
Tool-Supported Safety-Relevant Component
Reuse: From Specification to Argumentation

Irfan Sljivo1�, Barbara Gallina1, Jan Carlson1, Hans Hansson1, and Stefano
Puri2

1 Mälardalen University, Väster̊as, Sweden
{irfan.sljivo, barbara.gallina, jan.carlson, hans.hansson}@mdh.se

2 Intecs, SpA, Pisa, Italy
stefano.puri@intecs.it

Abstract. Contracts are envisaged to support compositional verifica-
tion of a system as well as reuse and independent development of their im-
plementations. But reuse of safety-relevant components in safety-critical
systems needs to cover more than just the implementations. As many
safety-relevant artefacts related to the component as possible should be
reused together with the implementation to assist the integrator in as-
suring that the system they are developing is acceptably safe. Further-
more, the reused assurance information related to the contracts should
be structured clearly to communicate the confidence in the component.
In this work we present a tool-supported methodology for contract-driven
assurance and reuse. We define the variability on the contract level in the
scope of a trace-based approach to contract-based design. With aware-
ness of the hierarchical nature of systems subject to compositional ver-
ification, we propose assurance patterns for arguing confidence in sat-
isfaction of requirements and contracts. We present an implementation
extending the AMASS platform to support automated instantiation of
the proposed patterns, and evaluate its adequacy for assurance and reuse
in a real-world case study.

1 Introduction

Software-intensive systems are rarely developed from scratch. Instead, compo-
nents developed previously are reused for building new systems [1]. The same
trend is visible in safety-critical systems, which usually need to be assured that
they are acceptably safe to be deployed. The assurance entails gathering a body
of evidence in form of a safety assurance case to communicate that any unreason-
able risk in the system has been mitigated. Due to this, reuse of components in
such systems is not complete without the reuse of assurance information associ-
ated with the component. While reuse of safety-related components is very much
present in safety-critical systems development, the lack of systematic approaches
to managing reuse of both components and their accompanying assurance infor-
mation has shown to be dangerous in the past [2].

To address the issue of reuse in safety-critical systems, some reuse principles
have been promoted through the safety standards. For example, the automotive



functional safety standard ISO 26262 [3] with its concept of Safety Element out-
of-Context (SEooC) for reuse of components together with the related safety
assurance information. It promotes principles that should be followed to begin
the assurance process on the level of the SEooC, which is being developed in-
dependently from the system in which it will be used. The purpose of the early
start of the assurance process is to support the integrator of the SEooC in assur-
ing their system according to the standard. Ideally, if all suppliers would provide
their components as SEooC, the integrator should have an easier job of assuring
that the integrated system is acceptably safe. The core aspect of SEooC devel-
opment are assumptions on the context in which the SEooC component could be
reused, such that their validation upon reuse establishes whether the component
and the related assurance information is reusable in the particular context.

To support SEooC development and reuse, we have proposed to use assump-
tion/guarantee component contracts in our previous work [4]. A contract is a pair
of assertions called assumptions and guarantees, where the component guaran-
tees a certain behaviour, given that the environment in which it is deployed
fulfils the assumptions [5]. Such contracts provide a systematic way to capture
the context assumptions and relate them with the properties that the SEooC
component implements. We have proposed to relate contracts with the assurance
information [4] and support contract-driven assurance by automating the gen-
eration of assurance argument-fragments on satisfaction of both such contracts
and the system requirements that can be validated via those contracts.

Reusable components such as SEooC are often characterised with parameters
that are used to tailor the behaviour of the component in the different settings
in which the component is reused. To address such need for variability at the
contract level, we have made a distinction between strong and weak contracts [6].
On the one hand, the strong contracts are those whose assumptions should be
met by every context in which the component is reused, hence its guarantees
are always offered by the component. On the other hand, the weak contract as-
sumptions do not need to be satisfied by every context in which the component
is reused, but when they are met, only then the component offers the corre-
sponding weak guarantees. This variability on the contract level can be used to
identify which assumed safety requirements offered by the SEooC component
are relevant in the system in which the SEooC is reused. Hence, the safety case
information related to those requirements and contracts can also be identified
for reuse. To set the ground for tool support, we have proposed a generic SEooC
MetaModel (SEooCMM) that defines relationships between SEooC components,
contracts, requirements and assurance assets [4]. The basic elements needed for
the tool support are a system modelling tool compliant with the SEooCMM, a
contract checking engine, and a safety case modelling tool.

