
Faster Response Time Analysis of Tasks With Offsets

Jukka Mäki-Turja Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)

Västerås, Sweden

E-mail: jukka.maki-turja@mdh.se

Abstract
We present a method that enables an efficient implemen-

tation of the approximative response time analysis for tasks
with offsets presented by Tindell [7] and Palencia Gutierrez
et al. [2].

The method utilises the fact that the interference a trans-
action imposes on a lower priority task exhibits a periodic
and static pattern. This pattern can be pre-computed in a
table, reducing the fix-point calculations to a simple lookup-
up function. We show by simulations that the speed-up is
substantial, and for realistically sized task sets, more than
600 times, compared to the original analysis.

1 Introduction

A powerful and well established schedulability analysis
technique is the Response-Time Analysis (RTA) [1]. RTA is
applicable to systems where tasks are scheduled in strict pri-
ority order which is the predominant scheduling technique
used in real-time operating systems today.

Tindell proposed an extension to the RTA that take tim-
ing offsets between tasks into account [7]. He provided an
exact algorithm for calculating response time for tasks with
offsets. However, this algorithm becomes computationally
intractable for anything but small task sets due to its expo-
nential time complexity. In order to deal with this prob-
lem, Tindell also provided an approximation algorithm that
is polynomial in time and give pessimistic but safe1 results.
Later Palencia Gutierrez et al. [2] formalised, generalised
and improved Tindells work.

In this paper we present a method that enables an effi-
cient implementation of the approximative offset analysis
given by Tindell [7] and Palencia Gutierrez et al. [2]. The
method significantly speeds up the calculation of response
times as we will show by simulations.

Paper Outline: In section 2 we revisit and restate the
original offset RTA presented by [7] and [2]. In section 3

1In the context of scheduling analysis, safe implies that no underesti-
mation is made.

we present our new method and the changes to the response
time formula and show how to perform the precalculations
needed. Section 4 presents evaluations of the method, and
finally section 5 concludes the paper and outlines future
work.

2 Existing Offset RTA

2.1 System Model

The system model used is as follows: The system, Γ,
consists of a number of transactions Γ1, . . . , Γk. A transac-
tion, Γi, is defined by a set of tasks τi1, . . . , τin and a period
Ti: The period, Ti, is used as a minimum interarrival time.
Hence, transactions need not be periodic as long as its in-
terarrival time is bounded by Ti. A task, τij , is defined by a
worst case execution time (Cij), an offset (Oij), a deadline
(Dij), and a priority (Pij). This is formally expressed as
follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τin}, Ti〉

τij :=〈Cij , Oij , Dij , Pij〉

The offset denotes the earliest release time of a task rel-
ative to the start of its transaction. The first subscript de-
notes which transaction the task belongs to, and the second
subscript denotes the number of the task within the trans-
action. (No ordering of the tasks within a transaction is as-
sumed, and tasks within a transaction are allowed to overlap
in time.)

In this paper, the objective is to present our method for
a simple task model making our contribution clear. There-
fore, for presentation purposes, we introduce some simpli-
fying assumptions. However, our method is directly appli-
cable without most of these simplifications (with jitter as the
one exception, see section 5 for a discussion on the matter).
In this paper we assume:

• Offsets less than period, i.e. Oij ≤ Tij .

1

• Deadline less than period, i.e. Dij < Ti.

• Jitter for periodic transactions/tasks are not modelled.

• Blocking on shared resources (e.g. using semaphores)
is not modelled.

• Unique priority for each task is assumed, i.e. Pij 6=
Pkl.

2.2 Existing RTA Formula

For each task in Γ, RTA calculates an upper bound on
the response time. We use τxy to denote the task under
analysis, i.e., the task whos response time we are currently
calculating. The major impact for a tasks response time is
the interference caused by higher priority tasks. This in-
terference is dependant on which task(s) coincide with the
critical instant (CI). The traditional CI (for tasks without
offsets) occurs when all higher priority tasks are released at
the release of τxy.

