
Extracting Timing Models from Component-based
Multi-criticality Vehicular Embedded Systems

Saad Mubeen∗, Mattias Gålnander†, John Lundbäck†, Kurt-Lennart Lundbäck†
∗Mälardalen University, Västerås, Sweden
†Arcticus Systems AB, Järfälla, Sweden

∗saad.mubeen@mdh.se; †{mattias.galnander, john.lundback, kurt.lundback}@arcticus-systems.com

Abstract—Timing models include crucial information that is re-
quired by the timing analysis engines to verify timing behavior of
vehicular embedded systems. The extraction of this information
from these systems is challenging due to the software complexity,
distribution of functionality and multiple criticality levels. To
meet this challenge, this paper presents a comprehensive end-
to-end timing model for multi-criticality vehicular distributed
embedded systems. The model is comprehensive, in the sense
that it captures detailed timing information and supports various
types of real-time network protocols used in the vehicular
domain. Moreover, the paper provides a method to extract these
models from the software architectures of these systems. The
proposed model is aligned with the component models and
standards in the vehicular domain that support the pipe-and-
filter communication among their basic building elements.

I. INTRODUCTION

Many vehicular embedded systems are real-time systems.
This means, the times at which these systems provide their
responses are as important as functional correctness of the
responses. The manufacturer of such a system is required to
ensure that logically correct response by the system will be
provided at the time that is appropriate for the system and its
environment. This is often mandated by the certification bodies
in the case of safety-critical vehicular embedded systems. The
appropriate time for response delivery is defined by the timing
requirements that are specified on the system. Note that not all
functions in modern vehicles have real-time requirements. In
fact, the vehicle software consists of functions with different
criticality levels, e.g., some functions are safety-critical with
stringent real-time requirements, some are not safety-critical
but have real-time requirements, and the rest are non-critical
functions. As a result, the vehicle software has multiple
criticality levels. The main challenge for the developers of
these systems is to support the development of multi-criticality
software in a reliable and cost-effective manner.

Model- and component-based software development has
emerged as a promising approach to handle the complexity
of vehicle software [1]. This approach allows to use models
throughout the development process, raises the level of ab-
straction during the software development, supports separation
of concerns, allows to build large software systems from pre-
existing and reusable software components and their archi-
tectures, and supports automation. One remarkable advantage
of this approach is that it allows to extract the end-to-end
timing information from the software architectures and use
the extracted information to populate the end-to-end timing
models earlier during the development of these systems. The
end-to-end timing models are vital in performing the end-to-
end timing analysis [2], [3] of the systems.

There are several component models in the vehicular do-
main that support development of vehicular distributed em-
bedded systems, following the model- and component-based
software development approach, e.g., AUTOSAR [4], Rubus
Component Model (RCM) [5], ProCom [6], COMDES [7],
CORBA [8], just to name a few. The end-to-end timing model
and the model extraction method presented in this paper
conform to any component model that supports a pipe and
filter style for communication. Hence, the presented model is
aligned with the above mentioned component models.

Mixed-criticality is becoming a well-studied topic in the
real-time systems community [9]. The mixed-criticality model
is based on the work by Vestal [10], where a task (a run-time
entity corresponding to a software component) is assumed to
have more than one criticality level. In comparison, the multi-
criticality model, which is part of the end-to-end timing model
presented in this paper, associates a unique criticality level to
the application software and not to individual components (or
tasks). The presented model is inspired by the functional safety
standard for road vehicles ISO26262 [11] and the aerospace
standard DO178C [12]. Timing model for the AUTOSAR
standard was developed in the TIMMO2USE project [13]
using the TADL2 [14] language. The timing requirements
model, part of the presented end-to-end timing model, is
aligned with the timing constraints in TADL2. There are a few
works that extract timing models from distributed embedded
systems such as [15], [16]. Unlike the model presented in this
paper, these models are limited to single-criticality systems.

