
A Time-Predictable Fog-Integrated Cloud Framework:
One Step Forward in the Deployment of a Smart Factory

Hamid Reza Faragardi∗, Saeid Dehnavi∗†, Mehdi Kargahi†, Alessandro V. Papadopoulos∗, Thomas Nolte∗
∗MRTC / Mälardalen University, Västerås, Sweden

{hamid.faragardi,alessandro.papadopoulos, thomas.nolte}@mdh.se
†School of ECE, College of Eng., University of Tehran, Iran

{sdehnavi,kargahi}@ut.ac.ir

Abstract—This paper highlights cloud computing as one of
the principal building blocks of a smart factory, providing a
huge data storage space and a highly scalable computational
capacity. The cloud computing system used in a smart factory
should be time-predictable to be able to satisfy hard real-time
requirements of various applications existing in manufacturing
systems. Interleaving an intermediate computing layer –called
fog– between the factory and the cloud data center is a promising
solution to deal with latency requirements of hard real-time
applications. In this paper, a time-predictable cloud framework is
proposed which is able to satisfy end-to-end latency requirements
in a smart factory. To propose such an industrial cloud framework,
we not only use existing real-time technologies such as Industrial
Ethernet and the Real-time XEN hypervisor, but we also discuss
unaddressed challenges. Among the unaddressed challenges, the
partitioning of a given workload between the fog and the cloud is
targeted. Addressing the partitioning problem not only provides a
resource provisioning mechanism, but it also gives us a prominent
design decision specifying how much computing resource is
required to develop the fog platform, and how large should the
minimum communication bandwidth be between the fog and the
cloud data center.

Keywords-Smart factory; cloud computing; fog computing;
edge computing; resource allocation, real-time applications.

I. INTRODUCTION

In order to make modern production cost-efficient, future
production lines need to be smarter and more flexible [1], that
is the principal notion of Industry 4.0 [2]. Industry 4.0 creates
what has been called a Smart Factory. To achieve this goal, all
the manufacturing processes are supposed to be configurable,
and connected to the Internet. The idea can be fulfilled through
connecting and integrating traditional industries, by providing
communication between producers and consumers. This idea
in near future will revolutionize the whole industrial panorama,
as pointed out by the Fraunhofer Institute [3].

The integration of three main elements, including Cyber-
Physical Systems (CPS), the Internet of Things (IoT) and
cloud computing, builds the foundation of a smart factory. In
a smart factory, we encounter with an exponential increase
of data size and computational complexity in comparison
to traditional manufacturing factories. This is due to (i)
participation of a higher number of nodes, each of which
continuously generates a stream of data that needs to be
stored and processed, and (ii) machine to machine interactions
which relies on multiple modern technologies such as big
data analysis [4] and cognitive computing [5] which both

demand a huge amount of data storage and processing. A
promising solution to address the huge data size and extensive
computations is cloud computing. If the required computing
resources are supplied only by local resources within the
factory, then both the cost of purchasing and the maintenance
cost dramatically increase the Total Cost of Ownership (TCO).
A considerable increase of TCO hinders the development of
a smart factory in terms of finances. Hence, cloud computing
is adopted as one of the main components of a smart factory
to provide highly scalable computing and storage capacity.

Most of the manufacturing applications contain multiple
hard real-time requirements. However, today’s cloud providers
neither provide a guarantee for hard real-time applications, nor
provide a possibility for users to specify the deadline of their
applications. Nevertheless, recently multiple solid solutions are
proposed to provide a real-time cloud data center [6], [7]. They
have made a foundation for developing a time-predictable
cloud framework by this paper.

Even if we provide a time predictable cloud data center,
which is able to guarantee the real-time requirements of cloud
services, a sub set of real-time applications with tight latency
requirements (we call such applications, hard applications)
can still not run in the cloud.

The reason is inherent in the bandwidth limitation of the
communication lines between the cloud data center and the
factory. Here, a considerable time is spent over the network for
exchanging the data, introducing a noticeable delay in response
time of the applications running in the cloud. Therefore, we
need to extend the cloud framework to cope with such hard
applications having tight latency requirements. Along with
real-time requirements, there are other principal challenges
such as availability and security in outsourcing workload (data
and computations) from local servers to a cloud data center in
a smart factory.

An effective solution to deal with all the above mentioned
challenges (hard real-time applications, security, availability)
is to retain a portion of a given workload on local resources,
a notion which is referred to as Fog Computing– while the
rest of the workload is outsourced to a cloud data center. This
vertical extension of the cloud scheme is called fog, because
a fog is a cloud that is closer to the ground. Similarly, in a
smart factory, a fog platform which is located in the factory
and connected with a local network is physically closer to
the factory in comparison to a cloud data center which is

2018 Real-Time and Embedded Systems and Technologies (RTEST)

978-1-5386-1475-4/18/$31.00 ©2018 IEEE

54

Embedded devices, sensors and actuators

On-device Computing
(Edge Computing)

Fog Computing

Cloud Computing

Cloud data center

Storage
Server

Cloud
Apps

High-speed
real-time network

Local Area Network

Local servers

Fig. 1. Flowchart representation of our proposed solution framework.

located externally. A fog is constructed by a set of fog nodes
where a fog node could be either the remaining capacity of
a network device such as routers, mobile stations, gateways,
and Software Defined Network (SDN) controllers or it could
be a local server. Although interleaving fog into the industrial
cloud framework makes benefits for security, availability and
timeliness of the system, this paper concentrates only on
the real-time dimension of the problem. Figure 1 shows an
example of a smart factory in which three computing layers
including edge, fog and cloud computing are marked.

