
Bridging the Gap between Testing and Safety
Certification

Aiman Gannous
Department of Computer Science

University of Denver
Denver, CO, USA

aiman.gannous@du.edu

Anneliese Andrews
Department of Computer Science

University of Denver
Denver, CO, USA

andrews@cs.du.edu

Barbra Gallina
IDT, MRTC

Mälardalen University
Västerås, Sweden

barbara.gallina@mdh.se

Abstract—DO-178C and its supplement DO-331 provide a set
of objectives to be achieved for any development of airborne
software systems when model-driven development approaches
are in use. Fail-safeMBT is an academic recently proposed
model-based approach for testing safety-critical systems. Fail-
safeMBT is a potential innovative testing process that needs
compelling arguments to be adopted for the development of
aeronautical software. In this paper, we reduce the gap between
industrial settings and academic settings by adopting the safety
case approach and derive substantiation data aimed at argu-
ing Fail-safeMBT compliance with the standards. We explain
Fail-safeMBT processes in compliance with software process
engineering Meta-Model 2.0, then apply Fail-safeMBT on the
Autopilot system. Finally, we link Fail-safeMBT outputs to DO-
178/DO-331 process elements, then we derive a substantiation
from Fail-safeMBT outputs to support the compelling argu-
ments for achieving certification objectives. Thus, we provide
a validation of Fail-safeMBT in the avionic domain.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 2
3. BRIDGING THE GAP . 9
4. CONCLUSION . 15
ACKNOWLEDGMENTS . 17
REFERENCES . 17
BIOGRAPHY . 18

1. INTRODUCTION
Avionic domain related authorities such as the Federal Avi-
ation Administration (FAA) [18] shall recognize that an
avionic product is complying with their certification require-
ments to ensure safety. This recognition of compliance
should be documented and reported to all involved stakehold-
ers. However, achieving compliance poses some challenges
since stakeholder’s knowledge and expertise are diverse. One
of the challenges in developing a compliant software is
the issue of having conflicting objectives. Blindly seeking
compliance with the policies and regulations could obstruct
innovation, slow the development process and/or increase the
cost [1].

Another challenging issue is the transfer of confidence be-
tween the stakeholders in assuring a safety-critical system.
One idea is to establish assurance using conformance by
acting upon the preparation of software assurance in addition
to guiding the use of adequate forms of substantiation. For
example, in DO-178C [4], substantiation of any system under
consideration for certification must satisfy a set of objectives

978-1-5386-2014-4/18/$31.00 c©2018 IEEE

by conducting test collection, analysis, and reporting reviews.

Standards for certification usually require providing means
of justification to eliminate the possibility of misinterpeting
problem that software engineers usually stumble upon. For
instance, DO-178C provide guidance on preparing a software
accomplishment summary as an objective required for certifi-
cation. When these justifications provided by the developers
were structured and detailed cautiously, they might be ac-
cepted as means of certification conformance argument either
completely or partially [2].

Policies and certificates regulators do not usually explain in
detail how the compliance process should be executed rather
than just specify what should be executed. This establishes a
gap between the developers and the compliance authorities.
There are even gaps in using software engineering terms.
For example, terms such as black-box testing and white-box
testing are widely agreed upon in academia, while in DO-
178C certification [4], those terms do not exist. These gaps or
disagreements on terms may seem just like a technical issue,
but it could contribute to widening the gap even further. Since
the steps of certification are objective oriented processes, they
concentrate on what should be done without explaining how
it should be done. Therefore, using black-box or white-
box testing or both methods does not necessary fulfill the
certification requirements mandated by the certification au-
thorities because the process of verification is not the same
as the process of certification. While certification is about
providing evidence to show that all required activities are
conducted correctly to satisfy defined objectives, verification
is to emphasize on the performance of activities. Bridging
the gap between the developers party and the compliance
assurance party is receiving much attention lately by software
engineering researchers to overcome the challenges. This
was the trigger of the rise of software engineering for the
compliance topic, which is about encouraging the software
engineers to develop their systems in a compliance oriented
fashion to eliminate the previous mentioned challenges [1].

For a Safety Critical System (SCS) to be certified in various
application domains, developers are required to provide a
safety case. According to Bloomfield et al. [23], a safety
case is a documented body of evidence that provides a valid
argument that the System Under Test (SUT) is safe for a given
application in a given environment. Avionic developers shall
justify via an implicit safety case that the software performs
its intended function with a level of confidence in safety that
complies with airworthiness requirements such as DO-178C
certificate [3].

In the software engineering literature, many methodologies
are available for testing SCSs. In the certification process,
the verification methodology itself will be verified. In other
words, the certification authority needs to see if the verifica-

1

tion method used complies with their requirements or not.
This raise the question Does the verification methodology
meet the certification requirements?. According to Carmen et
al. [22], a testing methodology that fulfills all the objectives
in a related certification compliance does not exist. Based
on these results, we concluded that in order to bridge the
gap, we must first examine the testing methodologies prior
to deployment. This examination should be based on what
objectives can these methodologies meet. We think that
assessing a methodology with respect to certification activity
will ease and expedite the certification process itself since
the developers and the certifiers will jointly know in advance
what this methodology will offer in the certification process.
This will also motivate the researchers to either enhance their
methodologies to meet the certification requirements, com-
bine existing ones, or even innovate new ones in a compliance
based structure. Based on this concept we think that the best
way to show compliance of a software is by showing the
compliance of the development methodology used itself.

Fail-safe Model Based Testing (Fail-safeMBT) is an end-
to-end model based testing approach recently proposed by
[9] and [10] aimed at increasing robustness by targeting
testing for failures and its mitigation behavior. This end-to-
end testing process could support the safety claims within
the required safety case with the presence of compelling
arguments concerning its capability as a verification process
evidence. In our previous work [16] we focused on the Plan
for Software Aspects of Certification (PSAC). We have used
Model-driven safety certificate (MDSafeCer), a model driven
based safety certification method recently introduced by [17]
to show that Fail-SafeMBT can be partly used as testing-
planning related evidence within a safety case. We have fo-
cused on specific portions of the DO-178C/D331 documents
related to verification process compliance and we have argued
about compliance with DO-331- related verification process
planning. Software life-cycle data used for compliance sub-
stantiation data could be derived from the execution of the
verification process. The verification process with respect
to DO-178C/DO-331 [5] should detect and report errors that
may have been introduced during the development process.

We are aiming at showing how to examine the adequacy of a
testing methodology. As a case study, we will discover what
Fail-safeMBT could achieve in DO-178C/DO-331 Verifica-
tion of the Verification Process Results objectives compliance
and what it cannot achieve. This will help identify the
strengths and the weaknesses of Fail-safeMBT thus urge
the need of improving it, or inventing new methodologies
regarding software conformance with the standards in safety-
critical systems.

Summarizing, the research questions addressed in this paper
are:
RQ1. Can Fail-safeMBT provide full compliance if used as
a SCS testing methodology in the avionic domain?
RQ2. If Fail-safeMBT does not provide full compliance,
what parts of the domain standards can it comply with and
what parts does not comply with?

To find answers to these research questions, we will illustrate
the processes of Fail-safeMBT using Software and Systems
Process Engineering Meta-Model (SPEM 2.0) [12]. Then we
will apply Fail-safeMBT to test for failures and its mitigation
behavior in the avionic domain (Autopilot System). Then,
based on the outputs of the execution of Fail-safeMBT, we
will derive compliance substantiation data, i.e. we will
derive arguments to be included in the operational safety

case showing what objectives related to the Verification of
the Verification Process Results are met. We will present the
compliance arguments via Goal Structuring Notation (GSN)
[14].

This paper is organized as follows: Section 2 gives a back-
ground about the related subjects and tools. Section 3 il-
lustrates how we contribute in bridging the gap. Section 4
contains the conclusion.

