
Progress Rate Control for Computer Applications

Alberto Leva, Silvano Seva and Alessandro Vittorio Papadopoulos

Abstract— Self-adaptive software applications often include
some form of progress rate control. Various frameworks were
proposed to measure progress and provision resources to govern
it, hence - in control terms - for sensors and actuators. The same
is not true for control laws, however. In this paper we address
this part of the overall problem, proposing a standard control
structure that can be easily configured and tuned to match a
variety of progress control needs. We completely analyse the
simplest case, namely a single application under fixed rate
control, and spend a few words on extensions to multiple
application and event-based realisation. Simulation examples
are reported to support the proposal.

I. INTRODUCTION

Control theory is gaining importance as a means to design
and assess components of computing systems. This applies to
several domains, from real-time and embedded systems [1]–
[6], to software engineering [7]–[11], from resource allo-
cation problems [12]–[14], to cloud computing [15]–[22].
Often, such systems are called “self-adaptive ” or “autonomic
computing” systems, depending on the community.

A control-theoretic design approach is particularly effec-
tive when reliable models for the dynamics of the process
to be controlled are available. When dealing with computing
systems this is often not the case, as in general they are not
ruled by physical laws [23] at a macroscopic level, so that
identification techniques are frequently brought into play [7],
[10], [23].

However, there exist cases in which dynamic models of
computing system components can be obtained from first-
principle-like laws, based for example on the queueing the-
ory [19], [21], or on intuitive considerations. A notable one
is encountered when controlling the progress of a quantity
towards a given goal. This case takes a number of forms.
It appears in real-time scheduling, where a budget of time
must be allocated to a specific process to execute a given
work so as to not exceed a deadline [2]–[5]. It plays a
role in synchronization schemes, where discrepancies in
the frequencies of the crystal oscillators aboard nodes in a
network require action to control the difference among their
clocks [6]. In these and analogous situations, the process to
be controlled can be though of as a single integrator: in the
first example, the amount of executed work accumulates over
time and it to reach a specific threshold within a deadline; in

A. Leva is with the Dipartimento di Elettronica, Informazione e Bioingeg-
neria, Politecnico di Milano, Italy. alberto.leva@polimi.it

S. Seva is a student at the Dipartimento di Elettronica, Informazione e
Bioingegneria. silvano.seva@mail.polimi.it

A.V. Papadopoulos is with the School of Innovation, Design
and Engineering, Mälardalen University, Västerås, Sweden
alessandro.papadopoulos@mdh.se

the second example, the synchronization error accumulates
over time if no control action is taken.

In the case just mentioned, the role of control ultimately
amounts to governing the progress rate of the state of an
integrator, the input of which is the manipulated variable
subjected to additive and/or multiplicative disturbances—a
problem that can be named “(application) progress control”.
Despite its extreme simplicity, such a model of the controlled
system does allow to tackle real-life problems, as shown e.g.
in [6], [24]. Hence, studying the properties of this particular
control problem has a notable practical relevance. The goal
of this paper is to address the problem in a general fashion.

II. RELATED WORK AND MOTIVATION

There is a vast number of literature works on progress
control. Since a full review is impossible here, we just
mention a few examples to motivate the presented research.

The first one is the Heartbeat framework [25] that “instru-
ments” the application to emit a “heartbeat” (via a system
call) whenever a meaningful set of operations have been
executed. For example, a video encoder can emit a heartbeat
for every encoded frame. This is a progress measure, that can
be used e.g. to dynamically allot resources so as to maintain
a prescribed frame rate despite different videos result in very
different encoding workloads [26].

Another example is [27], where the authors consider
heterogeneous multi-processing for runtime self-adaptive
multithreaded applications, and propose a framework for
monitoring and dynamically adapting the application be-
haviour to enhance its performance and power consumption
with respect to user-specified goals. The presented approach,
however, is strongly dependent on space exploration, which
limits scalability. Similarly, in [28], the authors propose a
proactive approach for self-adaptive software systems, that
seeks the optimal strategy on a finite set of actions that needs
to be explored.