To analyse tasks with offsets the notion of CI is modified
to: at least one task out of every transaction is assumed to
coincide with the critical instant [7]. For instance, consider
the transaction depicted in figure 1. It consists of two tasks,
τi1 and τi2, and is defined as:

Ci1 = 2, Oi1 = 0, Ci2 = 4, Oi2 = 4, Ti = 12

time
0 105

T =121iτ 2iτ

Figure 1. Example transaction with two tasks

In this example there are two candidate tasks to coincide
with the critical instant. Figures 2(a) and 2(b) shows how
interference, imposed on a lower priority tasks, grows over
time for the two candidates. (Note that since the transaction
is periodic, the depicted patterns repeat themselves after one
period.)

The interference visualised in figures 2(a) and 2(b) is for-
mally expressed as follows: For each candidate task, τic, in
transaction Γi, that could coincide with the critical instant,
we calculate the amount of interference Γi imposes on τxy

during a time interval of length t. We call that interference
I(τxy, τic, t) and define it as:

I(τxy, τic, t) =
∑

τij∈hpi(τxy)

⌈

t′

Ti

⌉

Cij

t′ =t − phase(τic, τij)

(1)

0 12

t

6

0

i

0 12

t

6

0

i

0 12

t

6

0

i

0 12

t

6

0

i

(d)(c)

(b)(a)

τi1 coincides with c.i. τi2 coincides with c.i.

Figure 2. Interference caused by our example
transaction

where hpi(τxy) represents the set of tasks belonging to
transaction Γi with priority greater than the priority of τxy.
phase(τic, τij) describes the distance in time from the re-
lease of τic to the release of τij , defined as:2

phase(τic, τij) = Oij − Oic mod Ti (2)

In equation 1 t′ represents the time during which τij has
had a chance to interfere with τxy. Put in another way, t′

“starts ticking” once t has reached beyond the offset Oij

(Bear in mind that τic is released at t = 0).3

Since we beforehand cannot know which task in each
transaction coincides with the critical instant, the exact anal-
ysis tries every possible combination. However, since this is
computationally intractable for anything but small task sets
the approximative analysis given by [7] and [3] defines one
single, upward approximated, function for the interference
caused by transaction Γi:

A(τxy, Γi, t) = max
τic∈Γi

I(τxy, τic, t) (3)

Figure 2(c) shows both candidate tasks’ interference ove-
layed and figure 2(d) shows the resulting approximation ex-
pressed by equation 3.

Given the definition of the interference, the response
time for our task under analysis, Rxy, is:

Rxy = Cxy +
∑

i∈Γ

A(τxy, Γi, Rxy) (4)

which is solved by fix-point iteration, starting with Rxy=0.

3 Efficient Offset RTA

When calculating Rxy, the function A(τxy, Γi, t) (equa-
tion 3) will be evaluated repeatedly. For each task and

2Note that 0 ≤ phase(τic, τij) < Ti.
3Note that ∀t : t′ > −Ti, hence the ceiling expression in equation 1

will always be greater than or equal to zero.

2

transaction pair (τxy and Γi) many different time-values,
t, will be used during the fix-point iteration. However,
since A(τxy, Γi, t) has a pattern that is repeated every Ti

time unit, we could save a lot of computation if we could
represent the interference function statically and during
response-time calculation use a simple lookup function to
obtain its value. We will in this section show how the re-
sponse time formula changes using this pre-computed in-
formation and how to calculate and store that information.

3.1 Formula with Lookup Function

Again, consider our example transaction of figure 1. The
interference, A(τxy , Γi, t), the transaction poses on a lower
priority task, within t = 0..Ti, is depicted in figure 2(d).

To statically represent this function it is sufficient to store
one point per “stair”. In our case we store the concave cor-
ners, marked with crosses in figure 2(d), of A(τxy, Γi, t).
In order to do that we define two arrays C

pre
i and t

pre
i .