In this paper we present our efforts to provide tool-support for contract-based
design that incorporates strong and weak contracts as well as the automated gen-
eration of assurance arguments. We turn to the AMASS1 platform for our imple-

1 AMASS - Architecture-driven, Multi-concern and Seamless Assurance and Certifi-
cation of Cyber-Physical Systems, https://amass-ecsel.eu/



mentation as it includes the needed tools for system modelling (CHESS2), con-
tract checking (OCRA3) and safety assurance case modelling (OpenCert4). Two
challenges arise when using the AMASS platform for contract-driven reuse and
assurance: (1) the contract-based design framework [7] implemented in OCRA
does not distinguish between the strong and weak contracts; (2) the connection
between the system and assurance modelling domains is not clearly defined. To
address the first challenge, we define the strong and weak contracts in the scope
of the contract-based framework implemented in OCRA. Moreover, we present
how refinement checking can be adapted to support strong and weak contracts
through the interaction of CHESS and OCRA. To address the second challenge,
we first identify the information needed to perform contract-driven assurance and
extend CHESS to allow for its modelling. We structure that information by ex-
tending the argument pattern for assurance of contract satisfaction to account for
the hierarchical component decomposition defined through the notion of refine-
ment. Then, we develop a transformation from the system model to the assurance
model that automatically instantiates the defined argument-fragment for each
component in the system. Finally, we validate the tool-supported contract-based
assurance and reuse methodology in a real-world case study.

As assurance cases are gaining popularity, there is an increasing number
of tools supporting their development with particular focus on automation ca-
pabilities. For example, Safety.Lab [8] focuses on model-based safety analy-
sis and generates an argument structure from rich models of various safety-
relevant artefacts. The Eclipse-based Resolute tool [9] facilitates generating as-
surance arguments from architectural models. The Evidence Confidence Assessor
(EviCA) [10] is a diagramming tool that supports automated generation of con-
fidence arguments related to manually created arguments. The AdvoCATE [11]
toolset includes a variety of automated features for assurance case creation and
analysis. AdvoCATE automates instantiation of pre-developed argumentation
pattern from a hazard and safety requirement analysis. While we also automat-
ically instantiate a pre-developed pattern, we do so from architectural models
enriched with assumption/guarantee contracts coupled with safety-relevant arte-
facts. This allows us to filter the relevant artefacts and provide additional support
for reuse and tailoring of context-specific automated argument generation.

The rest of the paper is organised as follows: In Section 2, we present some
background information. We present the tool-supported methodology for contract-
driven assurance and reuse in Section 3. In Section 4, we present our case study.
Finally, we bring conclusions and indicate future work in Section 5.

2 Background

In this section we first present the tools and concepts we build upon, and then
we present the system description of the considered case study.

2 https://www.polarsys.org/chess
3 https://ocra.fbk.eu/
4 https://www.polarsys.org/projects/polarsys.opencert



OCRA 

Othello 
System 

Specification 

Contract 
checking 
results 

Argumentation 
editor 

CDO 
Server 

CHESS Model 

OCRA 
verification 

engine 

Fig. 1. The overview of the tool information flow

2.1 AMASS Platform

The AMASS platform encompasses different tools, but we focus on the three
tools that facilitate system modelling (CHESS), formal verification of assumption
guarantee contracts (OCRA), and assurance case modelling (OpenCert). An
overview of the three tools is shown in Fig. 1. In the reminder of the section, we
present the tools together with their underlying theoretical concepts.

System Modelling: CHESS provides an editor to model all phases of system
development: from requirements definition, architecture modelling to software
design and its deployment to hardware. In the CHESS toolset, components can
be modelled as component types or component instances. Component types can
be seen as elements out of context, and component instances as the in-context
representation of the corresponding component types. Component instances in-
herit the attributes of the corresponding component type. System modelling
in CHESS includes support for contract-based design, which relies on describ-
ing behaviours of components in terms of contracts. CHESS supports modelling
of both strong and weak contracts and their association with components and
system requirements. Moreover, delegationConstraint modelling element can be
used to instantiate a component parameter in the given system model. Further-
more, CHESS facilitates interfacing with OCRA, such that the CHESS model
together with the contracts is exported in the Othello System Specification (OSS)
format used by OCRA. The contract checking is done by OCRA and the result
is back-propagated to the CHESS model, as shown in Fig. 1.

