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ABSTRACT
Wireless sensor and actuator networks (WSAN) are created
through the integration of multiple nodes which acquire data
and perform reaction based on them. In a general overview,
sensor nodes of WSANs are responsible for data acquisition
and sending them to a central node. The central node stores
all the received data and performs reactions. Timing veri-
fication of WSAN applications to ensure schedulability of
tasks is a challenge, and is generally performed by worst-
case analysis. This process is error-prone and inherently
conservative. On the other hand, using model checking for
analyzing WSAN applications results in state space explo-
sion even for middle-sized configurations. The reason is the
necessity of considering the interleaving of the large number
of sensors in WSANs. In this paper, we show how to build an
actor-based model of WSAN applications, starting from sen-
sor node-level and moving towards the full system, and we
show how this compositional modeling improves analysabil-
ity and modifiability. Realtime extension of actor model is
appropriate for modeling WSAN applications where we have
many concurrent and asynchronous processes, and interde-
pendent realtime deadlines. We demonstrate the approach
using a case study of a distributed realtime data acquisition
system for high-frequency sensing, where Timed Rebeca is
used for modeling. We use model checking to check the
intra/inter-sensor node schedulability.
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1. INTRODUCTION
Our primary goal in this paper is to show a compositional

real-time scheduling frame-work where global timing prop-
erties at the system level are established by analyzing and
proving local timing properties at the component level de-
sign. This approach has been applied for the analysis of

Copyright retained by the authors.

wireless sensor and actuator networks1.
Wireless sensor and actuator networks (WSANs) provide

low-cost continuous monitoring infrastructure. However, as
they become more complex because of increased function-
alities, it is necessary to develop techniques and methods
that facilitate designing and verification of large complex
WSAN applications. The complexity of WSAN applica-
tions originated from the complexity of concurrent and dis-
tributed programming, networking, real-time requirements,
and power constraints. Component-based design, as a widely
accepted methodology for designing large complex systems,
is one of the approaches that can be used to overcome these
complexities. Using component-based design, components
are assembled into a system without violating the princi-
ple of compositionality such that the properties that have
been established at the component level also hold at the
system level. This way, a model can be incrementally ex-
tended and refined during the design process, by adding new
interactions and constraints. In this paper, we propose an
actor-based modeling approach [2] that allows WSAN appli-
cation programmers to assess the functional behavior of their
code throughout the design and implementation phases (Sec-
tion 2). To this end, we combine and abstract the collective
requirements of a WSAN component as a single requirement
(intra-sensor node model in Section 3), and then show how
these components are composed into a global system with-
out violating the proven property (inter-sensor node model
in Section 4).

For WSAN applications, as real-time systems, it is impor-
tant to analyze the timing properties of components compo-
sitionally. Analytical approaches are based on conservative
worst-case assumptions and empirical measurements, and
may lead into schedules that do not utilize resources in the
most efficient way. A second approach is trial and error.
In [18], an empirical test-and-measure approach based on
binary search is used to find configuration parameters, in-
cluding worst-case task runtimes, and time-slot length of
the communication protocols. Trial and error is a labori-
ous process, which nevertheless fails to provide any safety

1This is an invited paper based on [14].
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guarantees for the resulting configuration. A third possibil-
ity is to extend scheduling techniques that have been devel-
oped for real-time systems [19] such that they can be used
in WSAN environments. Unlike a real-time operating sys-
tem (RTOS), the event-driven operating systems of WSAN
applications (e.g. TinyOS [11]) generally do not provide
real-time scheduling guarantees, priority-based scheduling,
or resource reservation functionality. Without such sup-
port, many schedulability analysis techniques cannot be ef-
fectively employed.

In this paper, in addition to representing a WSAN appli-
cation as a collection of actors, we show how the modeling
language Timed Rebeca [25], and its model checking tool,
Afra [1, 15, 16], can be used for timing analysis of WSAN
applications. Timed Rebeca is a high-level actor-based lan-
guage capable of representing functionality and timing be-
havior at an abstract level.