2. BACKGROUND
DO-178C and DO-331

DO-178C is an industry accepted guidance for developing
software for airborne systems and equipment. DO-178C has
additional supplements which guide the use of any specific
development methods for airborne systems and equipment.
For instance, if model-driven engineering approaches are
used in the development process, DO-331 must be followed
as a guidance. DO-178C and its supplements define a set of
objectives with series of processes and expected outcomes.
Meeting these objectives guarantees the level of confidence
in the correct functioning of the software developed in com-
pliance with airworthiness requirements. According to DO-
178C, provision of a series of plans have to be approved
by the certification body during the first interaction between
the applicant and the certification body itself. The applicant
can start the real development if the plans are approved. In
the planning process, some of the expected deliverables are:
software development plan (SDP), software verification plan
(SVP), Plan for Software Aspects of Certification (PSAC) and
Software Accomplishment Summary (SAS). The verification
process with respect to DO-178C, should detect and report
errors that may had been introduced during the development
process. Section 6 of DO-178C define the verification pro-
cess as a process that includes reviews, analysis and tests.
More than halve of the DO-178C objectives are verification
objectives. These verification objectives are summarized in
Tables A3-A7 in DO-178C [6]. DO-178C subsection 6.2
specifies that the person who develop the software should
not be the same who perform the testing which provide the
satisfactory of the verification independence objective [11].
Another important objective DO-178C promotes that the test
cases generation should be requirement-based for both high
level and low level requirements. To test if the requirements
are met, DO-178C encourages the development of normal
and robustness test cases, defining the normal test cases
target is to try spotting errors in the system functionality
in the normal behavior and conditions, while the robustness
test cases are for testing the system in the abnormal and
unexpected conditions [6].

Software and Systems Process Engineering Meta-Model 2.0

The Software and Systems Process Engineering Meta-Model
Specification Version 2.0 (SPEM 2.0) [12] is a process-
oriented OMGs standard for meta-model used as a foundation
meta-modeling of software engineering processes. SPEM 2.0
was also employed as the baseline meta-model for the Design
Space Exploration process, which finds optimized solutions
for the deployment of logical components in terms of tasks
or processes (software components) to technical components
(hardware resources) with respect to a set of optimization
goals and constraints [13].

SPEM 2.0 provide various modelling elements, here we illus-
trate a description of some of them that are used in this paper

2

to model Fail-safeMBT processes and Figure 1 represents the
symbols associated with each SPEM 2.0 element [12]:

Task: a Method Content Element and a Work Definition that
defines work being performed by Roles Definition instances
and associated to input and output Work Products. Inputs
and outputs are differentiated in mandatory versus optional
inputs.
Role: specifies who is/are responsible of performing the task.
Tool: a special Method Content Element that can be used to
specify a tools participation in a Task Definition.
Work Product: is a Method Content Element that is used,
modified, and produced by Task Definitions.
Guidance: a Describable Element that provides additional
information on how the work should be executed.

Figure 1. Sample of SPEM 2.0 Symbols.

Goal Structuring Notation (GSN)

GSN is a visual argumentation notation that explicitly char-
acterizes each element of any safety argument and the rela-
tionship between them [15]. In any safety critical system,
verification of safety assurance with in compliance with stan-
dards such as DO-178C, sGSN could be used as a mean of
visual representation of the safety case.

GSN consists of the following elements[14]:

Goal: a claim about the system.
Strategy: a description of the inference methodology be-
tween a goal and its sub-goal.
Solution: an evidence shows that a particular goal has been
achieved.
Context: the domain or scope in which a goal, evidence or
strategy is given.
Undeveloped entity: applied to arguments, goals and strate-
gies to indicate absence of existing development.
Undeveloped goal: an intentionally left undeveloped claim
in the argument.
Supported by: used to document an evidential relationships
by declaring a link between a goal and its substantiated
evidence.
InContextOf: indicates a contextual relationship between
goal-to-context, goal-to-assumption, goal-to-justification,
strategy-to-context, strategy-to-assumption and strategy-to-
justification.
Figure 2, illustrates the essential symbols of the GSN notation
that used in this research.

Figure 2. Sample GSN notations

Testing Safety critical Systems

In testing safety critical systems (SCS), hazards identified by
any safety analysis technique such as Preliminary Hazard List
Analysis (PHL), Failure Mode and Effects Analysis (FMEA)
or Fault Tree Analysis (FTA) [19], must be prevented or
mitigated by the system under test to ensure safety. In the
SCS’s we need to perform testing in the presence of fail-
ures. Specification-based approaches have some limitations
in testing SCS’s since they are targeting the desired behavior
rather than the undesired one. Sánchez et al. [20], proposed
a fault-based methodology to generate test cases for testing
safety-critical software. They build a behavior model and
used fault trees for identifying the undesirable states in the
system. Fault trees then transformed to a state chart entities
for compatibility to perform integration with the behavioral
model in a flat hierarchy represented in an Extended Finite
State Machines (EFSM). Nazier et al.[21] used a similar
approach for testing SCS’s by transforming Fault Trees events
into state chart behavioral elements. They use model check-
ing to verify systems failures. Gario et al.[9] proposed an
SCS testing technique. They build a behavioral model using
Communicating EFSM’s (CEFSM) and a fault models for
each possible failure using fault trees. The fault trees models
are transformed into CEFSM representation with a compat-
ibility process the integrating them into the behavior model.
They apply different graphs coverage criteria to generate test
paths to test for failures. Andrews et al.[10] proposed another
approach for testing proper failure mitigation of a system
based on the safety requirements of the system under test.
Their approach uses CEFSM’s to model system behavior.
Their approach is centered on identifying points of failures
in a generated test path using an applicability matrix and
coverage criteria. They modeled the mitigation requirements,
used them to generated test paths for mitigation and integrate
them in the behavioral test paths systematically after each
identified point of failure. In this paper we introduce an end-
to-end SCS testing approach we call Fail-safe Model Based
Testing (Fail-safeMBT). Fail-safeMBT is result of merging
Gario et al.[9] approach and Andrews et al.[10] approach.
The two approaches share a major activity as they both use
CEFSM to build the behavior model for test paths generation.
They in fact serve each other in testing SCS’s. While Gario
et al. approach aims at generating failures, Andrews et al.
approach aims at verifying the mitigation for these failures. In
the next subsection we will present Fail-safeMBT processes
in detail using SPEM 2.0 as a visualization tool and in
Bridging the Gap section we will show an application of Fail-
safeMBT in the avionics domain, specifically the Autopilot
system.

Fail-safeMBT

To make the paper self-contained, here we illustrate the steps
of Fail-safeMBT adopted from [9] and [10] as follows:

Building the Behavioral Model (BM) using CEFSM— The
first step in the end-to-end process is to build the behavioral
model of the system using Communicating Extended Finite
State Machines. The input to this process are system com-
ponents specifications and requirements. The output in this
step will be a CEFSM model that depicts the behavior of the
system. This step is illustrated using SPEM2.0 in Figure 3.

CEFSM has been used in modeling and testing most types of
systems. CEFSM can flatten the orthogonal states of a system
without composing the whole system in one state as in state
charts. CEFSMs can be defined as a finite set of consistent
and completely specified EFSMs along with two disjoint sets

3

Figure 3. Building the Behavioral Model process in
SPEM 2.0

of input and output messages[22]:

CEFSM = (S, s0, E, P, T, A, M, V, C), such that:

S is a finite set of states,
s0 is the initial state,
E is a set of events,
P is a set of boolean predicates,
T is a set of transition functions such that:
T: S×P×E→S×A×M , where:
A is a set of actions,
M is a set of communicating messages,
V is a set of variables, and
C is the set of input/output communication channel used in
this CEFSM.

The function T returns a next state, a set of output signals, and
action list for each combination of a current state, an input
signal, and a predicate. It is defined as:
T(si, pi, get(mi))/(sj , A, send(mj1 ,..., mjk)) where,
si is the current state,
sj is the next state,
pi is the predicate that must be true in order to execute the
transition,
ei is the event that when combined with a predicate triggers
the transition function,
mj1 ,..., mjk are the messages.

The communicating message mi is defined as:
(mId, ei, mDestination) where,
mId is the message identifier,
mDestination is the CEFSM the message is sent to and,
An event ei is defined as: (eId, eOccurrence, eStatus) where,
eId is the event type identifier that uniquely identifies it,
and eOccurrence is set to false as long as the event has not
occurred for the first time and to true otherwise, and eStatus
is set to true each time the event occurs and to false when it
no longer applies.

Fault Trees Construction— The second step is to build a
Fault Tree (FT) for each possible failure using the safety
specifications as inputs. The possible failures are identified
in the safety requirments of the system. Safety requirments
are used as inputs to this step to prroduce fault trees using
Fault Tree Analysis (FTA) as guidence. FTA is a top-down
deductive analysis technique used to detect the specific causes
of possible hazards [24][25]. The top event in a fault tree is
the system hazard. FTA works downward from the top event
to determine potential causes of a hazard. It uses boolean

logic to represent these combinations of individual faults that
can lead to the hazard [25].