Contract-Based Design: OCRA [7] is a tool for compositional verification of
logic-based contract refinement built upon the OSS language, supporting a trace-
based approach to contract based design. The semantics of both components and
contracts is built around the notion of a trace, i.e., the observable part of an ex-
ecution of a component. Following the trace-based semantics, a component S is
described with a set VS of variables that are visible outside of the component,
and a set of all traces over VS is denoted as Tr(VS). Then, an environment of
S is a subset of Tr(VS). Assuming an assertion language, an assertion A can
be described by an associated set of ports VA and a semantics JAK defined as



a subset of Tr(VA). Building on top of the assertion language, a contract C=
(A,G) of the component S is a pair of assertions namely assumptions (A) and
guarantees (G) over VS . An environment E is said to be a correct environment of
C iff E ⊆ JAK. Contract refinement represents the backbone of checking the com-
ponent decomposition [7]. Informally, a set of contracts of the sub-components
refines a contract of the composite component if: (i) the assumptions of all sub-
component contracts are met by the other sub-components and the environment
defined by the assumptions of the composite component contract; and (ii) the
sub-component contracts deployed in the environment defined by the compos-
ite contract assumptions imply the composite contract guarantees. For a formal
definition of the refinement refer to [7].

Safety Case Modelling: A safety assurance case is often defined as an ex-
plained and well-founded (supported by evidence) structured argument to show
that the system is acceptably safe to operate in a given context [12]. It is often
required (explicitly or implicitly) by safety standards such as ISO 26262. Safety
case is composed of all the work products gathered during the development of a
safety-critical system. The spine of a safety case is a safety argument which con-
nects the safety requirements and the evidence supporting and justifying those
requirements. Goal Structuring Notation (GSN) [12] is a graphical argumenta-
tion notation used for safety case modelling. Since similar rationales exist behind
specific arguments in different contexts, argument patterns of reusable reason-
ing are defined by generalising the specific details of an argument. The basic
elements of GSN are shown in Fig. 3, for more details we refer the reader to the
GSN Standard document [12]. To provide a better portability and exchange of
the safety arguments, a Structured Assurance Case Meta-model (SACM) [13]
standard is developed by Object Management Group. Since SACM captures the
basic argumentation elements and their relationships, it can be used to instanti-
ate different compliant meta-models for different argumentation notations such
as GSN and Claims-Arguments-Evidence (CAE).

OpenCert is an assurance and certification tool environment with a safety ar-
gumentation modelling editor compliant with the standardised SACM. It further
includes a Connected Data Objects5 (CDO) server that supports collaborative
modelling. In particular, it stores the safety case models in a database on a CDO
server such that different distributed clients can access the models and work on
the same safety case concurrently.

2.2 The Motivating Case

In this paper we will use a wheel-loader use case [4] to validate our approach.
Wheel-loaders are usually equipped with a loading arm, which can perform up
and down movements. The Loading Arm Control Unit (LACU) is the software
control unit that coordinates the arm movement. The LACU architecture mod-
elled in CHESS is shown in Fig. 2. It consist of a component providing the current

5 https://www.eclipse.org/cdo/



Fig. 2. The CHESS diagram of the LACU architecture

arm position, and an arm controller which sends the arm movement command.
Moreover, it includes the Loading Arm Automatic Positioning (LAAP) compo-
nent which can automatically move the arm to a pre-defined position. In this
particular LACU the position is fixed (whereas it in other cases can be modified
by the operator), while the maximum ground speed of the vehicle is 70km/h and
the speed limit for moving the arm is 20 km/h, as shown in Fig. 2. The LAAP
component is developed independently of this system as a SEooC.

The LACU safety analysis revealed the following system hazards: (1) unin-
tended arm movement, and (2) arm movement during high speed (i.e., when the
maximum speed of is greater than the ground speed limit). Some of the safety
requirements defined to minimise the risks of those hazards from occurring are
SR1:“The stop position of the loading arm shall not deviate more than +-0.04
rad” and SR2:“The loading arm shall be disabled during high speed”.