C
pre
i [k] represents the maximum amount of interference Γi

will pose on a lower priority task during interval lengths up
to t

pre
i [k].4

Using the two arrays we redefine the approximated inter-
ference function (equation 3 on the page before) as follows:

A(τxy , Γi, t) =full_periods ∗ C
pre
i [|Cpre

i |] + C
pre
i [k]

full_periods =t div Ti

remaining_t =t rem Ti

k = min{x : remaining_t ≤ t
pre
i [k]}

(5)

The intuition behind equation 5 is that the interference
during time interval t is calculated by two terms:

• Number of full periods (Ti) that fit within t, multiplied
with the sum of all tasks Cij in the transaction (stored
in the last element of C

pre
i).

• Next, we look up the smallest time interval in t
pre
i that

is longer than (or equal to) remaining_t. The cor-
responding C

pre
i is the maximum interference during

remaining_t.

Using equation 5 instead of equation 3 to compute Rxy

(equation 4 on the preceding page) will significantly reduce
the time to compute the response times as we will show in
section 4.

4Note that C
pre
i and t

pre
i only should contain interference from higher

priority tasks. Hence, they should be calculated with the subset of the
tasks of Γi defined by hpi(τxy) ∩ Γi. However, for simplicity, in this
presentation we assume that all tasks of Γi are included in hpi(τxy).

3.2 Precomputing C
pre
i and t

pre
i

Lets see how the arrays C
pre
i and t

pre
i can be calculated.

First, we have to consider each task τic in Γi as a candi-
date to coincide with the critical instant.4 For each candi-
date task τic we define a set of points pic. Each point pic[k]
has an x and and y coordinate, and describes how the in-
terference grows over time if τic coincides with the critical
instant. The poinst in pic corresponds to the convex corners
of I(τxy, τic, t) (illustrated by dots in figures 2(a) and 2(b)).
We define pic as:

pic[k].x =Oik − Oic mod Ti

pic[k].y =

k
∑

l=0

Cij , where j = (c + l) mod |Γi|

k ∈1 . . . |Γi|

For our example transaction of figure 1, we get the fol-
lowing two pic-s (corresponding to the dots in graphs 2(a)
and 2(b) respectively):

pi1 = [< 0, 2 >,< 4, 6 >] Figure 2(a)
pi2 = [< 0, 4 >,< 8, 6 >] Figure 2(b)

Now, we have all the information generated by the
I(τxy, τic, t)-functions, stored in the pic-sets. We define the
set of points, pi, as the union of all pic-s:

pi =
⋃

τic∈Γi

pic

Graphically, the set pi is illustrated by the dots in figure 2(c).
Next, will have to remove from pi the points that

will not be used to represent the approximation function
A(τxy, Γi, t). This is done by the following algorithm:

sort pi by increasing x-values
delete each pij where

∃k : pij .x == pik.x ∧ pij .y ≤ pik.y;
delete each pij where pij .y ≤ pi(j−1).y;

Now, pi contains the convex corners of the function
A(τxy, Γi, t) (illustrated by the dots in figure 2(d)). All we
have to do now is to find the concave corners (illustrated by
the crosses in figure 2(d)) and store them in the arrays C

pre
i

and t
pre
i . This is done by the followin algorithm:

C
pre
i [0] := t

pre
i [0] := 0

for k := 1 to |pi| do
C

pre
i [k] := pi[k].y

if k < |pi| then
t
pre

i [k] := pi[k + 1].x
else

t
pre
i [k] := Ti

done

3

For our example transaction this gives the folloving C
pre
i

and t
pre
i (corresponding to crosses in figure 2(d)):

C
pre
i = [0, 4, 6]

t
pre
i = [0, 4, 12]

4 Evaluation

In order to evaluate the speed up, we have implemented
both the original approximative response-time analysis (Old
RTA) and our method including the pre-calculation step
(Fast RTA). We have also implemented a task generator
where we can vary system load, the number of transactions
and the number of tasks. To fully describe the simulation
setup and all results is beyond the scope of this WiP paper.
The results are plotted together with the 95% confidence
interval.