Figure 4. Fault Trees Construction process in SPEM 2.0

A Fault Tree (FT) consists of nodes that represent events,
edges that connect nodes to logical gates, and logical gates
that represent connectors of events. Every possible major
failure in the SUT is represented by separate FT model. This
step is illustrated using SPEM2.0 in Figure 4.

Compatibility Transformation—The third step in the process
is to establish compatibility between the behavioral model
and the fault models to ensure a formal integration. The basic
events in fault trees are informally described, therefore the
event naming will not match that of the behavioral model.
In order to be able to integrate them, we need to make
these models compatible first. To establish compatibility
between Behavioral and Fault models, we need to put them
on the same level of abstraction and events names in both
models must match. This step is illustrated using SPEM2.0
in Figure 5.

Figure 5. Compatibility Transformation process in
SPEM 2.0

The compatibility transformation process takes the Behav-
ioral Model and the FT models as inputs and produces a
Behavior.Fault Classes to be used in the next step to execute
the transformation. FT entities attributes (each leaf) and the
entities attributes of the BM are formalized by creating a the
Behavior.Fault class diagram as follows:

1. Identify entities that could contribute to a failure in the
behavioral model. An entity could be a state or an event (Bs
or Be).
2. For each such entity, create a BEntityName class with
behavioral attributes of the state or event.

4

 (a) (b) (c) (d)

-BAttr: BS | BE
-FAttr: FS | FE
-Fcondition: FC
-BFCondition:BAttr&
 Fcondition

BFEntityName

-Attr: BS | BE
BEntityName

-Attr: BS | BE
-Condition: FC
-BFCondition:
 Fcondition

BFEntityName

-Attr: FS | FE
-condition: FC

FEntityName

Figure 6. Behavioral and Fault classes combining
process

3. Identify leaf node entities from fault trees.
4. For each such entity, create an FEntityName class with
attributes related to failure and failure condition, a gain they
be related to a state or event (Fs or Fe) .
5. Express the failure condition FC in terms of attributes of
FEntityName.
6. Combine both BEntityName and FEntityName in BFEn-
tityName by identifying attributes common to both entities
such that, if values in FEntityName and BEntityName are
the same, we combine the attributes. Otherwise we create
Battribute and Fattribute.

Figure 6 shows a BEntityName, a FEntityName, and a BFEn-
tityName. The BEntityName contains either a state BS (a
state at the behavioral model) or an event BE (an event at the
behavioral model) from the behavioral model that contributes
to a failure in the fault model. (These events are carried in
the communicating messages from the behavioral to the fault
models when these models are integrated.) The FEntityName
contains a state FS (a state at the failure model) or an event
FE (an event at the failure model) as described in a leaf
node of a FT along with their conditions FC (if any). The
BFEntityName contains either a combination of BEntityName
and FEntityName attributes if these attributes are the same as
shown in Figure 6 (c) or separate Battributes and Fattributes
are created as shown in Figure 6 (d) when the attributes of
FEntityName and FEntityName are not the same.

The compatibility transformation is an essential step to solve
the ambiguity between the events in the behavioral model and
fault model.

Fault Trees Transformation—After we made the FT’s compat-
ible in step 3, now the forth step in the process is to execute
the transformation of the FT’s to produce a Gated Extended
FSM’s ready to be integrated with the BM. The inputs in
this step are the BF-Classes from step 3 and the FT’s from
Step 2 as illustrated using SPEM2.0 in Figure 7. In this
subsection we will demonstrate only the transformation rules
of the logical gates AND and OR, since they are the two gates
to be used later in the application. For the transformation
of other type of gates see [9]. Notice that the application
of the transformation rules are static, means its a one time
implementation and its the same for all domains. Every
gate in the FTs is represented as a GCEFSM. This GCEFSM
represents a specific part of the failure process. Messages
connect it to the behavioral process where failure process
and behavioral process interact. The whole model forms a
tree-like structure. The ICEFSM consists of a collection of
CEFSMs that represent the behavioral model and GCEFSMs
(the transformed FT) model. The communication between
the behavioral model and FT́ model is achieved by sending
and receiving messages between the models. The behavioral
model sends messages that contains events that contribute in
the failure to the Fault related GCEFSMs. These GCEFSMs,

however, do not send any message back to the behavioral
model because they are only used to indicate when the
carried events contribute in the root node. Upon receiving
those messages, the GCEFSMs at the lower level of the tree
sends messages that carry “the event occurred” or “has not
occurred” to the upper level GCEFSMs and so on.

Figure 7. Fault Trees Transformation process in SPEM
2.0

Transformation Rules:— Every GCEFSM is identified by
a unique identifier Gi that uniquely identifies it. Each
GCEFSM consists of states and transitions that perform the
same boolean function as the gates in an FT. The difference is
that in the original FT, a gate produces a single output when
all the input events satisfy the gate conditions. Otherwise,
no output would be produced. However, in the transformed
FT, a gate has two kinds of outputs. One output is defined
as the “Gate occurred” and the other is defined as “Gate not
occurred” such that:

mi =

Gate Occurred if Gi(e1, e2, ...ek) = true,

Gate not Occurred if Gi(e1, e2, ...ek) = false
and eOccurrence = true
∀ei, i = 1 to k

For example, an AND gate = true if GAND(e1∩e2...∩ek) =
true. Each structure and behavior of each GCEFSM is
predefined and for this matter we will present each gate as
follows:

The AND Gate:
When combining some events with an AND gate, the output
occurs when all the events occur. Otherwise, no output would
occur. An AND gate is represented as shown in Figure 8.
It consists of two states and four transitions. State S0 is
the initial state and S1 is the “gate occurred” state. The
transition T2 will never be taken unless its predicate NoOfOc-
curredEvents=TotalNoOfEvents & ei.eOccurrence =true &
ei.eStatus = true is true which means all the inputs are re-
ceived and their status is true. When T2 is taken the message
“gate occurred” is sent to a GCEFSM that is supposed to
receive it.

The transition T0 is as follows:
T0 : (S0, [ej .eOccurrence = true&ej .eStatus =
true&NoOfOccurredEvents < TotalNoOfEvents],
get(mj))/(S0, update(events),−) Where,

1. The event get(mj) gets input messages from the environ-
ment or from another CEFSM. mi contains an event that
could be ”gate occurred” or ”gate not occurred”.
2. update(events) is an action performed upon the executing

5

Figure 8. AND Gate representation in CEFSM

of this transition. It updates the number of occurred events
and their status based on the last input message received.
3. The predicate “[ej .eOccurrence = true & ej .eStatus = true
& NoOfOccurredEvents < TotalNoOfEvents]” ensures that
the event has occurred and the number of inputs received
so far is less than the total number of inputs and the input
status is true. Note that “gate not occurred” implies that eOc-
currence=true&eStatus=false, while “gate occurred” implies
that eOccurrence=true&eStatus=true.

If all the messages to this GCEFSM are received and all the
events have occurred, then the transition T2 will be taken.

The transition T2 is as follows:
T2 : (S0, [NoOfPositiveEvents = TotalNoOfEvents
&ej .eOccurrence = true&ej .eStatus = true], get(mj))
/(S1, update(events), Send(GateOccurred))

When this transition is taken based on the input and the
predicate, it moves to state S1, increments the number of
inputs, and send an output message saying that the gate has
occurred.

The transition T1 is as follows:
T1: (S0,[ej .eOccurrence = true & ej .eStatus = false],
get(mj))/(S0, update(events),-)

where “-” means no output produced.
When on state S0 and the input message implies that the
event has changed its status, the transition T1 is taken. T1
decrements the number of inputs, and updates the status of
the event from occurred to not occurred.
The transition T3 is as follows:
T3:(S1,[ej .eStatus=false],get(mj))/(S0,update(events),
Send(Gate not Occurred))

At the state S1, Transition T3 is taken when the coming input
status is false. When this transition is taken it decrements
NoOfOccurredEvents and NoOfPositiveEvents, updates the
status of the input from occurred to not occurred and sends
“gate not occurred” message to the receiving gate.

The OR Gate:
The OR gate occurs if at least one event occurs. This gate, as
seen in Figure 9, consists of two states and four transitions.
When in S0 and the input message carries an event whose
eOccurrence and eStatus are true (i.e. the event has occurred),
T0 is taken and the OR gate occurs. In state S1 and if the
events in the input messages have not occurred (i.e. their
eStatus is false) and there was only one input so far, which
means this input has changed its status, then a “Gate not
occurred” message is sent. Otherwise, no message is sent
out of this gate and only update(events) actions take place.

