
Mälardalen University Licentiate Thesis
No.15

Analysis of Execution
Behavior for Testing of

Multi-Tasking Real-Time
Systems

Anders Pettersson

October 2003

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c� Anders Pettersson, 2003
ISBN 91-88834-13-1
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

An important issue in software testing is the ability to observe the execution
of the software; this is especially true forreal-time systems (RTS). RTS are
difficult to observe, and the ability to test RTS is inherently low. Embedded
RTS have few interfaces for observation and the execution of multi-tasking
RTS is usually non-deterministic. As a consequence, testing of RTS cannot be
exercised with existing tools for sequential programs. New tools and methods
are necessary that enable observation of the system despite few interfaces while
at the same time address the non-determinism issue.

The contribution in this thesis is three-folded: (1) we present a tool suite
that allows deterministic testing of multi-tasking RTS, in which synchroniza-
tion of tasks is resolvedoff-line or on-line. (2) We show by building a test bed
how to use the tool suite. (3) We present the design and functionality ofAsterix
the Real-Time Kernel.

In (1) we propose an analysis tool that derives all possible system level
control-flow paths of multi-tasking RTS in which synchronization between
communicating tasks are resolved on-line by using thePriority Ceiling Em-
ulation Protocol (PCEP; also know as the Immediate Inheritance Protocol).
The analysis tool is an extension of an existing tool in which synchronization
were resolved off-line by using release time offsets or priorities to separate the
tasks in time.

Based on the number of derived control-flow paths test coverage criteria
are defined, and estimations of test effort can be done early in the development
of a system. In (2) we show how the defined test coverage criteria relate to the
number of traversed control-flow paths during test execution. We also show
how the estimation of tasks’ execution times affects the analysis. The analysis
tool is applied on multi-tasking RTS in which the tasks are synchronized off-
line. The real-time applications are then exercised on the test bed using Asterix
as the operating system.

In (3) we present a small-sized real-time kernel named Asterix that has sup-
port for software based instrumentation of kernel events as well as application
usage of system calls. The major problem of software instrumentation is the
change in execution behavior that occurs when a RTS is executed without or
without the probes. In Asterix we avoid this probe-effect by leaving the probes
in the kernel during normal operation.

Also, we present a literature survey covering the state-of-the-art in the field
real-time systems testing.

To Andreas and Emelie

Preface

This licentiate thesis presents the results from my first two and a half years
of graduate studies. My studies began as an undergraduate student in 1996 at
the department of computer science and engineering, Mälardalen University. I
received my Master of Science in computer engineering in August 2000, and
started my graduate studies in December 2000, also at Mälardalen University.

I have been surrounded by many helpful colleagues here at the university
especially those who sits next to my office space and my supervisors that have
given me the opportunity to study here at Mälardalen University. My super-
visor Henrik Thane that have guided me during these years and have ensured
that the right conditions to do the work have been there. My main supervisor
Hans Hansson for giving guidance and courses during this period.

Despite the risk of forgetting someone I will mention a few colleagues that
have helped me during this study period: Daniel Sundmark for introducing
me to the noble art of disc golf and for interesting discussions, Joel Huselius
for being a good study companion and for being the master of beer brewing,
Thomas Nolte for good arrangement of social activities and being a good trav-
eling companion, Jonas Neander for being a soul mate, Dag Nyström for good
laughs on our traveling around the world. Since I probably forgot to mention
someone I have to say: I wish to thank everyone of the staff at the department
of computer engineering at Mälardalen University for being friendly, nice and
helpful.

This thesis is dedicated to my children, Andreas Pettersson and Emelie
Petterson, for making the life worth to live and to my parents, Anna-Lisa Pet-
tersson and Jean Pettersson, and my sister, Susanna Pettersson, for all kinds of
support during this period.

This work is funded by the national Swedish Real-Time Systems research
initiative ARTES (www.artes.uu.se), supported by the Swedish Foundation for
strategic research.

Contents

Preface vii

Contents ix

List of Publications xiii

1 Thesis 1
1.1 Background 1

1.1.1 Real-time Systems 2
1.1.2 Testing .. 2

1.2 Problem Formulation 3
1.3 Publications and Technical Contributions 4
1.4 Summary and Future Work 6

2 Paper A:Testing of Computer Software with Temporal
Constraints: A State-of-The-Art Report 9
2.1 Introduction 12

2.1.1 Outline .. 13
2.1.2 Terminology 13

2.2 Computer Software Testing 14
2.2.1 Planning for Testing 16
2.2.2 Analysis of Computer Software Execution Behavior . 18
2.2.3 Execution Behavior 20

2.3 Testing of Sequential Programs. 26
2.3.1 Unit Testing 26
2.3.2 Integration Testing 26
2.3.3 System Testing 27

2.4 Regression Testing 27

x CONTENTS

2.4.1 General Regression Test Assumptions. 29
2.4.2 Regression Test Techniques 30

2.5 Testing of Concurrent Programs 35
2.6 Testing of Real-Time Systems. 36

2.6.1 Distributed Real-Time System. 38
2.6.2 Testing of Real-Time Systems. 38
2.6.3 Regression Testing of Real-Time Systems 44

2.7 Summary . 45

3 Paper B: Testing of Multi-Tasking Real-Time Systems with Critical
Sections 53
3.1 Introduction 55

3.1.1 Contribution 58
3.2 The Deterministic Test Strategy 59
3.3 System Control-Flow Analysis. 61

3.3.1 Task Model 61
3.3.2 Synchronization using PCEP 62
3.3.3 The System Level Control-Flow Graph 63

3.4 The algorithm . .. 68
3.4.1 The stop criterion 69
3.4.2 Conclusion 70
Appendix A . 73

4 Paper C: The Asterix Real-Time Kernel 75
4.1 Introduction 76
4.2 The Asterix Execution Strategy. 78

4.2.1 Synchronization 80
4.2.2 Communication 81
4.2.3 Hard and soft tasks 82
4.2.4 Pre-runtime configuration 82
4.2.5 Timing analysis 82

4.3 Monitoring . 84
4.3.1 Deterministic replay 85
4.3.2 Deterministic testing 85

4.4 Jitter reduction .. 86
4.5 Conclusions . 87

CONTENTS xi

5 Paper D: Experimental Evaluation 91
5.1 Introduction 93
5.2 The Test Procedure 94
5.3 Analysis of Real-Time Systems. 94

5.3.1 Pre-Analysis Tool 94
5.3.2 Post-Analysis Tool 96

5.4 Test Bed . 96
5.4.1 The System Under Test. 97
5.4.2 Instrumentation 98
5.4.3 Information Extraction. 98
5.4.4 Hardware. 99

5.5 Experimental Results 99
5.5.1 Task Set Generation 99
5.5.2 Results .. 100

5.6 Conclusions . 103
5.7 Future Work 104

List of Publications

The following articles are included in this licentiate1 thesis:

A Testing of Computer Software with Temporal Constraints: A State-of-The-
Art Report,
Anders Pettersson,
Mälardalen Real-Time Research Centre Report ISSN 1404-3041 ISRN
MDH-MRTC-115/2003-1-SE, Mälardalen University, October 2003.

B Testing of Multi-Tasking Real-Time Systems With Critical Sections,
Anders Pettersson and Henrik Thane,
In Proceedings of 9th International Conference on Real-Time and Em-
bedded Computing Systems and Applications RTCSA’03, Tainan City,
Taiwan, R.O.C, 18-20 February 2003. Springer-Verlag.

C The Asterix Real-Time Kernel,
Henrik Thane, Anders Pettersson and Daniel Sundmark,
In Proceedings of 13th Euromicro International Conference on Real-
Time Systems, Industrial Session, Technical University of Delft, Delft,
The Netherlands, June 2001. IEEE Computer Society.

D Experimental Evaluation of a Test Procedure for Deterministic Testing of
Real-Time Systems,
Anders Pettersson and Henrik Thane,
Mälardalen Real-Time Research Centre Report ISSN 1404-3041 ISRN
MDH-MRTC-114/2003-1-SE, Mälardalen University, October 2003.

1A licentiate degree is a Swedish graduate degree halfway between MSc and PhD.

xiv LIST OF PUBLICATIONS

Besides the above papers, I have co-authored the following papers not in-
cluded in this thesis:

I Integration Testing of Fixed Priority Scheduled Real-Time Systems
Henrik Thane, Anders Pettersson and Hans Hansson
In Proceedings of IEEE Real-Time Embedded System Workshop, Lon-
don, UK, December 2001. Technical Report, Department of Computer
Science, University of York. Editors Ian Bate and Steve Liu.

II Replay Debugging of Complex Real-Time Systems: Experiences from Two
Industrial Case Studies
Daniel Sundmark, Henrik Thane, Joel Huselius and Anders Pettersson
Mälardalen Real-Time Research Centre Report ISSN 1404-3041 ISRN
MDH-MRTC-96/2003-1-SE, Mälardalen University, April 2003.

III Replay Debugging of Real-Time Systems Using Time Machines,
Henrik Thane, Daniel Sundmark, Joel Huselis and Anders Pettersson,
In Proceedings of Parallel and Distributed Systems: Testing and Debug-
ging (PADTAD), Nice, France, April 2003, ACM.

Chapter 1

Thesis

This licentiate thesis is the result of research done at Mälardalen University
in the TATOO project, which has received funding from the ARTES program.
The goal of this project is to develop novel methods and tools for testing of
distributed real-time systems.

This thesis has two main contributions (1) an extension of an analysis tool
for deriving the system level control flow of multi-tasking real-time system
(paper B in Chapter 3) and (2) an experimental case-study of previous results
in the TATOO project (paper D in Chapter 5).

1.1 Background

In computer software projects the deployment is often delayed and the cost
is often exceeding the budget. As a result, project tasks that are performed
late in the development are almost always either reduced or ignored. Software
testing is one of these tasks that often are neglected because of cost and time,
and it gets even worse in projects developing more complex software such as
software for real-time systems. Therefore, is it essential that developers have
tools that make testing less costly and less time consuming.

For sequential programs there exist a number of analysis and testing tools,
and the research on tools for testing of concurrent programs are increasing.
However, forreal-time systems there are still few research results regarding
testing tools and methods.

2 Thesis

1.1.1 Real-time Systems

A real-time system is a computer system in which not only the output from the
system is important but also the time at which the output is delivered. That is,
real-time systems differs from sequential programs and concurrent programs
in the sense that the correctness of the produced output is not only dependent
on the functional correctness but also on the temporal correctness [2].

Real-time systems are oftenmulti-tasking. A multi-tasking program is di-
vided into two ore more tasks that in cooperation with each other fulfill the
requirements of the specification, i.e., the tasks in the system are executing
concurrently.

There are two types of real-time systems,hard and soft real-time sys-
tems. In hard real-time systems timing constraint violations lead to fatal conse-
quences. Fatal consequences can be large economical losses or human injuries.
In soft real-time systems occasional violations of timing constraints can be ac-
cepted.

Each type of real-time system can be further grouped intoevent triggered
or time triggered systems. Event triggered real-time systems are driven by
events, usually external interrupts or message passing. An event can occur at
an arbitrary point in time. Time triggered real-time systems are driven by a
periodically invoked task scheduler that is responsible for deciding which task
is next to run.

1.1.2 Testing

The purpose of testing is to reveal faults and to establish confidence in that the
program will not fail during its operation. Testing consists of three steps:

� Test planning

� Extract test cases that are likely to reveal most failures

� Apply the test cases to the program in a test execution

Test Planning

The task of testing starts by setting up a test strategy, defining test coverage
criteria, modeling the execution behavior, etc. The model can serve as a spec-
ification of the execution behavior of the program. Execution behavior can
for example be the order in which the program statements are invoked, the

1.2 Problem Formulation 3

produced output from program calculations or in which order tasks in multi-
tasking programs synchronize with each other.

Test Case Generation

Test cases can be generated from either the specification of the program or the
implementation of the program.

Specification based test-case generation derives the test cases from the
specification; hence the software can be tested early in the development even
before the implementation is completed.

Implementation based test-case generation requires knowledge of the im-
plementation details. Since the specification must have been realized in an
implementation, testing with implementation-based test cases is done later in
the development.

Test Execution

The correctness of a program can only be established according to what have
been observed during test executions. Hence, it is essential that we can ob-
serve the produced output, intermediate results and the paths traversed by the
program.

Observation of execution behaviors can be done by using software pro-
bes [3], hardware instrumentation [5], or a combination of software and hard-
ware instrumentation.

1.2 Problem Formulation

The complexity of real-time systems can be expressed in terms of the number
of possible valid execution paths that are traversed during the operation of the
system. Complexity caused by the indeterminacy in the interaction between
the environment and the program makes exhaustive testing impossible. The
complexity increases even more when tasks in the system interact with each
other, i.e., interprocess communication. Hence, out of all generated test cases
only a very small subset of test cases is chosen.

The problem we consider in this thesis is how to analyze the complexity
of multi-tasking real-time systems in which synchronization of communicat-
ing tasks are resolved dynamically during run-time or by adding offsets to the
release time of tasks.

4 Thesis

Complexity of real-time systems is also affected by non-determinism in the
execution of real-time systems. The non-determinism can be caused by races
between concurrently executing tasks competing for shared resources, jitter in
the execution time of the tasks, and insertion of software probes.

Programs that during test runs operates correctly with inserted softwares
probes may fail to operate during normal operation with the probes removed
(the probe effect [1]). This is caused by different execution behavior in the
program with and without the probes. Also, changed execution behavior in
consecutive runs can result from significant variations in the execution time
and race situations.

In many real-time systems only a few execution paths are exercised leaving
the majority of the execution paths untested. In this thesis we consider the
problem of complexity estimations of real-time systems at design time, i.e.
before the specification is implemented.

We propose a tool for analysis of execution behavior of multi-tasking real-
time systems with critical sections. The output from the analysis tool is a graph
representing possible execution paths from which test cases can be derived.
This work is an extension of an existing tool for analysis of the complexity of
real-time systems [3]. Also a case study using the original analysis tool [4] is
presented.

1.3 Publications and Technical Contributions

There are four publications included in this thesis. Below, each publication is
summarized and the contribution is stated for each publication.

Paper A:

Testing of Computer Software with Temporal Constraints: A State-of-The-Art
Report, Anders Pettersson.

This state-of-the-art report (SotA) is a literature survey of computer soft-
ware testing, focusing on testing of real-time systems. The SotA provides the
necessary background of software testing for the discussions in this thesis.

Paper B:

Testing of Multi-Tasking Real-Time Systems With Critical Sections, Anders Pet-
tersson and Henrik Thane.

1.3 Publications and Technical Contributions 5

When tasks in real-time systems communicate with each other there is a
need for synchronization in order to preserve precedence constraints and avoid
conflicts. Since the order of the synchronization is controlled by the imple-
mentation, and since it is likely that the programmer mistakenly introduces
synchronization errors in the implementation, there is a need for testing meth-
ods that test applications for such errors.

The contribution in this paper is a method that allows testing of multi-
tasking real-time systems with critical sections. The method is an extension
of an existing testing technique for distributed real-time systems in which the
synchronization was resolved off-line by using offset to the tasks release times
in order to separate the tasks in time [4].

Anders’ contribution in this paper is an extension of an existing analysis
tool that derives the system level control flow of multi-tasking real-time sys-
tems. The extension allows the analysis tool to handle synchronization of tasks
during run-time. Both authors have contributed to the solution through discus-
sions.

Paper C:

The Asterix Real-Time Kernel, Henrik Thane, Anders Pettersson and Daniel
Sundmark.

One of the issues in testing and debugging of multi-tasking programs is the
ability to observe the behavior of the program during run-time.

In this paper we propose a micro-kernel, Asterix, for real-time systems with
support for run-time instrumentation of programs. The purpose of Asterix is to
have a real-time kernel with small memory footprint, bringing state-of-the-art
theories into state-of-the-practice, and to provide a low cost (both economi-
cally and computationally) software-based instrumentation for observation of
the systems run-time behavior.

Anders’ contribution is the design and implementation of Asterix. All au-
thors have contributed in discussions regarding the design, implementation and
supported functionality in Asterix.

Notes:

� This paper has been revised and edited so there are slight differences
between the published version and the version found in this thesis.

� The Asterix Real Time Kernel, has been used as a foundation for all the
empirical validation of our research theories.

6 Thesis

Paper D:

Experimental Evaluation of a Test Procedure for Deterministic Testing of Real-
Time Systems, Anders Pettersson and Henrik Thane.

In practice, testing of real-time systems is often a non-trivial task because
of the non-determinism caused by the run-time environment. The contribution
of this paper is to evaluate an analysis tool used in deterministic testing of real-
time systems [3]. The analysis tool derives the system level control flow of
multi-tasking real-time systems. The validation will be done by running real-
time applications on real hardware. The task sets are generated by applying
random values on the temporal attributes of the tasks. The results show that
the analysis tool is suitable for deriving test cases, although exhaustive testing
is difficult to achieve and that the accuracy of execution time estimations is
important.

Anders’ contributions in this technical report are the following: design and
implementation of tools and servers in the test bed, performing the evaluation
and enhancement of the analysis tool.

1.4 Summary and Future Work

Testing is often neglected because of time limits and costs. Therefore, it is a
necessity that the real-time system can be analyzed early in the development.
Today there exists numerous tools for analyzing sequential programs and the
numbers of tools for analyzing concurrent programs are increasing. However,
there exist very few tools for analysis of real-time systems. There are even
fewer tools that consider essential constructs of real-time systems such as syn-
chronization of tasks and invocation and termination of tasks. In this thesis, an
analysis tool for multi-tasking real-time systems is presented. The analysis tool
can be applied on single node real-time systems where communicating task are
synchronized through the priority ceiling emulation protocol, but should be ex-
tended to handle synchronizations of tasks in distributed real-time systems.

The execution behavior of real-time systems is non-deterministic. There-
fore, in practice testing is sometimes based on trial and error methods because
of lack of control over the test execution. In this thesis, an evaluation of a
method for deterministic testing of real-time systems is presented. The goal of
the evaluation is to show how to predict the execution behavior during testing
of real-time systems. The evaluation is done on single node real-time systems
in which synchronization of tasks is resolved off-line. The next step would be

1.4 Summary and Future Work 7

to evaluate the method for real-time systems with critical sections, i.e., systems
in which synchronization of tasks is resolved during run-time.

Bibliography

[1] J. Gait. A probe effect in concurrent programs. InSoftware - Practice and
Experience, volume 16(3), pages 225–233, Mars 1986.

[2] W. Schütz. Fundamentals issues in testing distributed real-time systems.
In Real-Time Systems, volume 7, pages 129–157, Boston, 1994. Kluwer
Academic Publisher.

[3] H. Thane. Monitoring, testing and debugging of distributed real-time sys-
tems. InDoctoral Thesis, Royal Institute of Technology, KTH, S100 44
Stockholm, Sweden, May 2000. Mechatronic Laboratory, Department of
Machine Design.

[4] H. Thane and H. Hansson. Towards systematic testing of distributed real-
time systems. InProceedings of The 20th IEEE Real-Time Systems Sym-
posium, pages 360–369, 1999.

[5] J. J. P. Tsai, Y.-D. Bi, and R. Smith. A noninterference monitoring and
replay mechanism for real-time systems. InIEEE Transaction on Software
Engineering, volume 16, pages 897–916, 1990.

Chapter 2

Paper A:Testing of
Computer Software with
Temporal Constraints: A
State-of-The-Art Report

Anders Pettersson
Department of Computer Science and Engineering
Mälardalen University, Västerås, Sweden
anders.pettersson@mdh.se

Sammanfattning

Förekomsten av datorer i de konsumentprodukter vi använder dagligen ökar
hela tiden. Många av dessa datorer styrs av programvara. För att garantera att
produkten är användbar måste programvaran testas. Tyvärr är denna testning
ofta åsidosatt på grund av att testning är resurskrävande och kostsam. Ett sätt
att underlätta testningen är att tillhandahålla verktyg och metoder som reduc-
erar arbetsinsatsen för utvecklare av programvara vid testning. Denna översikt
av litteratur inom testning av programvara har till syfte att peka på existerande
metoder och verktyg för testing av programvara, speciellt i datorsystem där
det finns krav på att tidsbeteendet inte strider mot specifikationen, så kallade
realtidssystem.

Abstract

Computers in consumers product are increasing. Many of these computers are
controlled by software. To ensure that the consumer can use the product as
expected the software must be tested. Unfortunately, testing is often neglected
because it is costly and resource demanding. One solution to this is to make test
tools and test methods available to the developers of software. The purpose of
this report is to point out methods and tools for testing of computer software,
especially for software that have constraints on their temporal behavior, i.e.,
real-time systems.

12 Paper A

2.1 Introduction

In our daily life we are more and more dependent on computers and their soft-
ware. When we travel by airplane, use robots at work, or even watch TV at
home, we expect them not to malfunction. Therefore, it is important that the
software does what the user expects and that it does not fail.