We present a case study involving real-time continuous
data acquisition for structural health monitoring and con-
trol (SHMC) of a civil infrastructure [18]. This system
has been implemented on the Imote2 wireless sensor plat-
form, and is used in several long-term development of sev-
eral highway and railroad bridges [29]. SHMC application
development has proven to be particularly challenging: it
has the complexity of a large-scale distributed system with
real-time requirements, while having the resource limita-
tions of low-power embedded WSAN platforms. Ensuring
safe execution requires modeling the interactions of compo-
nents of each node, as well as interactions among the nodes.
Moreover, the application tasks are not isolated from the
other aspects of the system: they execute alongside with
the tasks of other applications, middleware services, and
operating system components. In our case study, all pe-
riodic tasks (sample acquisition, data processing, and ra-
dio packet transmission) are required to complete before the
start of their next iteration. Our model checking results
show that a guaranteed-safe application configuration can
be found. Moreover, this configuration improves resource
utilization compared to the previous informal schedulability
analysis used in [18], supporting a higher sampling rate or
a larger number of nodes without violating schedulability
constraints.

2. PRELIMINARIES

2.1 WSAN Applications
A WSAN application is a distributed system with multiple

sensor nodes, each comprised of the independent concurrent
entities bridged together via a wireless communication de-
vice which uses a transmission control protocol. Interactions
between components, both within a sensor node and across
sensor nodes, are concurrent and asynchronous. Moreover,
WSAN applications are sensitive to timing, with soft dead-
lines at each step of the process needed to ensure correct
and efficient operation. Due to performance requirements,
and latencies of operations on sensor nodes, sensing, data
processing, and communication processes must be coordi-
nated. In particular, once a sample is acquired its corre-
sponding radio transmission activities must be performed.
Concurrently, data processing tasks–such as compensating
sensor data for the effects of temperature changes–must be
executed. Moreover, the timing of radio transmissions from
different nodes must be coordinated using a communication

protocol.

2.2 The Actor Model of WSAN Applications
The Actor model is a well-established paradigm for mod-

eling distributed and asynchronous component-based sys-
tems. The actor model developed as a model of concurrent
computation for open distributed systems where actors are
the concurrently executing entities [2]. One way to think
of actors is as components providing services that may be
requested via messages from other components. A message
is buffered until the provider is ready to execute the mes-
sage. As a result of processing a message, an actor may
send messages to other actors, and to itself. Extensions
of the actor model have been used for real-time systems,
in particular: RT-synchronizer [24], real-time Creol [6], and
Timed Rebeca [25]. The characteristics of real-time variants
of the actor model make them useful for modeling WSAN
applications: many concurrent processes and interdependent
real-time deadlines.

In our compositional approach for modeling WSAN ap-
plications, we represent components of each WSAN sensor
node capable of independent action as an actor. Specifically,
as shown in Figure 1, a sensor node is modeled using four
actors: Sensor (for the data acquisition) CPU (processor),
RCD (a radio communication device) and Misc (carrying out
miscellaneous tasks unrelated to sensing or communication).
Sensor acquires data and sends it to CPU for further data
processing. Meanwhile, CPU may respond to messages from
Misc by carrying out other computations. The processed
data is sent to RCD to forward it to a data collector node.
We model the communication medium as the actor (Ether)
and the receiver node also by the actor RCD. Using the actor
Ether facilitates modularity: specifically, implementation of
the Media Access Control (MAC) level details of commu-
nication protocols is localized, making it is easy to replace
component sub-models for modeling different communica-
tion protocols without significantly impacting the remainder
of the model. During the application design phase, different
components, services, and protocols may be considered. For
example, TDMA [8] as a MAC-level communication protocol
may be replaced by B-MAC [23] with minimal changes.

2.3 Timed Rebeca and the Model Checking
Toolset

A Timed Rebeca model consists of reactive classes and a
main program which instantiates actors (also called rebecs).
As usual, actors have an encapsulated state, a local time,
and their own thread of control. Each actor contains a set
of state variables, methods and a set of actors it knows.
An actor may only send messages to actor that it knows.
Message passing is implemented by method calls: calling a
method of an actor (target) results in sending a message to
the target. Each actor has a message bag in which arriving
messages may be buffered; the maximum capacity of the bag
is defined by the modeler.