Then, in [29], a performance management system is pre-
sented that acts at the operating system scheduler level and
uses progress information to achieve “performance-aware”
fairness, designing an Observe-Design-Act control loop. The
resulting control law is a heuristic, hence not providing
guarantees on convergence towards the goals, as the proposal
is an extension of the best-effort Completely Fair Scheduler.

Even on the sole basis of the examples just reported, one
can observe that the way progress/performance is measured
is quite well assessed, and the same is true for the way to
act on resources, meaning that for both these aspects the
various proposals are quite similar to one another. However,
the same is not true at all as for the way decisions are taken.

2018 European Control Conference (ECC)
June 12-15, 2018. Limassol, Cyprus

978-3-9524-2699-9 ©2018 EUCA 3173

There is thus room for introducing a modelling- and control-
based design approach to standardise the control part of the
application progress loop, which is the main point of our
proposal.

III. THE PROPOSED CONTROL SCHEME

A. Dynamic model

The accomplishment ac(t) of the application task, i.e., the
amount of processed data, can be described by

ac(t) =
∫ t

0
Krηc(τ)r(τ)dτ. (1)

where r(t) is the amount of resource allotted to the ap-
plication, e.g., the share of cores, Kr > 0 is the resource
gain, i.e., how much a unit of resource contributes to the
accomplishment of the application task, and ηc(t) is the
resource efficiency, that is a number limited as 0 < ηmin ≤
ηc(t)≤ 1, accounting for possible non-complete availability
of the resource, e.g., when part of the allotted share is
unexpectedly taken by other tasks.

Since in a computing system decisions can be made
only at discrete time instants, every h time units, one can
discretize (1) as

ac(kh) =: a(k) =a(k−1)+
∫ kh

(k−1)h
Krηc(τ)r(τ)dτ

=a(k−1)+Krhη(k)r(k−1).
(2)

where

η(k) :=
1
h

∫ kh

(k−1)h
ηc(τ)dτ. (3)

Despite its extreme simplicity, this model already proved
to be suitable for a control-oriented dynamic description of a
task pool [3], [24]. In progress control, the desired behaviour
of a is most frequently a ramp-like set point. Hence, we adopt
as the controller a discrete-time PI, that in state-space form
reads {

xC(k) = xC(k−1)+bRe(k−1)
r(k) = xC(k)+dRe(k)

(4)

where e(k) := a◦(k)− a(k) is the error. The closed-loop
dynamics is thus described by the LPV system

x(k) = A(k)x(k−1)+b(k)a◦(k−1), (5)

with state x(k) =
[
a(k) xC(k)

]>, and

A(k) =
[

1−KrhdRη(k) Krhη(k)
−bR 1

]
, b(k) =

[
KrhdRη(k)

bR

]
. (6)

a◦(k)

+
C(z)

r(k)

η(k)

P(z)
a(k)

−

Fig. 1: Discrete-time progress control scheme.

This system is shown as block diagram in Figure 1,
where C(z) is the transfer function of (4), and the time-
varying efficiency is modelled as a (bounded) multiplicative
disturbance.

B. Stability analysis

Proposition 3.1 (Theorem 1 in [30]): Two linear time-
invariant systems ΣA1 and ΣA2 with dynamic matrices A1,
A2 ∈ R2×2, both constant and Schur matrices, have a Com-
mon Quadratic Lyapunov Function if and only if the matrix
pencils H(α,A1,A2) and H(α,A1,−A2) are Schur, with

H(α,A1,A2) = (0.5I−G(α,A1,A2))
−1(0.5I +G(α,A1,A2)),

G(α,A1,A2) = αP+(1−α)Q,

where α ∈ [0,1], and P := 0.5I−(I+A1)
−1, and Q := 0.5I−

(I +A2)
−1.

