Facilitating Component Reusability in
Embedded Systems with GPUs

Gabriel Campeanu

Malardalen Real-Time Research Center,
Mailardalen University, Vasteras, Sweden
Email: gabriel.campeanu@mdh.se

Abstract. One way to fulfill the increased requirements (e.g., perfor-
mance) of modern embedded systems is through the usage of GPUs.
The existing embedded platforms that contain GPUs bring several chal-
lenges when developing applications using the component-based devel-
opment methodology. With no specific GPU support, the component
developer needs to encapsulate inside the component, all the informa-
tion related to the GPU, including the settings regarding the GPU re-
sources (e.g., number of used GPU threads). This way of developing
components with GPU capability makes them specific to particular con-
texts, which negatively impacts the reusability aspect. For example, a
component that is constructed to filter 640x480 pixel frames may pro-
duce erroneous results when reused in a context that deals with higher
resolution frames. We propose a solution that facilitates the reusabil-
ity of components with GPU capabilities. The solution automatically
constructs several (functional-) equivalent component instances that are
all-together used to process the same data. The solution is implemented
as a state-of-the-practice component model (i.e., Rubus) and the evalu-
ation of the realized extension is done through the vision system of an
existing underwater robot.

1 Introduction

Modern embedded systems deal with huge amount of information that usually
originates from the interaction with the environment. For example, the Google
autonomous car! receives from its various sensors (e.g., camera, LIDAR, radar,
ultrasound) an amount of 750 MB of data per second. This data is processed with
enough performance in order for the car to be coordinated with the environment
changes, such as moving pedestrians.

The embedded boards with Graphics Processing Units (GPUs) are feasible
solutions for tackling the stringent requirements of modern embedded systems.
Through its thousands of computational threads, the GPU is more efficient than
the CPU when dealing with parallel data processing. For instance, a stereo
matching application developed for embedded systems, delivers an increased
frame rate processing when is executed on the GPU [9].

! https://waymo.com

Another trend in the embedded systems domain is the usage of the component-
based development (CBD) for construction of systems [5]. This software engi-
neering methodology promotes the development of systems through the com-
position of already existing software units called software components. CBD is
successfully adopted by industry through various component models such such
as AUTOSAR [13], Rubus [8] and IEC 611-31 [10].

The existing component models for embedded systems development offer
no specific GPU support. One way to develop components with GPU capabili-
ties, is to encapsulate inside the components, all the GPU-related information.
This leads to constructing components that are specific to particular contexts.
A challenge appears when (re-)using the same component (that has particular
GPU specifications encapsulated inside) in different applications. For instance,
assuming we have a component that converts color frames into the grayscale
format and has encapsulated a number of 640x480 GPU threads to use (i.e., one
thread per pixel). When this component is (re-)used in applications that deal
with 1024x960 pixel color images, it may result in providing erroneous results.

In this work, we provide a solution to increase the reusability of components
with GPU capabilities, by constructing multiple instances of the same compo-
nent in order to handle data of any size specification. For example, our solution
generates three more instances of a component that filters 640x480 pixel frames
in order to handle images with 2560x1920 pixels. The solution divides, via specific
artifacts, an initial input data into several parts that are independently handled
by the generated component instances. Based on the application design, the re-
quired artifacts and component instances are automatically generated into code
during the system generation stage. We implement our solution as an extension
of an existing industrial component model (i.e., Rubus) and evaluate it using an
existing underwater robot case study.

The remainder of the paper is divided as follows. The background information
covering GPUs and embedded system is presented in Section 2. The problem
description (Section 3) and solution overview (Section 4) are presented using
a running-case example. Section 5 describes the solution realization, while its
evaluation is enclosed in Section 6. After we describe the related work (Section 7),
we conclude the paper with a discussion section.

