
Alignment of Requirements and Testing in Agile: a
Collaborative Academia-industry Experience

Alessio Bucaioni∗, Antonio Cicchetti∗, Federico Ciccozzi∗, Manvisha Kodali†, and Mikael Sjödin∗
∗ Mälardalen University, Västerås, Sweden

† Westermo, Västerås, Sweden
∗{alessio.bucaioni, antonio.cicchetti, federico.ciccozzi, mikael.sjodin}@mdh.se

†{manvisha.kodali}@westermo.se

Abstract—Agile development aims at switching the focus from
processes to individuals interactions, from heavy to minimalistic
documentation, from contract negotiation and detailed plans to
customer collaboration and prompt reaction to changes. With
these premises, requirements traceability may appear to be an
overly exigent activity, with little or no return-of-investment.
However, since testing remains crucial even when going agile,
the developers need to identify at a glance what to test and how
to test it. That is why, even though requirements traceability
has historically faced a firm resistance from the agile commu-
nity, it can provide several benefits when promoting precise
alignment of requirements with testing. This paper reports on
our experience in promoting traceability of requirements and
testing in the data communications for mission-critical systems
in an academia-industry collaborative project. We define a semi-
automated requirements tracing mechanism which coordinates
four traceability techniques. We comment on the application of
the proposed solution to an industrial project aiming at enhancing
the existing Virtual Router Redundancy Protocol by adding
Simple Network Management Protocol support.

Keywords—testing; agile development; requirements traceabil-
ity; academia-industry collaboration

I. INTRODUCTION

Software is paramount in modern society as our lives are
affected by, and in many cases rely on, it. Traditional and
documentation-driven software development processes start
with the elicitation and specification of functional and non-
functional requirements. Thereafter, a high-level design is
defined in terms of the architectural description of the software
to be developed [1]. While the implementation is inspired by
documented requirements and high-level design, the testing
is driven by requirements. It is unquestionable that, within
traditional development processes, requirements affect most
of the development phases. Therefore, the ability to navigate
back and forth from the requirements to any other development
artefact is considered pivotal [2]. Requirements Traceability
(RT) commonly refers to the ability to follow the life of
a requirement, forwards and backwards, within the whole
software life-cycle, that is to say from requirement to test
case, across design and implementation artefacts [2]. From
the early 90s, elicitation and documentation of requirements
and development artefacts started to incarnate strife and frus-
tration for practitioners. On the one hand, technology and
industry changed at an extraordinary pace making hard for
the stakeholders to definitely identify requirements. On the
other hand, stakeholders’ expectations on the final software

product increased. This triggered the need for new devel-
opment processes which could be less bounded to heavy
documentation and bootstrap phases: it was the dawn of Agile
development [3]. For “agility”, in this context, it is meant the
ability to switch the focus from processes, comprehensive (but
heavy) documentation, contract negotiation and detailed plans,
to individuals and dense interaction among them, customer
collaboration and prompt reaction to changes [4]. In this
landscape, requirements engineering and especially RT may
seem to be superfluous and burdensome, and to return little
value to the development. However, when going agile, testing
cannot be disregarded, but rather occupies a crucial position.
In order to nimbly test a software system during its agile
development, it is crucial to identify at a glance i) what to
test (e.g., requirements, code and development artefacts) and
ii) how to test it (i.e., test cases). Although agile methods
focus on face-to-face communication and continuous delivery,
RT can come in handy for achieving agile testing thanks to
precise mechanisms for relating requirements to test cases.
The alignment between requirements and testing in terms
of traceability can indeed provide several benefits among
which progress checking, customer focus, resource savings,
knowledge sharing and improved software quality [5] [6] [7].
However, there is evidence showing that RT has historically
faced a firm resistance from the agile community since it is
regarded as an activity that may introduce excessive overhead,
hence standing in the way of the agile creed [8].