To establish the quality of the softwareValidation andVerification are used.
Validation is used to establish that the software supplies the service specified
in the requirements. Verification is used to establish that the properties of sup-
plied services are correct according to the requirements in their specifications.
Verification can be done by statically analyzing the software or analyzing the
software dynamically by executing the program, i.e.,testing.

Based on the execution behavior, computer software can be categorized
into three domains:

� Sequential programs, which are programs that runs from invocation to
termination without interruptions or interleaving.

� Concurrent programs, which are programs that execute within the same
time interval either by interleaved or simultaneous execution.

� Real-time systems, which are programs where the correctness depends
on the functional behavior as well as the temporal behavior.

For these domains, the objective of testing is to find deviations between the
specified requirements and the observed results during operation of the soft-
ware.

Testing is a necessity in development of correct software. However, testing
is not trivial even if it seems to be. For example, assume a computer program
that takes one input from a user and the user is supposed to press only one key
but mistakenly press two keys simultaneously. If it is crucial for the function-
ality that only one key is pressed at a time, all possible two-key presses must
be tested in order to establish the correctness.

In the example above, the software should be tested with all combinations
(n-key presses) under all circumstances to ensure that the program is free from
defects. But the amount of tests then rapidly grows to be enormous, and so are
also the costs for the testing. Consequently, exhaustive testing is in most cases
not possible.

In this state-of-the-art report we will discuss software testing and how dif-
ferent test methods can be applied on different types of software: sequential
programs, concurrent programs and real-time systems. The focus will be on

2.1 Introduction 13

testing of real-time systems. But we will also discuss testing of non-real-time
software to give an introduction to software testing in general.

2.1.1 Outline

The outline of the rest of this report is as follows: In Section 2.2 we discuss
the fundamentals of testing. Testing of sequential programs is discussed in
Section 2.3. In Section 2.4 we will discussregression testing, i.e., how to
test software after the code is modified or needs a retest. In Section 2.5 we
will discuss testing of concurrent programs. In Section 2.6 testing of real-
time software is discussed, focusing mainly on functional testing of real-time
systems.

2.1.2 Terminology

There exist several standards for the terminology used when discussing com-
puter software testing, both international and national, for example, the IEEE
standard, the SIS standard and the ISO standard. In this report a terminology
that conforms to IEEE STD 610.12-1990 [26] will be used. Below, we give the
terminology that is used in this report.

Correctness By correctness of the software it is meant that the behavior of
the program execution conforms to the behavior specified in the program
specification.

Regression Testing Selective retest of a system or component to verify that
modifications have not caused unintended effects and that the system or
component still complies with its specified requirements [26].

Software, Application and Program In this reportsoftware, application and
program are all an executable computer file that delivers services accord-
ing to a specified behavior. Although,software can also be the documen-
tation and source code of the program, this will not be the interpretation
used here.

Task Each individualtask can bee seen as a small sequential program and is
the smallest user defined execution unit. Two or more tasks can, by com-
municating with each other, form a more complex program and solve
more complex problems than an individual task.

14 Paper A

Test Test is an activity in which a system or component is executed under spec-
ified conditions, the results are observed or recorded, and an evaluation
is made of some aspects of the system or component [26].

Testing Testing is the process of operating a system or component under spec-
ified conditions, observing or recording the results, and making an eval-
uation of some aspects of the system or component [26].

Threads and Processes In this report we do not distinguish between tasks,
threads and processes. However, in general there is a significant differ-
ence between them, but the difference do not affect the assumptions in
our discussions, and hence we will here use task to denote all three.

Validation Is the process of evaluating a system or a component during or
at the end of the development process to determine whether it satisfies
specified requirements [26], i.e., validation aims at answering the ques-
tion are we building the right system?

Verification Is the process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions
imposed at the start of that phase [26], i.e., verification aims at answering
the questionare we building the system right?

2.2 Computer Software Testing

The objective of testing is to reveal failures to eliminate the faults in the soft-
ware, and thereby increase the confidence in the software. This is done by
applying test data to the software. But this raises several issues, such as how
to select test data, how to measure the progress of testing and when to stop the
testing.

The test data (test cases) must be selected to be sufficient to satisfy the re-
quirements, i.e., the test data adequacy. According to Zhu et al. [48], one way to
categorize test data adequacy is to base the classification on the source of infor-
mation for deriving test cases:white-box testing (implementation based) and
specification-basedblack-box testing (specification-based). Test cases gener-
ated using the black-box approach are based on the specification and used for
functional testing and interface testing duringintegration testing andsystem
testing. It is also used for performance testing, stress testing, and reliability
testing. The white-box (orglass-box) approach is based on knowledge of the

2.2 Computer Software Testing 15

implementation and is used during unit testing in order to establish to what
extent the software is tested.

Testing approaches can be divided into:coverage-based testing (structural
testing),fault-based testing anderror-based testing. Coverage-based testing
methods can further be divided into: control-flow based and data-flow based
testing.

Both control-flow and data-flow structural testing are often based on a flow-
graph model of the structure of the program. The model is derived by statically
analyzing the software either by the compiler or an analysis tool.

In fault-based testing it may not be sufficient to select test data to meet
some coverage criterion, but also chose test data based on to what extent the
test is expected to reveal a failure. Based on the approach to reveal failures,
testing methods can be divided into:fault seeding, mutation-based and fault
injecting.

Fault seeding testing is to intentionally add faults that are known to reveal
a failure. If� faults are seeded and� faults are found, then based on� and�
an estimation of the remaining non-seeded faults can be made.

Mutation testing is to create a set of mutated programs based on an original
program. Each of the mutated programs is expected to reveal a single failure.
If the failure is revealed the test is then later used to test the original program.
When all mutated programs are tested an optimal set of test inputs can be de-
termined.

Fault injection evaluates the impact of changing the code or the state of the
software. This is done by using perturbation to change the code and observe the
result by instrumentation. Fault injection is mostly used to test the reliability
of the software.

Testing can also be used (1) to establish the level of confidence that the
program will not fail during its operation and (2) to establish that specified
properties are satisfied. In contrast to fault-revealing tests this is done by ap-
plying test cases to demonstrate the absence of faults. That is, a successful test
case does not reveal failures.

To be successful in testing there must be guidance for when to test, how to
test, what to test and what tools to use for testing, i.e., there is a need for a test
plan.

16 Paper A

2.2.1 Planning for Testing

Test Plan

A test plan is the documentation of the conditions and requirements that must
be set for testing. The documentation can be formal or informal but it is im-
portant that there are no ambiguous requirements. One way to achieve unam-
biguous documentation is to use mathematics [28].

A well-defined test plan should include, at least, well documented require-
ments in a specification, strategies for initial testing, integration testing and
system testing. According to Leung et al. [22] the test plan must also include:

� A strategy for regression testing.

� A guideline for the test procedure, including a test design strategy, cov-
erage criteria and information on how to handle test cases that do not
need to be re-executed.

� Information for identification of test classes, test case execution order,
and changes made to the software.

However this covers the general case. For real-time systems, especially safety-
critical systems, it is often the case that all test cases are exercised in a retest.
Then we do not have to have strategies for selecting which test-cases to execute.

In Bertolino et al. [4] the authors present an approach for deriving test plans
for integration testing from a formal description based on software architec-
tures. The purpose of the derived test plan is to describe the components of the
software and the connections between these components.

Rational Unified Process (RUP) is a software development tool that en-
forces creation of test plans divided into well-defined phases during the life
cycle of the software. RUP also encourages developers to start testing the soft-
ware as early as possible by performing inspections on documents such as de-
sign specification and functional requirements. It has been shown that early
inspections of source code and documentation can reveal 80% of specification
and programmer faults [8]. By using RUP and inspections in the early phases
of the development, test efforts are reduced in the later phases.

Fault Hypothesis

The fault hypothesis is the definition of what a failing behavior is according
to the specification of the software [3]. What a failing behavior is depends on
the current failure mode of the system. In Clarke et al. [7] a classification of

2.2 Computer Software Testing 17

different failure modes of sequential programs are defined:control failures,
value failures, addressing failures, termination failures andinput failures.

For concurrent programs, in addition to the failure modes above the follow-
ing failures must be considered:ordering failures, synchronization errors and
interleaving failures.

In [19] the propagation of a programmers mistake or an erroneous out-
put leading to a failure is defined as����� � �		
	 � �����	�. How-
ever, according to the IEEE STD [26] the words fault and error are used inter-
changeably. The above definition of fault and error is used in the fault toler-
ance discipline. Consequently, with the same meaning as above the definition
�		
	 � ������ �����	� can also be found in the literature.

Test Cases

There must also be specified input sequences for the test execution. These input
sequences are calledtest cases; a test suite is a collection of test cases.

For sequential programs a test case is often the input parameter to the pro-
gram and the expected output from the program. Whereas, in concurrent pro-
grams the test cases are an input parameter, output parameter and some speci-
fied behavior of the system. For example, if the testing strategy is to find errors
with respect to in which order the task are synchronizing, then the input would
consists of the input parameter to the program and a valid synchronization se-
quence [6].

Initial Test Case Selection

In the initial testing, the first test cases can be created based on a specification
(black-box). Later on when the specification is implemented, the set of test
cases can be extended with structural-based test cases (white-box).

Rothermel et al. [30] define a test case as
 ���������	� ������
����� �
in order to achieve maintainability and storage of test cases in a database. As
complement to a test case definition, a test history must often be maintained
together with scripts for test case execution. A test history is helpful when re-
validating the test cases in a re-test of modified programs. Scripts for test case
execution are helpful in larger software projects, if the number of test cases are
too many to handle manually or when tests are exercised during non-working
time [27].

18 Paper A

Test Case Selection for Re-testing

Leung et al. [22] propose how to categorize test cases into different classes.
These classes are: reusable test cases, re-testable test cases and obsolete test
cases.

� Reusable test cases are testing the unmodified parts of the specification
and the program constructs. Re-execution of these test cases is hopefully
not necessary since they produce the same output as the previous tests.

� Re-testable test cases are testing the program constructs that are modi-
fied, although the specification is not modified.

� Obsolete test cases are test cases that are no longer relevant because of
that input/output relations no longer are valid, the program has been
modified so the test case no longer test the program construct, or the
test case no longer contribute to the structural coverage.

There is also a need to distinguish re-testable test case from obsolete test
cases. This introduces two new classes of test cases.

� New-structural test cases

� New-specification test cases

Wong et al. [44] propose a method that produces acomplete but notprecise
set of test cases. A complete set of test cases contains only the test cases that
should be used for re-validating the inherited functionality from the previous
version of the program. Precise sets of test cases do not include test cases
where the previous version and the new version produce the same output. They
discuss the cost of to being too ambitious in the effort to get a complete and
precise subset of regression tests. Their proposed method concentrate on the
flexibility of the test selection.

2.2.2 Analysis of Computer Software Execution Behavior

Analysis of programs are based on the test data adequacy criteria; specification-
based and implementation-based criteria. For sequential programs, the test
coverage can be determined by analyzing the code at unit-level. By the use
of the coverage-based approach the following type of code coverage can be
achieved:

2.2 Computer Software Testing 19

� in control-flow based testing

– all-node, all-branch andall-paths

� in data-flow based testing

– all defs coverage, all p-uses coverage, all c-uses coverage, all c-
uses/some p-uses coverage, all p-uses/some c-uses coverage, all
uses coverage, all du-paths coverage

The test coverage criteria can be used to (1) determine when we have tested
the software enough and (2) when to stop testing.

Because of the interleaved execution in concurrent programs and real-time
systems, the analysis is more complex than analysis of sequential programs,
and implies the use a programming constructs to synchronize the task in order
to avoid conflicts.

A common approach to derive serializations is to statically analyze the
structure of the implementation [39]. Serializations can also be derived dy-
namically by instrumentation of the exercising program [35]. However, in both
approaches the competition for shared resources and synchronizations of tasks
must be considered. Using synchronization constructs, such as, semaphore
protocols or rendezvous in ADA, can do this. There are issues that should be
considered when using such approach, for example, uniqueness of input, possi-
ble exposure of errors during test execution, and infeasible concurrent program
serializations [41].

For real-time systems a common cause for interleaved execution is that
the tick scheduler schedules a higher prioritized task, or using programming
constructs that put the program on hold and lets other programs run.

If synchronization constructs are used, then some of the serializations be-
come infeasible. For example, if two tasks, taskA and taskB in a concurrent
program have precedence constraints such that a read operation in taskA must
be exercised before a write operation in taskB. Then, all serializations in which
the write operation of taskB is exercised before the read operation in taskA
are invalid serializations.

Also for multi-tasking programs two consecutive executions with the same
input may have different execution behavior and even produce different out-
put [5]. Hence, making it impossible to test the program.

20 Paper A

Program A(void) Program B(void)
{ {

read x; read z;
write x; write z;

} }

Program order Possible serializations
A - B read x; write x; read z; write z;
B - A read z; write z; read x; write x;

Figure 2.1: Example of possible serializations of the execution behavior of two
sequential programs.

2.2.3 Execution Behavior

What is the execution behavior of a program? It can for example be output val-
ues, signals, or the statements traversed in the executions [46]. The behavior of
a program can be based on synchronization sequences, rendezvous sequences,
and execution paths [46, 37].

Execution paths define in which order the statements in a program are tra-
versed. For sequential programs the execution path of the statements is exer-
cised in the order of the implementation and in which order the programs are
invoked, see Figure 2.1.

For concurrent programs and multi-tasking real-time systems the complex-
ity of deriving the serializations is increased. In Figure 2.2 it is shown how the
interleaving can affect the traversed execution paths.

There are two types of execution characteristics of real-time systemsmulti-
tasking andsingle-task real-time systems. Multi-tasking systems can further
be of two typespre-emptive andnon pre-emptive. Single task and non pre-
emptive real-time systems have similarities with execution characteristics of
sequential programs since the task in such systems are exercised in sequence
without interruption. Multi-tasking and pre-emptive real-time systems have the
same fundamental execution characteristic as concurrent programs.

Synchronization

Multi-tasking programs may have requirements that restrict the order of inter-
leaving between programs; such requirements may be due to data dependencies

2.2 Computer Software Testing 21

Task A(void) Task B(void)
{ {

read x; read z;
write x; write z;

} }

Program order Possible serializations
A - B read x; write x; read z; write z;
B - A read z; write z; read x; write x;
A - B - A read x; read z; write z; write x;
B - A - B read z; read x; write x; write z;
A - B - A - B read x; read z; write x; write z;
B - A - B - A read z; read x; write z; write x;

Figure 2.2: Example of possible serializations of the execution behavior of two
tasks in a concurrent program.

between programs. Without these constraintsrace situations can occur.
A race situation is when two or more tasks are competing for limited re-

sources and it is not possible to á priori determine which of the tasks that is
going to win the competition. Example of limited resources can be CPU, I/O
ports, and shared variables. In Figure 2.3 a race situation is visualized by ex-
emplifying access to a shared resource� by two tasks, task� and task�.
Initially � is assigned the value�. The two possible orderings and results of
the computations are that task� starts to executes because of earlier release
time, folloed either by task� preempting task� before� have completed
its operation on� (see Figure 2.3 (a)) computing the result of� � ��, or
in the case that� perform its operation on� before task� preempts� (see
Figure 2.3 (b)) the produced output is then� � ��.

Observability

Observability is the ability to observe the state before and after an operation.
Consequently, it must be possible to observe the input, output and the internal
state.

Observing the input and output in sequential programs is straightforward,
that is if the program does not include any non-deterministic statements [33].

The inputs are observed to determine the behavior of the program’s envi-

22 Paper A

A

B

Priority

Time

X= X+15

X=X*2

X=32

Figure 2.3 (a): Example 1

A

B

Priority

Time

X=X*2

X= X+15

X=17

Figure 2.3 (b): Example 2

Figure 2.3:Example of two possible execution orderings from repeated executions of
two tasks� and� accessing the shared resource� initialized to�. In Figure 2.3 (a)
task� precedes task� and in Figure 2.3 (b) task� precedes task�

ronment. By observing the internal state, the exact cause of the failure can
be located, and internal state changes that have no effect on the output can
be detected. The internal states of sequential programs are observed using in-
teractive debuggers or printouts in the code. One of the problems of using
interactive debuggers and auxiliary output to observe real-time systems is that
the temporal behavior are changed during the observation [36], i.e., even if we
can stop the program and observe the state, the time cannot be stopped in the
environment.

Observations can be done in different ways; visually by looking at the
screen or printouts, or by using instrumentation. We assume here that all ob-
servations are achieved by instrumentation.

There are three approaches for monitoring the state of software: hardware
based, software based and a combination of hardware and software. Observa-
tions achieved by inserting monitoring probes into the code and then removing
the probes during normal operation could affect the behavior of the execution.
This phenomenon is called the “probe effect” [9].

In [33] three techniques to handle the probe effect are discussed, the probe
effect can be ignored, minimized or avoided. When observing concurrent pro-
grams and real-time systems we must avoid the probe effect, that is the software
used for monitoring must remain in the application or non-intrusive hardware
must be used. Another problem that occur when using monitors in real-time
systems is that temporal delays are introduced leading to longer response times.

Yann-Hang et al. [20] propose a tool suite for testing real-time ADA ap-

2.2 Computer Software Testing 23

plications. The tool suite includes an instrumentation tool implemented as an
ADA run-time library. Output generated from the analysis and the instrumenta-
tion are flow graphs and trace files that are used to determine the code coverage
criteria of the ADA-program. The analysis tool can handle different kinds of
coverage criteria, e.g., basic blocks coverage, c-use coverage, and p-use cov-
erage. However, in their paper the proposed test analysis do not consider the
temporal behavior of the application.

Determinism

Executions of sequential programs are repeatable and deterministic. That is,
for an input we get the same output regardless of how many times we run the
program with that input. This is true if the program does not include any state-
ments that depend on the temporal behavior and/or random behavior. Examples
of such statements are random statements or dependencies of a clock readings
in sequential programs [32].

In concurrent programs, each task is executed independently and therefore
it is often impossible to determine which execution path the program follows
each time we run the program. That is, for a unique input we can get different
output for several consecutive runs.

Sang et al. [6] achieve deterministic testing by controlling in which order
the programs synchronize for accesses to shared resources. In this case, in addi-
tion to the input to the program a synchronization sequence that is derived from
the specification must be added. Between the forced synchronization points the
programs run nondeterministically, and the nondeterministic execution is then
used to check for nondeterminacy conformance between the specification and
the implementation. Running the program nondeterministically tests behav-
ioral conformance, and during each execution of the program the synchroniza-
tion sequences are logged. The logged synchronization sequences are then an-
alyzed to see if the behavioral conformance is satisfied. Sang et al. emphasize
that in nondeterministic execution not only valid synchronization sequences
are executed but also invalid synchronization sequences.

Controllability

Controllability is the ability to force the program into a desired state. For se-
quential programs it is sufficient to give the input to the program and set a
break-point at the desired program statement to achieve controllability. For
multi-tasking programs controllability is achieved at a coarser scale than for

24 Paper A

sequential programs. Here synchronization sequences are derived by statically
analyzing the concurrent program and then forcing the program to traverse the
same trajectory as the derived synchronization sequence.

Reproducibility

Reproducibility – test repeatability – is the ability to reproduce a previous ex-
ecution of a program. In other words, for a given input the system always
computes the same output in repeated runs of the system [26].

After errors have been corrected the tester wants to assure that the error
have been removed and that no new errors have been introduced. Therefore it
is necessary to test the system repeatedly. During repeated test runs with the
same test cases, the same outputs must be observed in order to determine if the
software is correct [26]. If test executions are not reproducible re-testing cannot
determine that corrections have removed the errors. For concurrent programs
and real-time systems, in whichraces have impact on the execution path, the
program is not usually reproducible.

To reproduce the exact execution behavior of a sequential program it is suf-
ficient to run the program repeatedly with the same input. In order to reproduce
the execution behavior of multi-tasking programs it is not sufficient to repeat-
edly feed the same input to guarantee the same output. This is because of the
race situations that can occur when programs concurrently accesses shared re-
sources. For real-time systems it is not sufficient to consider only the ordering
of the accesses, in addition the time at which the access occurred must also be
considered [33]. Other causes for making RTS non-reproducible can be non-
determinism in hardware, communication protocols, network traffics, etc. [25],
and reading of real-time and random numbers [33].

There are two approaches to reproducibility (or test repeatability): thelan-
guage based and theimplementation based approaches.

The language based approach transforms a program into a new program
that includes program constructs that constrains the execution in order to force
the control of the execution. Carver et al. [5] propose a tool for transformation
of concurrent programs. Based on the language used and what synchronization
constructs that are available in the language, e.g., ADA-rendezvous or moni-
tors, the tool creates a new program that forces the execution to follow a derived
synchronization sequence of the concurrent program.

The implementation based approach requires an event history. The behav-
ior of a program is logged during run-time in a history log. The information
in the history log is then used to reproduce the behavior of the execution. In

2.2 Computer Software Testing 25

Thane [36] an implementation based method for creating a history log and
reproducing the behavior of real-time systems by deterministic replay is intro-
duced.