2 GPUs in embedded systems

The two main environments to develop GPU applications are CUDA2 and

OpenCL3. While CUDA is developed by NVIDIA to specifically address their
hardware (i.e., NVIDIA GPUs), OpenCL is a general framework that addresses
different processing units (e.g., mCPUs, GPUs, FPGAs) produced by various
vendors. In this work, due to the fact that most of the existing embedded
platforms with GPUs (developed by e.g., Intel, AMD, NVIDIA, Altera, IBM,

2 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
3 https://www.khronos.org/opencl/

Samsung, Xilinx) support OpenCL, we utilize this particular environment for
development of GPU functionality.

When using OpenCL to create GPU functionality, the developer needs to con-
struct several hierarchical steps, as follows. At the highest level is the platform
that contains the drivers. The platform addresses the existing devices, such as
the GPU and the CPU. One of the device should be selected to execute the func-
tionality. Memory buffers should be allocated in order to hold the input and/or
output data of the functionality. The functionality, also know as the kernel may
be constructed at any time, regardless of the required hierarchical steps. The ar-
guments of the kernel are defined using the allocated input and output buffers.
The number of threads used to execute the functionality are specified in such
a way to match the platform characteristics, i.e., to not exceed the available
thread resources. Furthermore, the threads are organized in particular groups
(e.g., tiles of 8x8 threads) that directly influence the performance of the kernel
execution.

Nowadays, the GPU is successfully integrated on various embedded plat-
forms. Various vendors such as Intel, NVIDIA, Xilinx and AMD provide different
embedded solutions with different characteristics, suitable for different domains.
For example, while the NVIDIA Condor GR2?* is utilized in high-performance
solutions due to its high resources, the Mali-470 GPU with a low computation
and energy consumption is employed in the construction of smart watches.

Component-based development is a software engineering methodology that
promotes the development of applications through the composition of existing
software units called components [5]. A core principle of CBD is the (re-)use
of components in different contexts, which enhances the development efficiency.
The communication between components is done through interfaces, which are
specifications of the components’ access points. In our work, we use port-base
interfaces for sending/receiving data of different types.

An important aspect of CBD is the encapsulation fundamental, where all the
component data and operations are encapsulated inside and hidden from any-
thing outside. The only way to access the encapsulated information is through
the component access points referred as interfaces. The way a component is
constructed (alongside with its interfaces) is specified by a component model.
Moreover, the component model defines the manner in which components com-
municate with each other, when composed into a system [4].

CBD is successfully adopted in industry through various component models.
For real-time and embedded systems, the domain which we focus in this work,
component models such as AUTOSAR [13], Rubus [8] and IEC 611-31 [10] are
currently used in the development of applications. Particular interaction styles
are employed by these component models when used for particular type of ap-
plications [6]. For example, the pipe-and-filter style, which is considered in this
work, is suitable for streaming-of-events type of applications and adopted by
e.g., Rubus and IEC 611-31 component models [6].

4 http: / /www.eizorugged.com/products/vpx/condor-gr2-3u-vpx-rugged-graphics-
nvidia-cuda-gpgpu/

Output
Input ports trigger port Output ports
of C1

data port
O Data port
I:] Software circuit
Legend: [> Trigger port
Control flow —p» Data flow

Fig. 1: Two connected Rubus components

As the Rubus component model is used in this work to realize our solution
and for evaluation purposes, we introduce more details regarding it. The name
of a Rubus component is software circuit. Each component is equipped with one
input and output trigger port and one or several input and output data ports.
Through these distinct types of ports (i.e., control and data ports), the compo-
nent model provides a separation between control and data flow of the system,
which allows an easy mapping between the control specifications of real-time and
embedded systems, and the interaction model. Fig. 1 illustrates two connected
Rubus components characterized by input and output (trigger and data) ports.
A Rubus component follows the Read-Execute-Write execution model. For ex-
ample, C1 is initially in an idle state. After receives the control of execution
through its input trigger port, it Reads the input information via its two input
data ports, Executes its functionality and Writes the result in the out data port.
Finally, it passes the execution control to C2 through the output trigger port
and re-enters in the idle mode.

