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Abstract—We study feedback control for a discrete-time inte-
grator with unitary delay in the presence of quantization both
in the control action and in the measurement of the controlled
variable. In some applications the quantization effects can be
neglected, but when high-precision is needed, they have to be
explicitly accounted for in control design. In this paper we
propose a switched control solution for minimizing the effect
of quantization of both the control and controlled variables for
the considered system, that is quite common in the computing
systems domain, for example in thread scheduling, clock syn-
chronization, and resource allocation. We show that the switched
solution outperforms the one without switching, designed by
neglecting quantization, and analyze necessary and sufficient
conditions for the controlled system to exhibit periodic solutions
in the presence of an additive constant disturbance affecting
the control input. Simulation results provide evidence of the
effectiveness of the approach.

Index Terms—quantized feedback control, switched control,
practical stability, computing system design, limit cycle.

I. INTRODUCTION

This paper deals with quantized feedback control for a

discrete-time integrator with unitary delay. In particular, we

consider the effect of quantization of both the measurements

and the control actions.

In general, any digital implementation of a control system

entails input and output quantization. This is typically the case

when the output measurements used for feedback and the con-

trol actions applied to the controlled process are transmitted

via a digital communication channel, [1], [2]. Depending on

the specific application, quantization effects can become rele-

vant and significantly affect the control system performance.

While in some applications the quantization effects can be

neglected, when high-precision control is needed, quantization

has to be explicitly accounted for in control design.

Given a system that is stabilized by a standard linear time-

invariant feedback controller when there is no quantization,

the problem addressed herein is to find a switched controller

that steers the system towards the smallest possible invariant

set that includes the origin when its control input and output

are quantized. We focus, in particular, on a discrete time linear

system described by an integrator with a one time-unit delay.
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The system is affected by an additive constant bias on the

control input, and both control input and controlled output

measurements are quantized via a rounding operator.

Despite its simplicity, this system structure appears in sev-

eral problems pertaining to the domain of computing systems.

For example it represents the dynamics from reservation to

cumulative CPU time in task scheduling, a typical source of

disturbance being the latency of the preemption interrupt [3],

[4]. It models the disturbance to error dynamics in clock syn-

chronization for wireless sensor networks, where the most rele-

vant source of disturbance is given by temperature variations in

the oscillator crystals [5]. It plays a role in server systems [6],

queuing systems [7], and so forth, as can be observed from

the variety of problems mentioned in [8]–[11]. Quantizers

are present in virtually the totality of these applications, and

dealing with their effect is important when high-performance is

required. In fact, several of the problems just listed require zero

error in the presence of constant inputs, hence the relevance

of quantization becomes apparent. Constant (or practically

constant) are for example thermal disturbances experienced

by wireless nodes in a climatized environment. In such an

application context, temperature variations are very small and

slow, because they are smoothed by the environment thermal

dynamics and counteracted by temperature control, and abrupt

variations may occur but only sporadically, for example when

turning the air conditioners on once per day or week. Constant

disturbances are present, for example, in task scheduling in

mixed-critical systems [12].

The considered linear system is stabilizable, and in

the absence of quantization, one can introduce a standard

proportional-integral (PI) controller to compensate for a con-

stant load disturbance and bring the state trajectories to the

zero equilibrium. The presence of input and output quantizers

degrades the PI controller performance, introducing oscilla-

tions in the quantized output with an excursion that is equal

to twice the quantizer resolution. Such oscillations may be

not admissible when dealing with high precision computing

systems. Our goal in this paper is to design a better performing

controller, while maintaining a PI-like structure in order to

ease implementation and tuning. Invariant set and reachability

analysis are the methods adopted to assess the properties of

the designed control scheme.

More precisely, we propose a switched variant of the PI

controller to address quantization and minimize its effect

on the feedback control system performance. We then show

that when the disturbance is constant, the switched control

solution presents an invariant set for the quantized control
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input and output variables such that the quantized output

is either zero or has a unitary amplitude (corresponding to

the least significant bit, hence to the minimum representable

quantity). A numerical reachability analysis study shows that,

if the PI controller is suitably tuned, this invariant set is a

global attractor. Necessary and sufficient conditions for the

existence of a periodic solution in the (unquantized) control

input and output variables are given as well.

Many papers in the literature address control of quantized

linear systems. Most of them focus on stabilization at the zero

equilibrium in absence of disturbances. Contributions can be

classified based on the characteristics of the adopted quantizer.

If the quantizer has a finite resolution, like in our paper where

uniform quantization is adopted, then, [13] shows that classical

stability cannot be achieved and introduces the practical

stability notion for quantized systems. More specifically, [13]

proves that, given an unstable discrete time system that is

stabilizable, if the state measurements are quantized, then,

there is no control strategy that makes all trajectories of the

quantized state-feedback system asymptotically converge to

zero, and only convergence to an invariant set around zero

can be obtained. Classical results on asymptotic stability of the

origin are recovered in [14], [15] by changing the resolution

of the quantizer depending on the state behavior, and hence

making the resolution higher and higher while approaching

the origin. This approach has been extended to input to state

and l2 stabilization in presence of a disturbance input in

[16] and [15], respectively. When a logarithmic quantizer

with (countably) infinite quantization levels is adopted, the

resolution of the quantizer is infinite close to the origin,

and global asymptotic stability can be achieved, [17], [18].

However, when finite-level logarithmic quantizers are used,

practical stability results can only be proven. Analysis of

practical stability and constructive results on how to design

finite-level logarithmic state quantizers guaranteeing practical

stability are given in, e.g., [17], [19].