Testability

The IEEE standard [26] defines testability as the ability to create test cases
that satisfies the test criteria. An extended definition that not only includes
the metrics of creating test cases but also consider the probability of revealing
a failure during testing is proposed by Voas et al. [40]. They also propose
approaches for analyzing the software to measure the testability. One important
issue is to determine the parts of the code that are most likely to hide faults.
This analysis is based oninformation loss in the data;explicit and implicit
information loss.

Explicit information loss is when computations of data are not observed
during test execution. Hence, explicit information loss can only be found by
static analysis of the implementation. This makes analysis to be performed pos-
sible only late in the development, since the implementation must have been
completed. The most frequent cause of explicit information loss is the hid-
ing of internal information. However, information hiding is often used in well
structured programming approaches to prevent unintended tampering with in-
ternal data of software modules. Explicit information loss is a design issue and
can be solved by designing the software not to hide internal information.

Implicit information loss is when different data are fed as input but when
the same data is presented as result. There exists a correlation between the
cardinality of the input and cardinality of the output, called domain/range ra-
tio (DRR). If software has high DRR it is considered to have low testability.
Solutions to reduce implicit information loss include isolating implicit infor-
mation loss using specification decomposition, minimizing variable reuse and
increasing the number of out parameters. The benefit of analysis for implicit
information loss is that it can be performed early in the development. Based
on the above assumption Voas et al. propose an analysis method that measures
the probability of software failure [40].

Testability analysis and testing complements each other in that the testabil-
ity analysis can give guidance on where in the code testing efforts should be
spent.

26 Paper A

2.3 Testing of Sequential Programs

In most software projects the testing phase often stands for up to 50% of the
development cost. Mainly because the testing process often involves man-
ual tasks, and that expensive test equipment often is needed and that these
resources are limited and shared between testers. Other causes that increase
the cost of testing are: the difficulty to create test cases, a huge number of test
cases, the need for re-tests, the time to execute each test case, etc.

Testing of computer software can be divided into four phasesmodeling the
software’s environment, selecting test scenarios, running and evaluating test
scenarios and measuring test progress [43]. The test execution can further
be divided into three sub-phasesunit testing, integration testing and system
testing.

2.3.1 Unit Testing

A unit can be a function, a collection of functions, a task, a collection of tasks,
etc. Rarely a unit is a whole program unless the program is very small.

Unit testing is often performed by the programmer. The programmer com-
piles the unit on the development platform and feeds the input manually or by
a test program. However, this technique cannot reveal failures that may occur
during execution in the program’s real envronment.

There have been several structural testing methods proposed such as state-
ment coverage, branch coverage and path coverage. To determine paths and
coverage, often a control-flow graph that represents the structure is used [48].

Functional testing techniques aims to test that the output from the function
correlates to the given input and is correct with respect to the requirements.
The functional test also aims to assure that the interface of functions is correct
and is properly used. There are several approaches for generation of inputs for
unit tests, for exampleboundary value tests, random tests or statistical tests.

2.3.2 Integration Testing

Integration testing is the phase when the units are integrated with each other
and tested. Approaches for integration testing areincremental, top down, bot-
tom up or thebig-bang approach. Incremental integration testing is to stepwise
integrate the program unit for unit. Top down integration testing is to integrate
the program by starting with the main unit and then integrate the units as they
are called from the units above in the hierarchy. Bottom up approach is the

2.4 Regression Testing 27

opposite to top down approach, the ingration is started from the units that is
in the lowest level of the call hierarchy. In both the top down and the bottom
up approach it can be neccessary to use stubs, dummy units, for those units,
which are not yet subject for testing. The big bang apprach for integration test-
ing means that all units functionality are implemented and then all units are
intgrated at the same time.

2.3.3 System Testing

When integration testing have been performed, system testing is performed in
the programs real environment, with realistic scenarios of inputs, outputs and
the load of the system.

Despite that there exists several phases the different types of testing are not
isolated activities; testing is an iterative process. For example, system testing
can be done several times in a project because we have subsystems that will be
put together into the final system, and during maintenance faults are corrected
and new functionality are added or removed.

2.4 Regression Testing

Regression testing strategies can be of two types. Either software can be re-
tested with all test cases (re-test all) or with a subset of the test cases (selective
regression test). Selective regression testing can be to select enough test cases
to reveal all failures, minimal number of test cases or select test cases that only
traverse the modified paths of a program. Retesting a software with a sub-
set of test cases can reduce the cost of testing the software, and is therefore
the most common approach in academic papers. Onoma et al. [27] discuss
approaches for regression test selection. In their paper a framework is pre-
sented, the multilevel regression testing framework, that developers can use
for regression testing during development and maintenance. They emphasize
the difference between the academic and industrial view of what is important
issues in regression testing:

“While researchers are mostly concerned with reducing the
number of test cases for re-testing, there are other important issues
in using regression testing in an industrial environment.” [27]

One issue is that although the re-test all strategy is costly and time consum-
ing, it is not always desirable to find a subset of test cases. Especially for

28 Paper A

those companies that must use retest-all method because of certain constraints
such as safety-critical programs, etc [27]. Examples of other issues can be the
use of tools for automation when regression testing are used extensively and
frequently. A drawback of regression testing is that the suite of test cases in-
creases when the software is maintained and this makes testing even more time
consuming.

Leung et al. [22] have identified two types of regression testingcorrective
andprogressive. Progressive regression testing is caused by modification of
both code and specification, whereas corrective regression testing only com-
prise code modification.

When using regression testing selection techniques the basic concept is to
test only the modified parts of the program, but this can lead to undisclosed
failures since not all test cases that possibly reveals failures are re-executed.
There have been extensive research on regression testing techniques and most
of them address the regression selection problem [1, 12, 13, 29, 31, 42, 44].
Many of the algorithms aim to select test cases were the new and the old version
of the program differs in output. Others are concentrated to achieve certain
degree of coverage. Wong et al. [44] propose a technique that use both of these
approaches. The proposed approach is based on two techniques:minimization
andtest case prioritization.

A definition of regression testing problems is found in Rothermel et al. [30].
They define four problems and describe how to proceed when exercise regres-
sion testing: Let � be a procedure or program, let � � be a modified version of
� and let � be a test suit for � . A typical regression test proceeds as follows:

1. Select � � � � , a set of test cases to execute on � .

2. Test � � with � �, establishing � �’s correctness with respect to � �.

3. If necessary, create � ��, a set of new functional or structural test cases
for � �.

4. Test � � with � ��, establishing � �’s correctness with respect to � ��.

5. Create � ���, a new test suit and test history for � �, from � �, � ��, and � ���.

The first step is the regression test selection problem. Execution of test cases
are addressed in steps 2 and 4. In step 3 the problem of how to select test
case to get enough coverage is defined. While step 5 address the problem of
maintenance of a test suit.

Leung et al. [22] divides the regression testing problem into two subprob-
lems: the test selection problem (1) and the test plan update problem (2). In

2.4 Regression Testing 29

selection of test cases to test a modified program, select test cases from an ex-
isting test plan, and create new test cases based on made modifications. For
(2), see section 2.2.1, where the update problem is included.

Most of the existing regression test techniques are using structural based
test cases (white box testing). This because most of them compare the structure
of the old program with the new program, and then the tester tries to get the
same coverage percentage as the previous test.

According to Kim et al. [15] most regression testing techniques concen-
trate on the test selection problem, ignoring other important issues of regres-
sion testing. Equal important to the selection problem is the issue of what
triggers the regression testing event. Should tests be executed periodically or
at some pre-determined instance, for example, after all changes, after modifi-
cation of critical components, or during final testing. The hypothesis for their
work is based on the fact that the amount of changes between regression testing
sessions affect the cost effectiveness, since the test suit grows for each modifi-
cation leading to that more test cases are selected in every session. The impact
of this is that the effort to select failure revealing test cases also increase and
makes selection algorithms less cost effective.

2.4.1 General Regression Test Assumptions

Many regression testing strategies assume that the program is sequential; re-
gression testing is performed at unit level, and there exists a well designed
specification, well designed test plan, and control- and/or data-flow graph with
a single entry and exit point. Leung et al. [22] discuss assumptions regarding
characteristic of programs such as:

� the program is single entry and single exit

� the program is not too simple

� the program is not too complex

Functions can easily be adapted to the first assumption by inserting a start and
end node in a control-flow graph. White et al. [42] propose a method where
the control-flow is modeled as a call graph, and here the single entry and exit
assumption is not an issue since a call graph is represented as a tree and the
call chain starts and ends in the root node of the tree.

The second and third assumptions are more difficult to overcome. Here are
cost/benefit trade-offs important and should be considered. If the program is

30 Paper A

too simple then the set of test cases may be small and the cost for selecting test
cases is more than re-execute all the tests.

Leung [21] have examined the fundamentals of selective regression testing
when divided into two strategies:selective regression unit testing andselective
regression function testing. Where function testing addresses integration and
system test. Unit testing refers to strategies where structural coverage criteria
must be met. For unit testing Leung discussproper scope assumptions. The
approach is to choose a scope such as that all faults in a modified program are
revealed. This can however lead to unnecessary testing if the scope is large.
They claim the problem is to design a selective regression unit testing strategy
to minimize the scope and code to re-test.

Cost Models

Onoma et al. [27] talk about costs in regression testing, but they only consider
the cost of the testers and not the cost of machine time. The cost is approxi-
mated by the time spent ondeveloping test cases, re-validating, execution of
the test suit, comparing the results, andfault identification. They emphasize
that if the cost for analyzing which test cases to select for a subset of the previ-
ous set of test cases exceeds the cost of running the unselected test cases, then
the retest-all method is more cost-effective than a selection technique.

Leung et al. [23] discuss a cost model that compares regression testing
strategies, and in particular selective regression test strategies. The cost can be
of two types:direct andindirect. Direct costs are the cost for resources used
during test, such as test analyst´s time and equipment for executing the test.
Indirect costs are the cost for development of tools, management and database
storage. The model takes into accountsystem analysis cost, test selection cost,
test execution cost andresult analysis cost.

2.4.2 Regression Test Techniques

There exists numerous regression test selection techniques [15, 30], for exam-
ple:

� retest-all techniques

� random/ad-hook techniques

� minimization techniques

� safe techniques

2.4 Regression Testing 31

� data-flow/coverage techniques

� prioritization techniques

In the retest-all method, as the name indicates, all the previous test cases
are used in the regression test phase. This can however be acceptable if the
program is small; the number of re-tests is small. For larger software projects
and where regression testing is used frequently rerun of all test cases is not
acceptable. If we have to consider the cost of running test cases or the amount
of test cases is too large we can use a regression test selection techniques that
select a subset of the previous set of test cases.

By randomly selecting a subset of test cases there are no guarantees that
those test cases that need to be rerun are in the subset. Testers with á priori
knowledge of the system can see to that if some test cases are missing these
test cases can be added to the test suit.

In minimization techniques the goal is to select a minimal subset of test
cases, where each test case corresponds to the impact of the modification in the
program. The method selects at least one test case that execute every modified
or added statement.

Safe techniques selects test cases necessary to reveal all faults in the mod-
ified program. This can lead to that in some cases the retest-all and safe tech-
niques selects the same set of test cases. According to Kim et al., on average
the safe method selects 68% of the test cases [15]. If the safe method selects
all test cases, then it is less effective than the retest-all technique since in safe
method an analysis is done to determine what modifications have been made.
By using regression testing techniques that selectpotentially revealing test [29]
no á priori knowledge is needed as in techniques that concentrate less on cov-
erage criteria. Rothermel et al. [29] assumes that four criteria must hold for
their algorithm to select a safe subset of test cases:safety, precision, efficiency
andgenerality.

Coverage techniques aim to select only those test cases that traverse paths
were the program have been changed. The coverage can lead to that some test
cases are not selected, although they should have because they traverse possibly
affected parts of the program.

With a prioritization technique, test cases can be exercised in such an or-
der that those test cases that reveal failures early in the testing process or get
confidence and coverage criteria increased at a faster rate [31] are re-executed
first. It depends on the application what should be concerned when choosing
prioritization criteria. Wong et al. [44] propose that test cases are prioritized
by cost per additional coverage to reveal failures early.

32 Paper A

Algorithms for Regression Test Selection

� Slicing Algorithm

� Incremental Algorithm

� Firewall Algorithm (Adapted firewall Algorithm/Firewall at Integration
Algorithm)

Slicing Algorithm

Gupta et al. [13] propose a selective regression testing technique using a data
flow based slicing algorithm that satisfies theall-uses test criteria. By using a
slicing algorithm the authors aims to remove the need of maintenance of a test
suit. The test suit can be omitted since alldef-use pairs are explicitly detected.
A def-use pair is a pair of a definition and the use of the variable. Since the
def-use pairs must be computed there is a need for data flow information. This
information can be represented by nodes in a control flow graph. A def-use pair
can be eithercomputation uses (C-uses) orpredicate uses (P-uses). C-uses that
occurs in computation statements and P-uses in conditional statements.

Def-use pairs affected by program changes can be divided into two cate-
gories:

� Directly affected

� Indirectly affected

Directly affected def-use pairs are program changes due to insertion or
deletion of variable uses and definitions. For example, if a statement is changed
from� �	 � � to� �	 � � � � �	� then new def-use pairs must be created
and the use of� �	� must be tested.

Indirectly affected def-use pairs can be of two types:

(I) A program is edited, for example� �	 � � is changed to� �	 � � �,
and no new def-use pairs are created but the change affects the value for
computation in a def-use pair. The def-use pairs that use this new value
must be re-tested.

(II) A def-use pair that test a condition path and is affected by a program
change, for example if� �	
 � is changed to� �	 � �, then the
def-use pairs must be re-tested.

2.4 Regression Testing 33

To identify all def-use pairs that are affected by program changes the au-
thors use a slicing algorithm. The program must be modeled as a control flow
graph (CFG) where each node represent a program statement and each edge
represent a path between two statements. Abackward and forward walk al-
gorithm are applied on the CFG, these algorithms identifies all def-use pairs.
Backward walk algorithm identifies definitions of variables by traversing the
CFG in a backward direction from the use of the variables until it have found
all definitions and their corresponding paths.

Incremental Regression Testing

As most regression testing algorithms, the incremental regression testing algo-
rithm proposed by Agrawal et al. [1] assumes that the program can be repre-
sented as a control-flow graph (CFG) extended with information of the data-
flow. The algorithms is built on a simple model of changes:

(1) to fix faults.

(2) the specification is changed.

In (1) all test cases that produce an incorrect output in the previous test must
be rerun to verify that the output after the changes is correct. In (2) all test-cases
that are considered to be incorrect according to the changed specification must
be rerun even if they produced a correct output in the previous test.

The authors propose three methods for incremental regression testing:

� The execution slice technique.

� The dynamic slice technique.

� The relevant slice technique.

The methods are based on four observations, and these observations have
been verified through experiments that reveal how many statements that are
executed under each test case.

The methods can be applied on changes that hold for the following assump-
tions:

� No changes are made to the CFG.

� No changes are made to the left-hand-side of an assignment.

34 Paper A

The execution slice technique strategy is to off-line determine the set of
statements executed under each test case. Then, when retesting the program,
only those test cases with sets of statements containing a modified statement
need to be rerun. The execution slice technique can also be used to test a pro-
gram at unit and function level. This makes it suitable even for larger software
projects or when the test strategy is black-box testing. This is done by not con-
sidering which statement that are executed, instead the method can determine
which module that are executed under a test case.

In some cases a modification to a statement leads to that all test cases are se-
lected. This happens when for example the predicate of a conditional statement
is changed but the conditional block does not affect the output. The problem
of selecting all test cases in some cases are solved by using a dynamic program
slice technique. The method determines in which test cases the modified state-
ment affects the output. However the method can not determine what type of
modification that is made. The problem with this is that if the changes intro-
duces new faults then the faulty change is not detected since relevant test cases
are not rerun.

The proposed solution identifies potential dependencies of variables in an
execution history. The relevant slice technique determines potential depen-
dencies of a variable if in a path of the execution history no definitions of the
variable can be found between a predicate and the use of the variable, and there
exist a definition of the variable in another path. Both paths start in the predi-
cate and end in the computation that use the potentially dependent variable.

The authors give an example when the relevant slicing technique have de-
ficiencies. This can happen when a use of a variable is control dependent of a
previous predicate. This can lead to unnecessary rerun of test cases. They solve
this by excluding the statements that have control dependencies to a predicate
that may affect the output from the set of statements.

Firewall concept for Regression Testing

As the previous methods thefirewall concept proposed by White et al. [42]
requires a model of control-flow which is modeled as a call graph (CG). The
CG shows the control-flow at module level. There are three basic assumption
for the firewall approach. All module dependencies must be modeled in the
CG, there are no other errors than those caused by the modified modules, and
the unit and integration test must be reliable.

The firewall is a boundary such as that the firewall comprise the functions
that need to be modified. The main idea is to aim for that after a modification

2.5 Testing of Concurrent Programs 35

the number of modules inside the firewall is not increased.
Besides the CG there must also exist a module/test matrix that dynamically

obtain which modules that each test case tests. The matrix also includes which
modules that calls a module. These calls are mapped to the call graph. A
firewall is applied to the call graph and contains the set of modified modules
that need to be re-tested. Then a subset is selected from the set of test cases
bounded by the fire-wall and determined by the module/test matrix.

Even though the paper aims at integration regression testing the authors
discuss the importance of using regression testing in all phases of a program’s
life-cycle, and that the sooner a regression error is found the less are the testing
costs. Since the dependencies are computed from a call graph there is no infor-
mation about the internal structure of the modules. In other words, the method
is a black-box regression testing strategy.

2.5 Testing of Concurrent Programs

Race situations and nondeterministic execution behavior increase the complex-
ity of concurrent programs. This leads to two major problems when testing
concurrent or multi-tasking programs: the ability to observe and control the
execution of concurrent programs.

Methods

In Carver et al. [5] the authors propose a method that by synchronization con-
structs force an execution to follow a derived synchronization sequence. What
synchronization constructs to choose is determined by the programming lan-
guage. Examples of such synchronization construct can be semaphores, mon-
itors, or rendezvous in the programming language ADA. The method is called
deterministic execution testing. During an execution, information of the syn-
chronization sequence is logged and when the implementation is re-tested not
only the input is feed to the program but also the previous logged synchroniza-
tion sequence. The program is forced to exercise the synchronization sequence.
This is done by constructing a new version of the original program. The new
program is constructed by a tool that add synchronization constructs, supported
by the language that is used, that guarantees that the program follows the de-
rived synchronization sequence.

During the program execution of the guaranteed synchronization sequence
debugging information can be logged at re-execution of the program. The de-

36 Paper A

bugging information can then be used to assure that the error have been cor-
rected. To make sure that the correction have not introduced new bugs not only
the test that revealed the error must be re-executed, also previous test must be
re-executed.

Sang Chung et al. [6] propose a method that use synchronization sequences
derived from message sequence charts. However, in both Carver et al. and Sang
Chung et al. they focus on concurrent program testing and do not consider the
temporal behavior of the program. Sang Chung et al. [6] use logic clocks [18]
to determine the order of the messages. Logic clocks can be used as long as we
do not have to consider at which time an event have happen, which is the case
of software in real-time systems.

To achieve testing of real-time systems we also need to consider at which
time events occur. Then logical clocks cannot be used since it cannot be deter-
mined when an event occur only in which order the occur.

In Yang et al. [46] the authors propose a test method for testing of concur-
rent programs. In the paper a model of the execution behavior consist of the
input value (�), the produced execution path (Æ or C-path), and a rendevouze
path (� or C-route). The basic idea in their paper is to find unique pairs of in-
put and rendevouze path (�� �) and determine which execution path the unique
pair can be correlated to. By adding the C-route to the input the uniqueness of
each produced C-path is guaranteed. In other words for each repeated test run
with the same input that traverse the same C-path must also traverse the same
C-route. Not all C-route are feasible. There can be dependencies between tasks
that makes some C-paths infeasible, for example, rendevouz paths that lead to
deadlocks.

The test method proposed in the paper is performed in six different steps
that involves static analysis of each individual task on order to find C-paths
and C-routes. When the analysis and selection of test cases, (�� �) is done the
test execution is performed in two stages first a nondeterministic test execution
with only � from the test case. Second stage is a controlled test execution in
which the execution is forced. The second stage, forced execution of�, can be
used to determine feasible C-routes since the forced execution of an infeasible
C-route will lead to a failure of the execution for example, deadlocks.

2.6 Testing of Real-Time Systems

Real-time systems are software and hardware that in cooperation with their
environment, and based on inputs from the environment, produce and deliver

2.6 Testing of Real-Time Systems 37

results within specified time intervals. The time intervals are determined by the
temporal constraints derived from the temporal properties of the environment.
Because of the temporal constraints on the interaction between the real-time
system and its environment the date of the data (inputs and outputs) is impor-
tant [33]. Below is a definition of a real-time system:

“A real-time system is a system whose correctness depends not
only on the logical result(s) of a computation, but also on the time
at which the result(s) are produced” [33].