Timing behavior in Timed Rebeca is represented using
three timing primitives: delay, after, and deadline. A
delay term models the passing of time for an actor. The
primitives after and deadline can be used in conjunction
with a message send: after n indicates it takes n time units
for the message to be delivered to its receiver; deadline n
indicates that if the message is not taken in n time units, it
should be purged from the receiver’s bag. Afra 2.0 supports
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Figure 1: Modeling the behavior of a WSAN application in its real-world installation in the actor model

deadlock detection and schedulability analysis of Timed Re-
beca models; we use Afra 2.0 in this work. Timed Rebeca
and Afra toolset have previously been used to model and
analyze realtime actor based models such as routing algo-
rithms and scheduling policies Network on Chip designs [27,
26].

3. SCHEDULABILITY ANALYSIS OF
INTRA-SENSOR NODE MODEL

We now illustrate our approach using an intra-sensor node
Timed Rebeca model of a WSAN application to check for
possible deadline violations. Specifically, by changing the
timing parameters of our model, we find the maximum safe
sampling rate in the presence of other (miscellaneous) tasks
in the node. Then, we show how the specification of a intra-
sensor node level model can be naturally extended to inter-
sensor node specifications. Following the proposed decom-
position of WSAN applications to actors in Listing 1, we
prepared a Timed Rebeca model which contains four differ-
ent reactive classes in Listing 1 through Listing 3.

As shown in Listing 1, the maximum capacity of the mes-
sage bag of Sensor is set to 10, the only actor Sensor knows
about is of type CPU (line 4), and Sensor does not have any
state variables (line 5).

Listing 1: Reactive class of the Sensor
1 env int samplingRate = 25; // Hz
2
3 reactiveclass Sensor(10) {
4 knownrebecs { CPU cpu; }
5 statevars { }
6
7 Sensor() { self.sensorFirst(); }
8
9 msgsrv sensorFirst() {

10 self.sensorLoop() after(?(10, 20, 30)); // ms
11 }
12 msgsrv sensorLoop() {
13 int period = 1000 / samplingRate;
14 cpu.sensorEvent() deadline(period);
15 self.sensorLoop() after(period);
16 }
17 }

The behavior of Sensor is to periodically acquire data
and send it to CPU, which is implemented in the sensorLoop

(lines 12-15) message server. The sent data must be serviced

before the start time of the next period, specified by the
value of period as the parameter of deadline. As there is a
nondeterministic initial offset after which the data acquisi-
tion becomes a periodic task, we implemented sensorFirst

to nondeterministically starts data acquisition after 10, 20,
or 30 units of time (line 10). Note that in line 1, the sam-
pling rate is given as a constant. A similar approach is used
in the implementation of the Misc reactive class.

The behavior of CPU as the target of Sensor and Misc

events is more complicated (Listing 2). Upon receiving a
miscEvent, CPU waits for miscTaskDelay units of time; this
represents computation cycles consumed by miscellaneous
tasks. Similarly, after receiving a sensorEvent, CPU waits
for sensorTaskDelay units of time; this represents cycles
required for local data processing. Data is packed in a packet
and upon the threshold (line 17), CPU asks senderDevice to
send the packet which contains the collected data (line 18).

Listing 2: Reactive class of the CPU
1 env int sensorTaskDelay = 2; // ms
2 env int miscTaskDelay = 10; // ms
3 env int bufferSize = 3; // samples
4
5 reactiveclass CPU(10) {
6 knownrebecs { RCD senderDevice, receiverDevice; }
7 statevars { int collectedSamplesCounter; }
8
9 CPU() { collectedSamplesCounter = 0; }

10
11 msgsrv miscEvent() {
12 delay(miscTaskDelay);
13 }
14 msgsrv sensorEvent() {
15 delay(sensorTaskDelay);
16 collectedSamplesCounter += 1;
17 if (collectedSamplesCounter == bufferSize) {
18 senderDevice.send(receiverDevice, 1);
19 collectedSamplesCounter = 0;
20 }
21 }
22 }

As this is a intra-sensor node model, communication be-
tween sensor nodes is omitted. The behavior of RCD is lim-
ited to waiting for some amount of time (line 6); this repre-
sents the sending time of a packet.

Note that computation times (delay’s) depend on the low-
level aspects of the system and are application-independent;
they can be measured before the application design. For
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schedulability analysis, we set the deadline for messages
in a way that any scheduling violations are caught by the
model checker.