A. Contributions. In this paper, we first propose a time-
predictable cloud architecture by integrating fog resources.
We also introduce a resource provisioning mechanism to
partition a given workload among cloud computing resources,
fog resources and on-device resources. The goal of resource
provisioning mechanism is to reduce the deployment cost of
a smart factory by

1) using the maximum capacity of available computing re-
sources in a smart factory,

2) pushing the remaining workload that does not fit in the
local available resources to the cloud, and

3) only for the remaining portion of the workload that neither
fits in the local resources, nor can be executed on the cloud
(because of hard timing requirements), a minimum addi-
tional computing resource, called local servers, is integrated
to the system.

In other words, we intend to minimize the number of required
local servers, while maximizing the utilization of available
local resources without sacrificing real-time requirements. This
strategy decreases the TCO as a result of (i) a lower cost of
the deployment of the system, (ii) a lower maintenance cost
as a result of pushing the feasible part of the workload on the
cloud.

To the best of our knowledge, the partitioning of a real-
time workload among the different computing layers in a
smart factory including edge, fog and cloud computing has
not been addressed so far. Moreover, the minimum size of
the fog required to satisfy the strict timing requirements of
industrial applications has not been sufficiently discussed in

the literature.

B. Organization of the paper. The rest of this paper is
organized as follows: In Section II a brief survey of related
work is presented. A time predictable cloud framework is
proposed in Section III where a Fog platform is integrated into
the cloud framework to deal with hard applications in a smart
factory. The problem is described in detail and assumptions
are defined in Section IV. Section V introduces a resource
provisioning mechanism for partitioning of a given workload
among the cloud data center and the Fog platform in the pro-
posed cloud framework. In Section V the performance of the
proposed mechanism is evaluated and the impact of different
system configurations on the vertical placement decisions is
investigated. Finally, the concluding remarks and future work
are discussed in Section VI.

II. RELATED WORK

Virtualization techniques have been widely studied in the
real-time scheduling community. Early works have evolved
around virtualizing the computational capacity of single-
processor hardware. Such a virtualized hardware is refereed as
a Virtual Processor (VP). For instance, the periodic resource
model uses period and budget [8] for characterizing the
VPs. Several authors have proposed different virtualization
models targeting multiprocessors. Multiprocessor models need
to specify the maximum parallelism level in their interface.
Shin et al. proposed the Multiprocessor Periodic Resource
(MPR) model [9]. Lipari and Bini suggested the Bounded-
Delay Multipartition (BDM) model [10]. Leontyev and An-
derson [11] proposed a model that only specifies bandwidth
w in the component interface. The Generalized MPR (GMPR)
model [12] reduces pessimism of the MPR model. There is
often a trade-off between simplicity and accuracy in virtu-
alization models. In other words, simple interfaces tend to
be pessimistic and introduce more resource loss than the
more detailed yet complex models. We opted the MPR model
because of its simplicity. Scheduling of VMs compliant with
the MPR model is implemented in the RT-Xen hypervisor [13].

From a placement perspective, a wide range of studies have
been carried out to place a set of Virtual Machines (VMs)
into the physical servers to minimize operation cost of a
cloud data center [14]. The majority of these works consider
real-time aspects of VMs while the real-time requirement is
either refereed as the SLA [15] or explicitly mentioned as
deadlines [16].

Recently, [17], [18] considered the placement of VMs to
servers in a cloud data center to minimize energy consumption
by using a consolidation approach while live migration was
also taken into account. In addition, in some of these works,
e.g. [19], energy consumption of the network equipment is
also taken into consideration.

Although extensive studies have been carried out in the
context of VM placement onto the cloud data centers, most
often the structure of their real-time VMs are different com-
pared to what is considered in this paper. The VMs in the
mentioned works consist of a set of ordinary real-time tasks
where there is only one instance for each task whereas in

55

this paper we consider periodic real-time tasks where a set of
identical instances of a task is released periodically. It leads
us to an additional complexity.

There is a recently proposed approach called RT-
OpenStack [7] considering a similar task model for the cloud
applications as what we do in this paper. They consider global
Earliest Deadline First (gEDF) as an guest scheduler within
each VM and also use compositional schedulability analysis
to specify the demand of VMs in terms of the number of
processors and required budget of VMs. They use RT-XEN as
the VMM where gEDF is applied to allocate VCPUs to the
PCPUs of the hosts.

A comprehensive survey on fog computing is proposed
by [20]. They map the existing works to the taxonomy in order
to identify current research gaps in the context of fog com-
puting. The fog computing paradigm and its role on the IoT
are introduced by [21]. They also delineate the characteristics
of fog computing, and the platforms that support fog services.
In [22] a fog computing supported software-defined embedded
system is presented, where computations can be performed
on either embedded devices or on a computation server. The
task scheduling and resource management are conducted such
that task completion time is minimized for promoting the user
experience. In [23] an overview of the core issues, challenges,
and future research directions in fog-enabled orchestration
for IoT services are provided. Additionally, it presents early
experiences of an orchestration scenario, demonstrating the
feasibility and initial results of using a distributed genetic
algorithm in this context. However, they mainly focus on the
communication parts rather than computations, hence their
task model is different compared to what we consider in this
paper.

In [24], they propose an online algorithm for computation
offloading in Mobile Edge Computing (MEC) systems with
energy harvesting devices. Liu et al. [25] present a Markov
decision process approach to handle computation offloading
in MEC, where the computation tasks are scheduled based on
the queuing state of the task buffer, the execution state of the
local processing unit, and the state of the transmission unit.

In [26], Villari et al. propose the osmotic computing
paradigm. The aim of osmotic computing is to obtain a
balanced deployment of microservices, meeting low-level con-
straints and high-level needs, such as load balancing, reli-
ability, and availability. Our paper extends this framework
targeting real-time capabilities of the infrastructure, including
constraints on the computational and communication delays,
and real-time deadlines.

