
Timing Verification of Component-based Vehicle Software
with Rubus-ICE: End-user’s Experience

Saad Mubeen1, Mattias Gålnander2, Alessio Bucaioni2, John Lundbäck2, Kurt-Lennart Lundbäck2
1Mälardalen University, Sweden

2Arcticus Systems, Sweden
1saad.mubeen@mdh.se

2{mattias.galnander, alessio.bucaioni, john.lundback, kurt.lundback}@arcticus-systems.com

ABSTRACT
This paper discusses an end-user’s experiences of utilizing timing
analysis tools to verify predictability of distributed embedded sys-
tems in the vehicle industry. The analysis tools are plug-ins for an
industrial tool suite, namely Rubus-ICE, that is based on the prin-
ciples of model-based engineering (MBE) and component-based
software engineering (CBSE). These plug-ins implement various
state-of-the-art timing analyses including response-time analysis
and end-to-end data-path analysis. The experiences discussed in
this paper provide a useful feedback in terms of usability and valid-
ity of assumptions to the tools provider as well as to the academia.
CCS CONCEPTS
• Computer systems organization→ Embedded software ;
KEYWORDS
Automotive software, End-to-end timing analysis, CBSE, MBE.

1 INTRODUCTION
The continuous increase in size and complexity of vehicle software
(SW) makes its development more and more challenging. The com-
ponent models and tools that are based on MBE [5] and CBSE [3]
are proving effective in dealing with the SW complexity, e.g., AU-
TOSAR [2], Rubus Component Model (RCM) [4] and Rubus-ICE
(Integrated Component development Environment) [8]. In addi-
tion to the SW complexity, many vehicular embedded systems are
required to be predictable, i.e., all actions by the systems are per-
formed in a timely manner such that all timing requirements are
satisfied [9]. Hence, pre-runtime verification of predictable timing
behavior is another challenge that is faced by the system providers.
One way to deal with this challenge is to integrate schedulability
analysis [1, 8] with the SW development tools to allow timing ver-
ification at higher abstraction levels, e.g., at the level where the
SW architecture is developed without any knowledge of low-level
implementation details. Within the context of the above discussion,
this paper considers a component model and its tool chain, namely
RCM and Rubus-ICE respectively. The Rubus concepts, models and
tools have been developed and evolved in a close collaboration
between academia and industry over the last three decades [7]. The
models and tools have been used for model- and component-based
SW development of predictable, timing analyzable and synthesiz-
able embedded systems in the vehicle industry for over 20 years.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SQUADE’18:, May 28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5737-1/18/05.
https://doi.org/10.1145/3194095.3194103

Various features supported by Rubus are depicted in Fig. 1. Some
of the notable models and tools supported by Rubus are as follows.
• Component Model and Designer Tool: The Rubus designer, based
on RCM, supports graphical modeling of SW architecture by in-
terconnecting reusable SW components (SWCs). It also allows for
modeling and specifying timing information on the architecture.

• Analysis Framework: The Rubus analysis framework support
model-based analysis of the SW architecture at various abstrac-
tion levels. It helps in mitigating late, costly and time-consuming
testing efforts. The analyses include response-time and end-to-
end data-path analyses of distributed embedded systems [8].

• Automatic Code Generator: This tool supports automatic code
generation of run-time environment. Behavioral code can be
generated, thanks to the integration with Simulink.

• Rubus Real-time Operating System (RTOS): A system developed
using RCM can be executed on a variety of processors and RTOSs.
Rubus provides a support for an ISO26262 compliant RTOS, which
allows both time- and event-triggered execution.

• Simulation and Testing Tools: These tools support model-in-the-
loop testing at various levels (from unit testing to system testing)
and simulation in various host environments.

Simulation & Testing

Simulation in various
environments and
testing at various levels

Modeling of
Embedded Software
The software and its timing
properties and constraints
are graphically modelled

Timing
Analysis

The vehicular
software is verified

by model-based
pre-runtime

timing analysis

Automatic
code synthesis

Automatic code
generation for the timing
verified application for
the target environment.