This paper presents a comprehensive end-to-end timing
model for multi-criticality distributed vehicular embedded
systems. The model incorporates several real-time network
protocols that are used in the vehicle industry today. The
paper also presents a method for the extraction of the end-
to-end timing models from the software architectures of the
systems that are developed using the model- and component-
based software development approach. Moreover, the paper
discusses the consequences of extracting unambiguous timing
model from the software architecture with a concrete example.
The proposed model and method are generally applicable
to any component model for distributed embedded real-time
systems that supports a pipe-and-filter communication style
for interaction among the software components.

II. END-TO-END TIMING MODEL IN VEHICULAR SYSTEMS

An end-to-end timing model contains all the information
that is required by analysis engines to perform the end-to-
end timing analysis of a distributed embedded system. This

information includes timing properties, requirements and de-
pendencies in the system. The relationship among the software
architecture, the end-to-end timing model and the timing
analysis engines is depicted in Fig 1. The end-to-end timing
model consists of three models: (1) timing model, (2) linking
model and (3) timing requirements model, as shown in Fig 1.

NetworkNode	or	ECU

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

Software	Architecture	of	a	Vehicular	Distributed	Embedded	System	

Message
Timing	

ConstraintSensor Actuator

End-to-end	Timing	Analysis	Engines

q Response	Time	Analysis	(RTA)
v Tasks	in	nodes
v Messages	in	networks

q End-to-end	RTA	of	distributed	chains

q End-to-end	data	path	delay	analysis	
of	distributed	chains

End-to-end	Timing	Model

Timing	Model

Network
Timing	
Model

Node
Timing	
Model

Linking
Model

Timing	Requirements	Model

End-to-end
timing	model
extraction

Input	to	
analysis	
engines

Analysis	
results

NetworkNode	or	ECU

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

Software	Architecture	of	a	Vehicular	Distributed	Embedded	System	

Message
Timing	

ConstraintSensor Actuator

Fig. 1: Relationship among the software architecture, end-to-
end timing model and timing analysis engines.

A. Timing Model

A distributed embedded system, denoted by S, consists of
two or more nodes and one or more networks. A node or an
ECU can be denoted by E , whereas a network is denoted by
N . Hence, the system can be represented as follows.

S := 〈{E1, . . . , En}, {N1, . . . ,Nm}〉 (1)

That is, the system consists of n number of nodes and
m number of networks. This paper considers the node and
network timing models separately. Together these two models
comprise the system timing model.

1) Node Timing Model: This model contains all the timing
information within a node. This model is based on the trans-
actional task model [17], [18], [19], [16]. The most important
aspect of the transactional task model is that it models tasks
with offsets, externally imposed time intervals between the
arrivals of the triggering events and release (for execution) of
the corresponding tasks.

A node, Ei, consists of one or more partitions. A partition
is denoted by Pij . The first subscript, i, represents the node
to which this partition belongs, whereas the second subscript,
j, represents the index of the partition within the node. The
number of partitions in node Ei is represented by |Ei|. The
node Ei can be represented as follows.

Ei := {Pi1, . . . ,Pi|Ei|} (2)

The partition represents the logical division of a node
into multiple execution resources. The partition provides a
mechanism to isolate the software within a node in both time
and space. Separation in time means that each partition gets a

reserved share of the nodes processing time for the execution
of the software allocated to it. Separation in space means
that the memory available to each node is divided among its
partitions. Each partition executes a part of the system with
specific criticality. Hence, a criticality level, denoted by Cij , is
associated to each partition. The criticality levels conform to
the four Automotive Safety Integrity Levels (ASIL A, ASIL
B, ASIL C and ASIL D) that are defined in the ISO 26262
functional safety standard for road vehicle [11]. According
to the standard, ASIL D is the highest safety integrity level,
whereas ASIL A is the lowest safety integrity level. Note that
the presented timing model can be easily adapted to the multi-
criticality aerospace embedded systems by considering the five
criticality levels (A-E) specified in the DO-178C standard [12].

A partition, Pij , consists of a set of |Pij | transactions. Let a
transaction be denoted by Γijk. The first and second subscripts,
i and j, represent IDs of the node and partition to which this
transaction belongs respectively. The third subscript, k, denotes
the index of the transaction within the partition. Hence, the
partition Pij can be represented by the following tuple.