The transitions of the OR Gate are as follows:
T0 : (S0, [ej .eStatus = true], get(mj))/(S1, update(inputs)
, Send(GateOccurred))

T1 : (S1, [ej .eStatus = false&NoOfPositiveEvents =
0], get(mj))/(S1,
update(inputs), Send(GatenotOccurred))

T2 : (S1, [ej .eStatus = true], get(mj))/(S1, update(events)
,−)

T3 : (S1, [ej .eStatus = false], get(mj))/(S1, update(events)
,−)

Figure 9. OR Gate representation in CEFSM

Model Integration—Step five in the process is the integration
of the BM and the transformed FT’s (GCEFSM). The inte-
grated model is the output of this step and it called Integrated
Communicating Extended FSM(ICEFSM).

Figure 10. textbfModel Integration process in SPEM 2.0

At that time the event id contains the events name and
attribute and the receiving gate id of that event is not known
yet. During the integration of both models, the event name
in each message in the behavioral model is looked up in
the event-gate table. If the event name and attribute in the
behavioral model match those in the event-gate table, the
message is modified such that it contains the event id ei and
gate id Gj and will be modified to (mId, ej , Gi). This step
is SPEM2.0 model is shown in Figure 10.

Test Paths Generation and Failures Mapping—The sixth step
in the process is to generate test paths from the BM, the
ICEFSM and complete the mapping of the identified failures
to the generated test paths to provide traceability. A number
of existing test paths generation methods for CEFSMs and

6

ICEFSM can be used, such as edge-coverage, prime-path
coverage, etc.[26]. Test paths generated from ICEFSM will
be used to generate test cases to show whether failures can
be generated when the behavioral model is in a particular
state (reachability) and how to generate failures in various
behavioral states. While Test paths generated from CEFSM
(BM) will be used to generate test cases to show whether the
system behaves as expected in the normal situations. This
step is illustrated using SPEM2.0 in Figure 11.

Figure 11. Test Paths Generation and Failures Mapping
process in SPEM 2.0

Applicability Matrix Generation— The seventh step in the
process and the main step in testing for proper mitigation in
failing scenarios. At this point, outputs from step six will be
used as inputs to determined whether there is a path from a
specific behavioral state to a failure or not. Then, we use this
information to create the applicability matrix that determines
which combination of failure and behavioral state need to be
tested for proper mitigation. This step is illustrated using
SPEM2.0 in Figure 12.

Figure 12. Applicability Matrix Generation process in
SPEM 2.0

The applicability matrix is a two dimensional array. Each
column represents a specific behavioral state s ∈ S and each
row is a specific failure type e (1 ≤ e ≤ |E|).

A(i, j) =
{

1 if failure type j can occur in state si,

0 if otherwise

The applicability matrix indicates that a specific failure type
fj applies or is relevant to a particular state s and “0” depicts
that the specific failure type fj is not applicable in s.

At this point, we know which failures are reachable from

which behavioral state sj via test paths r ∈ R (i.e. all states
in such a test path r receive “1” in the applicability matrix
for failure j). We use this information as well as information
from the previous steps to generate the applicability matrix.

Mitigation Models Construction— Now in the eighth step,
the targeted output are the mitigation models derived from
the mitigation requirements and describe mitigation patterns
associated with a fault. This step is illustrated using SPEM2.0
in Figure 13.

Figure 13. Mitigation Models Construction process in
SPEM 2.0

Mitigation can take a variety of actions. Mitigation patterns
have been defined in [7],[8] as follows:

1. Rollback brings the system back to a previous state before
the failure occurred. A mitigation action may occur and the
system may stop or proceed to re-execute the remainder of
the test.
2. Rollforward mitigates the failure, fixes and proceeds.
3. Try other alternatives deals with decisions about which
of several alternatives to pursue.
4. Immediate(partial) fixing when a failure is noted, an
action is taken to deal with the problem that caused this
failure prior to continuing with the remainder of the test.
5. Deferred (partial) fixing when a failure is noted, an action
must be performed to record the situation and deal with the
failure either partially or temporarily because handling the
failure completely is not possible.
6. Retry when a failure is detected immediately after the
execution of the activity causing the problem, an action is
performed to solve the failure and then the activity that caused
the problem is tried again.
7. Compensate means the system contains enough redun-
dancy to allow a failure to be masked.
8. Go to fail-safe state a system is transferred into a
mitigation state to avoid dangerous effects and stops.

These mitigation patterns can be expressed in the form of
mitigation models. For example, try other alternatives pattern
could be modeled as shown in Figure 14.

Each failure fi is associated with a corresponding mitiga-
tion model MMi where i = 1, . . . , k. We assume that
the models are of the same type as the behavioral model
BM (e.g. an EFSM). Graph-based [26], mitigation criteria
MCi can be used to generate mitigation test paths MTi
= {mti1 , . . . , mtiki

} for failure fi. Figure 14 shows an
example of a mitigation model of type ”Try other alterna-
tives”. Assuming the Mitigation Criteria (MC) chosen is

7

n1 n5

n4

n3

n2
Alternative 1

Alternative 2

Alternative 3

Figure 14. Mitigation Model for ”Try Other
Alternatives” pattern

”edge coverage”, the following three mitigation test paths
fulfill MC: MT={mt1,mt2,mt3} where mt1 ={n1, n2, n5},
mt2 ={n1, n3, n5}, mt3 ={n1, n4, n5}

Safety Mitigation Test Paths Generation(SMT):—

Determine Failure Scenarios: — Let the set of failures
F be defined as {f1, f2, f3, . . . fk}. A failure is injected
into the system by manipulating parameters that indicate
to the software under test (SUT) that a particular failure
has occurred. This is modeled by selecting a test bt ∈
BehavioralTestset(BT), determining how far to execute
bt (i.e. selecting one of the states in bt) and then inserting a
failure injection action at the selected state.

Figure 15. Safety Mitigation Test Paths Generation
process in SPEM 2.0

A point of failure is a particular state in a behavioral test path
at which the failure is injected. Let CT be the concatenation
of test paths in BT. That is CT = t1 ◦ t2 ◦ t3 . . . tl. Let len(t)

be the number of nodes in t. Then I = len(CT)=
∑l

i=1 len(ti).
The position of failure is a node in a test ti (i=1,2,...,l) in the
behavioral test suite where the system has failed. While we
could describe point of failure as a pair (i,j) where i identifies
test ti and j identifies the j-th node in ti, it is more convenient
to consider the test suite as a series of tests t1 ◦ t2 ◦ t3 . . . tl,
since it collapses the two dimensions of (i,j) into one, e.g. the
third node in test t2 would now be at position p= len(t1)+ 3.
In general, (1 ≤ p ≤ I). This has the advantage of one fixed
length as opposed to variable lengths for each individual test
ti.

We are also selecting failure type e (1 ≤ e ≤ |E|) to apply
at the point of failure p. The pairs (p, e) are our potential

failure scenarios. The applicability matrix determines which
of these are feasible. Let s= node(p) be the state in position
p in CT . Then the feasible failure scenarios are PE= {(p, e)
— 1 ≤ p ≤ I; 1 ≤ e ≤ |F |; A (node(p),e)=1 } . We use
coverage criteria to determine test requirements for failure
scenarios. Coverage criteria are useful due to systematic algo-
rithmic generation of failure scenarios. Mitigation test criteria
describe required coverage. Weaving rules describe how a
mitigation test path is woven into the original behavioral test.

Coverage Criteria: — These are based on where in our
behavioral test suites failure can occur and need to be tested.
In other words, which positions p in the test suite need to be
tested with which failure e? The test criteria specify coverage
rules for selecting (p,e) pairs from PE. Here we illustrate
some of these coverage criteria:
Criteria 1: All combinations, i.e. all positions p, all appli-
cable failure types e (test everything in PE). This is the most
expensive. It would require |PE| pairs.
Criteria 2: All unique nodes, all applicable failures. This
only requires

∑k
j=1

∑|S|
i=1 (A(i,j)=1) combinations i.e. the

number of one entries in the applicability matrix. When some
nodes occur many times in a test suite only one needs to
be selected by some scheme. This could lead to not testing
failure recovery in all tests. A stronger test criterion is to
require covering each test as well.