Requiring H(α,A1,A2) and H(α,A1,−A2) to be Schur, is
equivalent to require G(α,A1,A2) and G(α,A1,−A2) to be
Hurwitz [30, Section 4]. In particular, letting P = [pi j], and
Q = [qi j], and

r1 = p11q22 +q11 p22− p12q21−q12 p21 (7)
r2 = det(Q) (8)
r3 = r1−2r2 (9)
r4 = det(P)+ r2− r1. (10)

the following holds.
Proposition 3.2 (Section 4 in [30]): G(α,A1,A2) is Hur-

witz if and only if one of the following conditions is satisfied
(i) r4 ≤ 0, or

(ii) r4 > 0, −r3/2r4 6∈ [0,1], or
(iii) r4 > 0, −r3/2r4 ∈ [0,1], and r2− r2

3/4r4 > 0
Applying this to our problem, we can now state our results.
Lemma 3.3: For any value of 0 < ηmin ≤ η(k) ≤ 1, Kr,

and h, there exists a couple of values (bR,dR) that make
the origin of the system (5) a globally asymptotically stable
equilibrium for the closed loop system.

Proof: The closed-loop dynamic matrix of the sys-
tem (5) can be written as

A(k) = α(k)A1 +(1−α(k))A2, 0≤ α(k)≤ 1∀k (11)

with

A1 =

[
1−KrhdRηmin Krhηmin

−bR 1

]
, (12)

A2 =

[
1−KrhdR Krh
−bR 1

]
(13)

For convenience, we also introduce the quantity

β =
2

Krh
. (14)

Both A1 and A2 are Schur if and only if

bR > 0 (15)
bR < dR (16)
bR > 2dR−2β . (17)

3174

To illustrate our results, we hereinafter refer to Fig-
ure 2, the yellow solid triangles denote the region R1 :=
(15)

⋂
(16)

⋂
(17), where A1 and A2 are Schur.

If we compute r4 as per (10) for the pencil G(α,A1,A2),
we obtain r4 = 0; thus for Proposition 3.2, G(α,A1,A2) is
Hurwitz. Therefore, in the following we focus on the pencil
G(α,A1,−A2).

Computing r4 for the pencil G(α,A1,−A2) gives

r4 =
2(dR−bR)(1+ηmin)Krh−4

K2
r h2ηminbR

(
2dR−bR− 4

Krhηmin

) . (18)

The value of r4 is negative or equal to zero if the numerator
and denominator in (18) have different sign, i.e., when

bR ≤ dR−
β

1+ηmin

bR > 2dR−
2β

ηmin

(19)

bR ≥ dR−
β

1+ηmin

bR < 2dR−
2β

ηmin

(20)

Intersecting (19)–(20) with R1, we obtain

R2 :=

bR ≤ dR−
β

1+ηmin
bR > 2dR−2β
bR > 0

(21)

that is indicated in Figure 2 by the red cross-hatched tri-
angles. The intersection with the axes of R1 and R2 have
been also reported. It is clear that ηmin → 0, R2 collapses
to the point (β ,0), and for any value of ηmin > 0, there are
always values of bR and dR that make the origin of system (5)
globally asymptotically stable.

For completeness, we proceed to study the second con-
dition of 3.2, with the −r3/2r4 for G(α,A1,−A2). This
quantity takes the form

− r3

2r4
=

(4dR−3bR)(1+ηmin)Krh+dR(bR−dR)ηminK2
r h2−8

4(dR−bR)(1+ηmin)Krh−8
. (22)

Since we are considering the case r4 > 0 and we are
interested in the region R1, thanks to (19), we can say that
the denominator of (22) is always negative. The numerator
of (22) is positive for

bR > b̃R(dR) :=
8−4dR(1+ηmin)Krh+d2

RK2
r ηminh2

dRηminK2
r h2−3(1+ηmin)Krh

, (23)

hence making (22) negative in the region R3 denoted by the
blue diagonal hatch. The intercept of R3 with the dR axis is
for dR = 2β/(1+ηmin +

√
1+η2

min), and for ηmin → 0, it
will collapse to the point (β ,0).