Pij := 〈{Γij1, . . . ,Γij|Ek|},Cij〉 (3)

Each transaction Γijk is assumed to be activated by mutually
independent events with arbitrary phasing. This means, the
activating events can be periodic with a periodicity of Tijk
or sporadic with Tijk representing the minimum inter-arrival
time between two consecutive events. The transaction Γijk
contains |Γijk| number of tasks. Each task in Γijk may not
be activated until a certain time, known as the offset, elapses
after the arrival of the event. An offset also specifies temporal
dependency among releases of tasks within the transaction.

A task is denoted by τijkl. The first, second and third
subscripts, i, j and k, denote the IDs of the node, partition and
transaction to which the task belongs. The fourth subscript, l,
specifies the ID the task within the transaction. A transaction
belonging to partition Pij can be represented as follows.

Γijk := 〈{τijk1, . . . , τijk|Γijk|}, Tijk〉 (4)

A task, τijk, is defined by the following tuple.

τijkl := 〈Cijkl, Tijkl, Oijkl, Pijkl, Jijkl, Bijkl,
Rijkl, Dijkl〉 (5)

Where, Cijkl denotes the worst-case execution time of the
task. Oijkl and Pijkl represent the offset and priority of the
task respectively. Jijkl denotes the maximum release jitter
of the task. Jitter is the difference between the earliest and
the latest point in time a task starts to execute (relative to
its nominal start time). Bijkl denotes the maximum blocking
time for the task. Bijkl is defined as the maximum amount of
time the task has to wait for a shared resource that is already
locked by a lower priority task. The upper bound on the
blocking time for a task can be obtained by using a resource
sharing (synchronization) protocol such as Stack Resource
Policy (SRP) [20] and Priority Ceiling Protocol (PCP) [21].
Rijkl represents the worst-case response time of the task. Dij

denotes the deadline of the task. In this model, there are no
restrictions on the offset, deadline or jitter. This means that
each of these parameters can each be smaller that, equal to or
greater than the task corresponding period.

2) Network Timing Model: This model contains all the
timing information within a network. The model considers
various real-time network protocols that are used in the
vehicular domain. These networks include broadcast protocols
such as Controller Area Network (CAN) [22], CANopen [23],
HCAN [24] AUTOSAR COMM [25] as well as the point-
to-point communication protocols based on switched Ethernet
such as AVB [26] and HaRTES [27]. A network, Ni, is defined
by the following tuple.

Ni := 〈Zi,Si,Li,Ti,Wi,Mi〉 (6)

Where Zi represents the speed of the network, often repre-
sented in Kbit/s or Mbit/s. Si represents the set of switches in
the case of a multi-hop network, for example Ethernet AVB.
In a multi-hop network, a switch is connected to a node or
to another switch by a link. All such links in the network are
represented by the set Li. In the Ethernet AVB protocol and the
Time Sensitive Network (TSN) protocol [28], different types
of traffic can be specified a portion of the total bandwidth
by means of slopes. For example the Ethernet AVB protocol
specifies slopes for real-time traffic (Class A with higher
priority and Class B with lower priority) and non real-time
traffic. The slopes of different types of traffic are represented in
the set Ti. In some switched Ethernet protocols like HaRTES,
the transmission is performed within pre-configured fixed-
duration time slot called Elementary Cycle (EC). The EC
consists of two windows that are dedicated to synchronous
and asynchronous traffic. The size of the EC and the two
windows is represented in the set Wi. Finally, Mi denotes
the set of messages that are communicated over the network.
Mi is represented by the following tuple.