Assuming we have t ∈ BT , p ∈ I , e ∈ E and mt ∈ MTe.
We now build a safety mitigation test smt ∈ SMT using this
information and the weaving rules wre ∈WR as follows:

• determine test t that covers position p.
• keep path represented by t until failure position p.
• apply failure of type e (fe) in p.
• select appropriate mt ∈MTe based on aggregation criteria
to guarantee covering all possible failures and using each
mt at least once. For example, if MTe has two mitigation
tests mt1 and mt2, the aggregation criteria “using each mt
∈MTe at least once” would require constructing two safety
mitigation tests, one using mt1, the other using mt2. On the
other hand if the aggregation criteria was “use e at least one
mt ∈ MTe”, we could select either mt1 or mt2 and only
build one safety mitigation test for failure fe.
• apply weaving rule wre to construct smt.

The result of this step is the full safety mitigation test paths
suite SMT. These test paths in SMT are made executable by
selecting input values for each input along the path. This step
is illustrated using SPEM2.0 in Figure 15.

Autopilot System

Autopilot (AP) is capable of many very time intensive tasks,
helping the pilot focus on the overall status of the aircraft and
flight. Autopilots can automate tasks, such as maintaining
an altitude, climbing or descending to an assigned altitude,
turning to and maintaining an assigned heading. AP should
be designed to increase safety as well as utility of the aircraft.
Safety is enhanced by enabling better situational awareness.
Safety can be increased by providing any changes in the
modes or any information as fast as possible to enable the
pilots to respond fast. One of the most common hazards
in using AP is the confusion about the current statues of
the AP whether its engaged and doing what it supposed to
do or not [18]. In addition to autopilot functions that are
engaged by the pilot, some autopilot functions engage and
disengage automatically. Pilots sometimes become confused

8

about whether flight director prompts are being automatically
carried out by the autopilot, or left to be manually handled by
the pilot. Verification of the autopilot mode and engagement
status of the autopilot is a necessary technique for maintain-
ing awareness of who is flying the aircraft. The safety of
any flight that uses any type of AP systems can turn to be
a liability if the pilots are not aware or confused about the
statues of the AP.

3. BRIDGING THE GAP
Fail-safeMBT application on the Autopilot system

We will apply FailSafeMBT on the AP system starting with
the system requirements in hand. We model the system com-
ponents for the purpose of testing the normal system behavior
and robustness by testing for safety concerns regarding the
AP statues and failures as illustrated in the next subsections.

System requirements:
RQ1: At any time, the pilot can turn the AP switch ’on’
and the AP must engage and starts executing a flight plan.
A status light should turned and stay ’on’ as long as the AP
is engaged. Also, an aural recorded message must be played
once to confirm the current statues of the AP.

RQ2: At any time, the pilot can turn the AP switch ’off’ and
the AP must disengage and stop executing any commands.
The status light should turned and stay ’off’ as long as the
AP is disengaged. Also, an aural recorded message must be
played once to confirm the current statues of the AP.

System safety requirements:
SFRQ1: If the AP failed to engage, the system controller
should perform a retry action. If the retry action failed to
engage, the controller must go the fail safe state by engage
the Fail-safe Autopilot.

SFRQ2: If the AP failed to disengage, the system controller
should take any action to disengage the AP.

SFRQ3: At any time the AP status change from engaged to
disengaged and vise versa, an aural recorded message must
be played once to confirm the current statues of the AP. If the
recorded message failed to play, the system controller must
try to play it again.

SFRQ4: At any time the AP status change from engaged to
disengaged and vise versa, the statues light must switched
on/off accordingly. If the statues light failed to be switched
on/off accordingly, the system controller must retry to switch
them on/off again.

Building the Behavioral Model

In this step, the system is modeled based on the system
requirements and the system components derived from these
requirements.
The system consist of five components as follow:
Switch: A toggle that the pilot use to engage or disengage the
AP.
Autopilot: Execute the mode task specified by the pilot if
engaged.
Lights: Indicator of AP statues.
Aural Engagement Warning: A recorded message that
triggered if the AP is engaged.
Aural Disengagement Warning: A recorded message that
triggered if the AP is disengaged.

The system is modeled using CEFSM as shown in Figure 16
and the transitions are illustrated in Table 1. Figure 16
depicts the behavioral model of an Autopilot using Communi-
cating Extended Finite State Machine (CEFSM). The model
specifies that when the AP switched ”on” assuming its armed
with one or more flight mode a warning lights are to be turned
on when the AP is engaged and an aural warning must be
triggered to confirm the status of the AP and keep the pilots
aware of who is in control of the plane.

Figure 16. CEFSM model for an Autopilot System

Table 1. Auto pilot awareness CEFSM model transitions

ID Transition
T1 (Off, [Switch=On],-)/(On, Send mI1 Engage AP)
T2 (On, [Switch=Off],-)/(Off, Send mI1 Disengage AP)
T3 (Disengage, [engage = true], -)/(Engage, Send mI2 Turn

Light On, Send mI3 Engage Aural Sound = On)
T4 (Engage, [disengage = true OR Overridden = true], -

)/(Disengage, Send mI2 Turn Light Off, Send mI3 Dis-
engage Aural Sound = On)

T5 (On, [Light on = false], -)/(Off, -)
T6 (Off, [Light on = true], -)/(On, -)
T7 (On, [Engage Aural Sound On = false], -)/(Off, -)
T8 (Off, [Engage Aural Sound On = true], -)/(On, -)
T9 (On, [Disengage Aural Sound On = false], -)/(Off, -)
T10 (Off, [Disengage Aural Sound On = true], -)/(On, -)

Fault trees construction

Four omission failures are identified from the safety require-
ments and classified as Level A hazards according to DO-
178C, has to be tested and mitigated properly:

1. Fail to engage the autopilot.
2. Fail to disengage the autopilot.
3. Aural announcement of AP statues fails.
4. Lights that indicate the statues of the AP fails.

9

This AP system has four fault trees which describe a possible
hazardous events. For example, the case of the event Engage
is true and the event Switch-Off is true, indicates that the pilot
had set the AP to be disengaged and it did not respond, which
results in putting the airplane in hazard of possible crash. This
is the case when the AP is not executing what is supposed
to execute correctly and the pilot cannot take control of the
airplane. The fault trees are shown in Figures 17, 18, 19, 20.

Figure 17. Engage Failure Fault Tree

Figure 18. Disengage Failure Fault Tree

Figure 19. Lights Failure Fault Tree

Figure 20. Warning Sound Failure Fault Tree

Compatibility Transformation

In this step, the BM and the FMs used as inputs to produce an
FTs’ that are compatible with the BM. The attributes in each
FT are formalized using class diagrams. First, we identify
the entities that are subject to fail or cause a failure (leaf
nodes). Second, for each one of these entities, we create a
behavioral class (BClass) contains the behavioral attributes,
and a fault class (FClass) contains failure related attributes.
Lastly, we combine both BClass and FClass based on the
common attributes. For example, in Figure 17, the first leaf
node is Switch-On, this leaf node event is related to the
switch behavior therefore we combine their related BClass
and FClass into BF-Switch-On class. Notice that some
attributes are not considered failures by itself but combined
with other events could cause a failure. For example, having
the switch on but the AP is not in the engaged state. We
continue with the same procedure for all the events in the
FTs. The constructed classes are shown in Figures 21, 22,
23, 24, 25. The events in the FT are substituted with the
combined attributes from the BF classes that are equivalent
to these events. For example, the event Disengage in the FT
in Figure 19 is equivalent to BF-Disengage.BFEventCond in
the transformed FT in figure 12.

Figure 21. Switch Class

Figure 22. Autopilot Class

10

Figure 23. Engage Warning Class

Figure 24. Disengage Warning Class

Figure 25. Lights Class

Fault Trees transformation

In this step we transform each FT to a Gate CEFSM
(GCEFSM). Starting with the leftmost node in a FT and
using the events created in the previous step, we assign an
ID to the event, an ID to the gate and insert it in an events
to gates mapping table. As illustrated in the Fail-safeMBT
in the background section, each type of gate has a formal
representation in CEFSM based on transformation rules. The
transformed FTs to gates CEFSM (GCEFSM) are represented
in figures Figures 26, 27, 28, 29. The event-gate mapping
table after the all FTs are transformed is shown in Table 2.