It is worth noticing that most papers in the literature consider

quantization of either the control input (see, e.g., [20]–[22]) or

the controlled output (see, e.g., [13]–[15], [23]–[28]), and they

study the two cases separately, whereas only a few address the

setup considered in this paper, where both control input and

controlled output are quantized. This is the case in [18], [29],

[30]. Whereas logarithmic quantizers with infinite quantization

levels are considered in [18], in [29], input and output quan-

tizers are assumed to have a finite number of quantization

levels. Practical stabilization of a double integrator system

is studied in [29], showing how the parameters defining the

quantizers should be set for the practical stability result to

hold. Extension to higher order integrator models is outlined

as well, focusing however on stabilization without disturbances

acting on the system. The work closest to the present paper is

[30], where pre-defined finite resolution quantizers on both

input and output are given and a feedback controller is

designed to achieve some control goal. More precisely, in [30],

practical stabilization of unstable discrete time linear systems

is addressed, and a quantized static state-feedback controller is

designed that brings the state of the system to some invariant

set around the origin in a finite number of steps. Our approach

differs from [30] in that we address disturbance compensation,

and we introduce a switched output-feedback controller to

make the state of the controlled system reach an invariant

set around the origin. Disturbance compensation and dynamic

state/output-feedback control are not addressed in [30] and

related work. To the best of our knowledge, our approach is

the first one addressing disturbance compensation via output

feedback. On the other hand, while the methodology in [30]

is of general applicability, our design is tailored to a simple

system model and not easily extendable to different higher

dimensional models.

The rest of the paper is organized as follows. Section II first

describes the control scheme without switching, and highlights

how quantization deteriorates the performance of the control

system. The switched solution that allows for minimizing the

effect of quantization is then presented in the same section.

Section III provides necessary and sufficient conditions for

entering the invariant set. A numerical reachability analysis

study is performed in Section IV for identifying the controller

parameter tuning that makes such an invariant set a global

attractor. Section V gives necessary and sufficient conditions

for the existence of periodic solutions. Finally, Section VI

provides evidence of the effectiveness of the approach via a

simulation study, while Section VII concludes the paper.

II. BASIC CONTROL SCHEME AND ITS SWITCHED VARIANT

A. Notation

We now introduce some notation that will be used in the

paper developments.

Definition 1 (Sign function). The sign function of a real

number z is defined as:

sign (z) :=











1, z > 0

0, z = 0

−1, z < 0

Definition 2 (Integer part of a number). The integer part of

a real number z is defined as:

int (z) :=

{

⌊z⌋, z ≥ 0

⌈z⌉, z < 0

where ⌊z⌋ is the largest signed integer smaller than or equal

to z and ⌈z⌉ is the smaller signed integer larger than or equal

to z.

Definition 3 (Fractional part of a number). The fractional part

of a real number z is defined as:

frac (z) := z − int (z)

A quantizer maps a real-valued function into a piecewise

constant function taking values in a discrete set, and here it is

defined as the rounding operator.

Definition 4 (Rounding operator). Given a real number z, its

rounding ρ : R → Z is defined as:

ρ (z) :=

{

sign (z) · | int (z) |, 0 ≤ | frac (z) | < 1
2

sign (z) · (| int (z) |+ 1) , 1
2 ≤ | frac (z) | < 1
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Definition 5 (Rounding error). Given a real number z, its

rounding error is:

∆z := z − ρ (z) .

Notice that according to the provided definitions, the round-

ing error of a real number z is always bounded as |∆z| ≤ 1
2 .

Finally, note that given two real numbers a ∈ R, and b ∈ R,

we have that ρ (ρ (a) + b) = ρ (a) + ρ (b).

B. The basic scheme

We consider a system with control input u and output e,

which is governed by the following equation

e(k + 1) = e(k) + ρ (u(k)) + d(k), (1)

where d is some additive constant yet unknown disturbance

on the quantized control action ρ (u).
The output e represents some error signal and should be

driven to zero by compensating the disturbance d through the

control input u. To this purpose, quantized measurements of

e are available for feedback. Due to the quantization of both

u and e, the disturbance might not be exactly compensated

and the goal is to design an output feedback compensator so

that e is kept below the minimum resolution as defined by the

quantizer (ρ (e) = 0).

The transfer function between the residual disturbance

ρ (u) + d and the controlled variable e is given by

P (z) =
1

z − 1
, (2)

which is a discrete time integrator with a one time unit delay.

Suppose that disturbance d is constant, and neglect the quan-

tization for the time being. Then, a discrete-time Proportional

Integral (PI) controller described via the transfer function:

R(z) =
1− αz

z − 1
, (3)

would suffice to drive e to zero with a rate of convergence

that can be set via the parameter α. Indeed, if we neglect the

quantizers, the effect of the disturbance d on the output e can

be described via the (closed-loop) transfer function

F (z) =
P (z)

1−R(z)P (z)
=

z − 1

z(z + α− 2)
,

which corresponds to an asymptotically stable linear system if

1 < α < 3. Hence, in the absence of quantization effects, the

PI controller guarantees that the error converges to zero in the

presence of a constant disturbance, with a rate of convergence

that depends on the parameter α. If α = 2, output e would be

brought to zero in two time units.

Figure 1 shows the resulting control scheme, including the

quantizers.

C. The effect of quantization

As anticipated in the introduction, whenever high-precision

control is needed, quantization can significantly deteriorate the

performance of the control system. Indeed, quantization effects

are not negligible in almost all the applications where a digital

implementation is in place.