This paper reports on an academia-industry collaborative
experience in promoting traceability of requirements and test-
ing in data communications for mission-critical systems. We
provide a semi-automated requirements tracing mechanism
which coordinates four traceability techniques and apply it to
an industrial project aiming at enhancing the existing Virtual
Router Redundancy Protocol (VRRP1) by adding Simple Net-
work Management Protocol (SNMP2) support. The mechanism
can be considered as a necessary trade-off between a manual
and an automated solution. In fact, on the one hand the over-
head of a manual mechanism would not be compatible with the
“agility” of the project. On the other hand, a fully automated
mechanism would require a remarkably long bootstrap phase
for being implemented in addition to an extensive and precise
knowledge of requirements. The scientific contributions of this
paper are:

• the definition of a lightweight approach for requirements

1https://en.wikipedia.org/wiki/Virtual Router Redundancy Protocol.
2https://en.wikipedia.org/wiki/Simple Network Management Protocol.



tracing in agile software projects, and
• the reported collaborative academia-industry experience .

The remainder of the paper is structured as follows.
Section II presents a comparison between existing related
approaches documented in the literature and our solution. Sec-
tion III describes the proposed solution in all its constituents.
Section IV shows the application of the proposed solution in an
academia-industry collaborative Scrum project. Section V and
Section VI discuss the benefits and limitations of our solution
and conclude the paper, respectively.

II. RELATED WORK

This work deals with the problem of keeping track of
requirements coverage and satisfaction through test cases in
agile development. Generally, such a problem is known as
alignment of requirements and verification & validation, and
RT is considered as a possible solution [8], [9]. In general, RT
is distinguished between horizontal, when tracing the evolution
of requirements during the development process, and vertical,
when considering the life of a requirement in terms of related
artefacts, notably design decisions, source code, tests, and
documentation [10]. In this respect, our solution supports
vertical RT.

In traditional software development processes, require-
ments engineering encompasses a set of well defined pre-
liminary phases dealing with analysis, planning, and docu-
mentation. Requirements are supposed to be largely known,
and hence RT can be tackled as pertaining to requirements
management stages. This allows, for instance, to configure
and exploit traceability tools, or to adopt model-based/formal
techniques for gaining some form of automation [8]. The
work in [8] gives a broad overview of both solutions and
challenges in realising the alignment between requirements
and verification & validation in general, and by exploiting RT
techniques in particular. As stated before in this paper, the
basic principles of agile make traditional alignment solutions
not suitable: requirements are very often only partially known,
they evolve rapidly during the development process, and there
is no space for preliminary analysis nor bootstrap activities. It
is worth noting that, even if requirements are not subject to
remarkable evolutionary pressure in traditional processes, RT
is very often perceived as a time-consuming activity with poor
ROI if not adequately supported [11], [12]. Notably, traces
can be affected by “decay”, that is the progressive loss of
consistency between requirements and linked artefacts due to
maintenance activities not reflected in the current traceability
information [12]. This issue is exacerbated in agile processes,
such that the lack of traceability is conceived as an intrinsic
problem for this kind of development [13], [14]. We propose
to alleviate the concerns related to requirements evolution by
means of a semi-automated approach, which represents a trade-
off between reliability of manual tracing and reduction of
tedious and error-prone tasks through automation.

The recent work in [15] provides an extensive illustration
of traceability in agile processes, coming from both academia
and industry. Interestingly, several empirical observations they
make and conclusions they draw are consistent with our
industrial settings and suitability of the adopted solution. More
specifically, when considering the types of relevant traceability,