Figure 26. GCEFSM for Engage Failure

Figure 27. GCEFSM for Disengage Failure

Figure 28. GCEFSM for Lights Failure

Figure 29. GCEFSM for Warning Sound Failure

Table 2. Events-Gate mapping

Event Name & Attribute Event ID Gate ID
BF- Switch On.BFEventCond eB12 G8
BF- Switch Off.BFEventCond eB10 G7
BF- Engage.BFEventCond eB9, eB4, G7, G2
BF- Disengage.BFEventCond eB11, eB3, G8, G2
BF- Lights On.BFEventCond eB1 G1
BF- Lights Off.BFEventCond eB3 G2
BF- Engage Warning Sound
Off.BFEventCond

eB7 G5

BF- Disengage Warning Sound
Off.BFEventCond

eB5 G4

11

Model Integration

After all the fault trees are transformed into GCEFSMs, we
start integrating them into the behavioral model. At this point,
every message in the BM contains an event name that is
related to an event in one of the leaf nodes of the fault tree. We
check the class diagram and the Event-Gate mapping table
to find the event ID and the gate ID for the event. These
event IDs and gate IDs are inserted into the message at the
BM. For example, the event Lights OFF is represented in
the class diagram as BFLights-Off.BFEventCond. This event
is looked up in the event-gate table to obtain its event ID
(eB3) and the gate ID (G2) the message is sent to. The
message in the BM is modified as (mB3, eB3, G2). This
procedure continues till all the messages in the BM are linked
to the FM. Figure 30 illustrates the AP transformed into an
ICEFSM model. The integrated model shown in Figure 30
forms a graph to which suitable coverage criteria can be
applied to generate test paths. The FT gates that are directly
connected to the behavioral model receive messages from the
behavioral model and act accordingly. The messages m1 to
m8 represent the global transitions between the GCEFSMs
for the FT part, while mI1 to mI4 represent the messages
between the components of the behavioral model and mB1to
mB12 represent the communicating messages between the
BM and FM.

Generate test paths and Failures mapping

In this step, we impose an edge coverage criteria on the
ICEFSM model in Figure 30, to obtain the test paths shown
in Table 4. We also impose an edge coverage criteria on the
CEFSM model in Figure 16, to obtain the test paths shown
in Table 3. By using reachability analysis, we find that these
paths are feasible since there are no conflicts between predi-
cates in transitions. Test paths generated from the integrated
model (ICEFSM), could be used for generating test cases for
robustness testing, while test paths generated from the Behav-
ioral model (CEFSM model), could be used for Normal test
cases generation. Since Fail-safeMBT is built based on the
system normal and safety requirements, we claim that these
test paths generated from CEFSM and ICEFSM models can
be used to generate normal and robustness test cases. Hence,
satisfy the Requirements-based testing objective described in
DO-178C paragraph 6.4.2. Also, in this step we update the
events to gates mapping shown in Table 2 to a Failure to
test paths mapping to provide traceability feature. We claim
that this mapping illustrated in Table 5 will provide Test
cases to Software requirements traceability, which is another
requirement for DO-178 certification as described in Section
6.5 of DO-178.

Table 3. Test paths from CEFSM model using edge
coverage criteria

Test
Path

Sequence

1 S1 T1−→ S2 MI1−−−→S4 MI2−−−→ S6

2 S3 T3−→ S4 MI3−−−→ S8 T8−→ S7

3 S1 T1−→ S2 T2−→ S1 MI1−−−→ S3 T3−→ S4 T4−→ S3 MI4−−−→ S9

4 S3 T3−→ S4 T4−→ S3 MI2−−−→ S5

5 S5 T5−→ S6 T6−→ S5

6 S9 T9−→ S10 T10−−→ S9

7 S7 T7−→ S8 T8−→ S7

Table 4. Test paths from ICEFSM model using edge
coverage criteria

Test
Path

Sequence

1 S1 T1−→S2 MI1−−−→ S4 MI2−−−→ S6 MB3−−−→ [2] M2−−→ [3] M3−−→
2 S2 T2−→S1 MI1−−−→S3 MI2−−−→ S5 T5−→ S6 T6−→ S5 MB1−−−→

[1] M1−−→ [3] M3−−→
3 S3 T3−→ S4 MB2−−−→ [1] M1−−→ [3] M3−−→
4 S3 T3−→S4 MB4−−−→ [2] M2−−→ [3] M3−−→
5 S3 T3−→ S4 MI3−−−→ S8 T8−→ S7 T7−→ S8 T8−→ S7 MB7−−−→

[4] M4−−→ [6] M6−−→
6 S3 MI4−−−→ S10 T10−−→ S9 T9−→ S10 T10−−→ S9 MB5−−−→ [5] M5−−→

[6] M6−−→
7 S3 T3−→S4 MB8−−−→ [4] M4−−→ [6] M6−−→
8 S3 MB6−−−→[5] M5−−→ [6] M6−−→
9 S3 T3−→S4 MB9−−−→ [7] M7−−→
10 S3 T3−→S4 T4−→ S3 MB11−−−−→ [8] M8−−→
11 S1 T1−→S2 T2−→ S1 MB10−−−−→ [7] M7−−→
12 S1 T1−→S2 MB12−−−−→ [8] M8−−→

Applicability Matrix generation

The applicability matrix is built based on the information in
table Table 5 and the test paths generated from the CEFSM
and ICEFSM models. The applicability matrix in Table 6 is
basically constructed on the concept of using ’1’ if the state
in the Behavioral Model is a possible contributor to a failure
and ’0’ otherwise. For example, a Lights-On (s6) can fail
(f4), hence AM(f4,s6) = 1, but Disengagement Aural Warning
failure (f3) is not applicable at state 6.

Table 6. Applicability Matrix

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
F1 1 1 1 1 0 0 0 0 0 0
F2 1 1 1 1 0 0 0 0 0 0
F3 1 1 1 1 0 0 1 1 1 1
F4 1 1 1 1 1 1 0 0 0 0

Mitigation Models

Mitigation requirements are summarized in Table 7. Ac-
cordingly, mitigation models are designed as illustrated in
Figures 31, 32, 33 and 34, for failures f1, f2, f3 and f4
respectively.

Table 7. Mitigation requirements

Mi.ID Failure Action Mi.Model
MM1 F1 Retry/Use Fail Safe AP Figure 31
MM2 F2 Fix and Proceed Figure 32
MM3 F3 Fix and Proceed Figure 33
MM4 F4 Fix and Proceed Figure 34

12

Figure 30. ICEFSM model for an Autopilot Awareness System

Table 5. Failures-Test paths mapping

F.ID Failure Type Node in FT Event
ID

Gate
ID

Message
ID

ICEFSM
Test
Path

1 Engage Failure BF- Disengage.BFEventCond eB11 G8 mB11 10
2 Disengage Failure BF- Engage.BFEventCond eB9 G7 mB9 9
3 Warning Sound Failure BF- Disengage Warning Sound

Off.BFEventCond, BF- Engage
Warning Sound Off.BFEventCond

eB5,eB7 G4,G5 mB5,mB7 6,5

4 Lights Failure BF- Lights On.BFEventCond,BF-
Lights Off.BFEventCond

eB1,eB3 G1,G2 mB4,mB3 2,1

Figure 31. Mitigation Model for Engagement failure

Figure 32. Mitigation Model for Disengagement failure

Figure 33. Mitigation Model for Aural Warning failure

13

Figure 34. Mitigation Model for Lights failure

Generate Safety Mitigation test paths (SMT)

First, we select a failure coverage criteria. Lets assume we
chose to cover All tests, All unique nodes and all applicable
failure, which is Criteria 2 as illustrated in the Fail-safeMBT
description in the background section. Using the applicability
matrix in Table 6, and test paths generated from the CEFSM
model shown in Table 3, we apply Criteria 2 to cover cover
All tests, All unique nodes and all applicable failure. The
result is a set of position failure pairs shown in Table 8.

Second, concatenating all test paths as follows: S1 S2 S4
S6 S3 S4 S8 S7 S1 S2 S1 S3 S4 S3 S9 S3 S4 S3 S5 S5
S6 S5 S9 S10 S9 S7 S8 S7, gives us 28 possible positions
to inject failures and proper mitigation. Using Table 8,
Table 7, Mitigation models and following the weaving rules
we procedure illustrated in the safety mitigation test path
generation subsection in the Fail-safeMBT description, we
construct safety mitigation test suite as illustrated in Table 9.