III. A TIME-PREDICTABLE CLOUD FRAMEWORK

In this section a time-predictable cloud framework is pro-
posed; suitable to be applied in an industrial setting. Addition-
ally, unaddressed challenges are discussed.

A time-predictable cloud framework is defined as a cloud-
based system in which the time duration of completion of
an operation from the start to the end time (i.e., end-to-end
latency) is not longer than a specific time interval. Indeed, an
end-to-end latency reflects a time interval beginning once a

sensor of a CPS in a factory (e.g., a robot) sends data, then
processing on the data is performed, until the result of the
processing returns to the actuator of the same (or different)
CPS. In the first step, local computing/storage resources within
the embedded device – called edge node – is used to process
the data. However, since the computing/storage capacity on the
edge node is limited, the data may be sent to fog nodes through
the local network. Then, the processing on the given data is
performed either in the fog nodes or the data is sent through
the dedicated communication lines to a cloud data center
where the processing is performed. Eventually, wherever the
data is processed (i.e., edge, fog or cloud), the output of the
processing should be returned to the actuator(s) on the edge
layer.

To propose a time-predictable cloud framework in a smart
factory, the following components should be considered:

1) A real-time local communication network in a smart fac-
tory inter-connecting CPSs and the fog nodes,

2) A time-predictable resource scheduling mechanism within
each fog node and edge node,

3) A sufficient amount of fog resources in terms of both the
number of nodes and the processing capacity of them,

4) A resource scheduling mechanism to distribute the work-
load among the fog nodes,

5) A high-speed real-time communication network connecting
the smart factory to a cloud data center,

6) A proper cloud interface prepared by the cloud provider to
reflect the demand of real-time applications,

7) A vertical resource provisioning mechanism specifying the
allocation of a given workload among different computing
resources, i.e., on device resources, fog resources and the
cloud.

Four of these seven components have been extensively dis-
cussed in the literature. However, item 3, 4 and 7 have not
been adequately investigated yet. Let us start with the four
addressed components and then we will have a look at the
remaining items.

For the first item, communication between sensors, actu-
ators, and the control center is done through an industrial
network which is a real-time local network. Fortunately, in
most modern manufacturing factories, such a real-time net-
work has already been deployed by using reliable, secure and
time-predictable network mechanisms and protocols such as
the HART protocol [27] and Industrial Ethernet. Industrial Eth-
ernet protocols like PROFINET and EtherCAT [28] modify
standard Ethernet in a way to ensure that manufacturing data is
not only sent and received correctly, but also sent and received
on-time. Industrial Ethernet is also able to handle factory
noise, factory process needs, and harsher environments [29]. In
a smart factory, according to the fundamental concept of IoT,
a sub set of objects (specially sensors) could connect to the
system over a wireless network. In other words, wireless and
wired stations are integrated into one single network, called
a hybrid network. For the wireless part of an industrial local
network, there also exist reliable, secure and time predictable
protocols and mechanisms. WirelessHart [30] and the IETF
6TiSCH Working Group (WG) [31] are well-known examples

56

of such industrial wireless communication mechanisms.

For the second item, a similar approach as proposed by [7] is
adopted as a resource provisioning mechanism to yield a time-
predictable Fog platform. They start with assigning a set of
real-time applications to VM, referred as real-time VM. Their
approach support a resource interface that allows a real-time
VM to specify the amount and temporal granularity of CPU
resource allocation needed to meet the real-time performance
requirements of its applications. The amount and temporal
granularity of the required CPU resource is specified according
to compositional schedulability analysis [32]. Afterward, a
real-time-aware VM-to-Host mapping is presented to maintain
the schedulability of real-time VMs without overloading the
servers. The mapping of a newly created real-time VM is
performed in two phases. The first phase filters out a sub set
of servers that can not safely accept the VM without hurting
its real-time performance. In the second phase, a worst-fit
algorithm is invoked to determine the best feasible server to
which the real-time VM is allocated. They apply the worst-
fit algorithm to achieve load balancing among the servers. A
real-time version of the XEN hypervisor proposed in [33] is
also applied to schedule the real-time VMs allocated to each
server.

For the fifth item, a reliable solution is to establish a
dedicated communication line to connect a factory to a cloud
data center without any interfering with other customers of the
cloud data center. This dedicated communication line could be
provided either by the cloud provider or by ICT provider com-
panies. As an alternative, the Resource Reservation Protocol
(RSVP) can be used which is part of the Internet Integrated
Service (IIS) model, providing real-time communication on
the Internet. With RSVP, people who want to receive a
real-time data stream (example, multimedia applications) can
reserve a particular bandwidth in advance. Although RSVP
is a more flexible and cost efficient approach to make the
connection between a factory and a data-center, it is mainly
suitable for soft real-time applications rather than hard real-
time applications. Therefore, in our framework we suggest to
use dedicated communication lines to make the bridge between
the factory and a cloud data center.

For the sixth item, the time-predictable design of cloud data
centers proposed in [6], [7] can be applied directly. Today’s
cloud computing systems neither provide a guarantee for hard
real-time applications, nor provide a possibility for users to
specify the deadline of their applications. Basically, these
papers introduce a real-time cloud resource interface to enable
users to specify the minimum amount of computing resources
required to satisfy the deadline of real-time applications. They
also present a resource scheduling mechanism in a cloud
data-center, which is capable of guaranteeing all the deadline
requirements within a data-center.