most companies chose “rationale” and “contribute”, i.e. two
vertical traces. In this respect, in our work requirements are the
rationale to the creation of test cases. When it comes to trace-
ability mechanisms, most companies exploit product/sprint
backlogs and in some cases spreadsheets for implementing
RT. It is not surprising that observations reveal a decrease of
satisfaction proportional to the size of the company [15]. In
other words, traceability-matrix-like approaches, being largely
manual, add too much overhead to be compatible with the
agile vision. This aspect is also confirmed by checking the
most relevant challenges expressed by interviewees: difficulty
in identifying proper traceability links, difficulty in motivating
the personnel to keep traces, and low ROI. In our scenario,
tracing activity is simplified by the fact that it only addresses
links between requirements and test cases. The solution is
amalgamated with current used tools (both for requirements
definition and test case specification) thus avoiding the need
of additional knowledge. Moreover, the automated inspection
can be a useful tool even for verifying the progress of the
sprints. This last aspect is again confirmed by the conclu-
sions made in [15] when discussing the potential benefits
of RT mechanisms. Some approaches dealing with RT in
agile development processes exist; notably, in [13] the authors
define a set of requirements for RT support in agile and
introduce a methodology based on Test-Driven Development
and customisable roles (to provide multiple trace links seman-
tics). The main difference with our proposal is that we were
seeking a lightweight solution, requiring a negligible bootstrap
effort in terms of implementation and adoption, due to the
reasons mentioned above. A methodology forcing the adoption
of test-driven development, or the preliminary definition of
roles and links semantics project-by-project would have been
considered as too much overhead and hence not acceptable.
A heterogeneous solution for RT is suggested in [11]. In
particular, the authors propose to exploit requirements layering
with respect to different development process stages, project
epics, and roles involved in their management. Then, they
assign a different RT approach for each layer. Our approach
shares with [11] the vision of adopting heterogenous strategies
for supporting RT. However, we do not exploit requirements
layering, mainly due to the volatility of project scenarios and
the bootstrap costs of configuring RT support for each new
project.

III. PROPOSED SOLUTION

In this section we describe a mechanism introducing RT
in the agile system development life cycle (SDLC) [16] for
enhancing the alignment between requirements (REQs) and
testing in terms of test cases (TCs). The intent is to show how
the software development can be improved in terms of, e.g.,
resource savings, progress checking and improved software
quality, while preserving its “agility”. The proposed solution
leverages four existing traceability techniques:

• Tagging. It is a technique which assigns a keyword to a
piece of information for tracing the information through-
out the development life-cycle [17]. The proposed solu-
tion uses tagging for assigning unique identifiers (IDs) to
REQs and TCs and for tagging the TCs implementation
with the IDs of REQs and TCs.

• Information retrieval. It is a technique which establishes
traceability links among artefacts based on the similarity



between their contained information [18]. The proposed
solution uses information retrieval for retrieving all the
elicited REQs and the TCs along with their relationships.

• Integrating documents. It is a technique which merges
different information in a single document [19]. the
proposed solution uses integrating documents for creating
explicitly correspondences between REQs and TCs.

• Requirements traceability matrix (RTM). It is a technique
which uses a two-dimensional grid for mapping REQs to
other development artefacts [20]. The proposed solution
uses RTM for collecting and displaying the traces infor-
mation among REQs and TCs. In this respect, we extend
the base RTM semantics with values for describing the
relationships holding among REQs and TCs.

To the best of our knowledge, the proposed solution represents
the first attempt in combining a set of generic RT techniques
with the aim of providing an extensive RT mechanisms within
the agile SDLC. Figure 1 shows the proposed solution in
relation to the main phases of the agile SDLC as defined
in [16]. The proposed solution comprises six tasks:

1) Assign IDs to REQs;
2) Assign IDs to TCs;
3) Match REQs and TCs;
4) Tag TCs implementation with IDs of REQs and TCs;
5) Build the RTM;
6) Populate the RTM.

Fig. 1: proposed solution

1. Assign IDs to REQs. The goal of this task is to associate
IDs to the identified REQs. The input of this task is the list of

the identified REQs. The output is a list LREQ = {r1, ..., rn}
of records ri. ri is represented by the pair <id, desc>, where
id is the REQ ID and desc is the REQ description. This task
should be performed during the inception phase (see phases
in Figure 1) and it can be automated by means of scripts.

2. Assign IDs to TCs. The goal of this task is to associate
IDs to the planned TCs. The input of this task is the list of
the planned TCs. The output is a list LTC = {t1, ...,tm} of
records ti. ti is represented by the pair <id, desc> where
id is the TC ID and desc is the TC description. This task
should be performed during the inception phase and it can be
automated by means of scripts.