1− αz

z − 1
ρ (·)

1

z − 1
ρ (·)

u ρ (u)+ e

ρ (e)

d

+

Figure 1: Basic control scheme with quantizers.
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Figure 2: The effect of quantization in the control scheme in

Figure 1: error signal e and its quantized version (top plot),

control input u and its quantized version (middle plot), and

residual disturbance ρ (u) + d (bottom plot).

In particular, in the case of the scheme in Figure 1, a

constant disturbance may cause the system to end up in a

limit cycle where the excursion in amplitude of the quantized

error is 2. An example is shown in Figure 2, with α = 1.4,

d(k) = d = 1.2, and the control system initialized as e(0) = 2,

u(0) = 0. This figure, and, more precisely, the behavior of

the error signal e, shows that the system with transfer function

P (z) integrates over time the residual between the disturbance

d and the quantized control input ρ (u). Due to the quantization

on the system output e, the PI controller keeps its control

action constant as long as ρ (e) is zero. It then reacts when

the integrated residual disturbance exceeds the threshold 1/2
in amplitude and makes the quantized output ρ (e) change

value from 0 to either 1 or −1, depending on its sign. The

control signal reverses the sign of the residual disturbance,

thus causing the quantized output ρ (e) too to change sign.

As a result, ρ (e) is brought to a limit cycle where it keeps

commuting between −1 and 1, with an excursion in amplitude

that is equal to 2.
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1− αz

z
ρ (·)

1

z − 1
ρ (·)

z−1

+ u ρ (u)+ e

ρ (e)

+

d

+

Figure 3: Proposed switched control scheme.

D. The proposed switched control scheme

In this section, we propose a switched control scheme that

reduces the effect of quantization, steering the system to a

limit cycle of an amplitude that is half of the one obtained

with the control scheme in Figure 1. The proposed solution

has the advantage of still adopting simple controllers, which

leads to a system easily implementable in an embedded device,

with very low overhead.

The controller is composed of a linear part with transfer

function

R̃(z) =
αz − 1

z
.

and a switched part where the control action ũ computed by

R̃(z) is set as the input to the following modified integrator:
{

u(k + 1) = u(k) + ũ(k + 1), if ρ (e(k + 1)) 6= 0

u(k + 1) = ρ (u(k)) + ũ(k + 1), if ρ (e(k + 1)) = 0

that finally computes the actual control input u, based on

the quantized error measurements ρ (e). Figure 3 shows the

resulting switched control scheme.

Note that if ρ (e(k + 1)) 6= 0, then, the effect of ρ (e)
on u is describe by the transfer function R(z) of the PI

controller previously presented. Furthermore, in the absence

of quantization, the two schemes in Figures 1 and 3 coincide.

The switched control system dynamics is characterized by

the state variables u and e, and can be expressed as follows:

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + d(k)) = 0, then:
{

e(k + 1) = e(k) + ρ (u(k)) + d(k)

u(k + 1) = ρ (u(k)) + ρ (e(k))
(4)

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + d(k)) 6= 0, then:






e(k + 1) = e(k) + ρ (u(k)) + d(k)
u(k + 1) = u(k) + ρ (e(k))

− α ρ (e(k) + ρ (u(k)) + d(k))
(5)

III. INVARIANT SET ANALYSIS

In this section we prove that, for a constant disturbance

d(k) = d, the proposed control scheme admits an invariant

set in the quantized state variables ρ (e) and ρ (u), and within

that set the amplitude of the quantized error oscillations is 1.

We characterize the conditions under which the control

system enters this invariant set. To this purpose it is convenient

to express the control input as the quantized disturbance

compensation term − ρ
(

d
)

plus the residual:

u(k) = − ρ
(

d
)

+ u(k), (6)

and let

∆d = d− ρ
(

d
)

, (7)

be the rounding error of the disturbance. We can then rewrite

the control system dynamics in the state variables e and u as:

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) = 0, then:
{

e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = ρ (u(k)) + ρ (e(k))
(8)

• if ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) 6= 0, then:






e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = u(k) + ρ (e(k))
− αρ (e(k) + ρ (u(k)) + ∆d)

(9)

which better shows that the rounding error of the distur-

bance is integrated by the process dynamics.

Theorem III.1. Let 1 < α < 3
2 , and consider the system

described by (8) and (9). If, at some time k

− 1

2
< e(k) <

1

2
(10a)

1 ≤ α− u(k) sign (∆d) <
3

2
(10b)

− 1

2
< u(k) <

1

2
(10c)

then, for all the subsequent time steps k + h, h > 0:

(ρ (e(k + h)) , ρ (u(k + h))) ∈
{(0, 0), (sign (∆d) ,− sign (∆d))} . (11)

Moreover, {(0, 0), (sign (∆d) ,− sign (∆d))} is the smallest

invariant set for ρ (e) and ρ (u), when the system evolves

starting from (10).

Proof. Let us first consider the case where ∆d = 0. Given the

error evolution in (8)-(9), we get from (10) that:

e(k + 1) = e(k) + ρ (u(k)) + ∆d = e(k).

Then ρ (e(k + 1)) = ρ (e(k)) = 0, and by (10a) the system

evolves according to (8):
{

e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = ρ (u(k)) + ρ (e(k))
⇒

{

e(k + 1) = e(k)

u(k + 1) = 0
(12)

The first equation satisfies (10a), and the second equa-

tion satisfies both (10b) and (10c), so that the correspond-

ing system keeps evolving according to (12). In addition,

(ρ (e(k + 1)) , ρ (u(k + 1))) is equal to (0, 0), and the system

will keep staying in (0, 0) for all time k+h, with h > 0. This

concludes the proof for the case when ∆d = 0.
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We now consider the case when 0 < ∆d ≤ 1/2. Derivations

for the case −1/2 ≤ ∆d < 0 are analogous, and hence

omitted. Given (10c), we have:

e(k + 1) = e(k) + ρ (u(k)) + ∆d = e(k) + ∆d.