Mi := 〈Xij ,Fij ,Pij ,Cij , sij ,TP
ij ,T

S
ij ,

Jij ,Oij ,Bij ,Rij〉 (7)

There are two subscripts associated to each term in the above
tuple. The first subscript, i, represents the network to which
the message set belongs. The second subscript, j, specifies a
unique identifier for each message in the message set. Xij
specifies the type of the message. A message can be periodic,
sporadic or mixed (both periodic and sporadic) [29]. Fij
specifies the frame type, i.e., whether the frame is a Standard
or an Extended frame in the case of CAN and its higher-level
protocols. Pij denotes the message priority. Cij represents the
worst-case transmission time of the message (considering no
interferences). sij denotes the data payload in the message. If
the transmission type of the message is periodic, TP

ij denotes
the period of the message. If the transmission type of the
message is sporadic, TS

ij represents the minimum time that
should elapse between the transmission of any two consecutive
instances of the message. Whereas, both TP

ij and TS
ij are

specified in the case of a mixed message. Jij and Oij denote
the release jitter and offset of the message respectively. Bij
represents the maximum amount of time during which the
message can be blocked by the lower priority messages. Rij
represents the worst-case response time of the message.

B. Linking Model
Vehicular embedded systems are often modeled with chains

of tasks and messages. A chain has one initiator and one

terminator. Different chains may have the same initiator or the
same terminator. A chain may reside on one node, in which
case it is composed of only a sequence tasks. A chain may
also be a distributed chain, in which case it is composed of a
sequence of tasks and messages. An example of a distributed
chain is a chain that is initiated at a sensor and terminated at
an actuator, while it spans over several nodes.

A task in the chain may be activated by an independent
trigger source or by its predecessor task. Moreover, a task in
the chain may receive activation trigger, data or both from its
predecessor task. Any two neighboring tasks in the chain may
reside on the same node or two different nodes.

A message in the chain may be triggered for transmission
by the predecessor task (also called sending task) in the case
of passive networks like CAN or Ethernet AVB. Whereas,
in the case of active networks like the HaRTES protocol, a
message in the chain can be triggered for transmission by the
network itself (regardless of the sending task). In the case
of multi-hop networks, a message in the chain may traverse
through several links and switches between the predecessor
and successor tasks in the chain.

All this information regarding activations, trigger flows,
data flows, mapping and linking within the chains constitute
the system linking model. This information is crucial for the
analysis engines to perform the end-to-end timing analysis.

C. Timing Requirements Model
Timing requirements in vehicular embedded systems are

specified by means of timing constraints. The timing re-
quirements model includes information regarding the specified
constraints on all chains in the system. Note that the timing
requirements on individual tasks and messages (e.g., deadlines
of tasks and messages) are not part of this model as they
are already included in the node and network timing models
respectively. The set of all specified timing requirements in
the system is denoted by R. The set R contains n number of
timing requirements as represented below.

R := 〈{R1, . . . ,Rn}〉 (8)

Each timing requirement Ri has three attributes: (1) Type , (2)
minimum value of the constraint, denoted by MIN , and (3)
maximum value of the constraint, denoted by MAX .

Ri := {Type,MIN ,MAX } (9)

There are eighteen timing constraints that are included in the
AUTOSAR standard [4]. However, most of these constraints
are specific to single or pair of events. That is, they are specific
to individual tasks or a set of independent tasks that are not
part of the same chain. In this model, we consider only four of
these constraints, which are applicable to the chains. Hence,
Ri(Type) can be one of the four constraints that are defined
in the timing model of the AUTOSAR standard.

Ri(Type) := {Age,Reaction,OutputSynchronization,

InputSynchronization} (10)

The Age constraint constrains the maximum age of the data
from the input to the output of the chain. The Reaction
constraint constrains the first output (reaction) of the chain
corresponding to the data at the input of the chain, considering

the new data “just missed” the read access at the initiator
element of the chain. If two chains have the same initiator but
different terminators, the OutputSynchronization constraint
restricts the closeness of the occurrences of outputs of the
two chains. In other words, this constraint defines how far
apart the outputs of the two chains can occur corresponding
to the same input of the chains. On the other hand, if two
chains have the same terminator but different initiators, the
InputSynchronization constraint restricts the closeness of the
occurrences of inputs of the two chains. That is, this constraint
defines how far apart the inputs of the two chains can occur
corresponding to the same output of the chains.