3 Problem description

The existing component models used in the development of embedded systems
provide no specific GPU support. Accordingly, the component developer, when
constructing components with GPU functionality, needs to encapsulate all the
GPU-related information inside the components. In this work, we focus on the
encapsulated GPU settings regarding the GPU computation resources. For in-
stance, for a component that filters frames of 640x480 pixels, the developer needs
to hard-code inside the component a number of 640¥*480 GPU threads, where
each thread processes a pixel. Moreover, the specified threads need to be grouped
in a particular way (e.g., tiles of 8 by 8 threads) in order to match the size of
the processed data. The grouping settings have a direct impact over the system
performance.

A challenge comes when a component that contains hard-coded GPU set-
tings is (re-)used in different contexts. Due to its encapsulated settings, the
component may produce erroneous results when dealing with data of different

characteristics. For example, assuming there is a component that filters images
and has encapsulated settings corresponding to 640x480 pixel frames. When the
component is (re-)used in an application that handles 1024x1024 pixel images,
it would be able to process only a part of the system data. An alternative would
be to construct a component encapsulating the same functionality, but different
GPU settings corresponding to 1024x1024 pixel images. Constructing compo-
nents that can be used only in certain contexts, would significantly decrease the
benefits of adopting CBD for construction of embedded systems with GPUs.

Legend:

Component with

GPU capabilit;
N o> > o> [> > > pabilty
O MAenrge Convert Edge
Grayscale Detection
Enhance () O 4 (Q Dataport
O
D Trigger port
—» Data flow

Control flow

Fig. 2: Fragment of the component-based vision system of an underwater robot

To exemplify the challenge discussed in this work, we introduce a running-
case example. We use a part of the vision system of an underwater robot, as de-
scribed by Fig. 2. The vision system is constructed using the Rubus component
model. The underwater robot is equipped with two cameras which provide a con-
tinuous flow of frames. Each pair of frames is received by the MergeAndEnhance
component that merges and reduces the frames’ noise. The resulted merged
frame is converted to a grayscale format by ConvertGrayscale component and
forwarded to EdgeDetection component that outputs a black-and-white frame,
where objects are delimited by while lines.

We assume that the components were reused from different applications, and
they were initially constructed with different GPU settings, as follows:

— MergeAndEnhance processes two 300x400 pixel frames and produces one
600x400 pixel frame,

— ConvertGrayscale converts 300x300 pixel frames, and
— FEdgeDetection filters 600x500 pixel frames.

In the current example, the physical cameras provide frames with 300x450 pixels.
The flow of the frames through the system including the (erroneous) outputs are
illustrated in Fig. 2. We notice that the output of EdgeDetection is actually a
portion of the (merged) frame produced by the MergeAndEnhance component.

4 Solution overview

In order to facilitate reusability of components with GPU functionality in differ-
ent contexts, we provide the following solution. Based on the design information,
a component is instantiated with a number of identical instances in order to
process data of various sizes. Each instance independently handles a part of the
original data. The output processed data from all the instances are automati-
cally merged together into a single one that the component communicates to its
connected components.

Legend:

component with
GPU functionality

component
instance

—»— data flow

O data port

Fig. 3: Overview of the proposed solution

The overview of the proposed solution is illustrated in Fig. 3, where a com-
ponent is duplicated into several more instances (illustrated in dashed lines) in
order to handle income data with characteristics that are not supported by the
component. The proposed solution automatically:

— decides on how many instances are needed to correctly process the corre-
sponding data,

— distributes data to each instance, and

— gathers the outcome of each instance into a single output data.

The instances are automatically generated, in a transparent way.

Using the vision system running case, we describe our solution applied on the
ConvertGrayscale component, as illustrated in Fig. 4. The solution automatically
constructs three more component instances in order to correctly process the
input received frame. The output grayscale frames provided by the used instances
are merged together into a single frame which represents the conversion output
of the ConvertGrayscale component.