Listing 3: The intra-sensor node implementation of
RCD
1 env int OnePacketTransmissionTime = 7; // ms
2
3 reactiveclass RCD (2) {
4 RCD() { }
5 msgsrv send(RCD recDevice, byte numOfPackets) {
6 delay(OnePacketTransmissionTime);
7 }
8 }

4. SCHEDULABILITY ANALYSIS OF
INTER-SENSOR NODE MODEL WITH
A DISTRIBUTED COMMUNICATION
PROTOCOL

Composing the models of intra-sensor nodes to have the
inter-sensor node model requires that the wireless communi-
cation medium Ether be specified and a communication pro-
tocol is implemented in radio communication devices. Note
that the process of sending a packet is controlled by a wire-
less network communication protocol.

The reactive class of Ether (Listing 4) has three message
servers: these are responsible for giving the status of the
medium, broadcasting data, and resetting the condition of
the medium after a successful transmission. Broadcasting
data takes place by sending data to a RCD which is addressed
by the receiverDevice variable. So, we can easily examine
the status of the Ether using the value of receiverDevice

(i.e., medium is free if receiverDevice is not null, line 13).
This way, after sending data, the value of receiverDevice

and senderDevice must be set to null to show that the
transmission is completed (lines 28 and 29). Data broadcast-
ing is the main behavior of Ether (lines 15 to 26). Before the
start of broadcasting, the Ether status is checked (line 16)
and data-collision error is raised in case of two simultane-
ous broadcasts (line 24). With a successful data broadcast,
Ether sends an acknowledgment to itself (line 19) and the
sender (line 20), and informs the receiver of the number of
packets sent to it (line 21). In addition to the functional re-
quirements of Ether, there may be non-functional require-
ments. For example, the Imote2 radio offers a theoretical
maximum transfer speed of 250 kbps. When considering
only the useful data payload (goodput), this is reduced to
about 125 kbps.

We now extend RCD to support communication protocols.
The way that a communication protocol allows sensor nodes
to access to the communication medium affects the feasibil-
ity of compositional verification. For the development of
WSAN applications, developers mainly use one of TDMA
or B-MAC as the communication protocol. As we will show
in the following, WSAN applications can be composition-
ally model checked while TDMA or B-MAC is used as the
communication protocol.

Using TDMA, an execution period is defined and each
node in the network has one or more time slots to transmit
a packet or a series of packets in an execution period. If a
node has data available to transmit during its allotted time

slot, it may be sent immediately. Otherwise, packet sending
is delayed until its next allotted time slot.

Listing 4: Reactive class of the Ether
1 env int OnePacketTT = 7; // ms (transmission time)
2
3 reactiveclass Ether(5) {
4 statevars {
5 RCD senderDevice, receiverDevice;
6 }
7
8 Ether() {
9 senderDevice = null;

10 receiverDevice = null;
11 }
12 msgsrv getStatus() {
13 ((RCD)sender).receiveStatus(receiverDevice != null);
14 }
15 msgsrv broadcast(RCD receiver, int packetsNumber) {
16 if(senderDevice == null) {
17 int transTime = packetsNumber * OnePacketTT;
18 senderDevice = (RCD)sender;
19 receiverDevice = receiver;
20 self.broadcastingIsCompleted() after(transTime);
21 ((RCD)sender).receiveResult(true) after(transTime);
22 receiver.receiveData(receiver, packetsNumber);
23 } else {
24 ((RCD)sender).receiveResult(false);
25 }
26 }
27 msgsrv broadcastingIsCompleted() {
28 senderDevice = null;
29 receiverDevice = null;
30 }
31 }

This way, the packet transmission of one sensor node does
not interfere with the other sensor nodes. Having more sen-
sor nodes only results in having shorter time slots, so the
presence of sensor nodes can be abstracted and modeled as
making time slots shorter. Using this abstraction, composi-
tional verification of WSAN applications become feasible as
only one node which is in communication with the central
node has to be considered for networks in any size. List-
ing 5 shows the model of the TDMA communication pro-
tocol. The periodic behavior of TDMA slot is handled by
handleTDMASlot message server which sets and unsets in-

ActivePeriod to show that whether the node is in its allot-
ted time slot. Upon entering into it’s slot, a device checks
for pending data to send (line 24) and schedules handleT-

DMASlot message to leave the slot (line 23). On the other
hand, when CPU sends a packet (message) to a RCD, the mes-
sage is added to the other pending packets which are waiting
for the next allotted time slot. tdmaSlotSize is the prede-
fined size of the tdma slots, and currentMessageWaiting-

Time is the waiting time of this message in the bag of its
receiver.