3 Contract-Driven Assurance and Reuse

In this section, we present the methodology for supporting contract-driven as-
surance and reuse of safety relevant components. We first describe how to assure
safety requirements validated through contract-based design. Then, we focus on
the support for the contract-driven reuse of the components and their assurance
information in the context of a trace-based approach to contract-based design.

3.1 Contract-Driven Assurance

To assure that a system such as LACU satisfies a given safety requirement based
on the related contract, we need to provide evidence that the contract correctly
represents the requirement (often said that its guarantees formalise the require-
ment) and evidence that the contract is satisfied with sufficient confidence in the
given system context. We refer to this argument strategy as the contract-based
requirements satisfaction pattern, shown in Fig. 3.



contracts
The list of {component} contracts 

formalizing {requirement}: 
{contractList}

reqConf
{requirement} is satisfied with sufficient confidence

reqImplementation
{requirement} is correctly formalized 
by the related {component} contracts

contConf
The set of {component} contracts 
formalizing {requirement} are satisfied 
with sufficient confidence

Goal Strategy ContextSolution Undeveloped Element SupportedBy InContextOfUninstantiated element Away Goal

The basic GSN 
symbols legend

Fig. 3. Contract-driven requirement satisfaction assurance argument pattern

While compositional verification of a system using contracts establishes va-
lidity of a particular requirement on the system model in terms of contracts,
confidence that the system implementation actually behaves according to the
contracts should also be assured. Hence, to drive the system assurance using
contracts we have associated assurance assets with each contract. Those assets
can be different kinds of evidence that increase confidence that the component
(i.e., the implementation of the contracts) behaves according to the contract, i.e.,
that the component deployed in any environment that satisfies the contract as-
sumptions exhibits the behaviours specified in the corresponding contract guar-
antees. To argue that a contract is satisfied with sufficient confidence we need
to assure that the component actually behaves according to the contract, and
that the environment in which the component is deployed satisfies the contract
assumptions [14]. But when we deal with hierarchical systems where contracts
are defined on each hierarchical level with well defined decomposition condi-
tions, then to argue that the composite component behaves according to the
contract, we should explicitly argue over the component decomposition. The
argument-pattern in Fig. 4 presents an extended contract-satisfaction argument
pattern [14] with contract decomposition.

The extension assures that for each of the contracts on the composite com-
ponent level (e.g., LACU) related to the requirement we are assuring, we should
ensure that we have confidence in the component decomposition described by
the refinement relationship (the contractDecomp goal). The goal is decomposed
such that we argue over confidence in all subcomponent contracts specified
through the refinement relationship. While the contractDecomp goal assures that
what the component offers is supported by the confidence in the internal sub-
component specification, the contractAssume goal assures that the environment
of the component/system meets the relevant assumptions.

3.2 Contract-Driven Reuse of Safety-Relevant Components

Reuse is intrinsic to contract-based design. It enables checking if a component
can be reused in a particular system, i.e., whether the system meets its demands
and whether the component meets the demands of the system. The support
for reuse in contract-based design has been mainly focused on components (i.e.,



contractDesc
{informal description of contract}

contractConfidence
{contract} is satisfied with sufficient confidence

contractDec
The list of contracts refining 

{contract}: {contractRefinedBy} 

contractDecomp
{contract} decomposition 
is correct

contractReq
The contract formalizes {requirement}

Away Goal
The contractN is satisfied 
with sufficient confidence

ComponentN Module
Contract N of 

sub-component N

DC-Str
Argument over all sub-component 

contracts refining {contract}

contractComplete
{contract} is sufficiently complete

contractAssume
{contract} assumptions are 
satisfied with sufficient confidence

Fig. 4. Contract satisfaction assurance argument pattern

implementations of contracts) and not reusable components as implementations
of a set of contracts for different environments that may or may not be satisfiable
together. As mentioned in Section 1, we refer to contracts that are not required
to be satisfied by all correct environments as weak contracts. Conversely, the
strong contracts define all the correct environments, i.e., all correct environments
need to comply with all the strong contracts, while typically only some correct
environments need to comply with a particular weak contract.