5 Realization

In this work, we use white-box components, i.e., components with readable
source code such as Rubus and IEC 61131 components. Furthermore, we target
component models that follow the pipe-and-filter architecture style due to the
embedded systems targeted by our solution (e.g., real-time, control-type appli-
cations). In this context, we provide a solution to automatically facilitate the

PREEEEE '
' H
i Convert |
i Grayscale |

- "yinstance {3
......... P
! ! "

/
/
/
/
/
/
/
- / - ' Conver .
/ 1 Grayscale 1
;! . ‘ms!ance
A —— >
> / ' N r

i
i Convert :
| Grayscale |

......... > \, nstance { oo

- o
Grayscale
O O

Fig. 4: Instances of the ConvertGrayscale component

(re-)use of components with GPU capability in different contexts. The solution
is implemented as an extension of a state-of-the-practice component model (i.e.,
Rubus). Moreover, we use the OpenCL environment to implement components
with GPU capability.

For each component with GPU capability, our solution checks the application
design, i.e., the characteristics of the input ports and their received data. When
a mismatch appears, the solution computes the number of required instances
to handle the received data, and realize them inside the component, using the
existing Rubus generation rules.

In order to divide the data, we introduce an artifact called fork. When a
component is instantiated (i.e., differences between the income data attributes
and component capabilities) a fork element is created. In order to not introduce
additional component model elements, we use the existing Rubus framework
and realize the fork artifact as a regular component equipped with input and
output (trigger and data) ports. Based on the number of the input data ports of
a component with GPU capability, the connected artifact will be equipped with
an appropriate number of (input and output) data ports to handle all the data
connections.

Similarly, the system generates an artifact called join to gather the outcomes
from all component instances into one single outcome. Based on the number of
output data ports of the component with GPU capabilities, the join artifact will
be equipped with an appropriate number of ports to carry out the component
communication. The join component is realized as a Rubus component, in an
automatic and transparent manner. The fork and join are generated for each
component with GPU capabilities, when needed.

Our solution handles the re-wiring between the introduced join/fork arti-
facts and the component and its created instances. The existing Rubus rules
regarding component wiring are modified, and we introduce new rules that link
the interfaces of the join/fork components with the generated interfaces of the
component instances, and rest of the system. Moreover, in order to not intro-
duce additional overhead for the system designer, the introduced components
and their connections are transparently generated.

i Convert
H

Grayscale |
y I

Fig.5: The solution realization of the vision system

Fig. 5 describes the solution realization of the vision system running-case. For
the MergeAndEnhance component, a fork component is automatically generated
and divides the input data into two parts which are provided to the MergeAn-
dEnhance component and its instance. In order to connect to the two component
instances®, the fork component is equipped with:

— two input data ports that correspond to the number of MergeAndEnhance
input data ports, and

— four output data ports through which it provide data to the two connected
instances.

To gather all the outcomes, a join component is generated to copy the two
results into one single location. The join component has:

— two input data ports, where each one receives the output data of the two
generated component instances, and

— one output data port through which it sends the (gathered into one) result
to the ConvertGrayscale component.

In a similar way, a fork component is created to divide and provide the correct
data to the four ConvertGrayscale instances, and a join component to gather
all the four results into a single frame. The system does not need to create
any fork/join components for EdgeDetection due to its specifications, i.e., its
functionality can handle the inputed data frame.

5.1 Implementation

The solution, based on the design of the system, constructs the proposed artifacts
at the generation system stage, presented in the following paragraphs.

A Rubus software component is characterized by a header and several C
source files that contain the definitions and declarations for:

5 for simplification, we use the term of instances to refer to a component and its
instance(s)

— an interface that contains structures used to define the input and output
data ports,

— a constructor that initiate the resource requirements of the component,

— a behavior function that defines the component functionality, and

— a destructor that releases the allocated resources of the component.

The same Rubus rules that generate regular components (with GPU capa-
bility) are followed when implementing the component instances. For example,
the implementation of the MergeAndEnhance component is identical with its
instance.