For the sake of simplicity, the details of RCD are omitted in
Listing 5. The complete source code (which implements the
B-MAC protocol) is available on the Rebeca web page [1].

B-MAC [23] is a CSMA-based technique that utilizes low
power listening and an extended preamble to achieve low
power communication. To this end, an awake and a sleep
period is defined for each node of the network, and each node
changes its state from awake to sleep (and vice versa) using
its local independent schedule. During the awake period,
a node samples the medium and if a preamble for sending
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data is detected it remains awake to receive the data. So, if
a node of the network wishes to send a packet, it precedes
the data packet with a preamble that is longer than the sleep
period of the receiver. Using extended preamble, a sender is
assured that at some point during the preamble the receiver
will wake up, detect the preamble, and receive the data. In
the case of WSAN applications, as the receiver of data is a
central node which does not have any power consumption
concern, the receiver is assumed always to be awake. There-
fore, the only way that sensor nodes may interfere each other
is when a collision occurs in sending data from more than
one sensor node. Collisions are avoided by requiring nodes
to wait for a time called Backoff time before trying to access
the channel after transmission failures. Therefore, having
more sensor nodes only results in having more collisions.

Listing 5: Reactive class of the RCD
1 env int OnePacketTT = 7; // ms (transmission time)
2
3 reactiveclass RCD (3) {
4 knownrebecs { Ether ether; }
5 statevars {
6 byte id;
7 int slotSize, sendingPacketsNumber;
8 boolean inActivePeriod, busyWithSending;
9 RCD receiverDevice;

10 }
11 RCD(byte myId) {
12 id = myId;
13 inActivePeriod = false;
14 busyWithSending = false;
15 sendingPacketsNumber = 0;
16 receiverDevice = null;
17 if (id != 0) { handleTDMASlot(); }
18 }
19 msgsrv handleTDMASlot() {
20 inActivePeriod = !inActivePeriod;
21 if(inActivePeriod) {
22 int cmwt = currentMessageWaitingTime;
23 assertion(tmdaSlotSize - cmwt > 0);
24 self.handleTDMASlot() after(tmdaSlotSize-cmwt);
25 self.checkPendingData();
26 } else {
27 self.handleTDMASlot() after((tmdaSlotSize *

(numberOfNodes - 1))- cmwt);
28 }
29 }
30 msgsrv send(RCD receiver, int packetsNumber) {
31 assertion(receiverDevice == null);
32 sendingPacketsNumber = packetsNumber;
33 receiverDevice = receiver;
34 self.checkPendingData();
35 }
36 msgsrv checkPendingData() { ... }
37 msgsrv receiveResult(boolean result) { ... }
38 }

Based on this fact, the presence of sensor nodes can be
abstracted and modeled as the possible number of collisions
before a data communication is performed successfully. Us-
ing this abstraction, compositional verification of WSAN ap-
plications become feasible as only one sensor node which is
in communication with the central node has to be considered
for networks in any size. Any data transmission of this sen-
sor node may encounter a collision. The maximum number
of the collisions is the number of sensor nodes in the model.
So, in the Rebeca code for RCD, for each data transmission we
have a non-deterministic choice between a successful trans-

mission or a collision. During model checking, in the case of
collision, data transmission with zero, one, ..., up to n colli-
sions are considered where n is the number of sensor nodes.
The Timed Rebeca model of this protocol is available on the
Rebeca web page [1].

Once a complete model of the distributed application has
been created, the Afra model checking tool can verify whether
the schedulability properties hold in all reachable states of
the system. If there are any deadline violations, a coun-
terexample will be produced, indicating the path—sequence
of states from an initial configuration—that results in the
violation. This information can be helpful with changing
the system parameters, such as increasing the TDMA time
slot length, to prevent such situations.