Since −1/2 < e(k) < 1/2 in (10a), and 0 < ∆d ≤ 1/2, then

−1

2
< e(k) + ∆d < 1,

and

ρ (e(k + 1)) = ρ (e(k) + ∆d)

=

{

0, |e(k) + ∆d| < 1
2

1, 1
2 ≤ e(k) + ∆d < 1

(13)

We can then distinguish the following two cases:

1) ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) = 0
2) ρ (e(k + 1)) = ρ (e(k) + ρ (u(k)) + ∆d) = 1

Case 1): The system evolves according to (8):
{

e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = ρ (u(k)) + ρ (e(k))
⇒

{

e(k + 1) = e(k) + ∆d

u(k + 1) = 0,
(14)

so that in one step the quantized state is brought to zero:

(ρ (e(k + 1)) , ρ (u(k + 1))) = (0, 0). Since the first equation

in (14) satisfies (10a), and the second satisfies both (10b)

and (10c), we are back then to (13).

Case 2): The system evolves according to (9):






e(k + 1) = e(k) + ρ (u(k)) + ∆d

u(k + 1) = u(k) + ρ (e(k))
− αρ (e(k) + ρ (u(k)) + ∆d)

⇒

{

e(k + 1) = e(k) + ∆d

u(k + 1) = u(k)− α
(15)

By (10b), we have:

− 3

2
< u(k)− α ≤ −1,

hence

ρ (u(k + 1)) = ρ (u(k)− α) = −1,

so that (ρ (e(k + 1)) , ρ (u(k + 1))) = (1,−1).
If we next compute:

e(k + 2) = e(k + 1) + ρ (u(k + 1)) + ∆d

= e(k + 1)− 1 + ∆d,

since e(k+1) = e(k)+∆d, and in this case 1/2 ≤ e(k)+∆d <
1:

− 1

2
< e(k + 1)− 1 + ∆d <

1

2
,

we then have

ρ (e(k + 2)) = 0.

The dynamics therefore evolves according to (8), i.e.,
{

e(k + 2) = e(k + 1) + ρ (u(k + 1)) + ∆d

u(k + 2) = ρ (u(k + 1)) + ρ (e(k + 1))
⇒

{

e(k + 2) = e(k + 1)− 1 + ∆d

u(k + 2) = −1 + 1 = 0
(16)

so that (ρ (e(k + 2)) , ρ (u(k + 2))) = (0, 0). In 2 steps the

quantized state is brought to zero. The first equation in (16)

satisfies hypothesis (10a), the second satisfies both (10b)

and (10c), hence we are back to (13).

All the above shows that starting from (10), the system

ends up evolving in the invariant set {(0, 0), (1,−1)} for

(ρ (e) , ρ (u)). Now we need to prove that this is the smallest

invariant set.

Note that we have just shown that from (10) the system

either enters the invariant set in (0, 0) or in (1,−1), and in

this latter case it evolves to (0, 0) in one time step. Also,

in both cases the system is back to set (10), with u = 0
(see equations (14) and (16)). We then need to show that the

quantized state cannot keep being in (0, 0) indefinitely, but

it will eventually switch to (1,−1). This is indeed the case

because according to equation (14), the system keeps being

in (10) with u = 0 and keeps integrating the rounding error

until e (necessarily) exceed 1/2. Then, we are in case 2 since

ρ (e) = 1, and the quantized state switches to (1,−1).

Proposition III.2. Let 1 < α < 3
2 , and consider the switched

control system described by (8) and (9). If, at some time k, the

state satisfies (10), then, for all the time steps k + h, h > 1:

e(k + h) = e(k + h− 1) + ρ (u(k + h− 1)) + ∆d (17)

u(k + h) = −αρ (e(k + h)) (18)

Proof. Equation (17) follows immediately from the system dy-

namics in (8)-(9). Based on the proof of Theorem III.1, (18) is

trivially satisfied when ∆d = 0 since in this case ρ (e(k)) = 0,

and the system evolves according to (12). Let ∆d 6= 0. If

ρ (e(k + 1)) = 0, then u(k + 1) = 0 (see equation (14)).

If instead, ρ (e(k + 1)) = sign (∆d), then u(k + 1) =
u(k) − α sign (∆d), and in one time step u(k + 2) = 0 (see

equations (15) and (16)).

After time k+2, u keeps its value to 0, when ρ (e) = 0. It

become −α sign (∆d) as soon as ρ (e) = sign (∆d), and then

gets back to u = 0 in one time step. As a consequence, it is

possible to express u(k + h), with h > 1, as:

u(k + h) = −αρ (e(k + h)) ,

thus concluding the proof.

A possible evolution of the system is shown in Figure 4,

for α = 1.1, ∆d = 0.4, when the switched control system (8)

and (9) is initialized at e(0) = 0.2, and u(0) = 0.6. The green

square in the figure indicates the initial condition, while the red

area indicates the region (10). The top graph in Figure 4 shows

the phase plot of the system. After the state enters the red area,

it ends up in the invariant set characterized in Theorem III.1.

The central and bottom graphs represent the time evolution of

the state variables e and u and of their quantized version.
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Figure 4: Example of a trajectory entering the invariant set

characterized in Theorem III.1. The top graph shows the phase

plot in the state variables e and u. The lower plots show the

time evolution of the state variables and of their quantized

versions.