In the next paragraphs, we describe the implementation of the join and fork
components. The existing Rubus rules regarding generation of component inter-
face are used to implement the interface of fork elements, as follows. Located in
the header file, the interface contains a structure declaration that is composed of
two (structure) elements corresponding to the input and output data ports. Fig. 6
presents the interface of the fork component, i.e., SWC_fork_MergeAndEnhance
(lines 34-37). The interface contains two elements:

— IP_SWC - a structure with two elements that correspond to the input data
ports, and

— OP_SWC(- a structure with four elements corresponding to the output data
ports of the fork component.

The two input ports receive the input data of MergeAndEnhace component, i.e.,
data locations and width and height dimensions of the input images. The output
ports will contain, after the execution of the behavior function, the details of the
data sent to each of the component instance. In a similar way, the interface of
the join_MergeAndEnhance component will be automatically constructed.

In general, we let the system to generate the constructor for the fork com-
ponent as it does not have distinctive requirements. On the other hand, the join
component constructor needs special attention due to the artifact purpose, i.e.,
to copy several data into one location. Therefore, the join constructor needs to
manage the allocation of a memory space to hold all of the combined data. This
is realized with the OpenCL function clCreateBuffer® that allocates memory
space on the GPU. The generation of the join_MergeAndEnhance constructor is
described in Listing 1.1, where the width and height sizes of the outcome image
are calculated using the corresponding values of the frames received through
each input port (i.e., lines 3 and 8). The computed width and height sizes are
used to allocate a memory space (i.e., line 11) that is big enough to contain all
of the received data.

The behavior function of a fork component, based on the information of the
input data and the number of connected component instances and their char-
acteristics, computes the characteristics (i.e., location, width and height) of the
data that will be processed by each component instance. For the fork_MergeAndEnhance

5 https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/
clCreateBuffer.html

o

1 typedef struct {
2 GPU_unsigned_char *ptr;
3 }data_type;

4

5 typedef struct {
6 int size;

7 }dim1;

8

9 typedef struct {
10 int size;

11 }dim2;

12

13 typedef struct {

r--------f---,‘l.\ 14 data_type *place;

: OD2_inst24 s 15 diml width;

] A 16 dim2 height;
,"\ OD1_inst2 ! 17 }img_format;
“l’”Dz ’f\ 18 .

A OoD2_inst1 i} 9 /* 1;‘1’;“5 ports {*/
I\) ,I.\ 20 ty}?e e struct)
(d oD1_inst1 ¢} 21 img_format *ID1;

! ~, 22 img_format *ID2;

23 }IP_SWC;
fork_MergeAndEnhance 24

25 /* output ports */

26 typedef struct {

27 img_format O0D1_instil;
28 img_format 0D2_instil;
29 img_format 0D1_inst2;
30 img_format 0D2_inst2;
31 }OP_SWC;

32

33 /* the interface declaration */
34 typedef struct {

35 IP_SWC IP;

36 0P_SWC *0P;

37 }SWC_fork_MergeAndEnhance;

Fig. 6: The interface of a fork component

component, the behavior function calculates two pointers that direct to two
memory locations corresponding to two parts of the initial image. The output
data ports are set with the computed pointers, alongside with the corresponding
image dimensions (i.e., width and height).

Listing 1.1: The constructor of a join component

1 int width = 0;

2 <foreach input port p>

3 int width += args->IP.p->width.size;
4 <endforeach>

5

6 int height = 0;

7 <foreach input port p>

8 int height += args->IP.p->height.size;
9 <endforeach>

0

1 void *location = clCreateBuffer (contex, CL_MEM_WRITE_ONLY, 3*width*xheight, NULL, NULL) ;

The behavior function of the join component copies all the income data into a
single memory location (allocated by the constructor). For our vision system ex-
ample, the join_Merge AndEnhance behavior function copies two images using the

OpenCL function clEnqueueCopyBuffer”. The specifications of the input data
(determined through the input port characteristics) and the memory location
(allocated by the constructor) to hold the two images, are used as parameters
for the copying activity. Listing 1.2 describes one of the copy activities done by
the behavior function, i.e., the copy of the image received through the input port
ID1. Similarly, another copy activity corresponding to the data received by the
second input port, is generated inside the behavior function.