Figure 3 shows one simlation example, plotted both with
a linear and a logarithmic y-axis. It shows that our proposal
significantly speeds up the RTA calculations, especially
when task sets grow beyond a trivial number of tasks and/or
transactions. While difficult to judge from these graphs, the
speedup factor is over 600 times (for 50 tasks/transaction,
10 transactions and 90% load), where the old analysis takes
about 21 seconds and our fast RTA takes about 30 millisec-
onds. Also, reducing execution times from the 10s of sec-
onds range to the 1/100th of a second range has significant
practical benefit (e.g. it enables the use of our method inside
the inner loop of an optimisation algorithm, such a priority
assignment algorithm).

The graphs presented are consistent with our other simu-
lations when varying both the number of task and the num-
ber of transactions. However, varying the load gave, as ex-
pected, no significant improvement for our method.

5 Conclusions and Future Work

We have presented a novel method for implementing the
approximative response time analysis for tasks with offsets
presented by Tindell [7] and Palencia Gutierrez et al. [2].
The novelty in this approach is that the interference a trans-
action imposes on lower priority tasks, is pre-calculated and
statically stored in two arrays. The advantage of this ap-
proach is that it substantially reduces the time to calculate
response times as we have shown in simulations. The en-
abling factor that makes it possible to pre-calculate this in-
formation is that the interference exhibits a regular periodic
pattern.

Extending our task model to that of [2] is straightforward
(using the same techniques and equations as [2]). The one
exception is the inclusion of jitter in the model. Accounting
for jitter is somewhat more problematic since the interfer-
ence no longer exhibit a single repetitive pattern. In the full
version of this paper we will address three additional issues:

 0

 5000

 10000

 15000

 20000

 25000

 5 10 15 20 25 30 35 40 45 50

M
ill

is
ec

on
ds

No. Transactions = 10, Load = 90%

Old RTA
Fast RTA

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

M
ill

is
ec

on
ds

No. Tasks/Transaction

Old RTA
Fast RTA

Figure 3. Execution times for RTA

(1) adding jitter to our model, (2) show how this speed-up
can be applied to our tighter RTA (that calculates lower re-
sponse times) [4, 5], and (3) extend our evaluations.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Per-
spective. Real-Time Systems, 8(2/3):129–154, 1995.

[2] J. C. P. Gutierrez and M. G. Harbour. Schedulability Analy-
sis for Tasks with Static and Dynamic Offsets. In Proc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.
[3] J. C. P. Gutierrez and M. G. Harbour. Exploiting Precedence

Relations in the Schedulability Analysis of Distributed Real-
Time Systems. In Proc. 20th IEEE Real-Time Systems Sym-
posium (RTSS), pages 328–339, December 1999.

[4] J. Mäki-Turja and M. Sjödin. Improved Analysis for Real-
Time Tasks With Offsets. Submitted for publication, August
2003.

[5] J. Mäki-Turja and M. Sjödin. Improved Analysis for Real-
Time Tasks With Offsets – Advanced Model. Technical Re-
port MRTC no. 101, Mälardalen Real-Time Research Centre
(MRTC), May 2003.

[6] O. Redell. Accounting for Precedence Constraints in the Anal-
ysis of Tree-Shaped Transactions in Distributed Real-Time
Systems. Technical Report TRITA-MMK 2003:4, Dept. of
Machine Design, KTH, 2003.

[7] K. Tindell. Using Offset Information to Analyse Static
Priority Pre-emptively Scheduled Task Sets. Tech-
nical Report YCS-182, Dept. of Computer Science,
University of York, England, 1992. Available at
ftp://ftp.cs.york.ac.uk/pub/realtime/papers/YCS182_[12].ps.Z.

4