Figure 1: Various features supported by Rubus-ICE.

2 END-USER’S EXPERIENCES
This section provides the experiences of an end-user from the con-
struction vehicles domain regarding the usability, correctness, reli-
ability and effectiveness of Rubus tools.

Usability. Ease of use of the SW development tools is an im-
portant requirement from the end-user. RCM and Rubus tools have
evolved as a result of long-term collaboration among academia,
tools developer and end-users. Usability is one of the properties
that has improved quite significantly as a result of the collaboration.

https://doi.org/10.1145/3194095.3194103

SQUADE’18:, May 28, 2018, Gothenburg, Sweden S. Mubeen et al.

The average end-user of Rubus-ICE is only aware of the compo-
nent model, its modeling concepts and features of the designer tool.
Further, the end-user is abstracted from algorithms and implementa-
tion details of the analysis plug-ins to maximize the usability and to
minimize/mitigate the problems faced by inexperienced engineers.

Early detection of timing issues. The end-user considers the
pre-runtime formal analysis (integrated to the component model) to
be the real strength as it allows to detect timing issues (e.g., response
times and delays not meeting the specified timing requirements).
These issues can not be detected with testing as the exhaustive
testing is not viable with respect to cost and time to market.

Speed of timing analysis. The speed of finding the analysis
results carries high importance for the end-user. Due to iterative
nature, many timing analyses can take large times (e.g., hours) to
provide the results [8], which may not be feasible in practice. Gener-
ally, there are three different ways to deal with this challenge. First,
make the analysis faster by using approximate functions instead of
exact functions, e.g., [6]. This method can provide the analysis re-
sults faster but at the cost of over-estimation or pessimism. Second,
make the analysis faster by using detailed knowledge of the RTOS
to avoid analysis of the cases that cannot happen, e.g., considering
the effect of exact schedule in the analysis. Third, optimize the im-
plementation of the analysis. Note that Rubus-ICE uses the second
and third methods to speed up the time to perform the analysis.

Academic assumptions vs industrial settings. The timing
analysis implemented in the tools [8] considers worst-case as-
sumptions and accounts for worst-case scenarios. As a result, the
calculated response times and delays can be pessimistic (or over-
approximated). One could argue that the worst-case scenario con-
sidered in the analysis might not occur in reality or may occur very
rarely. Thus, a system designed based on the worst-case timing
analysis can greatly under-utilize the system resources. We argue,
based on the experiences of the end-users of the tools, that the
worst-case scenario can be observed in reality more often than it
is perceived. Consider an example of a two-node distributed em-
bedded system shown in Fig. 2. Each node contains one task (a
task corresponds to a SWC at runtime), which is activated inde-
pendently with a period of 10 time units. The nodes are connected
by a Controller Area Network (CAN), which is one of most widely
used in-vehicle networks. Task τ1 in Node1 sends a messagem1
to τ2 in Node2. One of the worst-case assumptions used by the
state-of-the art timing analysis is concerned with the time at which
the receiving task (τ2) is activated to read the received message
(m1). Consider three different cases in Fig. 2. In case (a), τ1 and τ2
are activated at the same time in their respective nodes.m1 arrives
at Node2 at time 5; however, τ2 is able to read m1 only upon its
activation at time 10. The Age delay from τ1 to τ2 is identified in
Fig. 2. In case (b), τ2 is activated as soon as m1 arrives at node2.
This results in a shorter Age delay compared to case (a). In case
(c), it is assumed that τ2 is activated just before the arrival ofm1 at
Node2. Hence, the first instance of τ2 just misses the read access
ofm1, which is later read by the second instance of τ2, resulting in
the largest Age delay among all cases. Case (c) corresponds to one
of the worst-case assumptions used by the timing analysis tools.
The end-user experienced that the worst-case scenario and near
worst-case scenarios can often occur due to event-driven network
communication, nodes lacking synchronization and clock drifts in
nodes. Hence, the worst-case assumptions must be considered by
the analysis tools for timing verification of safety-critical vehicular
embedded, even at the cost of under-utilization of system resources.