3. Match REQs and TCs. This task should be performed
prior the development occurring in each construction iteration
phase and aims at formalising the relationships between REQs
and TCs, which are typically identified during the concept
phase (as TCs originate from the user stories derived from
the REQs). The input of this tasks are the LREQ and LTC

lists produced by the previous tasks. The output is a list
LREQ/TC = {r/t1, ..., r/tn} of records r/ti, where r/ti is
represented by the pair <id, LTCID

> where id is the REQ
ID and LTCID

is the list of the IDs of the TCs verifying it. .

4. Tag the TCs implementation with IDs of REQs
and TCs. In the previous task, trace links between REQs
and TCs are established. The goal of this task is to extend
this links to the TCs implementation. To this end, each TCs
implementation is tagged with the corresponding TC IDs and
with the IDs of the REQs it verifies. The input of this task is
the LREQ/TC list produced in the previous task. The output
of this task is the TC implementation tagged with IDs of
REQs and TCs. This task should be performed during the
TCs design occurring in each construction iteration phase and
it can be fully automated by scripts. It is important to note
that in some development iterations TCs might not be defined
prior the construction iteration or transition phases. When
this happens, the task 2 and 3 of the proposed mechanism
can not be performed. In this scenario, this task provides the
engineer with a further possibility for defining trace links
between REQs and TCs, thus it enables more agility in the
development process.

5. Retrieve IDs of REQs and TCs and build the
RTM. The goal of this task is two-fold. On the one hand, it
builds the RTM. On the other hand, it verifies that all the trace
links between REQs and TCs have been considered when
tagging the TCs implementation. To this end, the IDs of REQs
and TCs should be extracted from the TCs implementation
and saved into a temporary list. Such a list is compared to
the LREQs/TCs list produced in the task three with the aim
of identifying and marking possible differences. Eventually,
the two lists are merged and the RTM should be constructed
accordingly. This task should be performed before the testing
occurring in each construction iteration and transition phases
and it can be fully automated by scripts.

6. Populate the RTM with relations and criteria.
The goal of this task is to populate the RTM with the test
results. The input of this task is the RTM produced in the
previous task. The output of this task is the populated RTM.



More specifically, each entry ei of the RTM is represented
by a pair <relation, status> where relation describes the
relationship between REQs and TCs while status describes
the TC result. relation can have a value in the set {planned,
added, deleted}, obtained from the comparison done in the
previous task. planned indicates that the REQ is verified by
the TC as planned during the tasks 1 and 2. added indicates
that the decision to verify the REQ with the TC has been
taken during the task 4. deleted indicates that the REQ
has been deleted during the development process. Status
can have two base values, passed and failed. However,
depending on the adopted pass/fail criteria it can be extended
with further values such as, e.g, blocked and not-run. This
task should be performed after the testing occurring in the
transition phase and it can be fully automated by scripts.

IV. APPLYING THE SOLUTION TO AN
ACADEMIA-INDUSTRY COLLABORATIVE SCRUM PROJECT

In this section we describe the application of our mech-
anism to the VRRP-MIB project. The VRRP-MIB project is
an industrial project of Westermo3 aiming at enhancing the
existing VRRP protocol by adding SNMP support.Full It is
defined as a SCRUM project consisting of 34 REQs and 3
TCs grouping 22 tests. The project was run for six months by
a team composed of 5 engineers from Westermo for a total of
253 man-hours. The elicitation phase required 10 man-hours.
The development phase required 160 man-hours. The testing
phase required 80 man-hours. Eventually, 2 man-hours were
spent for checking that all the elicited REQs were tested. In the
following, due to its verbosity and complexity, we will discuss
a simplified version of the VRRP-MIB project corresponding
to the first Scrum sprint and consisting of 10 REQs and 2 TCs.