IV. PROBLEM MODELING

Application model. We assume that the system is composed
of M industrial applications A = {Ai : i = 1,2, ...,M}. Each
industrial application Ai consists of mi real-time tasks Γi =
{τi

j : j = 1,2, ...,mi} where i and j denote the application and

task indices respectively. A task is activated periodically with
period Pi

j, and deadline Di
j. We assume four types of tasks:

1) The tasks that need an input data from a sensor located
on the edge device to start their execution. Indeed, we use
read-execute-write semantics which is a common strategy
in several automation applications (e.g., AUTOSAR-based
applications). This means, even when a new instance of
a task is activated, its execution time should be delayed
until receiving the input data. The size of the input data
at task τi

j is denoted by Ii
j. The waiting time to receive

the input data, if the task is executed locally on the edge
node, is assumed negligible (equal to zero). Otherwise, if
it is executed either on a fog node or in the cloud, it is
equal to the communication network delay. The maximum
communication delay to send a data from node p to node q
is denoted by dcomm

p,q (DataSize). To reflect the input delay

in the task model, we use a release jitter denoted by Ji
j

which is set equal to dcommu
p,q (Ii

j). Additionally, the deadline
of this type of task is set equal to its period.

2) The tasks that produce an output data at the end of their
execution for an actuator located on an edge node. Let Oi

j
denotes the size of output data at task τi

j. For such type of
tasks, the generated data should be received at the actuator
no later than a specific deadline which is assumed to be
equal to the period of the task. Hence, the completion time
τi

j should be less than a partial deadline which is equal to

Pi
j−the maximum communication delay to send the output.

Accordingly, the deadline of such a type of task is set to
Pi

j − dcomm
p,q (Oi

j). We do not need a release jitter for this

type of tasks, i.e. Ji
j = 0.

3) The tasks that needs an input and generate an output. For
this type of task, the deadline is set to Pi

j − dcommu
p,q (Oi

j),

and the jitter is set to dcomm
p,q (Ii

j).
4) The tasks that do not send or receive any data from sensors

and actuators directly. For such a type of task, the release
jitter is set to zero while the deadline is set to the period
of the task.

Additionally, each task has also another property specifying
the execution time of the task, denoted by Ci

j,p where p implies
a processor on which the task is executed. Since we have a
set of heterogeneous machines to execute a task, the execution
time of a task varies on different machines. Furthermore, the
memory requirement of application Ai is equal to the sum of
the memory requirements of its tasks.

In such applications, the main challenge is inherent in the
scheduling of the tasks of applications such that the tasks meet
their deadlines while other system requirements are satisfied.
A real-time application is partitioned into two subsets Γlocal

i
and Γoutsource

i (Γi = Γlocal
i ∪Γoutsource

i). Γlocal
i denotes the subset

of tasks executed locally on the embedded device (initializing
the application and hosting sensor and actuators) and Γoutsource

i
indicates the subset of tasks outsourced to either fog nodes or
to the cloud. The outsourced tasks are mapped to a VM to
be able to execute on the fog and cloud. We use an 1-to-1
mapping of the outsourced part of the application to VM. It
is a simple and efficient mapping. If we break down Γoutsource

i

57

among multiple VMs (i.e., 1-to-N mapping), the communica-
tion overhead between those VMs is imposed on the system.
On the other hand, if we place multiple applications on the
same VM (i.e., N-to-1 mapping), the schedulability of the
system is lowered [7]. Hence, the 1-to-1 mapping is adopted in
our model. The scheduling of tasks within VMs is performed
by the guest operating system.

When we partition an application into two groups we would
have a communication between the nodes hosting the VM
(corresponding to Γoutsource

i) and the edge device hosting Γlocal
i .

The reason of this communication comes from (i) getting
the input data from sensors located on the edge device (or
somewhere nearby), and (ii) sending the data to the actuators
located on the edge device. The total communication data sent
and received by all tasks of the ith application is denoted by
CRi. Indeed, CRi is the important factor demonstrating whether
an application is communication-intensive or not. It should be
mentioned that we assume no communication between VMs
and also no communication between a VM and other edge
devices excluding the edge node hosing Γlocal

i .

From application to VM specification. We use the gEDF
scheduler at the guest OS level for scheduling of tasks within
VMs (task-scheduling), similar to [7]. gEDF works as follows.
At each scheduling instance the scheduler selects a task with
the earliest deadline and it assigns it on an idle processor. Since
the task-scheduling is performed within VMs, the scheduler
selects an idle virtual processor at scheduling points.

We are interested in deriving the specifications of VMs
given the specification of the application that is assigned to the
VM. We use the analysis framework proposed by Easwaran
et. al [9] for calculating the VM specifications which is called
Compositional Schedulability Analysis (CSA).

The result of the CSA analysis is the following parameters:
(i) the period of the VMs denoted by Π, (ii) the total budget
that has to be provided within each period (Θ) to the VMs,
(iii) the maximum number of processors that can contribute
in providing the total budget m′ (the minimum number of
processors that has to be allocated to a VM is (�Θ

Π�)). This
specification means that the underlying virtualization mecha-
nism has to make sure that the corresponding VM receives
Θ units of processor time every Π time units using �Θ

Π� to
m′ physical processors. Such a mechanism is supported by
the RT-Xen hypervisor [33]. The processor utilization of each
VM is defined as follows: u = Θ

Π . The memory demand of
a VM is denoted by hi which is equal to the sum of the
application memory requirement and the memory demand
of the guest OS running within the VM. In summary, the
specifications of the ith VM is represented using the following
tuple: < Πi,ui,m′

i,hi >.

In CSA, the VM specification generation process starts by
assuming a period for the VM. The period of the task with
the shortest period is often selected as the period of VMs. The
parallelism level m′ is then selected using a binary search. For
each value of m′ the smallest budget is selected such that the
schedulability of the task within the VM is preserved. Finally,
the most efficient interface, i.e, the one with the lowest u, is
selected as the VM specification.

It is worth noting that we also use a gEDF scheduler within
each edge node to schedule Γlocal

i .

Fog model. In order to introduce a cost-effective industrial
cloud framework in terms of the TCO, a fog platform is
preferably developed with the minimum processing power and
the least data storage size to run only the necessary portion
of the workload that must be executed locally. It should
be mentioned that minimizing the size of the fog does not
imply to not use the maximum processing capacity of the
available fog nodes (excluding local servers), instead we mean
to minimize the use of the local servers.