The intersection of R3 with R1 \R2 provides another set
of values of bR and dR that makes the origin of system (5)
globally asymptotically stable.

R1: A1 and A2 are Schur

R2: (A1,−A2)
give r4 ≤ 0

R3: (A1,−A2) give −r3/2r4 < 0

b̃R(dR)

dR

bR

β 2β

2β

β 1+2ηmin
1+ηmin

β 2ηmin
1+ηmin

β
1+ηmin

R1: A1 and A2 are Schur

R2: (A1,−A2)
give r4 ≤ 0

R3: (A1,−A2) give −r3/2r4 < 0

b̃R(dR)

dR

bR

β 2β

2β

β 1+2ηmin
1+ηmin

β 2ηmin
1+ηmin

β
1+ηmin

Fig. 2: Stability region in the (dR,bR) plane for ηmin = 0.9
(top) and ηmin = 0.2 (bottom).

Theorem 3.4: If ηmin → 0, then the origin is globally
asymptotically stable for system (5) if and only if A1 and
A2 are Schur.

Proof: Thanks to Lemma 3.3 we identified the regions
R2 and R3

⋂
R1 of the values dR and bR that make the origin

of system (5) globally asymptotically stable. The union of R2
and R3

⋂
R1 may or may not cover the entire R1 depending on

ηmin, as shown by the two situations in Figure 2. However,
for ηmin → 0, R2 tends to collapse into the (β ,0) point,
while R3

⋂
R1 tends to cover the entire R1. This concludes

the proof.

In practice, if the efficiency of the controlled application
falls below a certain threshold, the hosting machine is so
heavily loaded that the only sensible choice is to shut off the
application on that machine and run it elsewhere. However,
nothing prevents to suppose that the minimum possible
efficiency is (arbitrarily close to) zero, which guarantees
stability in the whole (open) region R1.

3175

C. Tuning

We refer to the block diagram of Figure 1, where for
constant η we have

L(z) = P(z)C(z) =
Krhη
z−1

(
bR

z−1
+dR

)
. (24)

For convenience, as specifications are most frequently
given as desired completion times, we now re-interpret the
control system in the continuous time. By inverse forward
Euler, and for a constant η , the loop transfer function takes
the form

L(s) = P(z)C(z)|z=1+hs =
KrηbR

h

1+ s hdR
bR

s2 (25)

whose frequency response magnitude is depicted in Figure 3.

0 ω

dB |L(jω)|

-40
dB/dec

-20 dB/dec
ωz =

bR
hdR

√
ηKrbR

h

ωc = ηKrdR

Fig. 3: Magnitude of the loop frequency response as seen in
the continuous time.

The cutoff frequency ωc and the phase margin ϕm can be
expressed respectively as

ωc = ηKrdR (26)

ϕm = arctan
(

ωc

ωz

)
= arctan

(
2η
β

d2
R

bR

)
. (27)

The behaviour of ϕm for some values of η is shown in
Figure 4, where the axes are normalised with respect to β ,
and the stability region is indicated on the base plane.

0

1

2

1
2

45◦

90◦

dR/β

bR/β

ϕm

η = 0.1

η = 0.3

η = 0.5

η = 0.9

Fig. 4: Phase margin as a function of (dR,bR) in the stability
region, for different constant values of η

For the purpose of tuning C(z), we take as the first design
parameter a value of ηmin below which we decide that the

application is just to be shut off and relocated. In Section III-
B we showed that this is stability-safe. Given this, and having
measured Kr with the initial calibration experiment described
in Section III-D, we choose dR, bR and h by solving the
system

bR = Krhηmin
tanϕm

d2
R

dR = 2
Krh

dR = ωc
Krηmin

(28)

that takes as further specifications a desired cutoff frequency
ωc and phase margin ϕm, and gives

dR =
ωc

Krηmin
, bR =

2ωc

Kr tanϕm
, h =

2ηmin

ωc
. (29)

dR = β

bR = Krqηmin
tanϕm

d2
R

dR

bR

β 2β

2β

Fig. 5: Interpretation of the PI tuning as per (28).