Theorem III.1 provides conditions under which the sys-

tem ends up in an invariant set where the quantized state

variables ρ (e(k)) and ρ (u(k)) range between the values 0
and sign (∆d), and 0 and − sign (∆d), respectively, with an

excursion of amplitude equal to 1. However, depending on the

value of α and of ∆d the system may end up on a different

invariant set. This is studied in the following section.

IV. NUMERICAL ANALYSIS OF REACHABILITY AND

GLOBAL ATTRACTIVENESS

The purpose of this section is to study the global attractive-

ness of the invariant set identified in Theorem III.1. To this

end, we exploit the fact that once the system has entered the

region (10), in one step it ends up in the invariant set. There-

fore, we only need to study the reachability of region (10).

Providing an analytical reachability analysis for the considered

system is quite involved and far from being trivial, due to the

quantization effect. In addition, most of the available tools for

performing such an analysis (e.g., SpaceEx [31], Flow* [32],

KeYmaera [33], or Ariadne [34]) are meant for continuous

time dynamical systems [35].

This analysis is parametric in the (α,∆d) pair. To carry

it out numerically, α and ∆d were made variable in the sets

[1.001, 1.499] and [−0.5, 0.5] taking 500 and 1000 equally

spaced values, respectively. For each considered pair (α,∆d),
system (8)-(9) was initialized with (e(0), u(0)) ∈ [−10, 10]2,

taking 1000 equally spaced values per coordinate. Note that

1 1.1 1.2 1.3 1.4 1.5

−0.4

−0.2

0

0.2

0.4

α

∆
d

Figure 5: The region delimited by the closed curve is the

set of (α,∆d) ordered pairs for which the invariant set of

Theorem III.1 is a global attractor.

[−10, 10]2 can be taken as representative of the whole state

space because for larger values of (e, u) the quantization errors

become negligible. Outside that set one can therefore assume

the system to behave linearly, causing any trajectory to end

up in the set itself.

The region delimited by the closed curve in Figure 5 in-

cludes all pairs (α,∆d) in the grid for which all the considered

initial conditions cause the trajectory to end up in region (10),

and therefore in the invariant set identified in Theorem III.1.

Note that the values ∆d = ±0.5 are not included in that region.

This leads to the following statement, which is not a theorem

since it is based on a numerical analysis, not on a formal proof.

Statement 1. If 5/4 < α < 3/2 and |∆d| < 0.5, the invariant

set in Theorem III.1 is globally attractive.

In the case when |∆d| = 0.5, the numerical analysis

revealed the existence of an invariant set where the excursion

in amplitude of the quantized error is equal to 2. In particular,

for ∆d = −0.5 we get

(ρ (e) , ρ (u)) ∈ {(−1, 2), (1,−1)}, (19)

whereas for ∆d = 0.5

(ρ (e) , ρ (u)) ∈ {(−1, 1), (1,−2)}. (20)

The invariant sets (19) and (20) can be reached only from a

subset of initial conditions, since Theorem III.1 holds for any

∆d.

It is worth stressing that invariant sets with amplitude 2 for

the quantized error excursion only appeared when |∆d| = 0.5.

An example is shown in Figure 6.

For |∆d| 6= 0.5, if α < 5/4 our numerical study showed

the existence of two invariant sets, both with unitary excursion

amplitude, one of them being that in Theorem III.1.

Figure 7 shows an example of an invariant set that is

different from the one in Theorem III.1 (but still has a
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Figure 6: Example of an invariant set that can be obtained

with the proposed switched scheme when |∆d| = 0.5. The

state trajectory ends up in an invariant set with excursion of

amplitude 2 for the quantized state e. Both the phase plot (top

graph) and the time evolution of the state variables e and u
with their quantized versions (lower plots) are reported. The

red area indicated in the figure is the set (10).

quantized error excursion of amplitude 1). Such an invariant

set

(ρ (e) , ρ (u)) ∈ {(0, 1), (1, 0)},
is obtained for α = 1.1(< 5/4), ∆d = −0.3, when

the system (8) and (9) is initialized at e(0) = −0.2, and

u(0) = 0.6. Note that the non-quantized control input behavior

shown in Figure 7 is not easy to predict. On the contrary,

the non-quantized control input behavior for the invariant set

in Theorem III.1 can be easily predicted based on α (see

Proposition III.2).

Since α is a design parameter, we can choose it so as to

enforce the presence only of the invariant set that is fully

characterized in Theorem III.1, for all disturbances except for

those with |∆d| = 0.5.

V. LIMIT CYCLE ANALYSIS

In this section, we analyze the evolution of the switched

control system within the invariant set in Theorem III.1, and

determine possible periodic solutions for the error e and the

control input u, jointly with their period p. In particular, we

show in Theorem V.1 that a necessary and sufficient condition

for the presence of periodic solutions is that the disturbance

rounding error, hence the disturbance, is a rational number.

When dealing with applications in the computing systems

−0.5 0 0.5 1 1.5
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0
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k
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Figure 7: Example of an invariant set that can be obtained

with the proposed switched scheme for α < 5/4. The state

trajectory ends up in an invariant set with excursion of

amplitude 1 for the quantized state e and u. Both the phase

plot (top graph) and the time evolution of the state variables e
and u with their quantized versions (lower plots) are reported.

The red area indicated in the figure is the set (10).

domain, rational disturbances can indeed occur due to the in-

herently discrete nature of the signals and processes involved.

The analysis of the limit cycles characterizing the dynamic

behaviour of the system can be beneficial, for example, for

providing hard real-time guarantees in resource reservation

problems [4]. Note also that Theorem V.1 provides a necessary

and sufficient condition for the existence of a periodic solution

so that we can state that for any irrational disturbance, no pe-

riodic solution exists, thus further characterizing the behavior

of the switched control system.