Table 9. Safety Mitigation Test Paths

NO Position Failure SMT CEFSM
Test
Path

1 2 1 S1 n1.1 n1.2 n1.3 t1
2 2 1 S1 n1.4 S2 S4 S6 t1
3 3 2 S1 S2 n2.1 n2.2 n2.3

S4 S6
t2

4 14 2 S1 S2 S1 S3 S4 n2.1
n2.2 n3.3 S4 S3 S9

t3

5 8 3 S3 S4 S8 n3.1 n3.2
S7

t2

6 9 3 S3 S4 S8 S7 n3.1
n3.2

t2

7 16 3 S1 S2 S1 S3 S4 S3 S9
n3.1 n3.2

t3

8 24 3 S9 n3.1 n3.2 S10 S9 t6
9 25 3 S9 S10 n3.1 n3.2 S9 t6
10 27 3 S7 n3.1 n3.2 S8 S7 t7
11 28 3 S7 S8 n3.1 n3.2 S7 t7
12 7 4 S3 S4 n4.1 n4.2 n4.3

S8 S7
t2

13 13 4 S1 S2 S1 S3 S4 n4.1
n4.2 n4.3 S3 S9

t3

14 20 4 S3 S4 S3 S5 n4.1
n4.2 n4.3

t4

15 22 4 S5 S6 n4.1 n4.2 n4.3
S5

t5

Deriving Substantiation for Fail-safeMBT Compliance

Since Fail-safeMBT is a model-based methodology, we will
be mainly considering certificate DO-331 which provides
guidance and requirements for using modeling in the avionic
software development process in addition to DO-178C certifi-
cate. In DO-331, the verification process consists of analysis,
review and testing. Figure 35 adopted from [27] shows the
activities mandated by DO-178C to fulfill its objectives (the
labels on the arcs). Since Fail-safeMBT, is based on execut-
ing test cases generated using test paths against the system
under test, we are looking for Fail-safeMBT to contribute
to the compliance process and provide traceability between
the executable object code to the high-level requirements. In
Figure 35, verification of the requirements is shown in the
two white boxes with the blue border lines. The boxes with
the red borders are the verification that Fail-safeMBT could
achieve.

In an effort to bridge the gap, first we establish substantiation
for compliance by mapping Fail-safeMBT outputs from its
activities to requirements that DO-178C/DO-331 mandates.
Table 10 shows what parts of the outputs of Fail-safeMBT
could be linked to DO-178C activities and objectives in the
verification process. These Fail-safeMBT process outputs
are test paths from the CEFSM model, test paths from the
ICEFSM model, test paths for safety mitigation tests, and
failure-test paths mapping. In DO-331, the testing elements
we found related to testing activity requirements are testing
the normal behavior, testing for robustness, traceability, and
independence. Section 6.4 in DO-331 states that testing
should be requirement-based which includes normal and ro-
bustness test cases. Section MB 6.1.e in DO-331 states that
the executable object code should be robust with respect to
the software requirements such that it can respond properly
to abnormal inputs and conditions. Since Fail-safeMBT uses
system requirements and safety requirements to build the
models for testing the system, it will conform with Section
6.4 in DO-331 which emphasizes on requirement-based test-
ing. However, to reach full compliance, several objectives
should be accomplished. In the verification of verification
results, 12 objectives should be accomplished. Objectives 10-
12 are related to the use of simulation. Since Fail-safeMBT
does not use simulation, we will eliminate these objectives.
Also, objectives 1 and 2 will not be addressed since they are
review activities. Seven objectives are left to be checked if
Fail-safeMBT can comply with. Fail-safeMBT is a black-
box testing technique; therefore, objectives 4,5,6,7,8, and 9
will not be fulfilled since they are source code testing related
objectives. Objective 3 is the only candidate left so far for
Fail-safeMBT to comply with. In figure 36, we show a con-
formance argument using GSN to argue about Fail-safeMBT
compliance with DO-331 objectives. The argument is formed
as follows: Claim 001 is that Fail-safeMBT can meet all
objectives in table MB.A-7 in DO-331. The outputsData
strategy is that we argue by demonstrating a substantiation
from Fail-safeMBT outputs. The only objective we claim
that Fail-safeMBT could meet is objective 3 Test Coverage of
high-level requirements is achieved. In figure 37, we support
this claim by showing that there is at least one test path pro-
duced by Fail-safeMBT that can be used to create test cases to
test a specific requirement of the SUT. The evidence provided
to support the claim are substantiated from Fail-safeMBT
outputs: 1) Table 3, test paths from CEFSM model for testing
normal behavior, 2) Table 4, test paths from ICEFSM for
failure testing, 3) Table 5, failure to test paths mapping to
provide traceability and 4) Table 9, the safety mitigation
test paths. Regarding the traceability property, Section 6.5
in DO-331 about software verification process traceability

14

Table 8. All tests, all unique nodes, all applicable failures

F/S TP1 TP2 TP3 TP4 TP5 TP6 TP7
s1 s2 s4 s6 s3 s4 s8 s7 s1 s2 s1 s3 s4 s3 s9 s3 s4 s3 s5 s5 s6 s5 s9 s10 s9 s7 s8 s7

f1 1
f2 1 1
f3 1 1 1 1 1 1 1
f4 1 1 1 1

mandates that a trace data should exist between test cases and
software requirements. Since Fail-safeMBT outputs tables 5
and 9 document what test path is used to cover each failure,
traceability will be provided between software requirements
and the test cases generated using Fail-safeMBT test paths.
Regarding independence, in the verification process, DO-331
mandates that some objectives should be achieved indepen-
dently depending on the safety level of the SUT. Since Fail-
safeMBT is a model-based testing methodology that uses
system requirements a different person or organization other
than the developers can apply its testing activities if the same
requirements are used. Therefore, Fail-safeMBT can provide
independence.

Figure 35. DO-178C activities for fulfilling certification
objectives in relation to Fail-safeMBT

Findings

In this research, we were able to answer the research ques-
tions as follows: Fail-safeMBT is partially in compliance
with DO-178C/DO-331. Fail-safeMBT could be used to
provide test paths for test cases generation. These test cases
are targeting testing system safety and its mitigation require-
ments. In avionic standards, testing is required to be con-
ducted in a requirement-based testing manner. As a model-
based safety testing technique, Fail-safeMBT uses the system
requirements in building the model for testing, therefore, it
can provide requirement-based testing with independence. In
addition, test cases generated from Fail-safeMBT test paths
could be traced to the system requirements under test as
all its test paths outputs in the processes are mapped to a
specific requirement. However, regarding objectives in table
MB.A-7, objective 3 was the only one that Fail-safeMBT
met. Objectives 4,5,6,7,8 and 9 are not achievable using Fail-
safeMBT due to the fact that Fail-safeMBT is a black-box
testing technique. Objectives 1 and 2 are not addressed in
this study because they are review activities. As a result, Fail-
safeMBT contributes partially to the compliance process.
Fail-safeMBT should be further improved by adding white-
box testing activities to cover more certification requirements
related to source code testing to be recommended as a testing
methodology in the avionic domain. In general, any black-
box based testing methodology will never fully comply with
the standards in the avionic domain.

4. CONCLUSION
In this paper, we presented Fail-safeMBT, a model-based
testing methodology for testing safety critical systems as
nine-tasks processes using SPEM2.0, then we applied Fail-
safeMBT on some of the Autopilot system functionalities.
We examined Fail-safeMBT with respect to DO-178C/DO-
331 focusing on the compliance of the verification activities.
From Fail-safeMBT processes outputs, we have argued about
the elements of compliance with the standards related verifi-
cation activities and objectives by using GSN. Fail-safeMBT
showed a partial compliance with the standards, specifically
as a requirements-based testing technique, providing com-
plete coverage in testing high-level requirements in addition
to providing the independence property when required by the
safety level. However, Fail-safeMBT still lacks high appro-
priateness in the avionic domain regarding compliance with
source code testing activities and objectives as a result of Fail-
safeMBT being a black-box testing technique. Therefore,
Fail-safeMBT should be further improved by adding more
testing tasks or combining it with other testing techniques to
achieve full certification compliance in the avionic domain.