III. END-TO-END TIMING MODEL EXTRACTION METHOD

In a model- and component-based software development
process, the end-to-end timing model is extracted from the
software architecture of the modeled system as shown in
Fig. 1. There are two types of information that are extracted
in the end-to-end timing model. The first type of information
is explicitly specified by the user on the software architecture.
This information is rather easy to extract from the properties
of structural elements in the software architecture. The second
type of information is not explicitly provided by the user. This
information has to be extracted from the software architecture.
If some of this information cannot be extracted unambiguously
then assumptions are made about the missing information
for the purpose of providing the complete end-to-end timing
model to the analysis engines.

A. Extracting the Node Timing Model
Majority of the information in the node timing model

falls into the first type of timing information (user-defined).
For instance, most of the information in relations (2), (3),
(4) and (5) is extracted from the user-defined properties of
corresponding structural elements in the software architecture.

The criticality levels associated to partitions in relation (3)
are not user-specified. The user can only specify a unique criti-
cality level on each part of the complete software architecture,
called the application. The application can reside on one or
more partitions in the node. Since the main purpose of the
partition element is to provide separation in time space, a par-
tition is not allowed to host multiple applications with different
criticality levels. Note that any inter-partition interference is
prevented by using memory protection mechanisms. A node
can host multiple applications with different criticality levels.
Hence, the criticality level of a partition is extracted from the
criticality level of the hosted application.

The transaction period in relation (4) is not user-specified.
The user can only specify periods (or minimum inter-arrival
times) of individual software components by means of clocks
(or events or interrupts) as shown in Fig. 2. The corresponding
task inherits the period or minimum inter-arrival time (depicted
in relation (5)) from the software component. Each event- or
interrupt-triggered task forms a transaction of its own. The
transaction inherits the minimum inter-arrival time from the
task. In the case of clock-triggered tasks, the transaction period
is derived by calculating the least common multiple of the
extracted periods of all tasks in the transaction (chain).

The individual deadlines of the tasks in relation (5) are
not user-specified. In the case of time-triggered software

component with no explicit release jitter, we assume implicit
deadlines, i.e., the deadline of each task is equal to its period.
Otherwise, the corresponding jitter and trigger information is
sent to the analysis engines to make appropriate assumptions
about the missing information.

B. Extracting the Network Timing Model

All network-level timing information shown in relation (6)
and some of message timing information (including frame
type, priority, offset and data payload) shown in relation (7)
are user-specified. This information is extracted from the
properties of the corresponding structural elements in the
network and message models of the software architecture.
Whereas, the worst-case transmission time, message priority,
message type, period or minimum inter-transmission time,
release jitter and message blocking time are not explicitly
specified by the user; these properties are extracted from the
software architecture.

The worst-case transmission time of a message is calculated
using the data payload and network speed. In the case of CAN
and its higher-level protocols, the priority of a message is
extracted from its ID. Unlike the other protocols, the priority
of a message is unique in CAN. Whereas, in the case of the
other protocols, the priority of a message is a user-defined
attribute, which is extracted from the message model in the
software architecture. The blocking time of message is derived
by considering the maximum value among the worst-case
transmission times of all lower priority messages. Whereas, the
release jitter of a message is derived by subtracting the sender
task’s (sender software component’s) best-case response time
from the worst-case response time.

The information regarding the message type is extracted
from the sender software component. If the sender is triggered
by a periodic clock, the message type becomes periodic. If
the sender is triggered by a sporadic event or an interrupt,
the message type becomes sporadic. Whereas, if the sender is
triggered by both periodic clock and a sporadic event or an
interrupt, the message type becomes mixed. Depending upon
the message type, the message inherits the period, minimum
transmission time or both from the sender. This information
is crucial for the analysis engines as different analysis profiles
are used to analysis different message types [29].

C. Extracting the Linking Model

The linking information for all distributed chains in the soft-
ware architecture are extracted in the system linking model.
Consider an example of the software architecture of a two-
node multi-criticality vehicular distributed embedded system
depicted in Fig. 2. There are three distributed chains in the
system as follows.
Chain1: SWC1 → SWC2 → Msg1 → SWC6 → SWC5
Chain2: SWC7 → Msg2 → SWC3
Chain3: SWC9 → Msg3 → SWC3

The linking information for each chain is captured in a
reference set. This set contains references to the data and
trigger ports of each software component along the distributed
chain. The ordering of references within this set corresponds to
the ordering of software components and messages within the
distributed chain. For example, the reference set for Chain2

includes references to the trigger and data input and input ports
of SWC7 and SWC8 together with the reference to Msg2.