There is a widespread range of programs that apply to the definition of
real-time systems, ranging from video and audio streaming over Ethernet to
pacemakers. To make distinction between different types of real-time systems
they are categorized into two major types based on their criticalityhard real-
time systems andsoft real-time systems:

Hard Real-Time Systems are systems in which a failure or violation of tem-
poral constraints often leads to unacceptable consequences such as huge
financial losses or human injuries.

Soft Real-Time Systems are systems in which it can be acceptable to allow
occasional violations of temporal constraints. However, there may be
constraints on how many violations that are allowed and the frequency
of the violations.

Each type of system can further be grouped into the following subgroups
based on the underlying execution model in the system and the invocations of
the tasks;event triggered andtime triggered real-time systems:

Event Triggered Real-Time Systems are systems that are driven by external
and/or internal events. Examples of events are signals, message passing,
internal interrupts (i.e. software interrupts), external interrupts. In other
words, the run-time environment allow instances of tasks to be invoked
at arbitrary points in time so the granularity of the release times is in the
domain of continuous time.

Time Triggered Real-Time Systems are systems that are driven by a timer that
periodically starts a scheduler that invokes instances of a task. That
is, the run-time environment only allows tasks to be invoked at pre-
determined points in time. Each instance of a task is therefore released
at discrete points in time.

38 Paper A

2.6.1 Distributed Real-Time System

Distributed real-time systems are systems where computations are performed at
self-contained computers (nodes) that are interconnected by a network. Com-
munication between the nodes is achieved by messages passing and the pro-
cesses can use synchronization to maintain a precedence relation or mutual ex-
clusion between processes on different nodes. Processes on the same node also
use the communication service. A designer of real-time system often chose dis-
tributed solutions because of increasing complexity and safety requirements. A
distributed solution makes it possible to achieve greater reliability through re-
dundancy. Also the inherited distribution of the system, for example, control
systems on a factory floor can be a cause to chose a distributed solution [33].

2.6.2 Testing of Real-Time Systems

Hassan Gomaa [11] propose a software development approach for real-time
systems that incorporates tools for automated testing of real-time systems. The
development approach and the tools have been evaluated in a case-study in
the development of a robot controller. The development approach is based
on the software design method DARTS (Design Approach for Real-Time Sys-
tems) [10]. The design of a real-time system is to decompose the system into
task and defining the tasks’ interfaces according to the requirements in the
specification. Thus, it is important to formally review the design specifications
and to verify that the task decomposition conforms to the specification. After
a detailed design specification has been accomplished the functionality of the
tasks are implemented.

The functional requirements are described bydata-flow diagrams for each
task, this can be done since each task alone is a sequential program. The syn-
chronization of tasks is assumed to be solved by using events. The receiver
of the event blocks itself in order to wait for a wake-up signal. The control
flow of the events is described in anevent sequence diagram, based on a task
structure chart, which makes it possible to define the flow in more detail and
finer grained than the data-flow diagram. Since the input and output events are
described in the event sequence diagram it is possible to derive test cases for
the integration test phase. But before starting integration testing each task is
functionally tested on the host computer.

The unit testing and the initial functional integration testing are exercised
on the host computer. The reason for this is that there are often more and better
tools on the host computer than for the target system. Also, it is much more

2.6 Testing of Real-Time Systems 39

efficient to test on the host computer than on the target platform because testing
can be more easily automated on the host.

For system testing and the initial temporal integration testing, the synchro-
nization of tasks are tested by creating a skeleton of the main module of the
task. This skeleton consists of the synchronization constructs. Testing can then
be performed by using a stub that sends signals to wake up the task that is wait-
ing for the signal. After the synchronization parts are tested more functionality
can be added to the skeleton and be tested. Automated testing of real-time sys-
tem on the host computer can only test for logical correctness. It cannot test
for temporal behavior.

After integration testing on the host the real-time system is tested on the tar-
get platform. Preferably this is done in a incremental bottom up approach. This
is because of the more low level functionality implemented the less drivers and
environment simulators must be implemented. The automation of the system
testing assumes that there exists a secondary storage for storing of test results.
Preferably, the target is tested with an environment simulator that are feeding
inputs and receiving and time-stamping outputs from the system. The testing
can be controlled by test scripts from an external computer that is running the
environment simulator.

In order for the host/target testing approach to work the development tools
used (e.g. compilers) must support both the host and the target platform.

Koehnemann et al. [16] observed that testing (and debugging) are limited
by the constraints of the software in real-time systems. Example of such con-
straints are concurrent designs, real-time constraints and embedded target en-
vironment. They also discuss increased complexity of concurrent and real-time
software that leads to increased complexity of the testing.

Test execution of real-time systems (that often also are embedded systems)
can be divided into four phases:

1. Unit Testing

2. Integration Testing

3. System Testing

4. Hardware/Software Integration Testing

in which the three first phases are similar to the phases of test execution of
sequential programs. The fourth step is the testing of correctness of the con-
trol of devices attached to the system, i.e. the environment which the real-time

40 Paper A

system are controlling. In practice, the test execution in each phase is often per-
formed in two steps [33]. The first step consists of execution of the application
while recording the behavior. Then in the second step, the recorded behavior
is analyzed.

Testing for Functional Correctness

Thane et al. [37] is addressing the problem of testing distributed real-time sys-
tems in a deterministic way. The difference in testing sequential programs and
concurrent programs is that for the same sequence of inputs different output
can be produced by the concurrent program. Therefore, sequential testing tech-
niques cannot be used to test concurrent programs and real-time systems. The
authors propose a approach for testing of distributed real-time systems using
sequential test tools.

The test approach is divided into three iterative steps:

1. identify the set of possible execution orderings (serializations),

2. test the system using any test technique of choice,

3. map each test case and output onto the correct execution ordering, based
on observation and

4. repeat 1-3 until required coverage is achieved.

In the first step a static off-line analysis of the software is performed. This
is done by using a analysis tool that derives all possible execution orderings
and creates aExecution Order Graph(EOG). The EOG is a output from a sim-
ulation of the behavior of a preemptive scheduling policy [2, 24, 45]. More
exactly the graph is showing the non-deterministically behavior in the execu-
tion of the real-time software. The analysis tool assumes that execution time,
priority and release time are known. Release times and the priorities of the
tasks are determined at design time. However, execution times of tasks cannot
be easily determined neither at design or when specification is realized in a
implementation.

The second step are the exercise of test case on the target by using appro-
priate testing techniques. During the run of test cases the execution behavior,
i.e. the control flow of a particular test run, are monitored and saved in a log.
Since the test approach do not consider the the no-deterministic behavior until
later steps testing tools for test of sequential programs can be used in this step.

2.6 Testing of Real-Time Systems 41

In the next step the analyzed and observed execution behavior are com-
pared. If a test case and corresponding execution behavior can be mapped onto
a branch in the EOG the mapping are noted and the steps are repeated until
coverage criteria are fulfilled. The coverage criteria are of two types the first is
how many times each branch have been observed during the test runs and the
second how many of the unique branches have been observed.

The deterministic approach in testing of distributed real-time systems is
achieved in step 3. The definition of determinism are; for each test case during
repeated test runs the same output is observed. By in addition to the test case
also observe the execution behavior as output determinism is achieved in step 3
when mapping the output onto the EOG.

In distributed systems during the exercise of the test cases on each node
the control flow are saved in a log. The difference between testing of a single
node system and a distributed system is that on each node the local clock must
be synchronized with other local clocks on other nodes and the increase of
complexity when analysis in step 1 is performed.

Testing for Temporal Correctness

Tsai et al. [38] provides methods for dynamic analysis of correctness of tempo-
ral constraints of real-time software. The approach is based on a non-intrusive
monitoring technique that record run-time information. The run-time informa-
tion is then used to analyze the software for violations of temporal constraints.
From the run-time information graphs are constructed for analysis of tempo-
ral constraints. The graphs created areTimed Process Interaction Graph and
Dedicated Timed Process Interaction Graph.

In Khoumsi [14] the author propose a method to test the temporal con-
straints of the output from distributed real-time systems. The method consists
of three phases how to specify a distributed real-time system, a distributed test
architecture and a procedure for distributing test sequences.

The method assumes that the distributed real-time system is modeled as a
n-port Timed Automata. Based on this model the temporal constraints are de-
rived and transformed into global test sequences that are distributed totesters.
Testers are independent nodes that feed the system with inputs at the appropri-
ate instance of time and receive output for analysis of the temporal correctness.

To verify the order and timing of the inputs and outputs each tester have an
assigned local clock that can be asked for the time and the local clock can be
used as an alarm for the timing of the input.

This method test the timing and order of the output from the distributed

42 Paper A

real-time system. This is an important aspect of a real-time system since the
correctness of such system depends on at which time the result is produced.
However, the author do not discuss the problem of having clocks on different
sites in a distributed system. The drift of clocks is a problem for the global
view of what the time it is. It is not mentioned how the clock drift effect the
analysis of the timing of the outputs.

Test Strategies

Test strategies are descriptions on how to set-up the system, perform the test
execution and analyze the result of the test execution of a test case.

Schütz [32, 34] have proposed a test strategy for testing of distributed real-
time systems, designed for the MARS architecture. The test strategy consists
of five different test phases

� Task Test,

� Cluster Test,

� Interface Test,

� System Test and

� Field Test.

Task Test are functional testing and preliminary interface testing, per-
formed on the individual tasks. Task test are performed entirely on the host
system. This demands that the task programmer are supplied with appropriate
programming tool set.

Cluster Test are performed on the target system. The author propose two
types of Cluster Tests; open-loop Cluster Test and closed-loop Cluster Test.
Open-loop Cluster Test tests the functional correctness of a cluster and the
temporal correctness of the interaction of task. Open-loop Cluster Test is also
used when testing for loss of messages in communication between clusters. In
closed-loop Cluster Testing more realistic inputs can be fed and robustness test
can be performed since the output are dynamically analyzed and re-calculated
and can be fed back as input to the cluster and thereby close the loop. The main
difference of open-loop and closed-loop Cluster Testing is that in closed-loop
Cluster Testing the application is run without modification with a environment
simulator and can therefore include test of temporal correctness. However, in
both approaches a special test system has to be build to behave as the surround-
ing system from the clusters point of view.

2.6 Testing of Real-Time Systems 43

Interface Test are tests that peripheral devices attached to the systems In-
terface Buses behaves in an expected manner.

System Test tests the interaction between clusters and that the system as
whole behaves according to the specification.

Field Test tests the system with the real environment and real peripheral
devices. In this test phase the system is in its operational environment and can
therefore be used as customer acceptance test.

This test strategy test distributed real-time systems. However, the applica-
tion must be designed to follow the assumptions for the MARS system. Several
drawbacks are discussed in the paper and one of most important for debugging
and testing on the target is the coupling of the monitored to the high level lan-
guage used when programming. For the aspect of real-time scheduling the
off-line scheduling assumption, as in any other real-time system, reduce the
flexibility of the system but simplifies the analysis of the number of test case
needed for code coverage. Since, off-line scheduled real-time systems can be
seen as a sequential program where the execution behavior is known a-priori.

Test Bed Architectures

Kopetz et al. [17] propose a architecture for running distributed fault-tolerant
real-time systems. The architecture is called Maintainable Real-Time Systems
(MARS) architecture and supports statically scheduled hard real-time systems.
MARS consist of clusters that can be interconnected by an arbitrary network
topology. Tasks that have functionality relation are allocated to the same clus-
ter. There are no tools for automating the allocation of tasks to a cluster so
the designer itself is responsible for the appropriateness of task allocations on
clusters.

Each cluster consists of a set of components that are interconnected by
a MARS-bus. A component is a self-contained computer that have identical
copies of the MARS-OS and tasks. The tasks are communicating through the
MARS-bus by using MARS standardized messages. In the cluster there is
also an Interface Component that is connected to a Interface Bus that makes it
possible to communicate with the environment (another MARS cluster or the
physical process).

In Thane et al. [36] the authors presents a test architecture that is suitable
for testing of embedded systems. The test-rig consists of the system itself, with
one ore more nodes, and a test node on which the result of the computations in
the system are analyzed. On the test node it is determined if the computations
produced the expected results or not.

44 Paper A

Environment Simulators

As discussed in previous sections a real-time system is a system that interacts
with its environment. In testing of such systems there may be the case that the
environment does not exist yet because of parallel development of hardware
and software or when the cost or safety inhibits the use of the real hardware. In
these cases the environment must be simulated in order to enable testing of the
real-time software. A simulation is the execution of a computer program that
represents a model of a real hardware. From the simulation the behavior can
be used as stimuli to the system that is to be tested.

2.6.3 Regression Testing of Real-Time Systems

Zhu et al. [47] have proposed a framework for how to automate regression test-
ing of real-time software in distributed environment. They discuss testing of
safety-critical real-time systems such as pacemakers and defibrillators. Test-
ing of software in pacemakers cannot be performed in its natural environment
since a failure of the pacemaker can lead to human injuries and therefore re-
quires expensive specialized hardware for testing. Thus, automating the testing
procedure is of importance for reducing the cost, using the test equipment in an
efficient way and to remove the error-prone manual handling. The framework
is developed based on Onomas [27] regression testing process.

The distributed regression testing framework is built upon three compo-
nentstest server, test stations andtest clients. In this context components can
be general purpose computers or specially designed systems. All instances of
the three components are connected to a local area network for efficiency and
high utilization of the test stations. The test server serves as an oracle and have
access to the test database. When a test is to be exercised the test client first
creates test cases based on the information from test databases and the test en-
gineer. After test case creation the test clients are responsible for submitting
the test and control and monitor the exercise of the test case. The test station
are the component on which the actual test case execution is performed.

The framework is designed with an object-oriented approach. This makes it
easier, for example, for composing of complex test cases that are composition
of several test cases and using different test case selection strategies.

The framework consists of four different layersnetwork layer, support
layer, task layer and interface layer. In the network layer existing commu-
nication mechanisms provided by the operating system are used. The support
layer have three responsibilities: connection for access of test database, trans-

2.7 Summary 45

portation of files between the three components and remote control of method
invocations. The task layer is a set of programs that performs tasks such as test
case submission, test case selection and test case execution. For easy use of the
framework for test engineers the interface layer provides visual interfaces.

Other important issues for automation and flexibility of the framework are
the test case allocation, test load balancing, test interruption and recovery, com-
posite test cases and dynamic test station configuration.

To able to perform regression testing and to be able to tell if the faults are
removed the real-time software must have deterministic execution behavior.
The framework proposed by Zhu et al. seems to be aimed to real-time soft-
ware that is single-tasking or non-premptive programs that run sequentially
and therefore have deterministic execution behavior. Unless a test method that
can handle the non-determinism in the execution behavior is used the frame-
work cannot be used for achieving regression testing of multi-tasking real-time
systems.

2.7 Summary

There are many types of software and each of these software types may require
specialized tools and methods for testing. For example, testing of sequential
programs can be performed by feeding inputs to the program and then observ-
ing the output in order to tell if the behavior of the execution is correct accord-
ing to the requirements. This is because of that sequential programs have a
deterministic execution behavior. To locate the defect a debugger can be used.

Testing techniques that test the behavior of sequential computer programs
is a well established and explored area both for the industrial users and re-
searchers. However, testing of sequential programs is not a trivial task and
can only in rare cases be done with small efforts. This is because when test-
ing computer programs a large amount of test cases must be exercised (usually
manually.

To succeed in testing we need not only be concerned about the execution of
the software to reveal failures, we must also design the software so that it can
be tested with little effort. It is also important that testing is integrated with the
development of the software. This has the benefit that testing is considered at
early stages of the design of the software and that it can decrease the cost of
finding faults.

When failures are revealed the source code is corrected and the program is
re-tested. This retest is time consuming and costly because of:

46 Paper A

� an analysis is performed in order to chose a subset of test cases that must
be exercised,

� for each iterative step in the regression testing new test cases are added
that increases the number of test cases to run, and

� by not running test cases there is a potential risk of faults being present
in the software.

Academia is interested in reducing the test efforts by reducing the number
of test cases while industry is interested in more effective tools and automated
testing, leading to the situation where there are numerous research results on
test case selection tools, but few on automation of retests.

Testing of concurrent programs is more complex than testing of sequen-
tial programs. The complexity is caused by the interleaved execution lead-
ing to indeterminacy of the execution behavior. That is, because of the non-
deterministic execution behavior it is impossible to establish the correctness of
the program since each input can produce different outputs.

The common approach to test concurrent programs is to derive test cases
based on the execution behavior (synchronization sequences) when tasks are
communicating with each other. By the use of the synchronization sequences
the execution can be controlled at the synchronzation events, and hence deter-
ministic testing can be achieved.

A real-time system must be tested for both functional correctness and tem-
poral correctness. There are very few tools for testing real-time systems and
existing tools often requires special hardware or software architectures.

Regression testing of multi-tasking real-time systems is hard since it re-
quires not only control of the inputs and the state in the program but also con-
trol over the time at which events occur.

Bibliography

[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incremental
regression testing. InProceedings of Conference on Software Mainte-
nance, pages 348–357, 1993.

[2] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell. Fixed priority
pre-emptive scheduling: A historical perspective. InReal-Time Systems
journal, volume 8(2/3). Kluwer A.P., March/May 1995.

[3] C. Bernardeschi, L. Simoncini, and A. Fantechi. Validating the design
of dependable systems. InProceedings First International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 98), pages
364–372, Apr 1998.

[4] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving test
plans from architectural descriptions. InProceedings of the 2000 Inter-
national Conference on Software Engineering, pages 220–229, 2000.

[5] R. H. Carver and K-C. Tai. Replay and testing for concurrent programs.
In IEEE Software, volume 8(2), pages 66–74, 1991.

[6] Sang Chung, Hyeon Soo Kim, Hyun Seop Bae, and Don Gil Lee Yong
Rae Kwon. Testing of concurrent programs after specification changes.
In Proceedings IEEE International Conference on Software Maintanence
(ICSM ’99), pages 199–208, 1999.

[7] S. J. Clarke and J. A. McDermid. Software fault trees and weakest pre-
conditions: A comparison and analysis, 1993.

[8] M. E. Fagan. Design and code inspections to reduce errors in program
development. InIBM Systems Journal, volume 15(3), pages 182–211,
1976.

48 BIBLIOGRAPHY

[9] J. Gait. A probe effect in concurrent programs. InSoftware - Practice
and Experience, volume 16(3), pages 225–233, Mars 1986.

[10] H. Gomaa. A software design method for real-time systems.Communi-
cations of the ACM, 27(9):938–949, 1984.

[11] H. Gomaa. Software development of real-time systems.Communications
of the ACM, 29(7):657–668, 1986.

[12] I. Granja and M. Jino. Techniques for regression testing: Selecting test
case sets taylored to possibly modified functionalities. InProceedings of
the Third European Conference., Software Maintenance and Reengineer-
ing, pages 2–11, 1999.

[13] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression test-
ing using slicing. InProceedings., Conference on Software Maintenance,
pages 299–308, 1992.

[14] A. Khoumsi. Testing distributed real-time systems using a distributed
architecture. InProceedings of the 2000 International Conference on
Software engineering, pages 126–135, 2000.

[15] J. M. Kim, A. Porter, and G. Rothermel. An empirical study of regres-
sion test application frequency. InProceedings of the 2000 International
Conference on Software engineering, pages 126–135, 2000.

[16] Harry Koehnemann and Timothy Lindquist. Towards target-level test-
ing and debugging tools for embedded software. InProceedings of the
conference on TRI-Ada ’93, pages 288–298. ACM Press, 1993.

[17] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The mars
approach. InIEEE Micro, volume 9(1), pages 25–40, 1989.

[18] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. InCommunications of the ACM, volume 21(7), pages 558–565,
July 1978.

[19] J.C. Laprie. Dependability: Basic concepts and associated terminology.
In Dependable Computing and Fault-Tolerant System, volume 5. Springer
Verlag, 1992.

BIBLIOGRAPHY 49

[20] Yann-Hang Lee, YoungJoon Byun, Ji Xiao, O. Goh, W. E. Wong, and
A. Lee. A toolsuite for testing analysis of real-time ada applications.
In Proceedings of 3rd IEEE Symposium on Application-Specific Systems
and Software Engineering Technology, pages 65–69, 2000.

[21] H. K. N. Leung. Selective regression testing assumptions and fault de-
tecting ability. InInformation and Software Technology, volume 37(10),
pages 531–537, 1995.

[22] H. K. N. Leung and L. White. Insights into regression testing. InPro-
ceedings., Conference on Software Maintenance, pages 60–69, 1989.

[23] H. K. N. Leung and L. White. A cost model to compare regression test
strategies. InProceedings., Conference on Software Maintenance, pages
201–208, 1991.

[24] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. InJournal of the ACM, volume
20(1), 1973.

[25] C. E. McDowell and D. P. Helmbold. Debugging concurrent program.
In ACM Computing Surveys, volume 21(4), pages 593–622, December
1989.

