
software and hardware elements. The software architecture is described in
terms of, e.g., Processes and Threads, that is at a lower level of abstraction if
compared to RCM.

11.7.3 Support for design-space exploration

Design-space exploration (DSE) typically involves the generation, analysis,
and optimisation of multiple design alternatives [46]. The step-by-step ex-
pansion of design alternatives illustrated in this article can be classified as
rule-based DSE complying to the model generation pattern. In fact, the space
of solutions is represented by means of models and the corresponding alter-
natives are generated through model transformations [47, 48]. Moreover, an
exhaustive derivation of models at the implementation level is performed by
enriching design level (EAST-ADL) models with timing and allocation details,
constrained by the system architecture and domain-specific rules [49]. Such a
derivation process is quality-driven [47, 50], in the sense that JTL model trans-
formations generate all the viable (timing/allocation) solutions for a certain
system architecture, while do not aim at automatically discovering optimisa-
tion opportunities at design level [51]. Kang et al. introduce in [52] a DSE
tool called FORMULA. FORMULA permits the user to define equivalence
classes over alternatives, such that only non-isomorphic solutions are gener-
ated in the exploration phase. Their aim is to enhance the cost-effectiveness
of DSE by avoiding the exploration of design alternatives not relevant at a cer-
tain development stage. Indeed, some alternatives might look equivalent to the
user whom, due to the maturity of the design, might not yet be concerned with
some of the details about the system that are changed. Several DSE mecha-
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nisms cope with the search of input model configurations such that to achieve
an optimised system in terms of certain properties of interest. Since the search
space is typically huge, research efforts are devoted to generating candidates in
an effective way (e.g., close to the optimal solution). Optionally, user??s inputs
and/or heuristics are exploited to drive the exploration and prune alternatives.
DESERT [53] is a tool that provides DSE based on exploration and pruning
rules manually defined by the user. Interestingly, also DESERT is based on
a compact representation of viable design alternatives, in particular by means
of ordered binary decision diagrams. Differently to the approach proposed by
MoVES, DESERT forces the user to perform an element-by-element selection
of the available options to reduce the space of solutions to a single one. Shaetz
et al. [47] proposed a rule-based DSE mechanism tailored to embedded systems
development. The exploration is realised by means of model transformations
specified as Prolog programs. In particular, transformation rules both define
the generation of alternatives and constrain the space of solutions. However,
there is no explicit visualisation technique to reveal available alternatives to the
user. Therefore, the user has to foresee possible design alternatives and write
appropriate exploration/pruning rules. A number of additional techniques tar-
get multi-criteria optimisations. In this respect, one precondition to be met by
the DSE mechanism is a generic representation of the solution space, which
has to be compatible with multiple exploration approaches. In general these
techniques leverage intermediate formats over which several explorations/op-
timisations can be run. Notably, in [54] Saxena and Karsai introduce an exten-
sion of a domain-specific language devoted to DSE. Such extension is exploited
by disparate constraint solvers to compute multiple explorations/optimisations.
Similarly, Octopus [55] supports DSE for software intensive embedded sys-
tems. A DSE tailored intermediate representation is exploited to implement an
iterative refinement process based on analyses, searches, and diagnostics over
the space of available solutions. In MoVES, the uncertainty points can be com-
bined to address multiple DSE needs. Moreover, the order of resolutions (i.e.,
solution exploration) can be exploited to set priorities over properties.

During the last decades, several approaches for the effective software de-
velopment of vehicular embedded systems were introduced. In general, this
problem requires the consideration of a number of models which can rapidly
become unbearable to handle manually. In this work, we tacked this problem
by employing i) the interplay of two modelling languages, ii) a fully automated
mechanism and iii) model-based timing analysis. While the interplay of the
two modelling languages allows for the explicit modelling of the vehicular’s
software architecture and its execution platform, the automated mechanism
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provides for the automatic generation of all the model alternatives meaning-
ful from a timing perspective.

11.8 Conclusion and Future Work

The work presented in this paper describes a timing-aware model-driven method-
ology for the software development of distributed vehicular embedded systems
on single- and multi-core. In particular, it tackles the problem of guiding the
engineer in taking timing-aware design decisions at design level when modi-
fications on the vehicular embedded system are generally more cheaper than
modifications at the implementation level. Generally, this requires the consid-
eration of a number of implementation alternatives which are hard to handle
without an automated support. We proposed to solve this by introducing au-
tomation in terms of six model-transformations which describe precise rela-
tionships between EAST-ADL (the language used at design level) and RCM
(the language used at implementation level). We exploited the properties of a
constraint-based transformation language, JTL, to automatically derive all the
possible RCM models entailing meaningful and unique timing and allocation
configurations. Eventually, we leveraged model-based timing analysis for the
timing verification of the generated RCM models. The case study we con-
ducted together with our industrial partners in the automotive domain demon-
strated i) promising results in terms of reduction of late modifications as well
as the i) applicability of the methodology.

Despite the generation of the RCM models entailing different timing and
allocation configurations is transparent to the engineer and it can be guided
with logic constraints, issues about scalability and performance may remain
open. In this respect, the main future investigation direction encompasses the
study of a smarter generation process for narrowing and clustering the space
of the generated RCM models and the use of further non functional properties
for pruning the set of the generated RCM models. In addition, we are planning
to equip the proposed methodology with the compact notation discussed in [7]
for enabling the visualisation of multiple RCM models as a single RCM model
equipped with uncertainty points. Another line of future investigation encom-
passes the extension of the proposed methodology to the higher EAST-ADL
structural abstraction levels.
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