System (28) can be interpreted graphically as in Figure 5.
The thick vertical line corresponds to dR = β , as per the
second equation in (28). The obtained (dR,bR) couple is
the intersection of this line with the parabola given by the
first equation in (28). There can be different tuning policies,
but this one allows to contextually select the PI parameters
and h so as to stay within the stability region limiting the
effect of the variations of η on the stability degree—which
conversely would require to stay near to the (β ,0) point,
see Figure 4. This degree is evaluated on a hypothetical
system with constant η just as a sensitivity clue, of course.
Stability under time-varying η was already ensured, the point
here is not to have excessively oscillatory behaviours of the
controlled variable. Figure 5 allows also to define feasibility
limits, because the two lines must cross within the stability
region, but we omit this matter for space reasons. As a
final remark on the contextual selection of h, we conversely
observe that the sampling frequency turns out to be

ωs =
2π
h

=
π

ηmin
ωc, (30)

hence choices of ηmin that are sensible from the operational
standpoint – say around 0.2 – are safe also for the signif-
icance of the continuous-time interpretation of the loop. In
fact, in the absence of clues on ηmin, one could equivalently

3176

set the ωs/ωc ratio, as shutting off the application at higher
values of the so computed equivalent efficiency is apparently
harmless.

D. Implementation and operation

We here provide an extremely brief overview of the
proposed control’s operation. We assume that the controlled
application periodically checks its accomplishment with one
of the quoted frameworks, and deposits the accomplishment
value in a location accessible to the controller. The controller
samples this at constant rate h, under the implicit – yet
extremely reasonable – assumption that h is large enough
for some application progress to generally take place.

The controller first acquires the deadline τDL, the amount
D of data to process and the precaution coefficient γ from
the hierarchically superior levels of the application control,
and determines the accomplishment set point profile as per
Figure 6. Also, the controller sets ωc so that the closed-loop
settling time be less than τDL, and chooses a suitable phase
margin (this can be set to say 45◦–50◦ by default).

t

Processed data
D

0, elaboration starts τDL, req. compl. time
γτDL

Fig. 6: Accomplishment set point profile.

Given this, for the purpose of self-calibrating, the con-
troller allots one unit of computational resource in such a way
to guarantee the application its exclusive use. This allows to
measure Kr reliably, as η can be thought to be unitary, and
requires short enough a time to not disturb excessively the
overall system and the other applications. How this can be
done is operating system-specific, and strays from the scope
of this paper. Once Kr is measured and ηmin set as discussed
above, the tuning formulæ (29) can be applied, and control
transferred to C(z) until the application signals completion.

IV. SIMULATION EXAMPLES

In this section we show two simulation examples. The
proposed approach is already employed in applications [24],
that incidentally motivated the analysis here reported. The
typical development frameworks are complex, however, and
introduce a lot of artefacts. Simulation allows to show the
operation of the proposed control with better clarity. The first
example is obtained by setting ωc to 1/15 r/s for a required
completion time of 160 s with γ = 0.9, and requiring a phase
margin of 40◦. The accomplishment dynamics is modelled
in the continuous time, i.e., as per (1). The obtained results
are in Figure 7.

Qualitatively, tracking and recovery from a transient goal
infeasibility (the PI has an antiwindup mechanism that we did
not discuss for brevity) are good. Most important, the goal
is attained with a quite long timestep. The incurred cost is

0

D

a◦c(t)
ac(t)

0

rmax
r(k)

0 20 40 60 80 100 120 140 160
0

0.5

1

time (s)

η(t)

Fig. 7: Simulation example 1: a◦ versus a viewed in the
continuous time (top), resources allotted at control steps
(centre) and time-varying efficiency (bottom).

some oscillations of the control signal, but such a behaviour
is well tolerable when allotting computational resources, and
paid back in terms of not too frequent invocations of the
controller, to the advantage of processing time left to the
applications.