5. EXPERIMENTAL RESULTS AND A
REAL-WORLD CASE STUDY

We examined the applicability of our approach using a
WSAN model intended for use in structural health moni-
toring and control (SHMC) applications.2 Wireless sensors
deployed on civil structures for SHMC collect high-fidelity
data such as acceleration and strain. Structural health mon-
itoring (SHM) involves identifying and detecting potential
damages to the structure by measuring changes in strain
and vibration response. SHM can also be employed with
structural control, where it is fed into algorithms that con-
trol centralized or distributed control elements such as active
and semi-active dampers. The control algorithms attempt
to minimize vibration and maintain stability in response to
excitations from rare events such as earthquakes, or more
mundane sources such as wind and traffic. The system we
examine has been implemented on the Imote2 wireless sensor
platform [18], which features a powerful embedded proces-
sor, sufficient memory size, and a high-fidelity sensor suite
required to collect data of sufficient quality for SHMC pur-
poses. These nodes run the TinyOS operating system, sup-
ported by middleware services of the Illinois SHM Services
Toolsuite [12].

This flexible data acquisition system can be configured to
support real-time collection of high-frequency, multi-channel
sensor data from up to 30 wireless smart sensors at frequen-
cies up to 250 Hz. As it is designed for high-throughput
sensing tasks that necessitate larger networks sizes with rel-
atively high sampling rates, it falls into the class of data-
intensive sensor network applications, where efficient resource
utilization is critical, since it directly determines the achiev-
able scalability (number of nodes) and fidelity (sampling
frequency) of the data acquisition process. Configured on
the basis of network size, associated sampling rate, and de-
sired data delivery reliability, it allows for near-real-time ac-
quisition of 108 data channels on up to 30 nodes—where
each node may provide multiple sensor channels, such as
3-axis acceleration, temperature, or strain—with minimal
data loss. In practice, these limits are determined primar-
ily by the available bandwidth of the IEEE 802.15.4 wire-
less network and sample acquisition latency of the sensors.
The accuracy of estimating safe limits for sampling and data
transmission delays directly impacts the system’s efficiency.

2The Timed Rebeca code of this case study, some compli-
mentary shell scripts, the model checking toolset, and the
details of the specifications of the state spaces in different
configurations are accessible from the Rebeca homepage [1].
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To illustrate the applicability of this work, we considered
applications where achieving the highest possible sampling
rate that does not result in any missed deadline is desired.
This is a very common requirement in WSAN applications
in the SHMC domain in particular. We begin by setting the
value of OnePacketTT to 7ms (i.e., the maximum transmis-
sion time of this type of applications) and fixed the value of
sensorTaskDelay, miscPeriod, and miscTaskDelay to some
predefined values. In addition to the sampling rate, the num-
ber of nodes in the network and the packet size remain vari-
able. By assuming different values for the number of nodes
and the packet size, different maximum sampling rates are
achieved, shown as a 3D surface in Figure 2. As shown in
the figure, higher sampling rates are possible when the buffer
size is set to a larger number (there is more space for data
in each packet). Similarly, increasing the number of nodes
decreases the sampling rate: in competition among three
different parameters of Figure 2, the cases with the maxi-
mum buffer size (i.e., 9 data points) and minimum number of
nodes (i.e., 1 node) results in the highest possible maximum
sampling rates. Decreasing the buffer size or increasing the
number of nodes, non-linearly reduces the maximum possi-
ble sampling rate.

A server with Intel Xeon E5645 @ 2.40GHz CPUs and
50GB of RAM, running Red Hat 4.4.6-4 as the operating
system was used as the model checking host. We varied the
size of the state space from less than 500 states to more
than 140K states, resulting in model checking times ranging
from 0 to 6 seconds. In comparison to the time consump-
tion of the other approaches, the amount of time needed for
model checking of the model is fairly limited. It is because
of the fact that using the compositional approach results in
having a limited number of actors which avoids generating
huge state spaces. Analyzing the specifications of the state
spaces, some relations between the size of the state spaces
and the configurations of the models are observed. For ex-
ample, the largest state spaces correspond to configurations
where sensorTaskDelay, bufferSize, and numberOfNodes

are set to large values. The parameters used in our analy-
sis of configurations were determined through a real-world
installation of an SHMC application. Our results show that
the current manually-optimized installation can be tuned to
an even more optimized one: by changing the configuration,
the performance of the system can be safely improved by
another 7% percent.