As we have focused on real-time applications, the necessary
portion of a workload is defined as a subset of applications
with a tight range of latency requirements, that in order to meet
their latency requirements, cannot be allocated on a cloud data
center. In other words, our design strategy is to first use the
available fog nodes and then, instead of using local servers,
push as much as possible of the workload onto the cloud data
center rather than local servers.

A fog is constructed by a set of computing and communi-
cation resources such as local servers, the remaining capacity
of network switches, sinks, gateways, SDN controllers, etc.
To provide an abstraction of the resources, we can consider
them as a set of heterogeneous devices capable of providing
computing resources to execute a VM. Therefore, a fog can be
modeled as a set of N = N f og+NlocalServers local devices with
different processing power, memory capacity and available
resources. Each device i applies either a single-core or multi-
core processor. For generalization of the model, we assume
a multi-core processor with mi ≥ 1 processing cores where
{Ui,1,Ui,2, ...,Ui,mi} percent of its processors are available to
use whilst the other (1−Ui, j)% is already dedicated to execute
the primary tasks of the device. For example, if we talk
about an Ethernet switch, then the primary task is to forward
the network messages. Moreover, let’s assume, the multiple
cores of the same device have identical processing power
(homogeneous multi-core). The available memory capacity of
each device is denoted by H.

Since the cloud data center is highly powerful and scalable,
the communication times of the VMs are the main bottleneck.
Accordingly, computation-intensive applications are preferred
to be executed in the cloud rather than communication-
intensive applications.

We assume that the main goal is to minimize the number of
used local servers. It provides two main benefits (i) most of the
workload can be outsourced to the cloud which in this case
both deployment cost and maintenance cost can be reduced
(ii) a more available computing and storage capacity would
be available on local servers that then can be consumed to run
highly sensitive and confidential data and processing.

Cloud data center model. We assume a huge cloud data
center hosting a large number of servers with an enormous
memory and storage capacity. For simplification we can as-
sume that the processing capacity of the cloud data center is
infinite, in other words, it can always provide the demanded
computation and communication resources. We also imagine
the whole cloud data center as a single powerful node, and for

58

simplification of the problem, we assume that the execution
time of each task in the cloud is known in advance, thereby
we can calculate the processing utilization required to execute
a VM on a cloud server.

Communication model. In this paper we use an abstracted
communication model where we assume that a dedicated
bandwidth is reserved to communicate between each pair of
nodes (including edge nodes, fog nodes and the cloud) in the
system, in the sense that the maximum communication delay
to send one unit of data from node p to node q is known
in advance. This can be fulfilled by Time-Division Multiple
Access (TDMA) or other real-time network mechanisms.
However, to have a more sensible model, we restrict the
maximum communication rate on each path. In other words,
the allocation of VMs to nodes should be performed such
that the total rate of communication data on each path should
not exceed the specified maximum threshold, otherwise the
maximum communication delay is not guaranteed anymore.

The maximum threshold for the path between node p and
node q is denoted by Lp,q, and the guaranteed bandwidth
of this path is indicated by BWp,q. It is worth noting that
Pathp,q may share multiple links with other paths between
other pair of nodes and the guaranteed bandwidth of the path
is specified according to the minimum guaranteed bandwidth
of its links. Accordingly, as long as the total communication
rate on Pathp,q is less than Lp,q, the maximum communication
delay to send one unit data from node p to node q is equal to

1
BWp,q

.

V. RESOURCE PROVISIONING MECHANISM

As the task allocation and VM placement problem in such
a diverse configuration of nodes and links is an NP-Hard
problem, finding an exact solution needs an exhaustive search
which is dramatically time-consuming and can not be applied
for medium or large instances of the problem. Consequently,
we propose a heuristic algorithm that can find a near-optimal
solution in a reasonable time. This algorithm first partition
each application into two groups where the first group is
located on the embedded device originating the application
while the second group (if it is not empty) is mapped to a
single VM which then can be executed either on a fog node
or in the cloud. For partitioning of an application, we use an
algorithm called Lowest-Laxity First (LLF). The laxity is a
metric showing the tightness of the deadline of each task, that
is calculated as follows.

Lax j = Pj − (
I j

BWmin
+ max

∀ f ogNodes q
(Cj,q)+

O j

BWmin
)

BWmin = min
∀ f ogNodes q

(BWp,q)
(1)

where BWmin implies a fog node with the lowest bandwidth
to the edge node originating the application (node p). Indeed
it is used to calculate the maximum communication delay for
the input data of the jth task. Similarly, the last term of this
equation calculates the maximum communication delay for
the output data of the jth task. The middle term denotes the
execution time of the jth task on the weakest fog node on

which the execution of the jth task takes longer than on other
fog nodes.

The LLF partitioning algorithms first sort all the tasks of
an application (ith application) according to their laxity in the
ascending manner. Then it picks the first task from the sorted
list and places it on the edge device originating the application.
If there are enough resources on the edge node to run this
application in a timely manner, then the task is added to Γlocal

i ,
otherwise it is added to Γoutsource

i . To examine whether a task
is able to be executed on the edge node, (i) gEDF is used
to see the task is able to meet its deadline, and (ii) the total
memory demand of tasks assigned on the node along with
memory demand of the new task should be less than the total
available memory on the edge node. LLF then goes for the
next task and it continues until all tasks are partitioned into
the subsets Γlocal

i and Γoutsource
i .

Algorithm 1 indicates the proposed algorithm called Re-
source Allocation algorithm for Minimization Of the Fog size
(RAMOF) that assigns a set of given applications onto the
edge node, fog nodes and the cloud.