0

D

a◦c(t)
ac(t)

0

rmax
r(k)

0 20 40 60 80 100 120 140 160
0

0.5

1

time (s)

η(t)

Fig. 8: Simulation example 2: figure organised in the same
way as Figure 7.

The second example – shown in Figure 8 – is analogous,
but the efficiency disturbance is sufficient to provoke a delay
of the attainment of the final goal with respect to γτDL.
Notice that also in this case the control signal behaves in
a sane manner, despite the deadline was approached, and
possibly hit if the disturbance were harsher. Trivial as it may
seem, this is a major advantage of using feedback control in
the place of heuristics, that can produce unpredictable results
if moved off enough from their design hypotheses [3].

Also in this case, as in many others, satisfactory results

3177

are obtained with control timesteps that are long if compared
to the typical time scales of thread scheduling, but short
indeed if compared to actuation schemes based on virtual
machines. The proposed technique is therefore very keen
to be exploited in conjunction with modern container-based
resource allocators, lending itself to the advantages described
in [24].

V. EXTENSIONS AND CONCLUSIONS

We have presented a standard control scheme for applica-
tion progress control, easy to integrate into wider-scale re-
source and performance managers. The absence of heuristics
and the self-calibration capability make this scheme useful
to relief high-level decision mechanisms form the burden of
managing disturbances that are local to the controlled appli-
cations. Given the wide variety of heterogeneous approaches
already used for this purpose, we believe that standardisation
itself in this context is a step forward.

Stability was proven and performance assessed (in sim-
ulation) for the single application case, while the multiple
application one is to be studied. In this respect, plans are to
exploit the fact that unless a resource constraint is hit, the
controlled system is decoupled. The inherently decentralised
nature of the proposed solution makes therefore intervention
necessary only in the case of a contention, and the simplicity
of the feedback loop should allow for simple mechanisms—
possibly suboptimal, but fast enough to be applicable in
situations where milliseconds are precious.

Another extension is to realise the controller in an
event-based manner, allowing the application to monitor its
progress, but call for a new control only in the case this
deviates too much from the expected behaviour. Again, the
proposed control structure is not difficult to split into local
event generators, one per application, and either one allocator
per application as well, or a single central one, or any
combination thereof.

REFERENCES

[1] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of
a reservation-based feedback scheduler,” in 23rd IEEE Real-Time
Systems Symposium (RTSS), 2002, pp. 71–80.

[2] G. Buttazzo and L. Abeni, “Adaptive rate control through elastic
scheduling,” in 39th IEEE Conference on Decision and Control,
vol. 5, 2000, pp. 4883–4888.

[3] A. V. Papadopoulos, M. Maggio, A. Leva, and E. Bini, “Hard real-
time guarantees in feedback-based resource reservations,” Real-Time
Systems, vol. 51, no. 3, pp. 221–246, 2015.

[4] M. Thammawichai and E. C. Kerrigan, “Feedback scheduling for
energy-efficient real-time homogeneous multiprocessor systems,” in
IEEE 55th Conference on Decision and Control (CDC), 2016,
pp. 1643–1648.

[5] E. Bini, “Adaptive fair scheduler: Fairness in presence of distur-
bances,” in 24th International Conference on Real-Time Networks
and Systems (RTNS), 2016, pp. 129–138.

[6] A. Leva et al., “High-precision low-power wireless nodes’ synchro-
nization via decentralized control,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 4, pp. 1279–1293, 2016.

[7] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in 36th
International Conference on Software Engineering, ser. ICSE 2014,
2014, pp. 299–310.