We formally describe the strong and week contracts in terms of environ-
ments in the context of the trace-based contract framework [7]: for a compo-
nent S described with a set of strong contracts ξS(S) and a set of weak con-
tracts ξW (S), we say that an environment E is a correct environment of S if:
∀(A,G) ∈ ξS(S), E ⊆ JAK, i.e., for an environment of S to be correct, it must sat-
isfy the assumptions of all the strong contract of S. We denote with E(S) all the
correct environments of S. Such correct environments may or may not satisfy the
assumptions of the weak contracts of S. While this provides some flexibility in
specification of contracts, it may also mean that some weak contracts may never
be validated in any of the correct environments e.g., if a weak contract is contra-
dicting a strong contract. For S not to contain such unnecessary weak contracts
we require that each weak contract of S has at least one correct environment
that satisfies its assumptions, i.e.,: ∀(A,G) ∈ ξW (S),∃E ∈ E(S), E ⊆ JAK.

The problem with specifying such contracts is that if we try to check refine-
ment by considering all the specified weak contracts, the check will fail since a
single environment might not be able to meet the assumptions of all the weak
contracts. To overcome this problem without redefining the notion of contract
refinement, we can either (i) filter the weak contracts before checking the refine-
ment, such that only weak contracts whose assumptions are met by the current
environment are included in the refinement check; or (ii) transform the weak
contracts in a different format such that refinement can be performed:

Weak Contract Filtering: While a SEooC is described with sets of both
strong and weak contracts, when instantiated to a particular correct environ-
ment E then, for the purpose of refinement check, it is enough to describe the
SEooC instantiation with a subset of contracts that are applicable in the envi-
ronment E. Given a SEooC component S and its instantiation S′ in a correct



environment E ∈ E(S), the set of contracts of S′ denoted with ξ(S′), which
contains the contracts considered during refinement check, is a union of all the
strong contracts from ξS(S) and only those weak contracts from ξW (S) whose
assumptions are satisfied by the environment E.

Weak Contract Transformation: Instead of filtering only some weak con-
tract to perform the refinement check, the refinement check could be performed
if the weak contracts are transformed such that they do not impose restrictions
on the environment. This can be done if the weak contract assumptions are re-
laxed. For a weak contract C = (A,G) of a component S, a relaxed counterpart
of this weak contract would be C ′ = (true;A =⇒ G), where true represents
an assertion satisfied by all environments. The relaxed counterpart has relaxed
assumptions, hence it differs from the corresponding weak contract in terms of
environments, but they are the same from the perspective of implementations.
Since the assumption of C ′ is satisfied by every correct environment of S, it
can be regarded as a strong contract. Since any contract that is refined by C is
also refined by C’, either form can be used for the sake of checking refinement
of a weak contract. If we have a set of weak contracts and we transform them
to their relaxed form and conjunct them to a single contract by conjunction of
their guarantees, then any contract that is refined by at least one of those weak
contracts is also refined by the conjuncted contract. The SEooC instantiation
in a particular context does not require contract filtering in this case, but the
in-context component can inherit both strong and weak contracts. Since the re-
finement check by considering all the strong and weak contracts would fail in
case of two weak contracts that do not share the same correct environments,
we transform the weak contracts to the appropriate format described as follows:
given a SEooC component S and its instantiation S′ in a correct environment
E ∈ E(S), the set of contracts of S′ denoted with ξ(S′), which contains the con-
tracts considered during refinement check, is a union of all the strong contracts
from ξS(S) and the conjuncted contract of all the weak contracts in their relaxed
form from ξW (S).

Although this approach allows all the contract specifications to be used for
checking the refinement, it does not reveal which weak contracts are relevant in
the environment E, i.e., assumptions of which weak contract are satisfied by E.
Not knowing which weak contract is relevant in the current environment means
that we do not know which weak contract and its assurance assets we should use
in the assurance case. For the sake of reuse we still need to check which weak
contracts are relevant in the environment E.