REQs

1

Name vrrpOperVrId
Description Full OID description. The system should provide VRID as index into table
Constraints None

Qualification The test should verify that the OID within table entries match the VRID
of a created instance (created via CLI)

2

Name vrrpOperVirtualMacAdd

Description Full OID description (Our VRRP implementation VMAC
meets VRRP standard)

Constraints None

Qualification Test should verify that VMAC matches VRRPv2 specication
(i.e., VRRP/IETF-prex + VRID)

TABLE I: Example of REQs for the VRRP-MIB project

TCs

1 Name verifyOperState
Description Verify that state changes the all supported operstates are correct

2 Name verifyVrrpAdvancedVrrpSetup

Description Verify that the values updated from VRRP are correct while having
two VRRP instances and merging with a third instance

TABLE II: Example of TCs for the VRRP-MIB project

Table I reports an example of two REQs considered in
the first sprint and how they were described within West-
ermo. In particular, each REQ was described by means of
a name, a description, a qualification and some constraints.
The qualification gives basic information for testing while the
constraints specify possible relationships with other REQs.

3http://www.westermo.com

Similarly, Table II shows an example of two TCs involved in
the first sprint and how they were described within Westermo.
Each TC was described by means of a name and a description.
Within Westermo, REQs and TCs are represented and saved in
separate files and organised in folders which are stored using
the version control mechanism GIT4.

According to the first two tasks of the proposed mecha-
nism, we assigned IDs to REQs and TCs. These assignments
were automated by means of Python scripts. Table III and IV
show the resulting descriptions containing IDs for REQs and
TCs, respectively.

REQs

1

Name vrrpOperVrId
ID r.weos.snmpmib.vrrpv2.ss1

Description Full OID description.The system should provide VRID as index into table
Constraints None

Qualification The test should verify that the OID within table entries match the VRID
of a created instance (created via CLI)

2

Name vrrpOperVirtualMacAdd
ID r.weos.snmpmib.vrrpv2.ss2

Description Full OID description (Our VRRP implementation VMAC meets
VRRP standard)

Constraints None

Qualification Test should verify that VMAC matches VRRPv2 specication
(i.e., VRRP/IETF-prex + VRID)

TABLE III: Example of REQs description with IDs

TCs

1
Name verifyOperState

ID t.weos.snmpmib.vrrpv2.ostate
Description Verify that state changes the all supported operstates are correct

2
Name verifyVrrpAdvancedVrrpSetup

ID t.weos.snmpmib.vrrpv2.adv-test

Description Verify that the values updated from VRRP are correct while having
two VRRP instances and merging with a third instance

TABLE IV: Example of TCs description with IDs

Table V shows the tabular representation of the formalised
relationships between REQs and TCs as the result of the
application of the third task of our proposed mechanism.

REQs TCs
r.weos.snmpmib.vrrpv2.ss1 t.weos.snmpmib.vrrpv2.adv-test
r.weos.snmpmib.vrrpv2.ss2 t.weos.snmpmib.vrrpv2.adv-test
r.weos.snmpmib.vrrpv2.ss3 t.weos.snmpmib.vrrpv2.adv-test
r.weos.snmpmib.vrrpv2.ss4 t.weos.snmpmib.vrrpv2.operState
r.weos.snmpmib.vrrpv2.ss5 t.weos.snmpmib.vrrpv2.operState
r.weos.snmpmib.vrrpv2.ss6 t.weos.snmpmib.vrrpv2.operState
r.weos.snmpmib.vrrpv2.ss7 t.weos.snmpmib.vrrpv2.adv-test
r.weos.snmpmib.vrrpv2.ss8 t.weos.snmpmib.vrrpv2.adv-test
r.weos.snmpmib.vrrpv2.ss9 t.weos.snmpmib.vrrpv2.adv-test

r.weos.snmpmib.vrrpv2.ss10 t.weos.snmpmib.vrrpv2.adv-test

TABLE V: Correspondence between REQs and TCs by IDs

In particular, the TC t.weos.snmpmib.vrrpv2.adv-test tests
the following REQs:

• r.weos.snmpmib.vrrpv2.ss1
• r.weos.snmpmib.vrrpv2.ss2
• r.weos.snmpmib.vrrpv2.ss3
• r.weos.snmpmib.vrrpv2.ss7

4https://git-scm.com



• r.weos.snmpmib.vrrpv2.ss8
• r.weos.snmpmib.vrrpv2.dss9
• r.weos.snmpmib.vrrpv2.ss10

While the TC t.weos.snmpmib.vrrpv2.operState tests the fol-
lowing REQs:

• r.weos.snmpmib.vrrpv2.ss4
• r.weos.snmpmib.vrrpv2.ss5
• r.weos.snmpmib.vrrpv2.ss6

As aforementioned, the formalised relationships between
REQs and TCs are stored in a textual file which is, in turn,
and stored in the corresponding GIT folder. According to the
fourth task of our proposed alignment mechanism, the TCs
implementation must be tagged with the IDs of TCs and REQs.
Within Westermo, TCs are implemented by means of Python
scripts5. Those, were extended with two variables testID and
references. testID is a string containing the ID of the TC
whereas references is an array of strings containing the IDs of
the corresponding REQs. Such an extension was automatically
performed by means of Python scripts. Moreover, we used
Python scripts for automating the creation and the filling of
the RTM, too. For the selected sprint, we performed unit
and integration tests as well as impact analysis. Unit tests
were run manually during the day, while integration tests
were automatically run for nightly builds. Impact analysis
was performed at the end of the test activities by counting
the passed/failed tests. After the testing activities, a Python
script collected the test results together with the information
regarding the relationships among REQs and TCs.

Table VI shows the final RTM filled with REQs, TCs,
results and relationships. Within the VRRP-MIB project,
Therefore, it was not necessary to extend the value of
the variable status, as discussed in Section III. During the
testing activities, the scrum team decided to exercise the
r.weos.snmpmib.vrrpv2.ss1 REQ with the t.weos.snmpmib.vrr-
pv2.operState TC too, despite during the sprint planning
event the r.weos.snmpmib.vrrpv2.ss1 REQ was associated
with the t.weos.snmpmib.vrrpv2.adv-test TC only. This change
was captured by the Python script which marked the
relationship between r.weos.snmpmib.vrrpv2.ss1 REQ and
t.weos.snmpmib.vrrpv2.operState TC with the added value.

V. DISCUSSION

Alignment between requirements and testing brings mul-
tiple benefits such as progress checking. This is especially
true when such an alignment is achieved by means of semi-
automatic mechanisms as the one presented in this paper.
The proposed solution leverages the RTM and its newly
extended semantics as the core artefacts for visualising traces
between requirements and test cases as well as for check-
ing the development progress. In fact, the information about
correspondences between requirements, test cases and testing
results allows the engineer to grasp the progress of the project
at a glance without the use of additional tools as shown
in the VRRP-MIB project. With respect to resource saving,
in the VRRP-MIB project, we were able to achieve a 10%
reduction of the required man-hours. In fact, the execution

5Due to confidentiality we can not show the Python scripts implementing
the TCs.