In order to extract control flows along the chains, each task
τijk1 is assigned a trigger dependency attribute, denoted by
TDτijk1

. The domain of this attribute is defined as follows.

TDτijk1
:= {Independent,Dependent}

Where, TDτijk1
is assigned Independent if the software

component corresponding to task τijk1 is activated by an inde-
pendent triggering source, e.g, SWC1, SWC3, SWC4, SWC7,
SWC8 and SWC9 in Fig. 2. Whereas, TDτijk1

is assigned
Dependent if the software component corresponding to task
τijk1 is activated by its predecessor software component, e.g,
SWC2, SWC5 and SWC6 in Fig. 2. A precedence constraint
is implicitly included between the two tasks in the case of
Dependent triggering. This constraint restricts the activation
of successor task before the completion of the predecessor
task. Note that SWC2 and SWC 5 are triggered by their
predecessors within the same partitions, whereas SWC6 is
triggered by its predecessor via the network.

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

SWC1 SWC2

SWC3

Node1
Partition1

Network	Interface

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

SWC4

SWC6

SWC5

Node2
Partition1

Network	Interface

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

SWC7

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminator

SWC8

Partition2

SWC9

Clock
Input

trigger port
Output

trigger port

Input data port Output data portSoftware Circuit
Actuation

signalSensor signal

Trigger
terminatorClock

Network

Trigger
Port

Data
Port

Msg3

Msg1 Msg2 Msg3

Fig. 2: A two-node multi-criticality vehicular system.

In CAN and its higher-level protocols, a message can tra-
verse through only one link (i.e., the bus or network) between
the sender and receiver software components. However, in the
multi-hop switched Ethernet protocols (e.g., AVB, HaRTES), a
message may traverse through several links between the sender
and receiver software components. These links are extracted
for every message in a dedicated set as follows.

LMij
:= 〈L1, . . . ,Lk〉

Where, LMij represents the set of k links through which
the message Mij traverses between the sender and receiver
software components. In the case of CAN and its higher-level
protocols, this set is equal to one link.

D. Extracting the Timing Requirements Model
The information in the timing requirements model repre-

sented with relations (8), (9) and (10) is user-defined. The
user specifies the timing requirements on the chains within the
software architecture by means of the “start” and “end” objects
for each constraint. This means, the timing constraints can be
specified on a complete chain or part of the chain. The MAX
value of each constraint extracted from the corresponding
property of the “end” object. If MIN value of the constraint
is not specified, it is extracted in the model as zero.

IV. DISCUSSION

It is important that the extracted information in the end-
to-end timing model should be unambiguous, otherwise the
timing analysis results can be under- or over-estimated. Under-
estimated analysis results can have severe (or even catas-
trophic) consequences. For example, analysis results verify
that the task responsible for the deployment of airbag will
meet its deadline in the case of a crash. If the analysis results
are under-estimated then the task can actually miss its deadline
and may lead to catastrophe. Whereas, over-estimated analysis
results can lead to underutilization of the system resources. In
order to elaborate on this, consider an example of a system
consisting of one distributed transaction (chain of tasks and
messages) corresponding to the software architecture of a
distributed chain (chain of software components and messages)
as shown in Fig. 3. The chain is distributed over two nodes
connected by a CAN network. There are three tasks (one in
Node1 and two in Node2) and one message in the chain. The
timing information about the chain is also depicted in Fig. 3.
The calculations for the Age and Reaction delays depend
upon several parameters including the trigger dependency
attribute. This attribute for the receiving task τ2 , denoted
by TDτ2 , can be Independent or Dependent , meaning that
the receiving task implements the interrupt-based or polling-
based policy to receive the message, respectively. The Age
and Reaction delays for the system in Fig. 3 are shown
in Fig. 4 and Fig. 5 if the receiving task implements the
interrupt-based policy or the polling-based policy for receiving
Msg1, respectively. By comparing the values of the Age and
Reaction delays in Fig. 4 and Fig. 5, it is clear that if the value
of TDτ2 is not extracted or wrongly extracted then the analysis
results can be either under-estimated or over-estimated.