We can now start the analysis by defining the notion of

n-periodic limit cycle of period p.

Definition 6 (n-periodic limit cycle of period p). An n-

periodic limit cycle of period p, with n, p ∈ N, is a solution

of the switched control system (8)-(9) such that

{

e(k + p) = e(k)

u(k + p) = u(k)
, ∀k ≥ k

for some k ≥ 0, and the quantized state (ρ (e) , ρ (u)) switches

n times per period.

Theorem V.1. A necessary and sufficient condition for the

switched control system to evolve according to an n-periodic
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limit cycle of period m within the invariant set in Theorem III.1

is that the disturbance rounding error is rational and satisfies

|∆d| =
n

m
, with 1 ≤ n < m, and n,m ∈ N.

Proof. Note that when the system is within the invariant set

of Theorem III.1, the algebraic relation (18) holds. Therefore,

we just need to show that the state variable e evolves on the

n-periodic limit cycle of period m.

We start by showing that a necessary condition for this to

hold is that |∆d| is rational.

Suppose that at a certain time step h the system is within the

(minimal) invariant set of Theorem III.1. Assume also, without

loss of generality, that (ρ (e(h)) , ρ (u(h))) = (0, 0). This

entails that |e(h)| < 0.5 and that the input ρ (u(h))+ d to the

process is equal to ∆d since ρ (u(h)) = − ρ
(

d
)

from equa-

tion (6). Indeed, the input to the process keeps constant and

equal to ∆d for k time steps, until |e(h+ k)| exceeds or gets

equal to 0.5 if ∆d > 0, −0.5 if ∆d < 0. At time h+ k, then,

ρ (e(h+ k)) 6= 0 and the pair (ρ (e(h+ k)) , ρ (u(h+ k)))
switches to (sign (∆d) ,− sign (∆d)) in the invariant set. The

number of steps k is given by the following formula

k = λ(∆d, x
+(0)) :=

⌈

0.5 sign (∆d)− x+(0)

∆d

⌉

, (21)

where we set e(h) = x+(0). Observe that λ(∆d, x
+(0))

approaches infinity as ∆d tends to zero, in accordance with

Theorem III.1 where the invariant set is composed only of the

value 0 if ∆d = 0.

The value x+(1) taken by e(h+ k + 1) can be obtained as

x+(1) = x+(0) + λ(∆d, x
+(0))∆d +∆d − sign (∆d) , (22)

since the process integrates an input that is constant and equal

to ∆d for k = λ(∆d, x
+(0)) steps, and then receives as input

ρ (u(h+ k))+d = ρ (u(h+ k))−ρ
(

d
)

+d = − sign (∆d)+
∆d at time h+ k.

If x+(1) is equal to x+(0), then the evolution of state e of the

system is periodic with period λ(∆d, x
+(0))+1, and we have

an 1-periodic limit cycle of period k + 1, because one single

switch is needed within the invariant set to reset the state of

the process to its original value, and this required k+1 steps.

If x+(1) 6= x+(0), we can further iterate the same reasoning

by considering i > 1 switches within the invariant set and

computing x+(i), i > 1. If there exists some integer N > 1
such that x+(N+h) = x+(h), for some h ≥ 0, then, the state

of the process evolves according to an N -periodic limit cycle.

More specifically, we need to compute

x+(N+h) = x+(h)+

+

N−1
∑

i=0

λ(∆d, x
+(i+h))∆d +N(∆d − sign (∆d)),

and set x+(N+h) = x+(h), which reduces to solving
(

N−1
∑

i=0

λ(∆d, x
+(i+h)) +N

)

|∆d| = N.

For this equation to admit a solution we must have

|∆d| =
N

L
,

where we set L =
(

∑N−1
i=0 λ(∆d, x

+(i+h)) +N
)

. Note that

since L is an integer larger than N , for a periodic trajectory of

the state process e to exist, the absolute value of disturbance

quantization error |∆d| must be a rational number of the

form n
m

with n < m. Irrational values for |∆d| are then

incompatible with periodic solutions.

We now show that the condition |∆d| = n
m

being a rational

number is sufficient to have an n-periodic limit cycle of period

m.

Observe that by definition of λ as the minimum number of

steps needed for ρ (e(h+ k)) 6= 0 starting from e(h) = x+(0),

we have that

e(h+ k) =x+(0) + λ(∆d, x
+(0))∆d

∈
{

[0.5, 0.5 + ∆d) ∆d > 0

(−0.5 + ∆d,−0.5] ∆d < 0
.

This entails that x+(1) in (22) satisfies

x+(1) ∈
{

[−0.5 + ∆d,−0.5 + 2∆d) ∆d > 0

(0.5 + 2∆d, 0.5 + ∆d] ∆d < 0

irrespectively of x+(0). And this hold true for every x+(i)

value of e after i switches within the invariant set, with i ≥ 1.

Let |∆d| = n
m

, where n and m are coprime integers, m >
n ≥ 1,we next show that, after at least one switch has occurred

within the invariant set, then, the switched control system starts

evolving according to an n-periodic limit cycle of period m.

We refer to the case when ∆d > 0. The same reasoning applies

to ∆d < 0.

If there were no further switches after time h + k when

e(h + k) = x+(1), then, e(h + k +m) would take values in

[x+(1), x+(1) +m∆d] = [x+(1), x+(1) + n] since the system

would integrate a constant input equal to ∆d for m steps.