of a similar project required 253 man-hours, whereas within
the VRRP-MIB project we were able to shorten the testing
activities by 23 man-hours. Moreover, we did not need to
spend additional 2 hours for checking that the REQs were
tested. Agile processes focus on the importance of customer
involvement during the whole development process. Within
the VRRP-MIB project, we observed an improved customer
experience as the customer’s decisions, and their fulfilment,
could be easily recorded and trace throughout the development
process. Moreover, we observed that after the first sprint, the
engineers involved in the project started to use the RTM as
an effective progress tracking tool. Within the VRRP-MIB
project, we did not observe any variation in the defects rate
of the software. In fact, the proposed mechanism does not
aim at improving the quality of testing. However, it improves
the quality of the software development by supporting a
more rational and traceable process. This, in turn, affects the
quality of the software product during the production and
retirement phases. Agile processes tend to cut down detailed
documentation in order to minimise the overhead introduced
by activities not related to the implementation. In this context,
the artefacts produced within the proposed solution could serve
as a base for the automatic generation of documentation. Doing
so, documentation activities would not represent an unbearable
burden and could seamlessly be included in the development
without jeopardising agility. Concerning possible limitations
of the mechanism, it can be argued that assigning identifiers
to test cases, as a first step, could be unfeasible as test cases
might be defined after the implementation phase. Although this
could be a valid concern, it should be noted that the proposed
mechanism allows the developer to enter the identifiers at later
stages, when test cases are implemented, and the RTM is still
generated, as described in Section IV. Our mechanism does
not provide any support for assessing testing effectiveness and
it at its best when applied to medium-small software projects.
Although the work done in the collaborative project shows that
the mechanism does not introduce any significant development
and managerial overhead, it might require an initial effort in
terms of scripting activities to provide automation, as discusses
in Section IV. While this could be a valid concern, it should
be noted that this is a one-time effort affecting only the first
application of the mechanism as the scripts could be reused
for the following projects, unless technology shifts.

The work reported in this paper was carried out in a
tight collaborative fashion between academics and industrial
practitioners. The project ran for six months with monthly
meetings. Already from the beginning, both sides were ac-
tively involved in the definition of project goals, milestones
and timeframe. Tight collaboration fostered new ideas and
challenged our initial hypotheses making us to achieve a
solution which was able to decrease the effort required for
testing activities in a real world scenario. In this respect,
the agile development process has to be considered as a key
enabler of the collaboration, as it disclosed the opportunity of
enacting quick develop-and-check iterations of the proposed
mechanisms.

VI. CONCLUSION

The Agile vision is to avoid monolithic development steps
in order to promote flexibility. In this respect, traceability



TCs
t.weos.snmpmib.vrrpv2.adv-test t.weos.snmpmib.vrrpv2.operState

REQs

r.weos.snmpmib.vrrpv2.ss1 (planned,passed) (added,passed)
r.weos.snmpmib.vrrpv2.ss2 (planned,passed)
r.weos.snmpmib.vrrpv2.ss3 (planned,passed)
r.weos.snmpmib.vrrpv2.ss4 (planned,passed)
r.weos.snmpmib.vrrpv2.ss5 (planned,passed)
r.weos.snmpmib.vrrpv2.ss6 (planned,passed)
r.weos.snmpmib.vrrpv2.ss7 (planned,passed)
r.weos.snmpmib.vrrpv2.ss8 (planned,passed)
r.weos.snmpmib.vrrpv2.ss9 (planned,passed)
r.weos.snmpmib.vrrpv2.ss10 (planned,passed)

TABLE VI: RTM with REQs and TCs relations

between requirements and test cases has been traditionally per-
ceived as an accessory and time-consuming activity with low
return-of-investment. In this paper we illustrated the activities
aimed at introducing a traceability mechanism in an industrial
agile development context. The proposed solution is neces-
sarily pragmatic, as resulting from trading off fully manual
and fully automated mechanisms. In fact, both of them would
introduce excessive overhead and hence violate the fundaments
of agile. The observations we conducted on a concrete project
show encouraging results in terms of effectiveness. It is worth
noting that the proposed technique does not assess how good
are the tests, rather it keeps track of how requirements have
been tested. As discussed throughout the work, these traces can
provide useful feedbacks on how the verification & validation
has been operated and its progress status in the sprints.

As future work, we plan to investigate additional automa-
tion to provide basic code documentation as derivable from the
traceability between requirements and test cases. Moreover, we
intend to study the application of our tracing technique in other
suitable agile development scenarios, in order to better validate
the proposed approach.

ACKNOWLEDGMENT

The authors would like to thank Peter Johansson, Per
Erik Strandberg, Jonas Nylander and Jon-Olov Vatn from
Westermo Research and Development for their support through
the VRRP-MIB project.

REFERENCES

[1] Ivar Jacobson, Grady Booch, James Rumbaugh, James Rumbaugh, and
Grady Booch. The unified software development process, volume 1.
Addison-wesley Reading, 1999.