Algorithm 1 RAMOF

1: Inputs: a given set of applications A = {A1,A2, ...,AM}
2: for each application Ai in A do
3: partition Ai into two subsets Γlocal

i and Γoutsource
i using LLF

4: assign Γlocal
i to the edge node originating application Ai

5: if Γoutsource
i 	= Null then

6: assign Γoutsource
i to V Mi

7: increment NV Ms

8: end if
9: end for

10: AR ← Call Fog Node Placement(VM Set,NV Ms)
11: return the assignment AR, and NUsedServers

Algorithm 2 Fog Node Placement

1: ξ = {all the fog nodes excluding the local servers}
2: Categorize the VMs into two separate groups, Hard VMs and

Soft VMs
3: for each V Mi in Hard VMs do
4: node j ← Find first feasible node(ξ, V Mi)
5: if node j 	= Null then
6: assign V Mi to Node j
7: else
8: assign V Mi to LocalServerk
9: increment NUsedServers

10: ξ ← ξ∪LocalServerk
11: end if
12: end for
13: Update AR by Calling Cloud Fog Placement(Soft VMs,ξ)

If an application is able to be executed in the cloud, it is
dubbed as a soft VM, otherwise it is a hard VM. To check
whether an application is able to be executed in the cloud or
not, all of its tasks will be examined. If the following condition
holds for all tasks of the application, then it can be executed
in the cloud.

dcommu
q,cloud(Ii)+Ci,cloud +dcommu

q,cloud(Oi)≤ Pi (2)

where q is the edge node originating the application.

59

Algorithm 3 Cloud Fog Placement

1: sort soft VMs according to CRi in a descending manner
2: γ ← soft VMs
3: for each V Mi in Soft VMs do
4: node j ← Find first feasible node(ξ, V Mi)
5: if node j 	= Null then
6: assign V Mi to Node j
7: γ ← γ−V Mi
8: end if
9: end for

10: if γ 	= Null {There is at least one soft VM not fitted in the available fog nodes

ξ} then
11: sort the elements of γ according to CRi in an ascending

manner
12: for each V Mk in γ do
13: node j ← Find first feasible node(ξ, V Mi)
14: if the total communication data on the link to the cloud +

CRk < Max LoadCloudLink then
15: assign V Mk to the cloud
16: γ ← γ−{V Mk}
17: else
18: break {Goto out of the loop}
19: end if
20: end for
21: assign all the remaining elements of γ to the local servers,

and update NUsedServers

22: end if
23: return AR, and NUsedServers

In Algorithm 3, CRi denotes the total communication size,
sending and receiving by all the tasks of the ith VM, and
Max LoadCloudLink implies the maximum tolerable traffic on
the link to the cloud such that the maximum communication
delay is respected. Furthermore, γ keeps the set of unassigned
soft VMs, and whenever a VM is assigned to a node, it is
excluded from this set.

VI. PERFORMANCE EVALUATION

By developing the code of the method proposed in Sec-
tion V, we provide a software tool assisting system designers
to make important decisions such as the minimum number of
required local servers, number of VMs, the size of bandwidth
of the links connecting the factory to the cloud. In this section,
we also discuss the impact of each system parameter on the
number of used local servers and their average utilization
through extensive experiments.

System configuration. We consider 18 different configura-
tions of the system including (i) various number of embedded
devices (in the range of 60 to 200), (ii) different size of the
bandwidth of the network connecting the factory to the cloud
(in the range of 100MB/s to 2GB/s) which is shared among
all the applications on the cloud using a TDMA protocol, and
(iii) different processing capacity of edge nodes in terms of
the number of cores of the embedded processor (in the range
of 1 to 8 cores). Furthermore, in all experiments, the memory
capacity of embedded devices and fog nodes is a random value
(assuming uniform distribution) from [10MB, 1GB] [34], and
the number of cores of the fog nodes (excluding the local
servers) is a random value from [1,2], while the available
capacity of each core of the fog node is assumed randomly

in the range of [20% to 80%]. The number of fog nodes
(excluding local servers), in all experiments, is set to 20.
We also assume that the servers employ a Corei9-7980XE
multi-core CPU hosting 18 processing cores with a memory
of 80GB.

Application parameters. To not restrict our evaluation only
for a specific automation application, we consider the range
of each parameter in real-world automation applications. Then
the value of each application parameter is chosen randomly
(uniform distribution) from the range of the considered pa-
rameter. Accordingly, due to the considered randomness in the
application parameters, different runs of the algorithm, even
for the same configuration of the system, may generate differ-
ent results. Hence, for each configuration of the system, we
run the algorithm more than 30 times to have a comprehensive
observation of the system. Then the average results of those
30 times experiments is reported here. In overall, we conduct
18×30 = 540 different experiments.

The period of the tasks are chosen from the set of pe-
riods commonly found in automation and automotive appli-
cations [1,2,5,10,20,50,100,200,1000,2000,5000]ms [35], [36]
and task utilizations are generated by UUniFast [37]. The
total data size of an application is considered in the range
of [10,1000]KByte [38]. The number of tasks per application
is assumed in the range of [10,40].

A. Results

The algorithms are implemented in C and all the exper-
iments were executed on an Amazon EC2 Cloud virtual
machine (c3.8XLarge) with 32 cores and 60GB memory, on
which an Ubuntu Server 16.04 LTS instance is running.

The major metrics investigated in the evaluation of the
results include the number of applications that completely fit
on embedded devices, the total number of VMs, the number of
VMs placed on fog nodes, the number of VMs assigned to the
cloud, the number of used servers, and the average utilization
of the used servers.