15

Table 10. Fail-safeMBT outputs mapping to DO-178C/DO-331 elements

Fail-
safeMBT
Table

Purpose Step in SPEM Related DO-
178C/DO-
331 parts

Explanation

Table 3 Test the normal behavior of
the system

Test Paths Generation and
Failure Mapping

Section 6.4.2,
Section 6.4.3,
Section MB
6.1.e, Table
MB.A-7

Requirements based Testing, Nor-
mal and Robust Testing

Table 4 Test for failures (Robust-
ness)of the system

Test Paths Generation and
Failure Mapping

Section 6.4.2,
Section 6.4.3,
Section MB
6.1.e, Table
MB.A-7

Requirements based Testing Nor-
mal and Robust Testing

Table 5 To trace any failed test case
to the specific failure

Test Paths Generation and
Failure Mapping

Section 6.5 Test cases to Software requirements
traceability

Table 9 To test for system proper
mitigation behavior when a
failure occurs

Safety Mitigation Test Paths
Generation

Section 6.4.2,
Section MB
6.1.e, Table
MB.A-7

Requirements based Testing

Figure 36. Conformance argument shows how Fail-safeMBT meets one of DO-331 objectives.

16

Figure 37. Conformance argument shows how Fail-safeMBT meets objective 3 of Table MB.A-7 in DO-331.

ACKNOWLEDGMENTS
This work was partially supported in part by NSF grant
#1439693 to the University of Denver. The author B. Gallina
is financially supported by the EU and VINNOVA via the
ECSEL JU project AMASS (No. 692474).

REFERENCES
[1] U. Zdun, A. Bener and E. L. Olalia-Carin, “Guest Ed-

itors’ Introduction: Software Engineering for Compli-
ance,” In IEEE Software, vol. 29, no. 3, pp. 24-27, May-
June 2012.

[2] P. Graydon, I. Habli, R. Hawkins, T. Kelly and J. Knight,
“Arguing Conformance. In IEEE Software,” vol. 29, no.
3, pp. 50-57, May-June 2012.

[3] C. Holloway, “Making the Implicit Explicit: Towards an
Assurance Case for DO-178C,” Proc ISSC, Boston, MA,
ISSS, 2013.

[4] RTCA DO-178C (EUROCAE ED-12C), Software Con-
siderations in Airborne Systems and Equipment Certifi-
cation, RTCA Inc, Washington DC, 2013.

[5] RTCA DO-331, Model-Based Development and Verifica-
tion Supplement to DO-178C and DO-278A, RTCA Inc,
Washington DC, 2011.

[6] L. Rierson, Developing safety-critical software: a prac-
tical guide for aviation software and DO-178C compli-
ance. CRC Press, First edition, 2013.

[7] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, “Ba-
sic concepts and taxonomy of dependable and secure

computing,” IEEE transactions on dependable and secure
computing 1.1, pp. 11-33, 2004.

[8] B. Lerner, S. Christov, L. Osterweil, R. Bendraou,
U. Kannengiesser and A. Wise, “Exception Handling
Patterns for Process Modeling,” In IEEE Transactions
on Software Engineering, vol. 36, no. 2, pp. 162-183,
March-April 2010.

[9] A. Gario, A. Andrews and S. Hagerman, “Testing of
safety-critical systems: An aerospace launch applica-
tion,” In IEEE Aerospace Conference, pp. 1-17, 2014.

[10] A. Anneliese, S. Elakeili, A. Gario, S. Hagerman,
“Testing proper mitigation in safety-critical systems: An
aerospace launch application,” In IEEE Aerospace Con-
ference, pp. 1-19, 2015.

[11] D. Dewi, “Are we there yet? A Practitioners View
of DO-178C/ED-12C,” Advances in Systems Safety.
Springer London, pp. 293-313, 2011.

[12] OMG, Software & systems Process Engineering Meta-
model (SPEM), v 2.0. Full Specification formal/08-04-
01, Object Management Group, 2008.

[13] G. Baumgarten, M. Rosinger, A. Todino and R. de Juan
Marn, “SPEM 2.0 as process baseline Meta-Model for
the development and optimization of complex embedded
systems,” 2015 IEEE International Symposium on Sys-
tems Engineering (ISSE), pp. 155-162, 2015.

[14] GSN: Community Standard Version 1, 2011.
[15] T. Kelly and R. Weaver,“ The goal structuring notation -

A safety argument notation,” In the proceedings of the de-
pendable systems and networks workshop on assurance
cases, Citeseer, 2004.

17

[16] B. Gallina and A. Andrews, “Deriving verification-
related means of compliance for a model-based testing
process,” Digital Avionics Systems Conference (DASC),
IEEE/AIAA 35th, 2016.

[17] B. Gallina, “A model-driven safety certification method
for process compliance,” Software Reliability Engineer-
ing Workshops (ISSREW), 2014 IEEE International
Symposium, 2014.

[18] www.faa.gov

[19] C. Ericson, Hazard Analysis Techniques for System
Safety, John Wiley & sons Inc., 2005.

[20] M. Sánchez and M. Felder, “A Systematic Approach
to Generate Test Cases based on Faults,” In Argentine
Symposium in Software Engineering, Buenos Aires, Ar-
gentina, 2003.

[21] R. Nazier and T. Bauer, “Automated Risk-Based Testing
by Integrating Safety Analysis Information into System
Behavior Models,” In IEEE 23rd International Sympo-
sium on Software Reliability Engineering Workshops
(ISSREW), pp. 213-218, 2012.

[22] C. Cârlan ,B. Gallina , S. Kacianka and R. Breu, “Ar-
guing on Software-Level Verification Techniques Ap-
propriateness,” In International conference on Computer
Safety, Reliability, and Security. SAFECOMP 2017. Lec-
ture Notes in Computer Science, vol 10488, pp. 39-54,
Springer, Cham, 2017.

[23] R. Bloomfield and P. Bishop, “Safety and Assurance
Cases: Past, Present and Possible Future - an Adelard
Perspective,” Making Systems Safer, Springer, London,
pp 51-67, 2010.

[24] A. Tribble and S. Miller, “Software intensive systems
safety analysis,” In the IEEE Aerospace and Electronic
Systems Magazine, vol. 19, no. 10, pp. 21-26, Oct. 2004.

[25] E. Leaphart,B. Czerny,J. D’Ambrosio, C. Denlinger,
and D. Littlejohn, “Survey of Software Failsafe Tech-
niques for Safety-Critical Automotive Applications,”
SAE World Congress, 2005.

[26] P. Ammann and J. Offutt. Introduction To Software
Testing. Cambridge University Press, New York, USA,
First edition, 2008.

[27] B. Monate, E. Ledinot, H. Delseny, V. Wiels and Y.
Moy, “Testing or Formal Verification: DO-178C Alter-
natives and Industrial Experience,” IEEE Software vol.
30, p. 50-57, 2013.

BIOGRAPHY[

Aiman Gannous received his B.S. de-
gree in 2001 and M.S. degree in 2008
in Computer Science from Garyounis
University, Benghazi, Libya. He is cur-
rently working toward his Ph.D. degree
in computer science at the University of
Denver. His current research activities
include integration and combinatorial
testing of robotics and autonomous sys-
tems.

Anneliese Andrews Dr. Anneliese An-
drews is Professor of Computer Science
at the University of Denver. Before join-
ing the University of Denver, she held the
Huie Rogers Endowed Chair in Software
Engineering and served as Associate Di-
rector of the School of Electrical Engi-
neering and Computer Science at Wash-
ington State University. Dr. Andrews is
the author of a text book and over 230

articles in the area of Software and Systems Engineering,
particularly software testing, system quality and reliability.
Dr. Andrews holds an MS and PhD from Duke University
and a Dipl.-Inf. from the Technical University of Karlsruhe.
She served as Editor in Chief of the IEEE Transactions on
Software Engineering. She has also served on several other
editorial boards including the IEEE Transactions on Reliabil-
ity, the Empirical Software Engineering Journal, the Software
Quality Journal, the Journal of Information Science and
Technology, and the Journal of Software Maintenance. Dr.
Andrews is the DU site Director of a NSF Industry/University
Collaborative Research Center: Robots and Sensors for the
Human Wellbeing.

Barbara Gallina Dr. Gallina is As-
sociate Professor of Dependable Soft-
ware Engineering at Mälardalen Uni-
versity, where she leads the Certifi-
able Evidences and Justification Engi-
neering group. She has been visit-
ing researcher at Scania AB. She has
been member of several program com-
mittees related to dependability such as
SafeComp, ISSRE, EDCC, COMPSAC,

QUORS, WoSoCER, SASSUR, ReSACI, ISSA. Dr. Gallina
is the author of over 50 articles in the area of Dependable
Software Engineering.

18