Assumption
• Nodes	implement	polling	policy	for	message	reception,	i.e.,	each	receiving	task	periodically	checks	if	the	

message	has	been	recieved	or	not.

Running Example of a Distributed System

Node1

!"

Controller	Area	
Network	(CAN) Node2

!# !$Reg 1

Age	constraint	=	20	ms; Reaction	constraint	=	30	ms

Periodic task
Independently

activated
Period = 10 ms
Priority = High
WCET = 1 ms

Periodic task
Independently

activated
Period = 10 ms
Priority = High
WCET = 2 ms

Periodic task
Independently

activated
Period = 5 ms
Priority = Low
WCET = 1 ms

Msg1: Number of data bytes = 8; Calculated transmission time = 540 us

CAN Speed
= 250 Kbit/s

!1 !2 !3

Msg1

Fig. 3: Example of a distributed transaction corresponding to
the software architecture of a distributed chain.

V. SUMMARY AND CONCLUSION

This paper has presented a comprehensive end-to-end timing
model for multi-criticality vehicular distributed embedded sys-
tems. Such a model is required by the end-to-end timing anal-
ysis engines for pre-runtime verification of timing behavior of
the systems (i.e., verifying the specified timing requirements
before running the system). The paper takes the leverage
of the principles of model- and component-based software
development in providing a method to extract the end-to-end

!"

t
!#

$%&"

18161412108642 262422200

!'

18161412108642 262422200

If Node 2 implements
the polling policy for
receiving messages

then in the worst-case
scenario, !' “just

misses” Msg1.

The missed message is
read by the next

instance of !' shown
by DPB

This does not happen
if Node 2 implements
the interrupt policy.

1.54

No
de

	1

No
de

	2

CA
N

Age	DelayPOLL =	1.54	+	16	=	17.54	ms

! : Task

Msg: MessageTask arrival

DP: Data path

CAN: Controller Area Network
Age	DelayINT
=	1.54	+	6	
=	7.54	ms

()*

()+

INT: Task implements interrupt-based policy for receiving messagePOLL: Task implements polling policy for receiving message

Fig. 4: Different Age delays in the system in Fig. 3 if Node2
uses the interrupt or polling policy for receiving messages.

!"

!#
181614121086420

!$

18161412108642 262422200

11.54

Reaction	DelayPOLL =	11.54	+	13	=	24.54	ms

t

%&'"

! : Task Msg: Message Task arrival DP: Data pathCAN: Controller Area Network

No
de

	1

No
de

	2

CA
N

If Node 2 implements
the polling policy for
receiving messages

then in the worst-case
scenario, !$ “just

misses” Msg1.

The missed message is
read by the next

instance of !$ shown
by DP2

This does not happen
if Node 2 implements
the interrupt policy.

“Task !"	just missed
the new data”

The missed data is
read by the next

instance of !"

)*+

)*,

)*-

Reaction	DelayINT
=	11.54	+	3	=	14.54	ms

INT: Task implements interrupt-based policy for receiving messagePOLL: Task implements polling policy for receiving message

Fig. 5: Different Reaction delays in the system in Fig. 3 if
Node2 uses interrupt or polling policy for receiving messages.

timing models from software architectures of these systems.
The proposed model conforms to the component models and
standards in the vehicular domain that support a pipe-and-
filter communication among their software components. In
the future, we plan to transfer the results to the industry by
implementing the proposed model and method in the analysis
framework of an existing industrial tool suite (Rubus-ICE).

ACKNOWLEDGMENT

The work in this paper is supported by the KKS foundation
through the project PreVeiw. We thank our industrial partners
Arcticus Systems, Volvo CE and BAE Systems Hägglunds.

REFERENCES

[1] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[2] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[3] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional
Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics,” in CRTS Workshop, dec. 2008.

[4] “AUTOSAR Techincal Overview, Release 4.1, Rev.2, Ver.1.1.0.”
http://autosar.org.