3.3 Tool Support

We build upon the synergy of the three tools presented in Section 2 and im-
plement the contract-driven assurance and reuse methodology by developing
new and upgrading the existing plugins within the tools. We extend CHESS
to support SEooCMM by adding the possibility to capture information about



assurance assets and their relation to the corresponding contracts. With OCRA
results back-propagated to the CHESS model, we perform automated weak con-
tract filtering for the component instances. Upon updating the CHESS model,
we then automatically instantiate the contract-driven assurance argumentation
patterns for each component in the CHESS model. The generated argumentation
is stored on a CDO server which can be accessed by any OpenCert argumenta-
tion editor connected to the CDO server. In the reminder of the section we detail
the implementation (available on the CHESS 6 and OpenCert7 repositories) of
refinement checking with strong and weak contracts as an extension of CHESS
and the automatic argument generation as an OpenCert plugin.

Refinement Checking With Strong and Weak Contracts: As mentioned
in Section 3.2, to use a contract checking engine such as OCRA, which does
not distinguish between strong and weak contracts, we can either support “weak
contract filtering” as a part of reusable component instantiation or weak contract
transformation to an appropriate format. We extend CHESS so that we can check
all the weak contract validity and automatically update the component instance
by indicating which weak contracts are valid in the given environment.

To fully support the presented methodology, we have also implemented the
second solution that includes all weak contracts in contract refinement checking.
The choice of which type of refinement with strong and weak contract to use is
up to the user, as it allows for different possibilities. When the users are manually
selecting which weak contracts they want in the given context, then they may
have to manually check which of them are relevant for their system. Conversely,
when the user selects to perform refinement check with all the weak contracts,
then if any of the weak contracts meet the system demands, the refinement will
be successful and the weak contracts applicable in the given context will be
automatically indicated without the need to manually select them. Our CHESS
extensions to support the contract-driven assurance and reuse are hosted in the
following CHESS plugins:

– org.polarsys.chess.contracts.transformations – contains model to text [15]
transformation for generating the .oss file representing the model;

– org.polarsys.chess.contracts.integration – contains interface for communicat-
ing with OCRA.

Automated Argument-Fragment Generation: To facilitate automated in-
stantiation of the contract-driven assurance pattern from Section 3, we imple-
ment the ArgumentGenerator plugin8 within OpenCert. The user is prompted to
select both the source CHESS model and the target assurance case in the CDO
repository. The plugin generates a set of argument-fragments from the source
CHESS model and stores them in the corresponding target assurance case in

6 https://git.polarsys.org/c/chess
7 https://git.polarsys.org/c/opencert
8 org.eclipse.opencert.chess.argumentGenerator



the CDO repository. The ArgumentGenerator assumes that the CHESS model
contains contract specifications and that the contract refinement check has been
performed such that the status of both strong and weak contracts is updated to
indicate if the contract is validated in the given context or not. The argument
generation creates an argument-fragment for each component. The connection
between different argument-fragments is done through away goals. The resulting
argument-fragments can be viewed in the target assurance case by anyone with
access to the CDO server from an OpenCert argumentation editor.

4 LACU Case Study

In this section, we present our case study with the objective to apply the tool-
supported contract-driven assurance and reuse methodology on a real-world case
and evaluate its adequacy for automated support of assurance and reuse of assur-
ance assets. We first present the failure propagation modelling in CHESS of the
LACU and its in-context components, as well as the reusable LAAP component.
Then, we discuss the contract checking results, and present the automatically
generated argument-fragments.

4.1 Failure Propagation Modelling

To analyse the satisfaction of the safety requirement SR1 mentioned in Sec-
tion 2.2, we model LACU with faults as different input/output ports of the
components. For example, we consider the deviation of +-0.04 rad from the stop
position to be a fault of the LACU arm positioning command represented by the
fault PWMFlow port. Hence, the goal of the contract corresponding to such an
interpretation of SR1 would be to guarantee that fault PWMFlow never occurs.
To guarantee such a property in the context of the LACU defined by the parame-
ters specified in Fig. 2, both one of the angle sensors and the ground speed sensor
need to provide correct values. Furthermore, the operator inputs LAAPRequest
and operatorControlLever should be fault free as well. This is captured in the
LACU fault propagation contract in Fig. 5. To ensure that the component de-
composition with respect to the fault propagation is done correctly, we define
fault propagation contracts on the sub components as well. Fig. 5 presents the
contracts for LACU, and its armPositioning and armController sub-components,
as these are the components modelled for the particular wheel-loader.