[26] IEEE Standard Glossary of Software :Engineering Terminology. Ieee
standards collection, ieee std 610.12-1990. September 1990.

[27] A. K. Onoma, W. T. Tsai, M. Poonawala, and H. Suganuma. Regression
testing in an industrial environment. InProceedings. IEEE Transactions
on Software Engineering, volume 22(8), pages 529–551, 1996.

[28] D. L. Parnas. Tabular representation of relations. InTechnical Report,
Telecommunications Reasearch Institute of Ontario, Communicaton Re-
search Laboratory. Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ontario Canada L8S 4K1, CRL Report,
number 260, 1992.

[29] G. Rothermel and M. J. Harrold. A safe, efficient algorithm for regres-
sion test selection. InProceedings. IEEE International Conference on
Software Maintenance (CMS ’93), pages 358–367, 1993.

50 BIBLIOGRAPHY

[30] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. InProceedings. Communications of the ACM, volume 41(5),
pages 81–86, 1998.

[31] G. Rothermel, R. H. Untech, and M. J. Harrold. Test case prioritization:
an empirical study. InProceedings. IEEE International Conference on
Software Maintenance (ICMS ’99), pages 179–188, 1999.

[32] W. Schütz. A test strategy for the distributed real-time system mars. In
Proceedngs of the 1990 IEEE International Conference on Computer Sys-
tems and Software Engineering, pages 20–27, 1990.

[33] W. Schütz. Fundamentals issues in testing distributed real-time systems.
In Real-Time Systems, volume 7, pages 129–157, Boston, 1994. Kluwer
Academic Publisher.

[34] Werner Schütz. Testing a distributed real-time system – the mars ap-
proach. Research Report 11/1989, Technische Universität Wien, Insti-
tut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
1989.

[35] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging concurrent ada pro-
grams by deterministic execution. InIEEE Transactions on Software En-
gineering, volume 17(1), pages 45–63, January 1991.

[36] H. Thane. Monitoring, testing and debugging of distributed real-time
systems. InDoctoral Thesis, Royal Institute of Technology, KTH, S100
44 Stockholm, Sweden, May 2000. Mechatronic Laboratory, Department
of Machine Design.

[37] H. Thane and H. Hansson. Towards systematic testing of distributed real-
time systems. InProceedings of The 20th IEEE Real-Time Systems Sym-
posium, pages 360–369, 1999.

[38] J. J. P. Tsai, K.-Y. Fang, and Y.-D. Bi. On real-time software testing and
debugging. InProceedings of Fourteenth Annual International Computer
Software and Application Conference, pages 512–518, Oct 1990.

[39] Naoshi Uchihira, Shinichi Honiden, and Toshibumi Seki. Hypersequen-
tial programming: A new way to develop concurrent programs. 5(3):44–
54, July/September 1997.

BIBLIOGRAPHY 51

[40] J. M. Voas and K. W. Miller. Software testability:the new verification. In
IEEE Software, volume 12(3), pages 17–28, May 1995.

[41] S. N. Weiss. A formal framework for the study of concurrent program
testing. InProceedings of the Second Workshop on Software Testing,
Verificaion and Analysis, pages 106–113, July 1988.

[42] L. J. White and H. K. N. Leung. A firewall concept for both control-flow
and data-flow in regression integration testing. InProceedings., Confer-
ence on Software Maintenance, 1992, pages 262–271, 1992.

[43] J. A. Whittaker. What is software testing and why is it so hard. InIEEE
Software, January/February 2000.

[44] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of ef-
fective regression testing in practice. InProceedings. The Eight Interna-
tional Symposium on Software Reliability Engineering, pages 264–274,
1997.

[45] J. Xu and D. Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. InIEEE Transaction on Software
Engineering, volume 16(3), pages 360–369, 1990.

[46] R-D. Yang and C-G. Chung. Path analysis testing of concurrent program.
In Information and Software Technology, volume 34(1), pages 43–56, Jan
1992.

[47] F. Zhu, S. Rayadurgam, and W.-T. Tsai. Automating regression testing
for real-time software in a distributed environment. InProceedings of
First International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 98), pages 373–382, 20-22 April 1998.

[48] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test
coverage and adequacy.ACM Computing Surveys (CSUR), 29(4):366–
427, 1997.

Chapter 3

Paper B: Testing of
Multi-Tasking Real-Time
Systems with Critical
Sections

Anders Pettersson and Henrik Thane
Mälardalen University, Mälardalen Real-Time Research Centre,
P.O. Box 883 SE-721 23 Västerås, Sweden
{anders.pettersson, henrik.thane}@mdh.se

In Proceedings of 9th International Conference on Real-Time and Embed-
ded Computing Systems and Applications, February 2003

Abstract

In this paper we address the problem of testing real-time software in the func-
tional domain. In order to achieve reproducible and deterministic test results
of an entire multitasking real-time system it is essential not to only consider
inputs and outputs, but also the order in which tasks communicate and syn-
chronize with each other. We present a deterministic white-box system-level
control-flow testing method for deterministic integration testing of real-time
system software. We specifically address fixed priority scheduled real-time
systems where synchronization is resolved using the Priority Ceiling Emula-
tion Protocol or offsets in time. The method includes a testing strategy where
the coverage criterion is defined by the number of paths in the system control
flow. The method also includes a reachability algorithm for deriving all pos-
sible paths in terms of orderings of task starts, preemption and completions
of tasks executing in a real-time system. The deterministic testing strategy al-
lows test methods for sequential programs to be applied, since each identified
ordering can be regarded as a sequential program.

3.1 Introduction 55

3.1 Introduction

Testing software is challenging. A typical solitary program has a large state
space and a discontinuous behavior. The latter due to containers with limited
resolution, e.g.,�� bit integers, quantization errors, and program flow selec-
tions. The implication is that it is highly unreliable to make use of interpola-
tion when testing programs. Consequently, a large part of the state space must
be explored in order to verify that inputs produce correct outputs according to
the specification. It is not surprising that a large part of software development
budgets is spent on maintenance. Elevating to the level of real-time software
testing, the challenge is even greater. Real-time software is usually built on an
aggregate of multiple concurrently executing programs, i.e., it is multi-tasking.
To begin with, this entails testing of multiple programs. What is worse how-
ever, is the state space explosion that occurs due to the interactions between the
tasks when they execute concurrently. These interactions are not limited to the
functional domain but are also a function of the timing and the ordering of the
tasks’ execution in the system. The majority of current testing and debugging
techniques have been developed for solitary (non real-time) programs. These
techniques are not directly applicable to real-time systems, since they disre-
gard issues of timing and concurrency. This means that existing techniques for
reproducible testing cannot be used. Reproducibility is essential for regression
testing and cyclic debugging, where the same test cases are run repeatedly with
the intention of verifying modified program code or to track down errors. It is
common that real-time software has a non-reproducible behavior. This is due
to the fact that giving the same input and same internal state to a program is
not sufficient. There are hidden variables that are ignored: Race conditions
and ordering. An aspect of this is intrusive observations caused e.g., by tem-
porary additions of program code, which incur a temporal probe-effect [6] by
changing the race conditions in the system.

In theory it is possible to reproduce the behavior of a real-time system if
we can reproduce the exact trajectories of the inputs to the system with an
exact timing. For guaranteed determinism we would in addition need to con-
trol the frequency of the temperature dependent real-time clock that generates
the periodic timer tick, which is the basis for all time driven scheduling deci-
sions. The inputs, and state, of the tasks dictates their individual control flow
paths taken, which in turn dictates the execution time of the tasks, which in
the end dictates the preemption pattern for strictly periodic systems. Trying
to perform exhaustive black-box testing of individual programs is in the gen-
eral case infeasible, due to the large number of possible inputs. For example,

56 Paper B

two �� bit inputs yields��� possible input combinations, not considering state,
which for a test case every����� seconds would take about half a year to exe-
cute. For a typical multitasking real-time system the number of possible input
combinations is similarly bordering on the incomprehensible due to all possi-
ble temporal and functional interactions between the tasks. However, just as
individual program’s control flow structure can be derived and used for white-
box testing (where the number of paths is usually significantly lower than the
number of inputs), we can make use of the system level control flow for deter-
ministic white-box testing of the multitasking real-time system software. We
will elaborate on this issue in this paper.

Testing real-time systems controlling only the inputs have been attempted
previously - mostly in the formal methods community were formal specifica-
tions models have been used for generating inputs to the system to test ei-
ther the temporal [5, 10, 13] or the functional [9] behavior. In comparison to
other sub-fields within the real-time systems research community the list of
references dealing with testing of real-time software is quite meager, rather
famished in fact. One reference that has inspired us is the work by Yang and
Chung [18]. They define a system level control-flow testing method for test-
ing of concurrent Ada programs (not real-time but concurrent). The system
control flow is defined by all synchronization sequences (rendezvous) in the
system. When testing a concurrent Ada program the executed synchronization
sequence is defined as being part of the output. If a test case is applied twice,
and the same synchronization sequence is observed, then the same behavior
has been exercised - thus deterministic testing is achieved. However, it is not
certain that the tests are reproducible, since there exist no explicit control over
the synchronization sequences. The number of paths executed divided by the
number of paths derived is used to define coverage. Similar work can be found
in Hwang et al. [7] where they also attempt deterministic replay [15] in order
to achieve reproducibility. Since Yang et al. and Hwang et al. only concen-
trate on the rendezvous sequences they do not handle more intricate real-time
operating system issues like preemption, interrupts or critical sections.

In this paper we extend the method for achieving deterministic testing
of distributed real-time systems by Thane and Hansson [14, 16]. They ad-
dressed task sets with recurring release patterns, executing in a distributed
system, where the scheduling on each node was handled by a fixed priority
driven preemptive scheduler supporting offsets. The method transforms the
non-deterministic distributed real-time systems testing problem into a set of
deterministic sequential program testing problems. Similarly to Yang’s work,
but with the inclusion of preemption, interrupts and communication delays,

3.1 Introduction 57

Thane and Hansson define the executed orderings between tasks (derived from
task-switch monitoring) to be part of the system’s output. Thus, achieving de-
terminism is an issue of correlating inputs, with outputs and execution order-
ings (the system control-flow). Coverage is defined by the number of unique
system control-flow paths tested, and by the number of test cases run per each
path. The former criterion is derived from a system control-flow analysis and
the latter criterion is defined by the testing technique applied, e.g., statistical
confidence in black-box testing.

In their system control-flow analysis method they assumed that all syn-
chronization was resolved offline, e.g., by an off-line scheduler, which assigns
offsets and priorities to all tasks in the distributed system. That is, on-line syn-
chronization mechanisms like semaphores are not allowed. All tasks in the
system are also assumed to receive all input immediately at their start, and to
produce all output at their termination. These limitations were quite severe,
although the analysis proved that even off-line scheduled systems could yield
enormous numbers of different scenarios, when subjected to preemption and
jitter (execution time-, communication time-, and interrupt induced jitter), es-
pecially when the tested systems were of multi-rate character.

In this paper we elaborate on the approach presented by Thane and Hansson
in [14, 16] and expand the task model to also include critical sections, governed
by the Priority Ceiling Emulation Protocol (PCEP) [3], a.k.a. the immediate
inheritance protocol and immediate priority ceiling protocol. Since tasks may
synchronize/communicate via critical sections, we will also relax Thane’s and
Hansson’s input output assumption. Our extension is however only valid for
the individual nodes in the distributed real-time system, unless we assume a
global PCEP, which is quite complex to achieve [12]. The subsequent analysis
in this paper is hence focused on a single node. The results by Thane and
Hansson [14, 16] on how to derive the global system control-flow can however
successfully be applied if global scheduling is relying on offsets between tasks
on different nodes, but this is outside the scope of this paper.

The basic intuition behind deterministic testing can be illustrated as fol-
lows. Consider Figure 3.1, which depicts two execution scenarios of two tasks
�, �, who share a common resource�, which they do operations on. The
resource,�, is protected by a semaphore governed by the priority ceiling emu-
lation protocol which raises the priority of the task that is granted the resource
to the priority ceiling of the tasks using the resource. In Figure 3.1 scenario (a),
task� enters the critical section before� and thus accesses� before� - with
end result of scenario (a),� � ��. In Figure 3.1 scenario (b), task� enters the
critical section before� and thus accesses� before� - with the end result of

58 Paper B

x=x+3
x=x*5

Priority

t
Enter critical section (CS)

Exit CS

Enter CS
Exit CS

(a)

Priori ty

t

Enter CS

Exit CSEnter CS

(b)

Exit CS

x=x+3
x=x*5

x=2

x=2

A

B

A

B

Figure 3.1:Two different execution orderings with different results, caused by race
conditions in accesses of a shared resource�.

scenario (b),� � ��.
As we can see in Figure 3.1, even though the same input is provided,� � �,

the end result of the execution is dependent of the task execution ordering, i.e.,
the system level control-flow path taken. However, if we run the same scenario
with the same input, the result will always be the same on repeated executions.
That is, the multitasking real-time system is deterministic if we consider both
inputs and execution orderings.

3.1.1 Contribution

The contribution of this paper is a deterministic white-box system level inte-
gration testing method that includes:

� A testing strategy for achieving a required level of coverage, with respect
to the number of paths in the system control-flow. The testing strategy
also allows test methods for sequential programs to be applied, since
each identified ordering can be regarded as a sequential program.

� A reachability technique for deriving the system level control-flow. The
system control-flow is defined by all possible orderings of task starts,

3.2 The Deterministic Test Strategy 59

preemptions and completions for tasks executing in a system where syn-
chronization is resolved using offsets or using PCEP.

The result in this paper substantially extends the applicability of the results
by Thane and Hansson [14, 16], since we now can handle systems with on-line
synchronization, for which it is actually more likely that errors are caused by
implementation and synchronization problems. Also, PCEP has been adopted
in industry standards, likePOSIX, ADA95, andOSEK, for its implementation
simplicity [1, 8].

The organization of the paper is as follows: Section 3.2 presents our deter-
ministic integration testing strategy. Section 3 introduces a method for deriving
the system control-flow when synchronization is resolved by the PCEP proto-
col or offsets. Finally, in Section 4, we conclude.

3.2 The Deterministic Test Strategy

In the scope of our test strategy, we define a single executedsystem level
control-flow path (SLCFP) to be part of the system’s output.

By correlating inputs with outputs and executed SLCFPs deterministic test
results are achieved. Coverage is defined by the number of unique SLCFPs
tested, and by the number of test-cases run per each path. The former criterion
is based on a system control-flow analysis, which we present in section 3.3.
The latter criterion is defined by the testing technique applied, e.g., statistical
confidence in black-box testing [4].

For the testing strategy to work we need in addition to the inputs and out-
puts, means to extract the system control flow, usually in the form of task-
switches and access to semaphores: activation of task, entering critical section,
leaving critical section, preemption, and task completion. We thus expand on
the work by Thane and Hansson [19][20] to also include races to critical sec-
tions. This SLCFPs extraction can be facilitated in a number of ways, ranging
from intrusive software instrumentation, and hooks into the real-time kernel, to
special non-intrusive hardware like In Circuit Emulators, with OS awareness.
If the instrumentation is implemented in software, it is necessary to eliminate
the probe effect, usually by leaving the instrumentation code in the deployed
system. In our experience the execution time overhead for software instrumen-
tation of the SLCFPs is minimal, typically below 0,1���� of processor utiliza-
tion.

Definition. The deterministic test procedure (as illustrated in Figure 3.2)
with no knowledge of the number of possible SLCFPs is defined as:

60 Paper B

Process

Node Test
Oracle

Result
Database

Input

Output

C
orrectne

ss

Ordering

Required coverage

Execution ordering (6) (7) (9)(8) (10)(1) (2) (4)(3) (5)

No. Test cases

Figure 3.2:A test rig with a set of system level control-flow buckets, and where the
coverage for each bucket is illustrated.

1. Test the system using any sequential technique of choice, and monitor
the 3-tuple (input, output, SLCFP) for each test case. A test case includes
all inputs to the participating tasks that are part of the SLCFP during
the interval	�� ����
, where���� typically is equal to theLeast
Common Multiple (LCM) of the tasks period times.

2. Map the 3-tuple for the interval	�� � ���
 into a "bucket" for each
unique SLCFP.

3. Repeat 1-2 until required coverage for the sequential testing technique
applied is reached for every bucket.

With the above defined testing procedure we can achieve deterministic test-
ing, with respect to failures that pertain to ordering, and its effect on the inputs
and outputs via the systems legal interfaces. That is, the method is not de-
terministic with respect to failures like transient bit-flips, or arbitrary memory
corruption from e.g., non-reentrant code, unless we regarded every assembly
write operation as a critical section - which is unreasonable.

3.3 System Control-Flow Analysis 61

The above defined testing strategy is however not complete, since we do
not know when to stop testing. We do not know how many SLCFPs there
exist. In the next section we will present a technique for deriving all possible
SLCFPs from which we can calculate the maximum number of SLCFPs and
thus derive a stopping criterion. The stopping criterion can either be based on
the system control flow for all tasks in the system or for just a sub set of the
tasks. If we during testing after a while notice that certain paths have attained a
low level of coverage (e.g., 0) then this can either be attributed to a pessimism
in the system control flow analysis (e.g., two tasks may not execute their worst
case execution time in the same execution scenario) such that too many paths
are derived, or that certain paths are simply rare during execution. In any case
deterministic replay technology [15] can be used for enforcing certain paths
such that the required coverage for these paths is attained. The application of
deterministic replay is however out of scope for this paper, and is something
we will present in a later publication.

3.3 System Control-Flow Analysis

In order to derive a stop criterion for the deterministic testing strategy we now
define the system level control-flow in terms of a System Level Control-Flow
Graph (SLCFG) and present an algorithm that generates SLCFGs, from which
we can derive all possible system level control-flow paths (SLCFP). We begin
however, with a definition of the system task model.

3.3.1 Task Model

The real-time system software consists of a set of concurrent tasks. Tasks
communicate by non-blocking message passing or shared memory. All syn-
chronization, precedence or mutual exclusion, is resolved either offline by as-
signing different release-times/offsets and priorities, or during runtime by the
use of semaphores which have PCEP semantics. Further, we assume a task
model that includes both preemptive scheduling of off-line generated sched-
ules [17] and fixed priority scheduling of strictly periodic tasks [2, 11].

� The system contains a set of jobs� , i.e. invocations of tasks, which are
released in a time interval	�� ������
, where���� is typically equal
to the� ! of the involved tasks period times, and� is an idle point
within the time interval	�� ����
 where no job is executing. The exis-
tence of such an idle point,�, simplifies the model such that it prevents

62 Paper B

temporal interference between successive���� intervals. To simplify
the presentation we will henceforth assume an idle point at�.

� Each job" � � have the following attributes: a release time	� , worst
case execution time (# ���), best case execution time (� ���), a
deadline$� , and a unique base priority%�� . � represents one instance
of a recurring pattern of job executions with period� ��� , i.e., job"
will be released at time	� , 	������ , 	������� , etc. Jobs may have
identical release times.

3.3.2 Synchronization using PCEP

For PCEP we assume that:

� Each job" � � has a current priority�� that may be different from
the statically allocated base priority,%�� , if the job is subject to priority
promotion when granted a resource.

� Each resource&, used by a set of jobs'�, has a statically computed
priority ceiling defined by the highest base priority in'� increased by
one, i.e.,�� � !���%���(� '�� � �. We assume that all jobs have
unique priorities so we need to increase�� by one to achieve a unique
priority for the priority ceiling; jobs that have higher priorities than��
are also adjusted to have unique priorities.

� Each job,", that enters a critical section protecting a resource& is im-
mediately promoted to the statically allocated priority ceiling of the re-
source, if�� � �� then�� � ��.

� Each job,", that is executing and releases a resource& is demoted im-
mediately to the maximum of the base priority%� � , and the ceilings of
the remaining resources held by the job.

� Each critical section,), has a worst case execution time (# ���) and a
best case execution time (� ���) and a release time interval	�	�� �	��
ranging from the earliest release time to the latest release time.

� All resources are claimed in the same order for all paths through the
program in a job.

3.3 System Control-Flow Analysis 63

3.3.3 The System Level Control-Flow Graph

In essence, to derive the system level control-flow graph, we perform a reach-
ability analysis by simulating the behavior of a real-time kernel conforming
to our task model during one	�� ����
 period for the job set� . The Sys-
tem Level Control-Flow Graph ('� �*) is a finite tree for which the set of
possible paths from the root contains all possible execution scenarios.

We define a SLCFG as a pair
 +�� �, where

� + is a set ofnodes, each node being labeled with a job, the job’s current
priority, and a continuous time interval, i.e., for a job set�
 + � � �
�_� 	 � 	 (������, where�_� is used to denote a node where no
job is executing.� is the set of priorities, and(������ is the set of
continuous intervals in	�� ����
.

� � is the set of edges (directed arcs; transitions) from one node to another
node, labeled with a continuous time interval, i.e., for a set of jobs�

� � + 	 (������	+ .