However, as soon as e becomes larger than or equal to the

threshold 0.5, then, its value is decreased by 1, so that if there

were exactly n switches in the time frame [h+k, h+k+m],
then, e(h+k+m) = x+(1) = e(h+k) and a periodic solution

would be in place. Now, in order to show that there are exactly

n switches in the time frame [h+ k, h+ k+m], one should

simply check that [x+(1), x+(1) + n] contains {0.5 + i, i =
0, 1, . . . , n− 1} and does not contain 0.5 + n.

Clearly, 0.5 + i is contained in [x+(1), x+(1) + n] for i = 0
and i = n−1, since x+(1) > −0.5. Now we need to show that

x+(1) +n < 0.5+n to conclude that [x+(1), x+(1) +n] does

not contain 0.5 + n. Indeed, since x+(1) < −0.5 + 2∆d, we

have that x+(1)+n < n+2∆d−0.5, which entails x+(1)+n <
n+ 0.5 given that ∆d ≤ 0.5.

This concludes the proof.

Figure 8 plots the evolution of the state of the control system

for α = 1.1, e(0) = −0.4, and u(0) = 0.2, and ∆d taking the

values
√
2/3, 1/5 and 2/5. When ∆d is irrational, the obtained

trajectory is not periodic. When ∆d = 1/5 the limit cycle is

1-periodic of period 5. When ∆d = 1/5 the limit cycle is still

of period 5 but 2-periodic.

The following corollary directly follows from Theorem III.1

and Theorem V.1, and summarizes the results of the limit cycle

analysis.
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Figure 8: Evolution of the switched control system for ∆d =√
2/3, 1/5 and 2/5 (top, center and bottom respectively).

Corollary V.2. If 1 < α < 3
2 and |∆d| = n

m
, where n,m ∈

N, 1 ≤ n < m, and |∆d| < 1
2 , then the switched control

system (8)-(9) admits a limit cycle where the error e is kept

within [−0.5+∆d, 0.5+∆d) if ∆d > 0, and within (−0.5+
∆d, 0.5 + ∆d] if ∆d < 0 with a corresponding quantized

version excursion of 1.

Proof. We only need to show that e is kept within [−0.5 +
∆d, 0.5+∆d) if ∆d > 0, and within (−0.5+∆d, 0.5+∆d]
if ∆d < 0. Suppose that ∆d > 0. By Theorem III.1 and

Proposition III.2, we have that at some time k > 1 after

entering the invariant set ρ (e(k)) = ρ (u(k)) = 0, and

u(k) = 0. Then, the error evolves starting from |e(k)| < 1/2,

according to (17) which becomes:

e(k + h) = e(k + h− 1) + ∆d (23)

(since ρ (e) = ρ (u) = 0), until 1/2 ≤ e(k + h) <
1/2 + ∆d, when ρ (e(k + h)) = 1 and hence u(k + h) =
−αρ (e(k + h)) = −α. At time k + h + 1, the error is reset

to e(k + h+ 1) = e(k + h) + ∆d − 1, so that −1/2 + ∆d ≤
e(k+ h+ 1) < −1/2+ 2∆d, and we are back to the integral

dynamics (23) because ρ (e) = ρ (u) = 0. From this analysis

it follows that −1/2 + ∆d ≤ e < 1/2 + ∆d. Analogous

derivations can be carried out for the case ∆d < 0.

Remark 1. The reachability numerical analysis in Section IV

shows that the limit cycle in Corollary V.2 is globally attractive

if we restrict α to the range 5
4 < α < 3

2 .

VI. SIMULATION RESULTS

We first present some simulation results comparing the three

cases when no quantization is present in the control scheme,

and when quantization is present and either the PI or its

switched extension is implemented. Notice that in the absence

of quantization the PI controller and its switched extension

coincide. Figure 9 reports the simulation runs for the three

cases for a finite horizon of 30 time units. In all three plots

the error is normalized, i.e., a unitary resolution is assumed.

The value used for α is 11/8, and ∆d =
√
2 − 1, while the

system state is initialized at e(0) = 0, and u(0) = 0.

While in the absence of quantization the error converges

to 0 with the designed controller, when quantization is in

place it is not possible anymore to guaranteeing convergence

to zero. In the case of PI control, the error oscillates in the

area [−1, 1], while in the case of its switched extension, it ends

up oscillating in the region [0, 1] according to Statement 1 and

Theorem III.1. It is worth noticing that for the chosen value of

∆d the evolution of the control system state cannot be periodic

by Theorem V.1. This is reflected in the evolution of e that

oscillates in the gray area, but always assumes different values

in the set.
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Figure 9: Behavior of quantized (red line with squares) and

non quantized (blue line with circles) error in a simulation run:

(a) without quantizers, (b) with the standard PI with quantizers,

and (c) with the switched PI with quantizers.

We now report another example to show that the presented

analysis provides some insight into the system behavior also

in the case of a (moderately) varying disturbance. A rigorous

treatment of this matter extends far beyond the scope of this

paper.

We therefore consider a time-varying disturbance, which is

initially constant and takes the value d = d1 = 2.6 (∆d =
−0.4 < 0), then, starts decreasing linearly at time k = 20 till

it hits the value d = d2 = 2.4 at k = 40 (∆d = 0.4 > 0), and

finally keeps constant.

The results of the simulation with the switched controller

are shown in Figure 10, with the error e, the control signal u,

and the disturbance d on the left column, and their quantized
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versions on the right column. The system is initialized with

e(0) = 0, u(0) = 0, and we set α = 11/8.