The contracts of LAAP as a reusable component are specified separately, as
they deal with not just this particular wheel-loader, but also other wheel-loaders
that may support dynamic automatic positioning or that may or may not be
able to move at high speed. We define four different weak contracts for the four
different environments based on the two aspects of the wheel-loaders: dynamic
automatic positioning and high-speed capability. In all environments the LAAP
depends on fault-free user input, hence all contracts have the same assumptions
considering fault free LAAPRequest and operatorControlLever. But on top of
those conditions, for LAAP to ensure it will not issue a faulty arm positioning



Fig. 5. The LACU strong contracts specified in CHESS

Fig. 6. LAAP fault propagation weak contracts specified in CHESS

command in each of the four environments it needs additional conditions to be
met, sometimes stronger and sometimes weaker. The LAAP weak contracts for
the four contexts modelled9 in CHESS are shown in Fig. 6. In particular, for the
LAAPFlow not to be faulty when the wheel-loader is capable of high speed and
has a static automatic positioning setpoint, the only additional assumption on
the environment is that the ground speed sensor is not faulty, as captured by the
LAAP fault propagation W1 contract. On the other hand, when in addition to
the high speed capability, the setpoint is dynamic, then the LAAP component
requires not only ground sensor to be fault free, but also the LAAP setpoint value
to be correct (the LAAP fault propagation W2 contract). Conversely, when the
vehicle is not capable of high-speed and when the setpoint is static, then LAAP
has no additional constraints (the LAAP fault propagation W3 contract). Fi-
nally, when the vehicle is not capable of high speed and the setpoint is not
static, then the only additional constraint is on the correctness of the LAAP
setpoint value (the LAAP fault propagation W4 contract).

4.2 LACU Assurance

To assure SR1 related to the fault propagation contracts of LACU, we first vali-
date the weak contracts and then perform a refinement check. The weak contract
validity check identifies that only the LAAP fault propagation W1 weak contract

9 The contract type information is attached to the component and not shown here.



Fig. 7. Preview of the LACU automatically generated argument-fragment in OpenCert

is valid in the given LACU context. Hence, only that contract is selected in the
LAAP component instance. The informal description of each of the contracts is
added to the CHESS model, as well as relations to the requirements. Once all
the information is saved in the CHESS model and the status of the contracts is
updated, we can proceed to automatically generate argument-fragments for each
component in the system. Fig. 7 shows the screenshot of the Opencert interface
presenting the result of the automatic instantiation of the contract-satisfaction
argument pattern (Fig. 4) based on the information from the CHESS model
of LACU. The list of automatically generated argument-fragment diagrams for
each LACU component is in the top-left corner of the OpenCert interface.

4.3 Discussion

Contract-based design inherently supports reuse of components in form of con-
tract implementations. But to fully understand the behaviour of a component
and its safety implications, the context in which that behaviour is exhibited
needs to be known. While component contracts represent a way of capturing a
part of that context, additional context information is typically needed when
dealing with safety-relevant components. In this case study, we have demon-
strated how contract-based design can support reuse beyond implementations,
to also include safety assurance artefacts related to those implementations.



Whether we perform the development of safety-relevant components in- or
out-of-context, for reuse or just for a single system, different stakeholders are
usually involved in the development process. For example, the expert perform-
ing the contract specification in a formal specification language such as OSS is
not necessarily the same stakeholder as the one performing assurance modelling.
Adoption of contracts just as any other formal specification is often hindered
by the fact that not everyone can master a formal language [16]. Hence, for the
stakeholder performing assurance modelling that should build upon different
contract checks, we deem it is useful to accompany the contracts with additional
information by the stakeholder that actually specified the contracts. Further-
more, a potential verifier assigned to verify certain behaviours of the component
specified in a contract can directly associate that evidence with the contract and
describe the results. While the goal of the LACU case study was not to evaluate
the influence of our methodology on the quality of communication between dif-
ferent stakeholders in the development, during testing of the AMASS platform
and collaborating on both modelling and assuring different systems, we could ex-
perience some of the communication benefits. Capturing all the safety assurance
relevant information provided by different stakeholders in safety-critical system
development in a traceable way has the potential of enhancing the collabora-
tion between different stakeholders in building an assurance case. Moreover, by
automatically generating parts of the argumentation, the safety engineer gets a
head-start in assuring the system safety.