[8] M. Maggio et al., “Self-adaptation for individual self-aware comput-
ing systems,” in Self-Aware Computing Systems, S. Kounev, J. O.
Kephart, A. Milenkoski, and X. Zhu, Eds., 2017, pp. 375–399.

[9] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann, “Auto-
mated control of multiple software goals using multiple actuators,” in
11th Joint Meeting of the european Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2017, pp. 373–384.

[10] G. A. Moreno et al., “Comparing model-based predictive approaches
to self-adaptation: CobRA and PLA,” in 12th International Sym-
posium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2017, pp. 42–53.

[11] J. O. Kephart and D. M. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[12] E. Bini et al., “Resource management on multicore systems: The
actors approach,” IEEE Micro, vol. 31, no. 3, pp. 72–81, 2011.

[13] A. Leva, A. V. Papadopoulos, and M. Maggio, “A general control-
theoretical methodology for runtime resource allocation in computing
systems,” in 52nd IEEE Conference on Decision and Control, 2013,
pp. 3487–3492.

[14] M. Maggio et al., “Power optimization in embedded systems via
feedback control of resource allocation,” IEEE Transactions on
Control Systems Technology, vol. 21, no. 1, pp. 239–246, 2013.

[15] P. Padala et al., “Adaptive control of virtualized resources in utility
computing environments,” in 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems, 2007, pp. 289–302.

[16] M. Gaggero and L. Caviglione, “Predictive control for energy-aware
consolidation in cloud datacenters,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 2, pp. 461–474, 2016.

[17] A. V. Papadopoulos and M. Maggio, “Virtual machine migration in
cloud infrastructures: Problem formalization and policies proposal,”
in 54th IEEE Conference on Decision and Control (CDC), 2015,
pp. 6698–6705.

[18] S. Cerf et al., “Cost function based event triggered model predictive
controllers application to big data cloud services,” in IEEE 55th
Conference on Decision and Control (CDC), 2016, pp. 1657–1662.

[19] J. Dürango et al., “Control-theoretical load-balancing for cloud
applications with brownout,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 5320–5327.

[20] A. Leva and A. V. Papadopoulos, “Modelling and control of big data
frameworks,” in 20th IFAC World Congress, vol. 20, 2017.

[21] M. Kihl, A. Robertsson, M. Andersson, and B. Wittenmark,
“Control-theoretic analysis of admission control mechanisms for web
server systems,” World Wide Web, vol. 11, no. 1, pp. 93–116, 2008.

[22] M. A. Kjaer, M. Kihl, and A. Robertsson, “Response-time control
of a single server queue,” in 46th IEEE Conference on Decision and
Control, 2007, pp. 3812–3817.

[23] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[24] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-
time feedback controller for containerized cloud applications,” in
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2016, pp. 217–228.

[25] H. Hoffmann et al., “Application heartbeats: A generic interface for
specifying program performance and goals in autonomous comput-
ing environments,” in 7th IEEE/ACM International Conference on
Autonomic Computing and Communications, 2010, pp. 79–88.

[26] M. Maggio et al., “Comparison of decision making strategies for
self-optimization in autonomic computing systems,” ACM Trans. on
Autonomous and Adaptive Systems, vol. 7, no. 4, 36:1–36:32, 2012.

[27] J. Yun, J. Park, and W. Baek, “Hars: A heterogeneity-aware runtime
system for self-adaptive multithreaded applications,” in 52nd Annual
Design Automation Conference, 2015, 107:1–107:6.

[28] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive
self-adaptation under uncertainty: A probabilistic model checking
approach,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE), 2015, pp. 1–12.

[29] F. Sironi et al., “Metronome: Operating system level performance
management via self-adaptive computing,” in 49th Design Automa-
tion Conference, 2012, pp. 856–865.

[30] M. Akar and K. Narendra, “On the existence of a common quadratic
Lyapunov function for two stable second order LTI discrete-time
systems,” in American Control Conference, 2001, pp. 2572–2577.

3178