[5] K. Hänninen et al., “The Rubus Component Model for Resource
Constrained Real-Time Systems,” in IEEE Symposium on Industrial
Embedded Systems, 2008.

[6] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A
Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in CBSE, Oct. 2008.

[7] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A Component-
Based Framework for Generative Development of Distributed Real-Time
Control Systems,” in Embedded and Real-Time Computing Systems and
Applications, RTCSA 2007. 13th IEEE International Conference on,
August 2007, pp. 199 –208.

[8] D. Schmidt and F. Kuhns, “An overview of the Real-Time CORBA
specification,” Computer, vol. 33, no. 6, pp. 56 –63, Jun. 2000.

[9] A. Burns and R. Davis, “Mixed criticality systems - a review, ninth
edition,” Dept. of Computer Science, University of York, Tech. Rep.,
2017, https://www-users.cs.york.ac.uk/burns/review.pdf.

[10] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in 28th IEEE International
Symposium on Real-Time Systems, Dec 2007, pp. 239–243.

[11] “International Organization for Standardization (ISO), ISO 26262-
1:2011: Road vehicles – Functional safety. http://www.iso.org/.”

[12] Special C. of RTCA. DO-178C, software considerations in airborne
systems and equipment certification, 2011.

[13] “TIMMO-2-USE,” https://itea3.org/project/timmo-2-use.html.
[14] Timing Augmented Description Language (TADL2) syntax, semantics,

metamodel Ver. 2, Deliverable 11, Aug. 2012.
[15] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-to-end

timing model from component-based distributed real-time embedded
systems,” in Time Analysis and Model-Based Design, from Functional
Models to Distributed Deployments (TiMoBD) workshop located at
Embedded Systems Week. Springer, October 2011, pp. 1–6.

[16] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-Oriented
Development of Component- Based Vehicular Distributed Real-Time
Embedded Systems,” Journal of Systems Architecture, vol. 60, no. 2,
pp. 207–220, 2014.

[17] K. Tindell, “Adding Time-Offsets to Schedulability Analysis,” Depart-
ment of Computer Science, University of York, England, Tech. Rep.,
January 1994.

[18] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets,” Real-Time Systems Symposium, IEEE
International, p. 26, 1998.

[19] J. Mäki-Turja and M. Nolin, “Efficient implementation of tight response-
times for tasks with offsets,” Real-Time Syst., vol. 40, no. 1, pp. 77–116,
2008.

[20] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, Apr. 1991. [Online]. Available:
http://dx.doi.org/10.1007/BF00365393

[21] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Transactions on Com-
puters, vol. 39, no. 9, pp. 1175–1185, 1990.

[22] ISO 11898-1, “Road Vehicles ? interchange of digital information ?
controller area network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.”

[23] “CANopen Application Layer and Communication Profile. CiA Draft
Standard 301. Version 4.02. February 13, 2002,” http://www.can-
cia.org/index.php?id=440.

[24] “Hägglunds Controller Area Network (HCAN), Network Implementa-
tion Specification,” BAE Systems Hägglunds, Sweden (internal docu-
ment), April 2009.

[25] “Requirements on Communication, Rel. 4.1, Rev. 3, Ver. 3.3.1, March,
2014,” www.autosar.org/download/R4.1/AUTOSAR SRS COM.pdf,
accessed on May 05, 2014.

[26] “Audio/video bridging task group of ieee 802.1, available at
http://www.ieee802.org/1/pages/avbridges.html.”

[27] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida, “Multi-
level hierarchical scheduling in ethernet switches,” in 2011 Proceedings
of the Ninth ACM International Conference on Embedded Software
(EMSOFT), Oct 2011, pp. 185–194.

[28] Time-Sensitive Networking Task Group, IEEE Std 802.1Qbv-2015 -
IEEE Standard for Local and Metropolitan Area Networks – Bridges
and Bridged Networks, 2015.

[29] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Integrating Mixed Trans-
mission and Practical Limitations with the Worst-Case Response-Time
Analysis for Controller Area Network,” Journal of Systems and Software,
vol. 99, no. 0, pp. 66 – 84, 2015.