Basic transitions

Intuitively, an edge corresponds to the transition (the task-switch) from one
job to another, or when a job enters or leaves a critical section. The edge
is annotated with a continuous interval of when the transition can take place,
as illustrated in Figure 3.3, showing SLCFGs for simple jobs without critical
sections.

�	
��
��

��

�

�
 ��
�	�
���
�� �
 ��

Figure 3.3:Two transitions, one to job� and one from job� to job�.

The interval of possible start times	��� %�� for job �, in Figure 3.3, is de-
fined by:

�� � ������ 	�� � � ��� (3.1)

%� � ����%� 	�� �# ���

The max() functions are necessary because the calculated start times� and
% can be earlier than the scheduled release of the job�. In the SLCFG a node

64 Paper B

represents a job annotated with a continuous interval of its possible execution
time, 	�� ,�, as depicted in Figure 3.4.

�	
��
��

��

�

�
 ��

Figure 3.4:A job annotated with its possible execution, start time and current priority.

We define the interval of execution,	�� ,� as the interval in which job�
can be preempted:

� � ������ 	�� (3.2)

, � ����%� 	�� �� ���

Mark
critical sections

sa

sb

sc

sd

se

s8s0

s1

s2
s3

s4

s5

s6

s7

j

Priority

WCETi

Priority

Priority

WCETi

WCETi

Create a sub job
for every priority

change

Figure 3.5:A job split into a set of sub jobs, in order of changes in effective priority.
The sub jobs��, ��, and�� represent the base priority job.

Critical section transitions

Critical sections will be introduced by transforming the job set, such that a job
with critical sections is split into a set of jobs corresponding to the different

3.3 System Control-Flow Analysis 65

critical sections and executions in between. We assume that each job� � � ,
which has a set of critical sections '�, is split into an ordered list of sub
jobs,'��, such that every time there is a change in the job’s effective priority
a new sub job is added (as illustrated in Figure 3.5). Each sub job- � � '��
of original job� have a release time interval	�	�� �	�� ranging from its earliest
release time to its latest release time. The release time interval for a sub job- �
is given in terms of execution time run by the immediately preceding sub job,
.�, before it enters the critical section represented by sub job- �, rather than
in terms of the system clock tick. This means that all� ��s and# ��s
for all sub jobs are calculated such that they represent execution time before
entering the immediately succeeding critical section except the last sub job,
which runs until termination.

�	
��
��

��

�
.�
 ��

�	�
���
��

���

��
-�
 ��

�	��
���	
��

����

���
/�
 ��

Figure 3.6:Three transitions, one to sub job��, one demoting transition from sub job
�� to sub job��, and one promoting transition from sub job�� to sub job��.

The interval of possible start times	��� %�� for the sub job-�, as illustrated
in Figure 3.6, is defined relative to its predecessor,. �, by:

�� � ������ 	�� � � ��� (3.3)

%� � ����%� 	�� �# ���

The����� function in Equation 3.3 is needed since the sub job cannot
be released earlier than scheduled release of the original job�. The transition
interval can represent a promoted priority, denoted	�� %
, or demoted priority,
denoted	�� %�. A node represents a sub job in the same manner as a node
represents a job, i.e., the node is annotated with a continuous interval of its
possible execution and a priority, in this case the priority ceiling of the critical
section. We define the execution interval,	� �� ,�� for the sub job-�:

�� � ������ 	�� (3.4)

,� � ����%� 	�� �# ���

That is, the interval,	��� ,�� , specifies the interval in which sub job-� with
priority �� can be preempted by a higher priority job.

66 Paper B

3

2

4

1

5

6

8

7

Figure 3.7:The resulting execution order graphs for the job set in Table 3.1 and Ta-
ble 3.2.

Transition rules

Below are rules for transitions to create a SLCFG, as exemplified and annotated
in Figure 3.7. The first six rules correspond to the basic transitions, and the
remaining rules are rules for critical sections.

1. If the current job"� completes without preemption, and there are no
higher priority jobs that immediately succeeds" �, then add a transition,

"�
�	�
���
�� , where	��� %�� is the interval of possible finishing times of"�.

2. If the current job"� completes without preemption and a higher priori-

tized job"� immediately succeeds"�, then add a transition,"�
���
���
�� "�

3.3 System Control-Flow Analysis 67

Task r p WCET BCET
� 0 4 39 9
� 40 3 121 39
 40 2 59 49
� 100 4 39 9
� 200 4 39 9
� 300 4 39 9
$ 350 1 2 9

Table 3.1:A job set for a schedule with a
LCM of 400 ms.

Task r p WCET BCET
� 0 2 4 2

- 7 4 4
- 2 9 7

 3 4 5 1

Table 3.2: A job set for a schedule
where job B accesses a shared resource,
and when entering the critical section
boost its priority to 7. B is split into 3
sub jobs.

, where	� is the release time of"� and represents the preemption. In
addition,if there is a lower prioritized job" � ready, or made ready during

the execution interval of"�, then add a transition,"�
�	�

�

��
�
�

�� "� , where
	���� %

�

�� is the interval of possible finishing times of"�.

3. If the current job"� has a� �� such that it definitely is preempted by

another job"� then add a transition,"�
���
��	
�� "�, where	� is the release

time of "� and represents the preemption.

4. If the current job"� has a� �� and# �� such that it may either
complete or be preempted before any preempting job" � is releasedthen

add a transition,"�
���
��	
�� "�, where	� is the release time of"� and rep-

resents the preemption. In addition,if the set of ready jobs is emptythen

add a transition,"�
�	�
���
�� "�, where	��� 	�� is the interval of completion

times of"�.

5. If the current job"� has a� �� and# �� such that it may either
complete or be preempted before any preempting job" � is releasedthen

add a transition,"�
���
��	
�� "�, where	� is the release time of"� and

represents the preemption. In addition,if there are lower prioritized jobs

"� ready and,� � �� holds then add a transition,"�
�	�

�

��
�
�

�� "�, where

	���� %
�

�� is the interval of start times of"� and a transition,"�
���
���
�� "�,

where	� is the release time of"� and represents the completion of"�
immediately before"�.

68 Paper B

6. If the current job"� is the last job scheduled in this branch of the tree

then add a transition,"�
�	�

�

��
�
�

�� _, where	���� %
�

�� is the interval of finishing
times of"�.

7. If the current sub job-� succeeded by a higher priority sub job- � before
the release of any higher priority job"�. That is if %��
 	� , and�� �

�� � �� then add a transition,-�
�	�

�

��
�
�

�� -� , where	���� %
�

�� is the interval
of start times of-� .

8. If the current sub job-� succeeded by a higher priority sub job- � before
the release of any higher priority job"� or is preempted by"�. That

is, ���
 	�
 %��, and�� � �� � �� then add a transition,-�
�	�

�

��	
��

-� , where	���� 	�
 is the possible start interval of-� . And a transition,

-�
���
��	
�� -� , where	� is the release time of"� and		�� 	�
 represents the

preemption.

9. If the current sub job-� is succeeded by a lower priority sub job-�
before the release of any higher priority job"�, that is���
 	�, then -�
is entered into the set of ready jobs and then governed by rule 4 or rule
5, above.

3.4 The algorithm

We will now define an algorithm for generating a System Level Control-Flow
Graph ('� �*). Essentially, the algorithm simulates the behavior of a task
scheduler that supports scheduling of strictly periodic tasks and exercised with
a fixed priority preemptive real-time kernel, complying with the previously
defined task model and SLCFG transition rules. The SLCFG for a set of jobs
is generated by a call to the algorithm SLCFG (NODE, RDYSET,. . .) given in
appendix A (Listing 1), where NODE is a node that represents the root node
of the SLCFG. RDYSET represents the set of tasks that is ready to run and is
initially the empty set. The interval is the release interval and is initially , and
the considered simulation interval, initialized to	�� � ���
. The algorithm is
a recursive function to which the initial arguments are given, as defined above.

In the remainder of this section we will go through the details of the algo-
rithm, the references to line numbers corresponds to the line numbers in Listing
1, Listing 2 and Listing 3 in appendix A

3.4 The algorithm 69

In the algorithm, line 1: we look ahead one job at a time, this is achieved
by extracting the release time of the next job. To acquire the next release time
that succeeds the currently running job the simulation interval is searched until
the next job is found.

In lines 2-6 it is determined if the simulation has come to an end of a
control-flow path. This is done by determining the state of the set of jobs ready
to execute, if the ready queue is empty and there are no jobs in the simulation
interval to put into the ready queue then we have reached the end of a path.
Line 6: Draws the end node of the path that corresponds to rule 6. If the simu-
lation is in a state such that that it has not reached the end of a path, line 7-46,
we consider if the current job may be preempted, line 13-29, or is definitely
not preempted, line 30-46. Rule 1-2 will continue in the non-preemption case
while rule 3, rule 4 and rule 5 will continue in the preemption case.

In the preemption case, for rule 4 and rule 5 it must be determined if the
current job terminates before the release of a higher priority job, line 14. In
those cases that the current job terminates before the release of any higher
priority job, it must also be determined if there exists any succeeding lower
priority job, line 20, or if any higher priority job immediately succeeds the
current job, line 23. Line 27-29 will be visited for rule 3, rule 4 and rule 5 and
represents the branch of the preemption of the current job.

Lines 33-34 corresponds to the case when a critical section is entered and
the priority is promoted, rule 7. For rule 8, when the current job may enter the
critical section before it is preempted there is two outgoing transitions from the
current job and are govern by lines 16-17 for the sub job that is entering the
critical section and lines 27-29 for the preemption before entering the critical
section.

3.4.1 The stop criterion

By enumerating the possible and unique paths in the system control flow we
get a measure of the number of system level control flow paths we need to test
using the deterministic testing strategy for full coverage. The stopping criterion
can be scaled such that it encompass a single task, multiple transactions or all
tasks in the system. The above analysis is however pessimistic in the sense
that it does not take into account the correlation between actual input and the
execution time of a task, this introduces a pessimism such that in practice two
tasks may never exhibit their worst case (or best case) execution time during
the same system level control flow path. We thus run into the possibility of
deriving too many paths that may never be executed in practice.

70 Paper B

3.4.2 Conclusion

In this paper we have present a method for deterministic integration testing
of strictly periodic fixed priority scheduled real-time systems where synchro-
nization is either resolved using on-line synchronization, complying with the
Priority Ceiling Emulation Protocol (PCEP) [3] (a.k.a., the immediate inheri-
tance protocol), or offsets. The paper extends the results by Thane and Hans-
son [14, 16] with handling of online synchronization. This substantially in-
creases the applicability of the method, since it is more likely that errors are
caused by synchronization and implementation problems.

Essentially the method is a structural white box testing method applied on
the system level rather than on the individual tasks. The method includes a
testing strategy where the coverage criterion is defined by the number of paths
in the system control flow. The method also includes a reachability algorithm
for deriving all possible paths in terms of orderings of task starts, preemptions
and completions of tasks executing in a real-time system. The deterministic
testing strategy allows test methods for sequential programs to be applied, since
each identified ordering can be regarded as a sequential program.

In the presented analysis and testing strategy, we consider task sets with
recurring release patterns, and accounted for the effects of variations in start
and execution times of the involved tasks, as well as the variations of the arrival
and duration of the critical sections.

For future work we plan to introduce deterministic replay technology [15]
to testing in order to enforce certain system level control flow paths.

Bibliography

[1] Technical committee on operating systems and application environments
of the ieee. portable operating system interface (posix) - part 1: System
application program interface (api), 1996. ansi/ieee std 1003.1, 1995 edi-
tion, including 1003.1c:amedment 2: Threads extension c language.

[2] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell. Fixed priority
pre-emptive scheduling: A historical perspective. InReal-Time Systems
journal, volume 8(2/3). Kluwer A.P., March/May 1995.

[3] T. Baker. Stack-based scheduling of real-time processes. InReal-Time
Systems Journal, volume 3(1), pages 67–99, 1991.

[4] B. Beizer. Software testing techniques. InVan Nostrand Reinhold, 1990.

[5] R. Cardell-Oliver and T. Glover. A practical and complete algorithm for
testing real-time systems. InProceedings of the 5th International Sym-
posium on Formal Techniques in Real-Time and Fault Tolerant Systems,
pages 251–261, 1998.

[6] J. Gait. A probe effect in concurrent programs. InSoftware - Practice
and Experience, volume 16(3), pages 225–233, Mars 1986.

[7] G. H. Hwang, K. C. Tai, and T. L. Huang. Reachability testing: An
approach to testing concurrent software. InInternational Journal of Soft-
ware Engineering and Knowledge Engineering, volume 5(4), pages 493–
510, 1995.

[8] ISO/IEC. Iso/iec 8652l 1995 (e). InInformation Technology - Program-
ming Languages - Ada, February 1995.

72 BIBLIOGRAPHY

[9] T. K. Iversen, K. J. Kristoffersen, G. K. Larsen, M. Laursen, R. G.
Madsen, S. K. Mortensen, P. Pettersson, and C. B. Thomasen. Model-
checking of real-time control programs. InProceedings of the 12th Eu-
romicro Conference on Real-Time Systems, pages 147–255, June 2000.

[10] A. Khoumsi. A new method for testing real time systems. InProceedings
of the 7th International Conference on Real-Time Computing Systems and
Applications, pages 441–450, December 2000.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. InJournal of the ACM, volume
20(1), 1973.

[12] F. Mueller. Priority inheritance and ceilings for distributed mutual exclu-
sion. In Proceedings 20th IEEE Real-Time Systems Symposium, pages
340–349, December 1999.

[13] B. Nielsen and A. Skou. Test generation for time critical systems: Tools
and case study. InProceedings of the 13th Euromicro Conference on
Real-Time Systems, pages 155–162, June 2001.

[14] H. Thane and H. Hansson. Towards systematic testing of distributed real-
time systems. InProceedings of The 20th IEEE Real-Time Systems Sym-
posium, pages 360–369, 1999.

[15] H. Thane and H. Hansson. Using deterministic replay for debugging of
distributed real-time systems. InProceedings of the 12th Euromicro Con-
ference on Real-Time Systems, June 2000.

[16] H. Thane and H. Hansson. Testing distributed real-time systems. In
Journal of Microprocessors and Microsystems, pages 463–478. Elsevier,
2001.

[17] J. Xu and D. Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. InIEEE Transaction on Software
Engineering, volume 16(3), pages 360–369, 1990.

[18] R-D. Yang and C-G. Chung. Path analysis testing of concurrent program.
In Information and Software Technology, volume 34(1), pages 43–56, Jan
1992.

Appendix A 73

Appendix A

Listing of the System Control Flow algorithm.

Algorithm SL_CFG (NODE, RDYSET, [a, b), [Sl, Su))
{
1 From the simulation interval [Sl, Su), get the next release time t
2 If the set of jobs ready to execute is empty do
3 Add the job at time t to the queue of jobs ready to execute
4 if the set of jobs ready to execute not is empty do
5 SL-CFG (NODE, RDYSET, [a, b), [Sl, Su));

else
6 Draw the node that represents the end of a trajectory

else
7 Extract the highest prioritized job j from the ready queue
8 Calculate the execution window for job j, [a, ß)
9 Calculate the start interval of the next job at time t, [a’, b’)
10 Draw the transition and the node of the current job, NODE->j
11 Add all jobs that have lower priority than the jobs at time t to the ready queue
12 if the job j is preempted by a job at time t then do
13-29 SL_CFG_preemption (j, RDYSET, [a, b), [a, ß), [a’, b’) , [Sl, Su), t)

else
30-46 SL_CFG_nopreemption (j, RDYSET, [a, b), [a, ß), [a’, b’) , [Sl, Su), t)
}

List. 1. The listing of the main loop of the System control Flow algorithm.

Algorithm SL_CFG_preemption (j, RDYSET, [a, b), [a, ß), [a’, b’) , [Sl, Su), t)
{
13 Extract the next critical section sj from job j
14 If job j completes before the release of a job at time t then do
15 if job j enter a critical section and the priority is promoted then do
16 Add sub job sj to the queue of jobs ready to execute
17 SL_CFG (j , RDYSET, [a’, t] , [t, Su])

else
18 Add sub job sj to the queue of jobs ready to execute
19 SL_CFG (j , RDYSET, [a’, t), [t, Su])
20 if the set of jobs ready to execute not is empty do
21 Add the job at time t to the queue of jobs ready to execute
22 SL_CFG (j, RDYSET, [t, t), (t, Su])
23 else if there are jobs that immediately succeeds job j then do
24 Add the job at time t to the queue of jobs ready to execute
25 Add sub job sj to the queue of jobs ready to execute
26 SL_CFG (j, RDYSET, [t, t), (t, Su])
27 Add the job at time t to the queue of jobs ready to execute
28 Recalculate the execution time for job j
29 SL_CFG (j, RDYSET, [t, t], (t, Su])
}

List. 2. The listing of the System Control Flow algorithm, the part in which
the job may or may not be preempted.

74 Paper B

Algorithm SL_CFG_nopreemption (j, RDYSET, [a, b), [a, ß), [a’, b’), [Sl, Su), t)
{
30 Extract the next critical section sj from job j
31 if this is the possible end of the simulation then do
32 Add sub job sj to the queue of jobs ready to execute
33 if job j enter a critical section and the priority is promoted then do
34 SL_CFG (j, RDYSET, [a’, b’], [b’, Su])

else
35 SL_CFG (j, RDYSET, [a’, b’), [INF, INF])

else
36 if job j enter a critical section and the priority is promoted then do
37 Add sub job sj to the queue of jobs ready to execute
38 SL_CFG (j, RDYSET, [a’, b’], [b’ , Su])
39 else if there exists a job that immediately succeeds job j then do
40 Add the job at time t to the queue of jobs ready to execute
41 Add sub job sj to the queue of jobs ready to execute
42 SL_CFG (j, RDYSET, [t, t), (t, Su])
43 if the job at time t immediately succeeds job j the do
44 SL_CFG (j, RDYSET, [a’, b’), [t, sr]);

else
45 Add sub job sj to the queue of jobs ready to execute
46 SL_CFG (j, RDYSET, [a’, b’), [t, sr]);
}

List. 3. The listing of the System Control Flow algorithm, the part in which
the job completes before the release of a higher prioritized job.

Chapter 4

Paper C: The Asterix
Real-Time Kernel

Henrik Thane
�
��, Anders Pettersson
�� and Daniel Sundmark
�
��

Mälardalen Real-Time Research Centre
��, Sweden,
Zealcore Embedded Solutions AB
��

{henrik.thane, anders.pettersson, daniel.sundmark}@mdh.se

In Proceedings of the 13th Euromicro Conference on Real-Time Systems
(ECRTS’01), Industrial Session.

76 Paper C

4.1 Introduction

This paper describes a real-time kernel, Asterix, that in a practical manner
makes use of many of the recent advances made in the real-time systems re-
search community. The basic ambition behind the development of the Asterix
real-time kernel was to pack state-of-the-art research results into a package
such that it can be easily used and understood by people in the embedded sys-
tems industry. From an academic point of view the Asterix real-time kernel
fulfills all the basic requirements necessary for facilitating different types of
timing analyses. For a software designer this signifies that the Asterix real-
time kernel has the means to satisfy engineering of real-time software in the
same fashion as civil engineers make use of structural calculus when design-
ing bridges or houses. The Asterix real-time kernel is in combination with
its support environment in a unique position to provide the embedded systems
industry with a development kit that can increase the reliability, safety, and
testability of their applications with several magnitudes compared to existing
development systems.

From the outset of the development project we decided that the kernel
would be distributed as an open source program. For a customer this has sev-
eral benefits: nothing can be cheaper than free of charge, and risks taken by
relying on a small company for providing a real-time kernel can be minimized
by having access to the source code. In summary, the kernel packs state-of-
the-art features into a package that is all free of charge and open.

Although the Asterix real-time kernel defines the state-of-the-art with re-
spect to other real-time kernels its greatest strengths lies in its open platform
and its support by extremely powerful development, and verification tools.

Key features of the Asterix kernel are:

� The execution strategies. The Asterix real-time kernel handles exe-
cution strategies ranging from strictly statically scheduled systems via
fixed priority scheduled systems to event-triggered systems, or any com-
bination of them.

� Memory consumption. From an industrial point of view we have during
the design of the kernel considered memory consumption and minimized
the kernel and the application memory footprints.

� Monitoring support. Built in monitoring support makes it possible to
use of state-of-the-art testing, and debugging tools like deterministic test-
ing [15] and deterministic replay debugging [16] and visualization. The

4.1 Introduction 77

kernel also provides facilities for measuring execution times of tasks
with a high resolution.

� Wait and Lock-free communication. The kernel supports a communi-
cation type, using buffers, that decreases the need for explicit synchro-
nization using e.g., semaphores. As a consequence blocking times can
be reduced as well as increasing the analyzability of the entire real-time
system [4][8][17].