5 Conclusions and Future Work

Reuse of safety-relevant components in safety-critical systems needs to cover
more than just the implementation. Enriching contract-based design by associ-
ating contracts with assurance information enables us to reuse assurance arte-
facts together with the accompanying contract implementations. Furthermore,
enabling variability modelling of the contract specifications in terms of strong
and weak contracts allows us to provide greater support for reuse of components
explicitly developed for reuse in different contexts. We have presented a tool sup-
port for the methodology by introducing system modelling with strong and weak
contracts and their alignment with trace-based contract-based design. Further-
more, we have enabled automatic instantiation of assurance argument-fragments
from the enriched system models. The presented tool support and the case study
illustrate the feasibility of our contract-driven assurance and reuse methodology
to assist in assuring requirements satisfaction and reusing assurance information.

To reap the full benefits of contract-driven assurance and reuse, further exten-
sions to the AMASS platform are needed. Extending the underlying meta-model
to connect the contracts with component failure behaviour could enable instan-
tiation of many argument patterns that focus on failure behaviour. Furthermore,
the traceability between the system and assurance modelling achieved through
the contracts could be further enriched to support analysis and assurance of the
interplay of multiple system concerns such as safety and security.



Acknowledgements. This work is supported by the EU and VINNOVA via
the ECSEL Joint Undertaking projects AMASS (No 692474) and SafeCop (No
692529), as well as the Swedish Foundation for Strategic Research (SSF) via the
FiC project.

References

[1] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik. Comparing Reuse Strategies:
An Empirical Evaluation of Developer Views. In 8th International Workshop on
Quality Oriented Reuse of Software, pages 498–503. IEEE, 2014.

[2] J.-M. Jézéquel and B. Meyer. Design by Contract: The Lessons of Ariane. IEEE
Computer, 30(1):129–130, January 1997.

[3] International Organization for Standardization (ISO). ISO 26262: Road vehicles
— Functional safety. ISO, 2011.

[4] Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson, and Stefano Puri. A
method to generate reusable safety case argument-fragments from compositional
safety analysis. Journal of Systems and Software: Special Issue on Software Reuse,
July 2016.

[5] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Thomas Henzinger, and Kim G. Larsen. Contracts for System Design.
Research Report RR-8147, Inria, November 2012.

[6] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and Weak Contract
Formalism for Third-Party Component Reuse. In 3rd International Workshop on
Software Certification, pages 359–364. IEEE, November 2013.

[7] A. Cimatti and S. Tonetta. Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming, 97(3):333–348,
2014.

[8] Daniel Ratiu, Marc Zeller, and Lennart Killian. Safety.lab: Model-based do-
main specific tooling for safety argumentation. In International Conference on
Computer Safety, Reliability, and Security, volume 9338 of LNCS, pages 72–82.
Springer, 2015.

[9] Andrew Gacek, John Backes, Darren Cofer, Konrad Slind, and Mike Whalen.
Resolute: an assurance case language for architecture models. ACM SIGADA
Ada Letters, 34(3):19–28, December 2014.

[10] Sunil Nair, Neil Walkinshaw, Tim Kelly, and Jose Luis de la Vara. An evidential
reasoning approach for assessing confidence in safety evidence. In 26th Inter-
national Symposium on Software Reliability Engineering, pages 541–552. IEEE,
2015.

[11] Ewen Denney and Ganesh Pai. Tool support for assurance case development.
Automated Software Engineering, Dec 2017.

[12] Goal Structuring Notation Working Group. GSN Community Standard V1.0.
Origin Consulting (York) Limited, 2011.

[13] Object Management Group. SACM: Structured Assurance Case Metamodel.
Technical report, V1.0. http://www.omg.org/spec/SACM, 2013.

[14] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Generation of Safety Case
Argument-Fragments from Safety Contracts. In 33rd International Conference
on Computer Safety, Reliability, and Security, volume 8666 of LNCS, pages 170–
185. Springer, September 2014.



[15] Object Management Group. MOFM2T: MOF Model to Text Transformation
Language. Technical report, V1.0. http://www.omg.org/spec/MOFM2T, 2008.

[16] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas. Reassessing the Pattern-
Based Approach for Formalizing Requirements in the Automotive Domain. In
22nd International Requirements Engineering Conference. IEEE, August 2014.