Listing 1.2: A part of the behavior function of a join component

clEnqueueReadBuffer (command_queue, args->IP.ID1->place->ptr, (unsigned char*) location, 0, 0, 3*(args->IP.ID
->width.size)* (args->IP.ID->height.size) * sizeof(unsigned char), 0, NULL, NULL);

Regarding the destructors, we do not include specific instructions for the fork
destructor and let the system to handle it using the existing Rubus framework
rules. For the join component, the destructor needs to release the memory allo-
cated by the constructor. Therefore, for the generation of join_MergeAndEnhance
destructor, we use the clReleaseMemObject® function to release the memory al-
located by the constructor, as depicted in Listing 1.3.

Listing 1.3: The destructor of a join component

clReleaseMemObject (location);

6 Evaluation

In this section, we examine the feasibility of our solution using the introduced
running case, i.e., the vision system of the underwater robot. Moreover, we an-
alyze: i) the execution overhead, and ii) memory overhead introduced by the
generation of the fork and join components, and the component instances.

We constructed two Rubus versions of the vision system, where one is con-
structed using our solution and the other, referred as the custom version, is con-
structed using regular components with hard-coded settings to explicitly handle
the system input images. In all of the experiments, we make comparisons between
the two versions. Furthermore, the GPU functionality of each component in both
versions is constructed in such a way to handle also input frames that have lower
(width and height) attributes than the component specifications. The platform
used for the experiments in an embedded platform with an AMD Kabini SoC °.

Listing 1.4 presents a part of the ConvertGrayscale functionality. For simpli-
fication purposes, we define three variables (i.e., lines 1-3) to hold the attributes
of the input data (i.e., location, width and height). These variables are used as
arguments for the ConvertGrayscale_fct function (referred as the GPU kernel)

" https:/ /www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/
clEnqueueCopyBuffer.html

& https://www.khronos.org/registry/OpenCL/sdk/1.1/docs/man/xhtml/
clReleaseMemObject.html

9 https://unibap.com/product/advanced-hetereogeneous-computing-modules

that contains the conversion-to-grayscale GPU functionality. The hard-coded
settings, that correspond to the GPU thread index, are accessed from the kernel
function using specific calls (i.e., get_global_id) in lines 10 and 11, and checked
against the received kernel arguments (i.e., line 12). When the arguments values
do not match (i.e., less than) the number of utilized threads, the extra threads
are discarded (i.e., they do not execute).

Listing 1.4: Part of the ConvertGrayscale GPU functionality

1 unsigned char* in = args->IP.IDl1->place->ptr;
2 int width = args->IP.ID->width.size;

3 int height = args->IP.ID->height.size;
4
5

__kernel void ConvertGrayscale_fct(__global const unsigned char *in, int width, int
height, __global unsigned char *out)

6 {

7 /* compute absolute image position (z, y) */

8 int x = get_global_id(0);

9 int y = get_global_id(1);

11 /* relieve threads that are outside of the received image */

12 if (x >= width || y >= height) return;

The execution of the two vision system versions produced results (i.e., frames)
that were identical. The introduced artifacts and activities (i.e., dividing and
merging data) did not influence the system’s outcomes.

In the second experiment, we focused on the execution time overhead of the
introduced solution. Our solution introduces: i) four artifacts (i.e., fork and join
components), i) one additional MergeAndEnhance instance, and i) three more
ConvertGrayscale instances. To examine the introduced overhead, we calculate
the end-to-end execution of the two vision system versions. The execution time
for the version implemented with our solution was 9.4 msec, while the custom
version had 4.6 msec.