The results are represented in Table I where the first column
indicates the number of real-time applications. As we assume
that each edge node (embedded device) includes only one
application, the number of applications are assumed equal
to the number of edge nodes. Therefore, when we have N
applications, we mean a system with N edge node. The ’Apps
on edge nodes’ column implies the number of applications
which completely fit on the edge node, meaning that no one
of its tasks is outsourced. The number of VMs reveals the
number of applications that do not completely fit on the edge
nodes, thus, a subset of their tasks are outsourced to fog/cloud.
Moreover, the ’Hard-VMs’ column of the table shows the
number of VMs which are not allowed to be allocated to the
cloud because of the tightness of their included tasks sets.
Apparently, No. of VMs - No. of Hard VMs = No. of Soft
VMs which are allowed to be placed on both cloud and fog
nodes. Note that the ’Apps on fog nodes’ column contains the
number of applications placed on both the used local servers
and other fog nodes. The last column of the table demonstrates
the average execution time of the proposed algorithm. As is

60

TABLE I
EXPERIMENT RESULTS FOR DIFFERENT NUMBER OF REAL-TIME APPLICATIONS

Apps VMs Hard-VMs
Apps on

edge nodes
Apps on

fog nodes
Apps on
the cloud

Used local
servers

Avg. Util.
of servers

Execution
Time (sec)

60 48 15 12 38 10 4 0.759 6
80 59 19 21 45 14 6 0.844 8
100 80 26 20 63 17 7 0.851 15
120 97 29 23 77 20 8 0.835 29
140 110 33 30 82 28 8 0.895 58
160 105 34 55 83 22 9 0.846 80
180 116 35 64 85 31 9 0.874 116
200 127 39 73 99 28 10 0.865 168

26%

56%

18%

80 Apps

20%

63%

17%

100Apps

21%

59%

20%

140Apps

36%

50%

14%

200 Apps

Edge

Fog

Cloud

Fig. 2. Portion of applications on edge, fog and cloud.

shown by this column, for a system with 200 edge nodes,
the software tool can generate the results in less than 2.8
minutes, and as it is going to be used in the design time of
the system, it could be a reasonable time from the system
designers’ perspective. Fig. 2 shows the percentage of the
applications assigned to each computing layer including edge,
fog and cloud. It should be mentioned that the edge portion
of the pie charts implies those applications that completely fit
on the edge nodes and no one their tasks are outsourced to
fog or cloud.

To investigate the effect of the bandwidth of the network
connecting the smart factory to the cloud on (i) the num-
ber of VMs outsourced to the cloud, and (ii) the number
of used local servers, we consider different values for the
bandwidth and observe its effect on these parameters. This
feature can significantly help system designers to chose a
proper bandwidth for the network to connect the factory to
the cloud. Fig. 3 illustrates the results for 5 different sizes
of bandwidth. As we theoretically expected, by increasing the
size of the bandwidth, a higher number of applications can
be placed on the cloud, thereby the number of utilized local
servers is decreased. Therefore, increasing the bandwidth of
the network connecting the factory to the cloud can reduce
the size of the fog. However, the optimal value of the network
bandwidth should be adopted according to the ratio of the
cost of deploying fog to the cost of networking. In future
work, we aim to propose a cost model for the system that can
determine the optimal value of the network bandwidth and fog
size according to their deployment cost.

We also conduct a set of experiments to scrutinize the
impact of the processing power of edge nodes (embedded
devices) on the placement desicions. We intuitively anticipate

0
5

10
15
20
25
30
35
40
45

100MB 200MB 500MB 1GB 2GB

12 10
7

2 0
3

8

17
22

42

Network Bandwidth

Used Local Servers
Vms on Cloud

Fig. 3. Effect of the bandwidth of the network connecting the factory to the
cloud on the placement.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

5

20

63

89

99

7 6 4 1 0

Avg. Number of cores in edge nodes

VMs on edge nodes
Used Local Servers

Fig. 4. Effect of the processing power of the edge nodes on the placement.

when the processing power of the edge nodes goes higher,
a higher number of applications completely fit on the edge
nodes, hence, a lower workload is imposed on the local servers
which can result in a lower number of utilized local servers.
Fig. 4 verifies this hypothesis. An interesting indication of
the results is that when the average number of cores in edge
nodes reaches to five, all the applications completely fit on
the edge nodes, then there is no workload on the cloud and
fog nodes. Here again, there is a tradeoff between the cost
of increasing the processing power of embedded devices and
the cost of local servers. However, determining the processing
power of the embedded devices is not under the control of
the IoT system designer, in other words, we assume they are
already fixed. For example, when we bought a production
robot arm, we do not want to change the hardware of the
embedded device of the robot.

61

VII. CONCLUSION

This paper first presents a fog-integrated cloud framework
for smart factories which is capable of dealing with timing
requirements of real-time applications. This framework not
only considers computation demand of applications but also
memory requirements and communication data of applica-
tions on the network are taken into account. According to
the proposed framework, we develop a software tool which
enables system designers to determine the minimum number
of local servers that should be integrated to the available fog
nodes to provide enough resources for execution of real-time
applications subject to timing and memory requirements. The
proposed software tool can also guide system designers to
choose a proper size of the bandwidth to link the factory
to a cloud data center. For future work, we plan to consider
an average active time of each application per month. Then
according to this average active time, we propose an extended
version of the design tool for optimizing the total cost of
execution of applications.

REFERENCES

[1] S. Wang et al., “Implementing smart factory of industrie 4.0:
An outlook,” Journal of Distributed Sensor Networks, vol. 12,
no. 1, pp. 315–329, 2016.

[2] J. Lee et al., “A cyber-physical systems architecture for indus-
try 4.0-based manufacturing systems,” Manufacturing Letters,
vol. 3, pp. 18–23, 2015.

[3] (https://www.dbresearch.com). Industry 4.0: Huge potential for
value creation waiting to be tapped. deutsche bank research.

[4] S. Yin and O. Kaynak, “Big data for modern industry: Chal-
lenges and trends [point of view],” Proc. of the IEEE, vol. 103,
no. 2, pp. 143–146, 2015.