Note that the abrupt change of sign of ∆d when the

disturbance crosses the threshold 2.5 at time k = 30 causes a

transient which can be seen from the error behavior, and it is

reflected in the quantized version only later, at time k = 37,

when the quantized error starts oscillating between [−1, 1]
and correspondingly the quantized control input oscillates

between [−4,−1]. Such oscillations stop when the (new)

invariant set described in Theorem III.1 is reached according

to Statement 1. The quantized error then exceeds the minimum

resolution only temporarily during the (delayed) transient

cause by the threshold crossing. In the case of the standard PI

controller, the quantized error and the quantized control input

keep oscillating between [−1, 1] and [−4,−1], respectively,

for the whole time horizon, irrespectively of the fact that the

disturbance crosses the threshold (see Figure 11).

If we change d2 to 2.501, the threshold 2.5 is not crossed

by the disturbance and the system keeps evolving in the same

invariant set (see Figure 12).

The results presented next refer to a simulation campaign

aimed at investigating the effect of the disturbance magnitude

on the control performance, with and without the proposed

switched extension.

The campaign was carried out by choosing the values of d
reported in Table I. For each value of d, two models – one

with bare PI control and the other with switched PI – were

initialized to e(0) = 0 and u(0) = 0, and then subjected to

a constant disturbance of the selected amplitude. Data were

collected from the two simulated experiments just described

over a finite horizon of H = 1000 time units. We assess

performance by computing the Root Mean Square (RMS)

value of the quantized error, that is defined as:

RMSρ(e) =

√

√

√

√

1

H

H−1
∑

i=0

ρ (e(i))
2

where H is the length of the simulation.

Table I summarizes the results and shows that the proposed

switched scheme decreases the RMSρ(e) by 30%.

disturbance RMS performance index

d standard PI switched PI

±0.01 0.138 0.100
±0.02 0.197 0.141
±0.04 0.281 0.200
±0.05 0.314 0.223
±0.1 0.446 0.316
±0.2 0.631 0.447
±0.4 0.893 0.632

±(
√
2− 1) 0.909 0.643

Table I: RMS performance index of the simulation campaign.

VII. CONCLUSIONS AND FUTURE WORK

A switched control scheme was proposed for reducing the

degradation effect due to the quantization of both control and

controlled variables in a system described as an integrator

with unit delay. Set invariance and limit cycle analysis were

performed, jointly with a numerical reachability study, to

assess the switched control scheme performance and provide

guidelines for control tuning. In particular, necessary and

sufficient conditions for the presence of n-periodic limit cycles

of period p were discussed. Finally, simulation results confirm

the effectiveness of the proposed solution.

Future work will concern the evaluation of the proposed ap-

proach in specific types of applications, where the quantization

effect is relevant. Results are confined to a specific class of

systems. Further investigations are needed also to extend the

proposed approach to a larger class of problems.
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Figure 10: Simulation with a time-varying disturbance and the switched PI controller.
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Figure 11: Simulation with the time-varying disturbance in Figure 10 and the standard PI controller.
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Figure 12: Simulation with a time-varying disturbance that has constant quantized value, using the switched PI controller.

S. Kowalewski, A Benchmark Suite for Hybrid Systems Reachability

Analysis. Cham: Springer International Publishing, 2015, pp. 408–414.

Alessandro Vittorio Papadopoulos received his
B.Sc. and M.Sc. (summa cum laude) degrees in
computer engineering from the Politecnico di Mi-
lano, Milan, Italy, and his Ph.D. (Hons.) degree in
information technology, systems and control from
the Politecnico di Milano, in 2013. From 2014 to
2016, he was a Post-Doctoral Researcher with the
Department of Automatic Control, Lund University,
Lund, Sweden, and he was also a member of the
Lund Center for Control of Complex Engineering
Systems, Linnaeus Center, Lund University. He was

a Postdoctoral Research Assitant at the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria at the Politecnico di Milano (2016). He is currently
an assistant professor in control theory, robotics, real-time and embedded
systems at the Mälardalen University, Västerås, Sweden. His research interests
include model reduction for hybrid systems, event-based control, and the
application of control theory for the design and the implementation of
computing systems, with a particular focus on cloud, real-time, and embedded
systems.

Federico Terraneo received his B.Sc. and M.Sc.
degrees in computer engineering from the Politec-
nico di Milano, Milan, Italy, and his Ph.D. degree in
Information Technology from Politecnico di Milano
in 2015. Currently he holds a Post-Doc position at
Politecnico di Milano – Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB). His research
interests include embedded systems and the appli-
cation of principles of control theory to the design
of software systems. Since 2008 he is the main
developer and maintainer of the Miosix embedded

operating system.

Alberto Leva received the Laurea degree in Elec-
tronic Engineering (summa cum laude) in 1989
from the the Politecnico di Milano. In 1991 he
joined the Dipartimeto di Elettronica, Informazione
e Bioingegneria at the Politecnico di Milano, where
he is at present associate professor of Automatic
Control. His main research interest concern meth-
ods and tools for the automatic tuning of indus-
trial controllers and control structures, process mod-
elling, simulation and control, particularly within the
object-oriented paradigm, object-oriented modelling

and control of energy systems with particular reference to large grids,
and advanced tolls and methods for control education. In recent years, he
has been concentrating on control and control-based design of computing
systems, addressing in a system- and control-theoretical manner problems
like scheduling, resource allocation, time synchronisation in wireless sensor
networks, thermal and power/performance management, performance-driven
software adaptation, and service composition.

Maria Prandini received her laurea degree in Elec-
trical Engineering (summa cum laude) from Po-
litecnico di Milano (1994) and her Ph.D. degree
in Information Technology from Università degli
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