As the memory characteristic is a sensible topic in the embedded systems
domain, in the last part of the evaluation we analyzed the memory overhead
introduced by our solution. For the custom version of the vision system, the to-
tal memory requirement is of 494.2 kB, where MergeAndEnhance requires 177.6
kB of memory, ConvertGrayscale requires 175.6 kB of memory, and EdgeDetec-
tion requires 130.8 kB of memory. For the version that uses our solution, where
there are two MergeAndEnhance instances, four ConvertGrayscale instances and
one FdgeDetection instance, the total system requirement is of 722 kB of mem-
ory. We mention that a MergeAndFEnhance instance that processes two 300x400
pixel frames requires 158.6 Kb of memory and a ConvertGrayscale instance that
processes (at a time) one 300x300 pixel frame, requires 63.7 kB of memory. We
notice that the custom version requires with 227 kB less memory than the version
constructed with our solution.

Although the custom version has an improved execution time and requires
less memory than the version that uses our solution, the components are specif-
ically constructed for this application and platform, and have a low reusability
in other (software and hardware) contexts.

7 Related work

The increased requirements of modern applications lead to the adoption of het-
erogeneity in embedded systems. AUTOSAR component model, utilized in the
automotive industry, was extended with multi-core ECUs support [11]. Another
solution to satisfy the increased demands of modern applications is to use ac-
celerator hardware. The FPGA is one of the feasible solutions to be used as
co-processor for data demanding applications. Andrews et al. proposes a way to
use COTS components, referred as hybrid components, to develop applications
for CPU-FPGA hardware [1].

The GPU in the context of embedded systems is addressed by Campeanu et
al. which facilitate the development of applications for CPU-GPU hardware [3].
The authors proposed to enrich each component (with GPU capability) with a
specific configuration interface. Through this interface, the component receives
from e.g., the system designer, individual GPU settings regarding the number of
GPU threads used by the functionality. We consider this as a possible solution to
tackle the challenge discussed in this work, but it comes with two disadvantages,
as follows. The system developer needs to have, at the time when designing
the system, detailed information (i.e., the physical GPU threads limitation) of
the hardware platform that will host the applications. The detailed hardware
platform is not always known at design time. Another downside is that the
system designer needs to: i) have knowledge about GPU development, or ii)
correspond with the component developer (breaking the separation-of-concern
CBD principle), in order to provide good/best GPU thread settings for the
components with GPU capability. Although there is an overhead introduced
by our solution (i.e., memory usage and execution time), we believe that our
work increases the reusability aspect while preserving the separation-of-concern
principle.

Some component models develop traditional (CPU-based) systems by hard-
coding inside the components the specific characteristics of the hardware. Led-
nicki et al. introduce an additional layer (i.e., mapping layer) to address the flex-
ibility of components [12]. The introduced mapping layer connects software and
hardware platforms allowing them to be independently developed. We consider
that new architectural elements (e.g., software layers) would greatly increase the
overhead of Rubus solutions. Therefore, we constructed our solution using the
existing elements of the Rubus framework.

It is worth to mention the work of Dastgeer et al. that introduce the PEP-
PHER framework that uses a component-based development approach to con-
struct CPU-GPU systems [7]. They refer to a software component as a block that
encapsulates one or several implementation variants. All the variants are com-
putationally equivalent and have the same interface. Whenever the component
is executed, a proper variant is selected based on the software call parameters
and available hardware resources. In our work, we also use multiple instances of
the same component; however, all of the instances are used in order to produce
the correct output.

8 Discussion

The existing component models have no specific GPU support in development
of embedded systems. This leads to constructing components, with hard-coded
settings, that are specific to certain contexts. To tackle this challenge, we pro-
pose a solution to improve the reusability of components with GPU capability,
for different contexts. The solution introduces two types of artifacts, i.e. fork and
join artifacts, that are automatically generated to divide and merge data. More-
over, the solution instantiates each component with GPU functionality with a
number of instances in order to handle data of any size.