[5] D. S. Modha et al., “Cognitive computing,” Communications
of the ACM, vol. 54, no. 8, pp. 62–71, 2011.

[6] N. Khalilzad et al., “Towards energy-aware placement of real-
time virtual machines in a cloud data center,” in HPCC-CSS-
ICESS ’15, 2015, pp. 1657–1662.

[7] S. Xi et al., “RT-Open Stack: CPU resource management for
real-time cloud computing,” in CLOUD, 2015, pp. 179–186.

[8] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in RTSS’03, 2003, pp. 2–13.

[9] A. Easwaran et al., “Optimal virtual cluster-based multipro-
cessor scheduling,” Real-Time Systems, vol. 43, no. 1, pp. 25
–59, 2009.

[10] G. Lipari and E. Bini, “A framework for hierarchical schedul-
ing on multiprocessors: From application requirements to run-
time allocation,” in RTSS’10, 2010, pp. 249–258.

[11] H. Leontyev and J. Anderson, “A hierarchical multiprocessor
bandwidth reservation scheme with timing guarantees,” in
ECRTS’08, 2008, pp. 191–200.

[12] A. Burmyakov et al., “Compositional multiprocessor schedul-
ing: The gmpr interface,” Real-Time Systems, vol. 50, no. 3,
pp. 342–376, 2014.

[13] S. Xi et al., “Real-time multi-core virtual machine scheduling
in Xen,” in EMSOFT, 2014.

[14] H. R. Faragardi et al., “Towards energy-aware resource
scheduling to maximize reliability in cloud computing sys-
tems,” in HPCC, 2013.

[15] K. H. Kim et al., “Power-aware provisioning of cloud re-
sources for real-time services,” in MGC’09, 2009, p. 1.

[16] A. Rajabi et al., “Communication-aware and energy-efficient
resource provisioning for real-time cloud services,” in CADS,
2013, pp. 125–129.

[17] A. Beloglazov et al., “Energy-aware resource allocation
heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755–768, 2012.

[18] A. Beloglazov and R. Buyya, “Adaptive threshold-based ap-
proach for energy-efficient consolidation of virtual machines
in cloud data centers,” in MGC’10, 2010, 4:1–4:6.

[19] J. A. Pascual et al., “Towards a greener cloud infrastructure
management using optimized placement policies,” Journal of
Grid Computing, pp. 1–15, 2014.

[20] R. Mahmud et al., “Fog computing: A taxonomy, survey and
future directions,” in Internet of Everything, Springer, 2018,
pp. 103–130.

[21] F. Bonomi et al., “Fog computing and its role in the internet
of things,” in Workshop on Mobile cloud computing, 2012,
pp. 13–16.

[22] D. Zeng et al., “Joint optimization of task scheduling and
image placement in fog computing supported software-defined
embedded system,” IEEE Trans. on Computers, vol. 65, no. 12,
pp. 3702–3712, 2016.

[23] Z. Wen et al., “Fog orchestration for internet of things ser-
vices,” IEEE Internet Computing, vol. 21, no. 2, pp. 16–24,
2017.

[24] Y. Mao et al., “Dynamic computation offloading for mobile-
edge computing with energy harvesting devices,” IEEE Jour-
nal on Selected Areas in Communications, vol. 34, no. 12,
pp. 3590–3605, 2016.

[25] J. Liu et al., “Delay-optimal computation task scheduling
for mobile-edge computing systems,” in Information Theory
(ISIT), 2016 IEEE International Symposium on, IEEE, 2016,
pp. 1451–1455.

[26] M. Villari et al., “Osmotic computing: A new paradigm for
edge/cloud integration,” IEEE Cloud Computing, vol. 3, no. 6,
pp. 76–83, 2016.

[27] H. C. Foundation, “Hart communication protocol specifica-
tion,” HART Communication Foundation Std. HCF SPEC-13,
Rev. 7.5, 2013.

[28] G. Prytz, “A performance analysis of ethercat and profinet irt,”
in ETFA, 2008, pp. 408–415.

[29] (2014). What is the difference between ethernet and industrial
ethernet, [Online]. Available: http://www.innovasic.com/news/
industrial-ethernet/what- is- the-difference-between-ethernet-
and-industrial-ethernet/.

[30] J. Song et al., “WirelessHART: Applying wireless technol-
ogy in real-time industrial process control,” in RTAS, 2008,
pp. 377–386.

[31] D. Dujovne et al., “6tisch: Deterministic ip-enabled industrial
internet (of things),” IEEE Communications Magazine, vol. 52,
no. 12, pp. 36–41, 2014.

[32] I. Shin and I. Lee, “Compositional real-time scheduling
framework with periodic model,” ACM Trans. on Embedded
Computing Systems (TECS), vol. 7, no. 3, p. 30, 2008.

[33] S. Xi et al., “Real-time multi-core virtual machine scheduling
in xen,” in EMSOFT, 2014, pp. 1–10.

[34] A. Yousefpour et al., “Qos-aware dynamic fog service provi-
sioning,” in WATERS, 2015, pp. 1–6.

[35] G. Giannopoulou et al., “Mapping mixed-criticality applica-
tions on multi-core architectures,” in DATE, 2014, pp. 1–6.

[36] S. Kramer et al., “Qos-aware dynamic fog service provision-
ing,” in Conf. on Fog and Edge Computing, 2017, pp. 1–6.

[37] E. Bini and G. C. Buttazzo, “Measuring the performance
of schedulability tests,” Real-Time Systems, vol. 30, no. 1,
pp. 129–154, 2005.

[38] M. R. Guthaus et al., “MiBench: A free, commercially rep-
resentative embedded benchmark suite,” in WWC-4, 2001,
pp. 3–14.

62

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