� Execution time jitter reduction. The kernel provides a mechanism for
minimizing the execution time jitter of individual tasks as well as the
jitter originating from the kernel it self. This has been shown to increase
the testability of the application enormously, since all executions of the
target system will be reproducible [15]. It is also very important for
control applications in general to minimize the jitter.

� Compiling kernel. The Kernel is compiling which means that the kernel
is very resource efficient in terms of allocating memory only necessary
for a set of tasks. This means that if the target system only contains
� tasks, data is only allocated for� tasks. If the system contains���
tasks data is only allocated for��� tasks. The obvious benefits are that
we minimize the overhead, both in memory and in execution time jitter.
This overhead is otherwise inherent to all kernels that handle an arbitrary
number of application tasks.

� Exception handling. The kernel has a well defined exception handling
architecture, with different layers of abstraction, separating temporal and
functional error handling, as well as system level and user level excep-
tions.

� Formally verified. The kernel design is also in the process of being
formally verified. This means that we will be able to provide customers
with verified versions of the Asterix real-time kernel.

� Portable. The kernel design is such that it will be easy to port to any
processor. We will provide test suites for validation of new implementa-
tions.

� Analyzable. Applications which employs the services provided by the
Asterix real-time kernel will be possible to analyze with respect to tem-
poral behavior, synchronization correctness, and proper use of commu-
nication mechanisms. This analyzability is not only of importance when

78 Paper C

Task Period Offset Priority Deadline
� 400 0 4 100
� 400 40 3 400
 400 40 2 400
� 400 100 4 200
� 400 200 4 300
� 400 300 4 400
$ 400 350 1 400

Table 4.1: A static schedule for a period/LCM of 400 ms.

Task Period Offset Priority Deadline
� 100 0 4 100
� 400 40 3 400
 400 40 2 400
$ 400 350 1 400

Table 4.2: A fixed priority schedule. Same system as in table 4.1.

developing safety critical application it is also a desirable property which
can be used to shorten the time to market. The reason is that the Asterix
kernel enables analysis of designs in an early phase of a project and
thereby avoids costly and time-consuming re-designs in a late phase of
the project because of lack of computational resources.

Document outline. We will in the remainder of this document describe
the key features of the Asterix real-time kernel in more detail. We begin with
the execution strategy, and continue with monitoring mechanisms, and jitter
reduction.

4.2 The Asterix Execution Strategy

The execution strategy of the Asterix real-time kernel is based on fixed priority
scheduling with support for preemption. This means that the kernel is mul-
titasking, i.e., multiple tasks can share the same computing resource (CPU),
where the task with the highest priority executes. Preemption, or task inter-
leaving, means that an executing task can be preempted during its execution by

4.2 The Asterix Execution Strategy 79

Waiting Ready Executing

1 3

Signal
blocked2

4

5

6

7

8

Figure 4.1: The states and transitions possible in the Asterix real-time kernel.

another task, and then allowed to resume after the completion of the preempt-
ing task. The kernel supports both periodic time triggered tasks and aperiodic
event triggered tasks [7]. All tasks are of terminating character, which means
that when a task has completed its execution, it terminates and waits until a new
period or a new event occurs. This has the benefit of decreasing the coupling
in the system by abstracting the reactivation of the tasks away from the source
code. The responsibility for reactivation is left to the kernel and the schedule
where analyses are easier to apply. A task in Asterix is defined by its:

� P - Priority (which is unique),

� T - Period-time (for aperiodic tasks the period-time is not defined),

� O - Offset (a periodic task can delay its reactivation with an offset relative
its period-time),

� BCET andWCET (thebest case execution time andworst case execu-
tion time), and

� DL - Deadline.

Depending on how we define these task attributes the Asterix real-time ker-
nel can be configured to run a static schedule, i.e., a predefined timetable [18, 9]
(Table 4.1), or periodic tasks according to Fixed Priority Scheduling [1, 2] (Ta-
ble 4.2). A system can also be defined as event triggered by not giving period

80 Paper C

Transition Cause
� Periodic task starts
� Aperiodic task starts
� A task is ready to execute due to period start
� The scheduler decides to start the highest priority

task available in ready and Executing.
� When a periodically executing task has termi-

nated.
� When the executing task is preempted.
� When an executing task is suspended until a signal

occurred.
� When an aperiodic task is triggered by a signal.

Table 4.3: The transitions in the Asterix real-time kernel.

times of the tasks and by defining activator signals. Due to this general exe-
cution strategy, we can mix any of the different execution paradigms. We can
for example have statically scheduled systems where some tasks are event trig-
gered [12] or fixed priority scheduled. The approach of assigning priorities to
tasks even for statically scheduled timetables gives robustness since lower pri-
ority tasks cannot disrupt the execution of higher priority tasks if they fail and
run berserk.

Every tasks in the Asterix kernel can be in four states: Waiting, Signal
blocked, Ready, and Executing. The states and valid transitions between them
are illustrated in Figure 4.1 and exemplified in Table 4.3.

4.2.1 Synchronization

In the Asterix real-time kernel we can synchronize tasks in two distinct ways:
on-line, in the source code, using semaphores and signals, and off-line, in the
schedule, using offsets. The decision to allow both types of synchronization
mechanisms was that they have mutually exclusive benefits depending on the
type of problem to be solved. That is for certain problems the solution or anal-
ysis would be more complex if we used e.g., offsets than semaphores and vice
versa. In the Asterix real-time kernel we allow both types of synchronization
to be used at the same time. For multitasking systems the use of semaphores is
notorious due to the possibility of deadlocks and starvation caused by priority
inversion. Semaphores have proven to cause many intricate problems and elu-

4.2 The Asterix Execution Strategy 81

sive bugs. However, depending on the actual algorithm used to implement the
semaphore synchronization mechanism we can eliminate deadlock and star-
vation situations. This can be achieved by using priority ceiling algorithms.
In the Asterix real-time kernel we have implemented a very simple, memory
conservative and predictable algorithm, the Immediate Inheritance Protocol.
Another benefit of this protocol in conjunction with the terminating character
of all tasks is that we can make use of a single stack, and thus decrease memory
use.

4.2.2 Communication

In the Asterix real-time kernel we provide a mechanism called wait and lock-
free communication (WLFC). This type of shared memory communication al-
lows tasks to communicate with each other without any blocking, that is, the
need for explicit synchronization using e.g., semaphores is eliminated. The
shared memory communication is of simplex type and based on a set of buffers
that can be read by a set of tasks and written to byone task. The reading tasks
are guaranteed that the value they read is non-volatile during their execution,
i.e., atomicity is guaranteed. The writing task is also guaranteed a free buffer
for writing. The wait-free in WLFC means that a reading task does not have to
wait for the latest produced value; it will always be available for the receiver.
When a task�, starts to execute it is given a reference to the latest written
value by a producer,� . This value is guaranteed to be unmodified during the
execution of task�, even if it is preempted by the writer,� , and� produces a
new value. However if now a second reading task,�, preempts� after� has
written a new value, task� will at its start receive a reference to this new latest
value.

The cost for this type of communication is memory. The number of buffers
need for each wait and lock-free communication channel is�
_%����	- �
�
_	����	- � �. If a software designer feels that the memory needed for
WLFC is too costly then the designer can resort to shared memory and use
semaphores for synchronization. Another option is if the communicating tasks
run with the same periodicity then we can make use of offsets for synchroniza-
tion and just use one memory buffer.

Wait and lock-free communication is superior for systems where communi-
cation between asynchronous/multi-rate tasks occur [4][8]. In addition WLFC
gives decreased blocking times and reduced scheduling complexity. All data
transfer is also performed by the tasks themselves, not by the kernel, which
decreases kernel overhead and jitter. The data transfer overhead is debited to

82 Paper C

the tasks involved in the transaction, and therefore subject to execution time
estimation.

4.2.3 Hard and soft tasks

The tasks in the Asterix real-time kernel are divided into two categories: Hard
tasks and soft tasks. The difference between the tasks are that the hard tasks are
required to have passed a schedulability analysis (see Section 4.2.5), while the
soft tasks have no such requirement. Since we can mix both types of tasks in a
system we must guarantee that the soft tasks cannot disrupt the execution of the
hard tasks. This guarantee is fulfilled by statically assigning priorities to soft
tasks that are all lower than the priorities of the hard tasks. In order to guarantee
that no soft task can block a hard tasks the semaphore mechanism is devised
such that the set of semaphores used by the soft tasks are disjunct with the set
of semaphores used by the hard tasks. These sets are defined off-line, and are
actually required in order to set the correct priority ceilings in the immediate
priority inheritance protocol. If a soft task under suspicious circumstances still
would access a hard semaphore an exception handler would be invoked and the
situation would be detected.

4.2.4 Pre-runtime configuration

As the Asterix real-time kernel is compiling we need a means to specify the
constitution of the system and to initialize all data structures describing the
tasks and their attributes. This is done in a configuration file, which upon
execution outputs the necessary data structures that can be complied together
with the application code and the kernel. Figure 4.2 illustrates a configuration
file.

4.2.5 Timing analysis

Timing analysis is performed at two levels, at the task level and at the system
level [6][11].

At the task level the worst case execution time for each task is analyzed or
estimated. This analysis is comparably simple on Asterix compared to do on
tasks running on traditional RTOS such as WxWorks and QNX since Asterix
requires terminating tasks. Further, since a task cannot be blocked after it has
entered the state execution (only pre-empted), the worst case execution time
can be calculated or measured for the code of task in isolation.

4.2 The Asterix Execution Strategy 83

SYSTEMMODE = NORMAL;
RAM = 512000;

MODE mode_1{
RESOLUTION = 1000;
HARD_TASK ht_1{

ACTIVATOR = 100; //period time
OFFSET = 0;
DEADLINE = 50;
PRIORITY = 10;
STACK = 50;
ROUTINE = ht_1_routine;
ARGUMENTS = "1, 2, 3";
ERR_ROUTINE = ht_1_error_routine;};

HARD_TASK ht_2{
ACTIVATOR = 50; //period time
OFFSET = 0;
DEADLINE = 20;
PRIORITY = 20;
STACK = 50;
ROUTINE = ht_2_routine;};

SOFT_TASK st_1{
ACTIVATOR = sig_1; //trigger signal
OFFSET = 0;
DEADLINE = 10;
PRIORITY = 10;
STACK = 50;
ROUTINE = st_1_routine;};

WAITFREE w_1{
WRITER = ht_1;
READER = ht_2;
NUM_BUF = 3;
TYPE = "my_type";};

SIGNAL sig_1{
USER = ht_1;
USER = st_1;};

SEMAPHORE sem_1{
USER = ht_1;
USER = ht_2;};

};

Figure 4.2: The configuration of a system.

84 Paper C

TASK
Recorder

Time stamps

External process

I/O

Activation
Preemptions
Termination
Interrupt hits
System calls

RT-kernel
monitor

Figure 4.3: Kernel monitoring and recording.

At system level we analyze if the composed system fulfil its timing re-
quirements by using either fixed priority analysis or a pre-runtime scheduler.
Both kind of analysis is mature and proven to be useful in industrial applica-
tions [10][3].

When designing a system we can assign time budgets [5] to the tasks that
are not implemented by intelligent guesses based on experience. By doing
this we gain two positive effects. First, the system level timing analysis can
be done before implementation and hence we have a tool for estimating the
performance of the system. Second, the time budgets can be used as an imple-
mentation requirement.

By applying this approach we make the design process [5] less adhoc with
respect to real-time performance. That is, the first time one can find timing
problems in traditional system design is when the complete system or subsys-
tem has been implemented. If a timing problem is found adhoc optimization
starts which most surely will make the system difficult to maintain.

4.3 Monitoring

In the Asterix real-time kernel we have unique support for observations [13]
of the target application, i.e. an event recorder, Figure 4.3. These observations
can be used for execution time measurements of the application tasks, but most
significantly these observations can be used for visualization, deterministic re-

4.3 Monitoring 85

TASK

Recorder

I/O

Activation
Preemptions
Termination
Interrupts
System calls

RT-kernel
off-line

DEBUGGER

Figure 4.4: Offline kernel with debugger.

play debugging and deterministic testing of the target system.

4.3.1 Deterministic replay

Deterministic replay is a software based technique proprietary to the Asterix
development environment that allows reproducible debugging of single task-
ing, multi-tasking, and distributed real-time systems [16]. During runtime,
information is recorded with respect to interrupts, task-switches, timing, and
data. The system behavior can then be deterministically reproduced off-line
using the recorded information, Figure 4.4. A standard debugger can be used
without the risk of introducing temporal side effects, and we can reproduce in-
terrupts, and task-switches with a timing precision corresponding to the exact
machine instruction at which they occurred. The technique also scales to dis-
tributed real-time systems, so that reproducible debugging, ranging from one
node at a time, to multiple nodes concurrently, can be performed.

4.3.2 Deterministic testing

For testing of sequential software it is usually sufficient to provide the same in-
put (and state) in order to reproduce the output. However, for real-time systems
it is not sufficient to provide the same inputs for reproducibility - we need also
to control, or observe, the timing and order of the inputs and the concurrency
of the executing tasks. Based on the monitoring mechanisms built into the

86 Paper C

Asterix real-time kernel and a proprietary testing method found in the Asterix
development environment deterministic testing of the target application can be
easily performed. The testing method includes an analysis technique that given
a set of tasks and a schedule derives all execution orderings that can occur dur-
ing run-time [13]. The method also includes a testing strategy that using the
derived execution orderings can achieve deterministic, and even reproducible,
testing of real-time systems. Each execution ordering can be regarded as a se-
quential program and thus techniques used for testing of sequential software
can be applied to real-time system software. The analysis and testing strategy
can also be extended to encompass interrupt interference, distributed computa-
tions, communication latencies and the effects of global clock synchronization.

4.4 Jitter reduction

The kernel provides a mechanism for minimizing the execution time jitter of
individual tasks as well as the jitter originating from the kernel it self. This has
been shown to increase the testability of the application enormously, since all
executions of the target system will be reproducible [15][14]. It is also very
important for control applications in general to minimize the jitter.

Figure 4.5 illustrates the possible execution orderings for a schedule run-
ning on the Asterix real-time kernel without jitter reduction. That is all the
possible task starts, task preemption and task terminations yielded by the vary-
ing execution times of tasks and their varying start times due to delay caused
by higher priority tasks. Figure 4.6 illustrates the same system with jitter re-
duction turned on.

From a verification perspective the fewer the scenarios the system exhibit
the better the possibilities are for testing and debugging the system since the
number of behaviors to consider is reduced. In fact there is an exponential
relation between the jitter in the system and the number of execution scenarios.
In other words the testability of a system is enormously influenced by the jitter.
The potential testability, and therefore indirectly the reliability, of the system
benefits greatly by the jitter reduction techniques used in the Asterix real-time
kernel. Typical testability gains are in the range of billions for an industrial
application with modest complexity and even more for more complex systems.

This feature makes the Asterix real-time kernel suitable for use in mission
critical, and safety critical applications, or simply in applications where the
funds are limited but the desire is to get more-bang-for-the-buck (reliability).

4.5 Conclusions 87

root

[0,39)
A:4

[0,0]

[40,161)
B:3

[9,39)

[79,159)
C:2

[79,100)

[100,139)
A:4

[100,100)

[100,139)
A:4

[100,100]

[100,139)
A:4

[100,100]

[109,198)
C:2

[109,139)

[200,239)
A:4

[137,198)

[300,339)
A:4

[209,239)

[350,370)
D:1

[309,339)

_

[359,370)

[109,198)
C:2

[109,139)

[200,239)
A:4

[158,198)

[300,339)
A:4

[209,239)

[350,370)
D:1

[309,339)

_

[359,370)

[109,200)
B:3

[109,139)

[200,239)
A:4

[200,200)

[109,259)
C:2

[109,200)

[209,298)
C:2

[209,239)

[300,339)
A:4

[258,298)

[350,370)
D:1

[309,339)

_

[359,370)

[200,239)
A:4

[158,200)

[200,239)
A:4

[200,200]

[300,339)
A:4

[209,239)

[350,370)
D:1

[309,339)

_

[359,370)

[209,298)
C:2

[209,239)

[300,339)
A:4

[209,298)

[350,370)
D:1

[309,339)

_

[359,370)

Figure 4.5: The possible execution ordering
scenarios for a system with jitter.

root

[0,39)
A:4

[0,0]

[40,161)
B:3

[39,39)

[100,139)
A:4

[100,100]

[139,200)
B:3

[139,139)

[200,239)
A:4

[200,200)

[239,298)
C:2

[239,239)

[300,339)
A:4

[298,298)

[350,370)
D:1

[339,339)

_

[370,370)

Figure 4.6: No jitter.

4.5 Conclusions

In this paper have we presented a novel real-time kernel Asterix which sup-
port development of hard real-time systems. We have presented the supported
execution strategy, the monitoring and testing facilities, and a mechanism for
jitter reduction. We are currently in the process of adopting Asterix to different
micro controllers.

Bibliography

[1] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell. Fixed priority
pre-emptive scheduling: A historical perspective. InReal-Time Systems
journal, volume 8(2/3). Kluwer A.P., March/May 1995.

[2] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: The deadline monotonic approach. InProceedings
of 8th IEEE Workshop on Real-Time Operating Systems and Software
Real-Time Systems journal, pages 127–132, Atlanta, Georgia, May 1991.

[3] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano a revo-
lution in on-board communications. Technical report, 1998.

[4] J. Chen and A. Burns. Asynchronous data sharing in multiprocessor real-
time systems using process consensus. InProceedings of 10th Euromicro
Workshop on Real-Time Systems, June 1998.

[5] C. Eriksson, J. Mäki-Turja, K. Post, M. Gustafsson, J. Gustafsson,
K. Sandström, and E. Brorsson. An overview of rtt: A design framework
for real-time systems. InJournal of Parallel and Distributed Computing,
volume 36, pages 66–80, October 1996.

[6] M. Joseph and P. Pandya. Finding response times in a real-time system. In
The Computer Journal - British Computer Society, volume 29(5), pages
390–395, October 1986.

[7] H. Kopetz. Event-triggered versus time-triggered real-time systems. In
Lecture Notes in Computer Science, volume 563, Berlin, 1991. Springer
Verlag.

BIBLIOGRAPHY 89

[8] H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: A
solution to a real- time synchronization problem. InProceedings of he
14th Real-Time Systems Symposium, pages 131–137, 1993.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. InJournal of the ACM, volume
20(1), 1973.

[10] C. Norström, K. Sandström, M. Gustafsson, J. Mäki-Turja, and N.-E.
Bånkestad. Experiences from introducing state-of-the-art real-time tech-
niques in the automotive industry. InProceedings of 8th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS01), Washington, US, April 2001. IEEE Computer
Society.

[11] P. Puschner and C. Koza. Calculating the maximum execution time of
real-time programs. InJournal of Real-time systems, volume 1(2), pages
159–176. Kluwer A.P., September 1989.

[12] K. Sandström, C. Eriksson, and G. Fohler. Handling interrupts with static
scheduling in an automotive vehicle control system. InProceedings of
the 5th Internationell Conference on Real-Time Computing Systems and
Applications (RTCSA’98), Japan, October 1998.

[13] H. Thane. Design for deterministic monitoring of distributed real-time
systems. InTechnical report. Mälardalen Real-Time Research Centre,
Dept. Computer Engineering, Mälardalen University, 1999.

[14] H. Thane and H. Hansson. Handling interrupts in testing of distributed
real-time systems. InProceedings of the Real-Time Computing Systems
and Applications Conference (RTCSA’99), Hong Kong, December 1999.

[15] H. Thane and H. Hansson. Towards systematic testing of distributed real-
time systems. InProceedings of The 20th IEEE Real-Time Systems Sym-
posium, pages 360–369, 1999.

[16] H. Thane and H. Hansson. Using deterministic replay for debugging of
distributed real-time systems. InProceedings of the 12th Euromicro Con-
ference on Real-Time Systems, June 2000.

[17] K. W. Tindell, A. Burns, and A. J. Wellings. Analysis of hard real-time
communications. InJournal of Real-Time Systems, volume 9(2), pages
147–171, September 1995.

90 BIBLIOGRAPHY

[18] J. Xu and D. Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. InIEEE Transaction on Software
Engineering, volume 16(3), pages 360–369, 1990.

Chapter 5

Paper D: Experimental
Evaluation of a Test
Procedure for Deterministic
Testing of Real-Time
Systems: Technical Report

Anders Pettersson and Henrik Thane
Department of Computer Science and Engineering
Mälardalen University, Västerås, Sweden
{anders.pettersson, henrik.thane}@mdh.se

Abstract

In this paper we present an experimental evaluation of the deterministic test
method for real-time system software as presented by Thane et al. In order
to evaluate the method we have built a test bed and on that test bed we have
tested a number of real-time applications. Specifically we have evaluated the
relation between the theoretically derived coverage criterion and the actually
observed coverage during test. The evaluation shows that coverage criteria can
be derived but it is still hard to achieve complete coverage. It also shows that
the derived coverage criteria depend on the accuracy of estimated execution
times.