[2] Orlena CZ Gotel and Anthony CW Finkelstein. An analysis of the
requirements traceability problem. In Requirements Engineering, 1994.,
Proceedings of the First International Conference on, pages 94–101.
IEEE, 1994.

[3] Andrea De Lucia and Abdallah Qusef. Requirements engineering in
agile software development. Journal of Emerging Technologies in Web
Intelligence, 2(3):212–220, 2010.

[4] Martin Fowler and Jim Highsmith. The agile manifesto. Software
Development, 9(8):28–35, 2001.

[5] Christopher Lee, Luigi Guadagno, and Xiaoping Jia. An agile approach
to capturing requirements and traceability. In Proceedings of the 2nd
International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE 2003). Citeseer, 2003.

[6] Veerapaneni Esther Jyothi and K Nageswara Rao. Effective implemen-
tation of agile practices. IJACSA) International Journal of Advanced
Computer Science and Applications, 2(3), 2011.

[7] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving
requirements tracing via information retrieval. In Requirements Engi-
neering Conference, 2003. Proceedings. 11th IEEE International, pages
138–147. IEEE, 2003.

[8] Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalm-
steiner, Emelie Engström, Björn Regnell, Giedre Sabaliauskaite,
Annabella Loconsole, Tony Gorschek, and Robert Feldt. Challenges
and practices in aligning requirements with verification and validation:
a case study of six companies. Empirical Software Engineering,
19(6):1809–1855, 2014.

[9] E.J. Uusitalo, M. Komssi, M. Kauppinen, and A.M. Davis. Linking
requirements and testing in practice. In International Requirements
Engineering, 2008. RE ’08. 16th IEEE, pages 265–270, Sept 2008.

[10] Shari Lawrence Pfleeger and S.A. Bohner. A framework for software
maintenance metrics. In Software Maintenance, 1990, Proceedings.,
Conference on, pages 320–327, Nov 1990.

[11] J. Cleland-Huang, G. Zemont, and W. Lukasik. A heterogeneous
solution for improving the return on investment of requirements trace-
ability. In Requirements Engineering Conference, 2004. Proceedings.
12th IEEE International, pages 230–239, Sept 2004.

[12] G. Regan, F. McCaffery, K. McDaid, and D. Flood. The barriers to
traceability and their potential solutions: Towards a reference frame-
work. In Software Engineering and Advanced Applications (SEAA),
2012 38th EUROMICRO Conference on, pages 319–322, Sept 2012.

[13] Angelina Espinoza and Juan Garbajosa. A study to support agile
methods more effectively through traceability. Innovations in Systems
and Software Engineering, 7(1):53–69, 2011.

[14] Irum Inayat, Lauriane Moraes, Maya Daneva, and Siti Salwah Salim.
A reflection on agile requirements engineering: Solutions brought and
challenges posed. In Scientific Workshop Proceedings of the XP2015,
XP ’15 workshops, pages 6:1–6:7, New York, NY, USA, 2015. ACM.

[15] Vuong Hoang Duc. Traceability in agile software projects,
2013. Master’s thesis at the University of Gothenburg,
http://hdl.handle.net/2077/38990.

[16] Scott W Ambler. The agile system development life cycle
(sdlc). Ambysoft Inc.,[Online]. Available: http://www. ambysoft.
com/essays/agileLifecycle. html.[Accessed 14 Maio 2014], 2009.

[17] Marcus Jakobsson. Implementing traceability in agile software devel-
opment. Department of Computer Science, Lund University, 2009.

[18] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving
requirements tracing via information retrieval. In Requirements Engi-
neering Conference, 2003. Proceedings. 11th IEEE International, pages
138–147. IEEE, 2003.

[19] Madhuri Kolla and Mounika Banka. Merging functional requirements
with test cases. 2015.

[20] Gunavathi Duraisamy and Rodziah Atan. Requirement traceability
matrix through documentation for scrum methodology. Journal of
Theoretical & Applied Information Technology, 52(2):154–159, 2013.