Interoperability. There is a plethora of modeling, analysis and
test tools that are used during the SW development of vehicular
embedded systems. The end-user often demands interoperability
among various tools provided by different vendors. It is challenging
to provide a seamless tool chain due to incompatible abstractions,
semantic gaps, and non-standard exchange formats. The tools inte-
gration often comes at the cost of relaxed semantics and restrictions.

Guidelines for good design. The main challenge for the in-
experienced end-users is how to develop good SW that satisfies
the specified timing requirements. The end-user can develop bad
models by misusing even efficient tools. Providing such guidelines
(influenced by the timing analysis tools) to the end-user is a difficult
challenge faced by the tool providers and academia. Solving this
challenge can be very helpful and cost effective for the end-users.

!"
#"

2520151050

CAN

!$

No
de

2

Case (a)

No
de

1
Case (b)!$

Age Delay Case (c)

!$
Age Delay

Age Delay

Time at which #"is received at Node2

Case (a)

Case (b)

Case (c)

Case (a)

Case (b)

Case (c)

Case (a)

Case (b)

Case (c)

Task !% is triggered
for execution

Assumption: a task
corresponds to a software
component at runtime

Data paths

CAN: Controller Area
Network

#": message

Task execution/
Message transmission

Figure 2: Effect of different assumptions on delays.

3 SUMMARY AND CONCLUSION
This paper discussed the experiences, needs and challenges that are
faced by the end-user of the Rubus Component Model (RCM) and
its tool chain Rubus-ICE, which are used for the SW development of
predictable vehcular embedded systems. The paper also provided an
insight into the importance of various aspects in the industry that
include usability, early detection of timing errors, speed of timing
analysis tools, relevance of the worst-case assumptions behind the
timing analysis tools, interoperability and guidelines to design good
models of predictable vehicular embedded systems.
Acknowledgment The work in this paper is partly supported by
the Swedish Knowledge Foundation (KKS) via the PreVeiw project.

REFERENCES
[1] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings. 1995. Fixed priority

pre-emptive scheduling: an historic perspective. Real-Time Sys. 8, 2/3 (1995).
[2] AUTOSAR Tech. Overview. 2013. rel.4.1, rev.2, ver.1.1.0., http://autosar.org. (2013).
[3] Ivica Crnkovic and Magnus Larsson. 2002. Building Reliable Component-Based

Software Systems. Artech House, Inc., Norwood, MA, USA.
[4] K. Hänninen et.al. 2008. The Rubus Component Model for Resource Constrained

Real-Time Systems. In IEEE SIES.
[5] Thomas A. Henzinger and Joseph Sifakis. 2006. The Embedded Systems Design

Challenge. In 14th International Symposium on Formal Methods. Springer, 1–15.
[6] J. Maki-Turja and M. Nolin. 2005. Fast and tight response-times for tasks with

offsets. In 17th Euromicro Conference on Real-Time Systems. 127–136.
[7] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K. L. Lundbäck. 2017.

Provisioning of Predictable Embedded Software in the Vehicle Industry: The
Rubus Approach. In IEEE/ACM 4th International Workshop on Software Engineering
Research and Industrial Practice. 3–9. https://doi.org/10.1109/SER-IP.2017..1

[8] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. 2013. Support for End-to-End
Response-Time and Delay Analysis in the Industrial Tool Suite: Issues, Experiences
and a Case Study. Computer Science and Information Systems 10, 1 (2013).

[9] John A. Stankovic and Krithi Ramamritham. 1990. What is predictability for
real-time systems? Real-Time Systems 2, 4 (01 Nov 1990), 247–254.

https://doi.org/10.1109/SER-IP.2017..1

	Abstract
	1 Introduction
	2 End-user's Experiences
	3 Summary and Conclusion
	References