5.1 Introduction 93

5.1 Introduction

In this paper we present an experimental evaluation of the deterministic test
method for real-time system software as presented by Thane et al. [9]. Specif-
ically we have evaluated the relation between the number of theoretically de-
rived system level control-flow paths (SLCFP) and the number of actually ob-
served system level control-flow paths. We define the system level-control
flow paths in accordance with Thane et al. [9] as every unique sequence of
task-switches during a specified duration of time.

In order to facilitate this evaluation we have developed a number of pro-
grams:

� An analysis tool that derives all possible SLCFP, which defines the the-
oretical coverage criterion.

� A test case generation tool that uses the derived SLCFP for achieving
deterministic testing.

� A test bed complying with the method

� A set of programs (real-time applications) to test.

We have applied the analysis tool on a set of randomly generated multi-
tasking real-time applications and showed the relation between the derived
SLCFP and the observed SLCFP for each generated application. All real-time
applications are schedulable according to the rate monotonic scheduling pol-
icy. The tasks in the real-time applications are assumed to not communicate
with each other.

The analysis tool derives all possible SLCFP, which are stored at the test
server. During the test runs, test cases applied on the real-time applications
running on the test bed, the SLCFP are extracted and sent to the test server
for comparison to the derived SLCFP. The test server is keeping track of the
number of each unique SLCFP and the number of observations of each unique
SLCFP in order to establish the fulfillment of the test coverage criteria.

The remainder of this paper is organized as follows: in Section 5.2 we
present a procedure for deterministic testing of real-time systems. Further-
more, in Section 5.3 an analysis tool for deriving the system level control-flow
is discussed. Followed by a description of the test bed in Section 5.4. The re-
sult from the experimental evaluation is discussed in Section 5.5, and the paper
concludes in Section 5.6 and Section 5.7 with a summary and a brief discussion
of the continuation of this work.

94 Paper D

5.2 The Test Procedure

The evaluated test method, presented by by Thane et al. [9], consists of a num-
ber of steps:

1. identify the set of possible system level control-flow paths (serializa-
tions),

2. test the system using any test technique of choice,

3. map each test case and output onto the correct control flow path based
on run-time observations, and

4. repeat 1-3 until required coverage is achieved.

In step 1 the test coverage criterion is derived. During step 2 test runs are
applied on the application in order to log input, output and the control-flow. In
step 3 the logged information is compared to the output from step 1.

5.3 Analysis of Real-Time Systems

In this section we discuss the analysis tool we have used in this evaluation. The
analysis tool derives all possible system level control-flow paths (SLCFP), i.e.
the tool is an off-line analysis tool. With off-line analysis we mean two things,
(1) pre-analysis of thesystem level control-flow (SLCF) and (2) post-analysis
of the SLCF extracted during test runs.

5.3.1 Pre-Analysis Tool

The pre-analysis tool simulates the execution behavior in a real-time system.
Basically, the tool simulates the run time behavior of a fixed priority scheduler
based on the temporal attributes of the tasks. In our task model a task is defined
as
 ��0�$�� ��� ���# �� �, where:

� � is the period time of the task,

� 0 is the release time offset,

� $� is the deadline of the task,

� � is the priority of the task,

5.3 Analysis of Real-Time Systems 95

� � �� is the best case execution time,

� # �� is the worst case execution time.

As a consequence, the bounds on the tasks’ execution times must be known á
priori.

Period time, offset, deadline and priority is determined at design time while
the execution time is more difficult to estimate. We have used an approach
to estimate the execution time of tasks similar to the one used for Real-Time
Talk [3], in which the design method allows a coarse estimation of execution
times based on time budgets that are stipulated in the early design.

The System Level Control-Flow Analysis Tool

The SLCF-tool relies on the use of the Fixed Priority Scheduling [1] policy
of strictly periodic tasks or static scheduling [11, 5]. Based on stipulated time
budgets and the task model, the pre-analysis tool can be used to estimate the
number of control-flow paths early in the design phase. To not obstruct the
scheduling and the SLCF analysis the functionality of the tasks must be imple-
mented such that the time budgets are met.

The output from the analysis tool is aSystem Level Control-Flow Graph
(SLCF-graph). In which each branch corresponds to a single system level
control-flow path of the real-time system. Also each branch represents a fi-
nite duration of time (in most cases the least common multiple of the tasks’
period times). Each node in the graph represents the execution of a task and
each edge represents the transition from one task to another, i.e. a task-switch.
The start of a tasks is affecting the control-flow if the start of a task leads to a
task-switch to another task (thus producing more than one outgoing transition
from a node). The termination of a task is affecting the control-flow if a task
start immediately succeeds the termination.

The number of control-flow paths can be roughly estimated by� ���, where
� is the maximum number of outgoing transitions from a node,� is the number
of preemption points and� is the number of task instances.

One of the purposes of the analysis tool is to derive a coverage criterion.
To establish the coverage criterion it must be possible to derive all possible
control-flow paths. However, this may be impossible because of the state space
explosion during the analysis. The reasons for this state space explosion are
contributed by long intervals of time (increased�) or that the start times of
tasks are such that tasks frequently preempt each other (increased�).

96 Paper D

Furthermore, synchronization of communicating tasks is resolved off-line
by separating the task in time using offsets and/or priority [9]. The input data
to receiving tasks are available at the start of the receiving task and data sent
by tasks are available at the termination of the sending task.

A detailed description of the SLCF-graph and the rules for constructing the
SLCF-graph can be found in Thane et al. [9].

5.3.2 Post-Analysis Tool

During run-time, the traversed control-flow paths are continuously logged. The
log file is parsed by the post-analysis tool in order to derive the control-flow
paths that occurred during the test runs.

Each control-flow path that is extracted from the log file is compared to
the control-flow paths derived in the pre-analysis. If a match is found be-
tween the compared control-flow paths, then this control-flow path is marked as
unique, or if the control-flow path has been previously matched, a counter for
the number of occurrences of this control-flow path is increased. By increas-
ing the counter for every unique control-flow path discovered and increasing
the counter for how many times each control-flow path have been traversed the
test coverage is tracked.

5.4 Test Bed

Our test bed consists of three main componentsoff-line analysis host, test
server and target system (see Figure 5.1). Where the off-line analysis host
and the test server are running on the same physical computer. In addition to
the off-line analysis host, we have used another host on a separate physical
computer to generate task sets and to perform schedulability analysis of the
task sets.

The off-line analysis host is the computer on which the system level control-
flow analysis of the real-time software is performed. The test server commu-
nicates with the off-line analysis host by sending the control-flow paths that
occurred during the test runs and receiving the control-flow paths from the
target system. The test results are handled according to the test method, see
Section 5.2.

The test server distributes test cases and receives the set of control flow
paths that occurs during the test runs. Also, on the test server the test oracle
is running. The test procedure does not rely on any particular communication

5.4 Test Bed 97

C
orrectness

Result
Database

Test
Oracle

ProcessProcess

Kernel

Probe

FeedBack

Calculate
B

Calculate
A

Sample
B

Sample
A

Input
Output
Ordering

Input
Output
Ordering

Figure 5.1:The figure shows the test bed used for the experimental evaluation. The
test server and the real-time system nodes are connected via a Local Area Network.

protocol or architecture for sending the run-time information to the test server.
It must however, fulfill a basic requirement: when a message is sent, it must be
guaranteed that the test server receives the message. This is achieved by letting
the test server keep track of the received messages based on their sequence
numbers.

The system level control-flow paths are extracted during the test runs and
continuously sent to the test server node by a probe task. When the test cov-
erage criteria are met or when a large enough number of test cases have been
exercised the target is rebooted in order automate the testing. Rebooting the
target allows the test server to allocate the target for test runs of other applica-
tions or the same application with different configurations.

5.4.1 The System Under Test

The system under test is a multi-rated multi-tasking real-time software con-
forming to the assumptions in Section 5.3 running on the target node. The test
procedure relies on the existence of non-intrusive instrumentation techniques
on the target. For this purpose we have used theAsterix real-time kernel [10]

98 Paper D

void kernel_TASK taskswitch (void)
{

probe_control_flow (old_task);
switch_out (old_task);
schedule (task_set);
switch_in (new_task);
probe_control_flow (new_task);

}

Figure 5.2:Example of a software probe inserted in order to monitor the task-switch.

that supports software based instrumentation.

5.4.2 Instrumentation

Figure 5.2 shows an example of software probes inserted in order to instrument
the system level control-flow. The control-flow paths are temporarily stored
in a circular buffer. Since there is a space limitation there is a need to send
the extracted information to the test server before any of the information is
overwritten. In our experiment the information is sent periodically to the test
server by a low prioritized probe task. The probe task has a periodicity such
that there is always room for new entries and such that higher prioritized tasks
do not block the probe task so that inconsistency occurs in the buffer.

The probe effect [4] is solved by leaving the instrumentation probes in the
code during normal operation of the system. This will increase the resource
utilization of the system, but the execution behavior will remain unchanged.

5.4.3 Information Extraction

For extraction of the information from the target we are using UDP/IP over an
Ethernet link. UDP is a connectionless communication protocol without any
transmission guarantees. This is not in compliance with our basic requirement
on communication, but since we in our evaluation only have two nodes, we
have moved the responsibility of lost messages to the test server and hence we
fulfil the requirement.

5.5 Experimental Results 99

5.4.4 Hardware

The hardware used for the target platform is a PC-104 board equipped with
Intel 80486 CPU. The PC-104 board is a PC compliant board often used in
embedded systems in which the physical size is of no matter. The board con-
sists of, besides the CPU, built-in graphic devices, an Ethernet controller and
I/O controllers.

5.5 Experimental Results

5.5.1 Task Set Generation

The real-time application used in this evaluation consists of randomly gen-
erated task sets, which all are schedulable according to the rate monotonic
scheduling policy [5]. We have 200 task sets consisting of 5 to 8 tasks. The
attributes of the tasks generated are: period time, worst case execution time
and best case execution time. The period times of the task is randomly selected
from the values 40, 50, 60, 70 and 80 ms. This choice was made for two main
reasons:

� to get a low value as possible of the least common multiple of the tasks’
period times, but yet achieve a task set that is prone to trigger preemp-
tions, and

� to be able to chose execution times of tasks so that it is possible to intro-
duce execution time jitter.

The execution time of the task is based on the best execution time and the
worst execution time. In Figure 5.3 an application task is shown, in which
the best execution time is set to a constant and a varied execution time that
is randomly chosen between the best execution time and the worst execution
time, minimum 2 ms and maximum 10 ms execution time. Different tasks
are forced to take different control-flow paths by controlling the input,� ��
and# �� , to the tasks. However, the software cannot be forced to traverse
a unique control-flow path.

We have divided the set of tasks into two groups of 100 task sets. One
group represents the sets with significant idle time, and the other group the sets
with little idle time. Idle time is the slack in the system where the idle task is
executing.

100 Paper D

void sim_sample(void *ignore)
{

/* Here the task consumes execution time without
introduced jitter */

poll_timer_hwticks (BCET);

/* Here the task consumes varied execution time
that introduce jitter. */

poll_timer_hwticks (0 + (unsigned long)(WCET-BCET
* genrand()));

}

Figure 5.3:Example of a application task with introduced randomly generated execu-
tion time jitter.

In our task sets we assume that the tasks are not communicating with each
other, because in the evaluated test procedure [8] it is not explicitly stated how
to handle invalid cotrol-flow paths caused by application design or execution
time estimations. Since we randomly generate the task set and the tasks’ exe-
cution times we cannot guarantee these properties.

5.5.2 Results

During the test runs of the real-time applications we have exercised 100 and
1000 test cases on each task set and compared the number of found control-
flow paths traversed during the test runs with the number of derived control-
flow paths for each task set. Graph 5.4 and graph 5.5 illustrate the number of
derived and exercised control-flow paths during 1000 test runs for all task sets.

During the test runs we have observed derived control-flow paths, which
are never exercised. This phenomenon can be seen in graph 5.6 and graph 5.7,
task sets 60 to 80. Despite the number (up to 1000) of derived control-flow
paths in some task sets there are very few (1 to 200) control-flow paths that are
exercised.

Properties that have impact on the number of exercised control-flow paths
are the amount of execution time jitter of a task, the preemption by higher
prioritized task and the number of instances of a task.

5.5 Experimental Results 101

1

10

100

1000

10000

100000

1000000

10000000

0 10 20 30 40 50 60 70 80 90

Number of task sets

N
u

m
b

er
 o

f
co

n
tr

o
l-

fl
o

w
 p

at
h

s

Number of derived control-flow paths

Number of exercised control-flow paths

Figure 5.4:The graph shows the number of derived and exercised control-flow paths
during 1000 test runs of each task set. It can be seen how many of the exercised control-
flow paths that are unique. In this graph the task set is considered to have a significant
execution time slack.

The number of instances of a task will not affect the results in the com-
parison between the derived and exercised control-flow paths since the same
number of task instances is run both during analysis and during runtime. The
number of preemption points will significantly affect the number of exercised
control-flow paths in the following ways:

1. The tasks execution time is such that preemption do not occur, and

2. The execution time jitter during the test runs is less than in the stipulated
execution time budgets.

For situation 1 our task sets are created to give a high possibility of pre-
emption. But, there are some scenarios that are unlikely to occur during the test
runs. In the analysis, different control-flow paths are created if a higher prior-
itized task is immediately succeeding the currently executing task. However,
during run-time of the application this scenario is triggered by a preemption
at the last instruction in the execution of the previous tasks (i.e., the last in-
struction is the last instruction of the task-switch). In our experiment we have
not had such control over the execution so that we could trigger such scenario

102 Paper D

1

10

100

1000

10000

100000

1000000

10000000

0 10 20 30 40 50 60 70 80 90

Number of task sets

N
u

m
b

er
 o

f
co

n
tr

o
l-

fl
o

w
 p

at
h

s

Number of derived control-flow paths

Number of exercised control-flow paths

Figure 5.5:The graph shows the number of derived and exercised control-flow paths
during 1000 test runs of each task set. It can bee seen how many of the exercised
control-flow path that are unique. In this graph the task set is considered to have a low
execution time slack.

and it is not desirable to have that control. Even if this scenario is unlikely to
occur in applications it is however possible. This observation implies that the
coverage could be increased by forcing the program to traverse those scenarios.

In 2, the tasks in the task sets have execution times ranging the whole span
between� �� to # �� . We have used a linear distribution of the ran-
domly generated execution time jitter. Although, a different result may have
been achieved by using a distribution in which we have had more control over
the execution times.

In the graphs 5.4 and 5.5 it can be seen that in some task sets the number
of traversed control-flow paths are greater than the number of derived control-
flow paths, that is, the percentage of found control-flow paths during the test
runs exceeds 100%. This has two main explanations: (1) The stipulated execu-
tion time budgets set in the early stage of the development must be optimistic.
Setting to narrow budgets leads to that the analysis tool reports to few possible
control-flows. (2) It is difficult to estimate the execution time of tasks because
of the introduced delay by the hardware architecture such that the time budget
is exceeded. In the experiment, task sets that do not exceed 100% in the com-
parison have execution times within their time budgets. This emphasize the

5.6 Conclusions 103

1

10

100

1000

10000

63 68 73 78 83

Number of task sets

N
u

m
b

er
 o

f
co

n
tr

o
l-

fl
o

w
 p

at
h

s

Number of unique control-flow paths in 100 test runs
Number of unique control-flow paths in 1000 test runs
Number of derived control-flow paths

Figure 5.6:This graph shows the number of found system level control-flow paths in
1000 test runs and 100 test runs compared to the number of derived paths in task sets
that are considered to have significant execution time slack.

importance of method for accurate estimations of execution times.
During the test runs we found that the original analysis algorithm did not

catch all control-flow paths, so in this case study a revised version of the anal-
ysis algorithm have been used (see tech note [6]). The control flow paths that
was not identified was the case when we have a normal transition (transition
rule 1 in Thane et al. [8]) and if a low prioritized job is ready to run before
the release of a higher priority job. I.e., the original algorithm looked too far
ahead, to the next higher prioritized job. Now we look only until the point in
time where a job that affects the control-flow is released, despite the level of
priority.

5.6 Conclusions

In this paper we have presented:

� A test bed for automated testing of real-time systems.

� An evaluation of a analysis method used in a test procedure for deter-
ministic testing of multi-tasking real-time systems.

104 Paper D

1

10

100

1000

63 68 73 78 83

Number of task sets

N
u

m
b

er
 o

f
co

n
tr

o
l-

fl
o

w
 p

at
h

s

Number of unique control-flow paths in 100 test runs
Number of unique control-flow paths in 1000 test runs
Number of derived control-flow paths

Figure 5.7:This graph shows the number of found system level control-flow paths in
1000 test runs and 100 test runs compared to the number of derived paths in task sets
that are considered to have low execution time slack.

The experimental evaluation shows that even if the number of test runs
for each test case is increased it is still hard to obtain complete test coverage.
We have also shown the usefulness of the ability to analyze the complexity of
the software and how to use the information in a testing procedure in order to
achieve deterministic testing of real-time systems. Through experiments we
have shown the relation between execution time jitter and the complexity of
testing of fixed priority scheduled real-time systems. Hence, pointing out the
importance of reducing execution time jitter when designing software for high
testability.

5.7 Future Work

The original idea of the case study was to use COTS-tools (Matlab, Simulink
and Real-Time Embedded Coder) for designing and analysis of real-time sys-
tems. We auto generated source code for a control application that controlled
an autonomous six-legged robot to be used in rocky terrain. However, we found
the following properties of the automated generated C-code that did not add
more information than we achieved by the generated C-code with randomly

5.7 Future Work 105

generated execution time:

� The generated C-code use libraries where the execution time properties
are not documented.

� Customizing the generated code is as time consuming as coding from
scratch.

Also, the applications resulted into very few tasks 1-2. Instead we decided to
choose a solution where we had more control over the generated code. Hence,
there is no result from analysis of application modeled with COTS-tools for
real-time systems. In future work we will investigate control applications mod-
elled with an extension of MATLAB/SIMULINK by Cervin et al. [2].

We believe it would be of interest to seek a threshold of the number of test
runs at which further test runs do not increase the probability to find new unique
control-flow paths. This allows design of multi-tasking software to have high
testability.

The result in this evaluation is highly dependent on how the randomly gen-
erated task sets are created. In future work we will also look at how different
distributions of the random numbers will affect the result. In other words hav-
ing more control of the span of the execution time jitter.

The system level control-flow analysis tool that is evaluated in this paper
have been extended [7] to handle synchronization during run time. One obvi-
ous extension of this experimental evaluation would be to include synchroniza-
tion of communication task.

Furthermore, the original system level control-flow analysis tool could han-
dle distributed systems, so an evaluation that includes a system with more than
one target node should be performed. However, to analyze distributed systems
we think that it is first necessary to reduce the complexity by applying data
communication constraints on the system level control-flow graphs in order to
reduce the number of valid control-flow paths.

Bibliography

[1] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell. Fixed priority
pre-emptive scheduling: A historical perspective. InReal-Time Systems
journal, volume 8(2/3). Kluwer A.P., March/May 1995.

[2] A. Cervin, D. Henriksson, B. Lincoln, and K.-E. Årzé n. Jitterbug and
truetime: Analysis tools for real-time control systems. InProceedings of
the 2nd Workshop on Real-Time Tools, Copenhagen, Danmark, 2002.

[3] C. Eriksson, J. Mäki-Turja, K. Post, M. Gustafsson, J. Gustafsson,
K. Sandström, and E. Brorsson. An overview of rtt: A design framework
for real-time systems. InJournal of Parallel and Distributed Computing,
volume 36, pages 66–80, October 1996.

[4] J. Gait. A probe effect in concurrent programs. InSoftware - Practice
and Experience, volume 16(3), pages 225–233, Mars 1986.

[5] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. InJournal of the ACM, volume
20(1), 1973.

[6] A. Pettersson. The revised EOG-algorithm. InMälardalen University
Technical Note, Department of Computer Science and Engineering, P.O.
Box 883, SE-721 23 Västerås, Sweden, number 0596, October 2003.

[7] A. Pettersson and H. Thane. Testing of multi-tasking real-time systems
with critical sections. InProceedings of Ninth International Confer-
ence on Real-Time and Embedded Computing Systems amd Applications,
Tainan City, Taiwan, R.O.C, 18-20 February 2003.

BIBLIOGRAPHY 107

[8] H. Thane and H. Hansson. Towards systematic testing of distributed real-
time systems. InProceedings of The 20th IEEE Real-Time Systems Sym-
posium, pages 360–369, 1999.

[9] H. Thane and H. Hansson. Testing distributed real-time systems. In
Journal of Microprocessors and Microsystems, pages 463–478. Elsevier,
2001.

[10] H. Thane, A. Pettersson, and D. Sundmark. The asterix real-time kernel.
In Proceedings of the 13th Euromicro Conference on Real-Time Systems
(ECRTS’01), Industrial Session, Delft, June 2001.

[11] J. Xu and D. Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. InIEEE Transaction on Software
Engineering, volume 16(3), pages 360–369, 1990.