There are other solutions (e.g., see Section 7, second paragraph) to tackle the
challenge discussed in this work. As presented in the evaluation, a component
with GPU capability may be hard-coded with (high number of) GPU threads
settings to handle images of different sizes. There are two limitations of this
solution, as follows:

— each GPU platform has a limited number of threads
(e.g., CLLDEVICE_MAX_ WORK_GROUP_SIZE for OpenCL contexts). Hard-
coding large thread resources inside components will make them specific to
certain GPU platforms, with large available resources.

— Imposing large GPU thread usage for components with GPU capability used
to process data of small-to-medium sizes, leads to waste of GPU resources.

Another downside of the proposed solution is the memory overhead. For
each component that cannot handle the received data, we generate a number of
instances, alongside the join and fork components. The vision system version im-
plemented with our solution has generated four more component instances (i.e.,
one for MergeAndEnhance and three for ConvertGrayscale) and four fork/join
components. We consider that the memory overhead is a major downside of our
solution, due to the domain targeted of our work (i.e., real-time and embedded
systems) where the system is characterized by limited resources (e.g., available
memory). Therefore, one future work direction is to reduce the introduced mem-
ory overhead by grouping all the created instances in a conceptual component.
Another future work direction is to increase the GPU parallelism level by si-
multaneous executing the instances of the same component. Using the existing
approaches for parallel execution of components on GPU [2], we may improve
the system performance, while delivering an increased component reusability.

Besides the overhead introduced by our solution (i.e., increased memory usage
and execution time), we consider that our solution decreases the existing gap of
component-based development for embedded systems with GPUs, facilitating
the reusability of components with GPU capabilities.

Acknowledgment

The work is partially supported by the Knowledge Foundation through the
ORION project (reference number 20140218).

References

1.

10.

11.

12.

13.

D. Andrews, D. Niehaus, and P. Ashenden. Programming models for hybrid
CPU/FPGA chips. Computer, 37(1):118-120, 2004.

G. Campeanu. Parallel execution optimization of GPU-aware components in em-
bedded systems. In The 29th International Conference on Software Engineering €
Knowledge Engineering SEKE 2017, 5-7 Jul 2017, Pittsburgh, United States, 2017.

G. Campeanu, J. Carlson, S. Sentilles, and S. Mubeen. Extending the Rubus com-
ponent model with GPU-aware components. In Component-Based Software Engi-
neering (CBSE), 2016 19th International ACM SIGSOFT Symposium on. IEEE,
2016.

M. Chaudron and I. Crnkovic. Component-based software engineering. In H. van
Vliet, editor, Software Engineering: Principles and Practice. Wiley, 2008.

I. Crnkovic and M. Larsson. Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA, 2002.

I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron. A classification frame-
work for software component models. IEEE Transaction of Software Engineering,
37, October 2011.

U. Dastgeer, L. Li, and C. Kessler. The PEPPHER composition tool: Performance-
aware dynamic composition of applications for GPU-based systems. In High Per-
formance Computing, Networking, Storage and Analysis (SCC), 2012 SC Compan-
ion. IEEE, 2012.

K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and K.-L. Lund-
back. The Rubus component model for resource constrained real-time systems.
In Industrial Embedded Systems, 2008. SIES 2008. International Symposium on.
IEEE, 2008.

M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze. A fast
stereo matching algorithm suitable for embedded real-time systems. Computer
Vision and Image Understanding, 2010.

K.-H. John and M. Tiegelkamp. IEC 61131-83: programming industrial automa-
tion systems: concepts and programming languages, requirements for programming
systems, decision-making aids. Springer Science & Business Media, 2010.

F. Kluge, M. Gerdes, and T. Ungerer. AUTOSAR OS on a message-passing mul-
ticore processor. In SIES, pages 287-290, 2012.

L. Lednicki, J. Feljan, J. Carlson, and M. Zagar. Adding support for hardware
devices to component models for embedded systems. In The Sizth International
Conference on Software Engineering Advances, 2011.

A. D. Partnership. Technical overview v4.2. http://www.autosar.org, (accessed
April 14, 2018).