6. LIMITATIONS AND FUTURE WORKS
In this paper, we only addressed the schedulability anal-

ysis of WSAN components and did not consider the inter-
ference on the wireless channel issues (the details of com-
munication protocols). Here, we assumed that there is a
reliable wireless infrastructure in the application which pro-
vides guaranteed delivery of messages, which is a reasonable
assumption for a wide range of deployments of structural
health monitoring and control systems. However, this work
can be extended by taking the details of communication pro-
tocols into account together with noises and unreliability of
wireless communication which results in errors. This way,
only Ether and RCD actors have to be modified to contain
the details of the protocols. Note that the implementation
of the chosen MAC protocol as well as the interaction of the
processing hardware with the transmitter has to be added
to RCD to take hardware and software into account and

Figure 2: The maximum sampling rate in case of
using TDMA protocol and setting the value of sen-

sorTaskDelay to 2ms

provide combined analysis of the underlying hardware in-
frastructure as well as the application software. Other dif-
ferent assumptions, including fairness in access to B-MAC,
time drift of actors, and uncertainties, can be added. Note
that extending the number of modeled MAC layer protocols
also can be performed as a future work of this paper. Com-
paring the efficiency of MAC protocols in different cases to
study their characteristics will be one of the outcomes of this
extension.

On the other hand, some WSAN applications also exhibit
probabilistic behaviors which are not discussed in this pa-
per. Also, in many soft real-time systems it is desirable to
know whether the application does not violate any deadlines
with at least a given probability. This is particularly impor-
tant when deadline violation probability is very small, but
requires significant extra resource allocation to be avoided
completely. In resource-constrained WSAN environments,
the price of such safety guarantee may be too high. To ad-
dress these cases, we are going to extend this work by using
Probabilistic Timed Rebeca [13] for modeling WSAN appli-
cation and benefiting from combining performance evalua-
tion with functional verification of models. This way, we
develop one model for the purposes of model checking, per-
formance evaluation, and probabilistic model checking.

We also planned to extend this work in two different di-
mensions which requires extending the support of Timed
Rebeca and the Afra toolset. The first direction is extend-
ing the time model of Timed Rebeca from discrete time to
dense time. This way, instead of putting one integer num-
ber or a deterministic expression with finite values as the
parameter of timing primitives, an integer interval can be
used. So, a nondeterministically chosen value (i.e. a real
number) from the given interval would be the concrete value
of its associated primitive. Although analysis of dense time
systems is more complex than discrete time systems and the
current features of Timed Rebeca is sufficient for modeling
of WSAN applications, modeling the details of communica-
tion protocol (mentioned at the beginning of this section)
requires dense time in some cases. This extension can go
further to support probability distributions as parameters
of the timing primitives and provides stochastic analysis of
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WSAN applications together with their correctness analysis.
The second direction is realized by allowing modelers to

express operation costs in their models. In case of WSAN
applications, associating costs with operations can be inter-
preted as the power consumption of operations. So, devel-
oping a WSAN model which is enriched with costs makes its
modelers able to perform both performance evaluation and
optimization analysis over the model.

7. RELATED WORK
Three different approaches have been used for analysis of

WSANs: system simulation, analytical approach, and for-
mal verification.

System Simulation and Analytical Approach.
Simulation of WSAN applications is useful for their early

design exploration. Simulation toolsets for WSANs have
enabled modeling of networks [17], power consumption [28],
and deployment environment [31]. Simulators can adequately
estimate performance of systems and sometimes detect con-
ditions which lead to deadline violations. But even exten-
sive simulation does not guarantee that deadline misses will
never occur in the future [5]. For WSAN applications with
hard real-time requirements this is not satisfactory. More-
over, none of available simulators is suitable for the analysis
WSAN application software.

On the other hand, a number of algorithms and heuristics
have been suggested for schedulability analysis of real-time
systems with periodic tasks and sporadic tasks with con-
straints, e.g. [20]. But, although these classic techniques are
efficient in analyzing schedulability of a wide range of real-
time systems, their lack of ability to model random tasks
make them inappropriate for WSAN applications. To the
best of our knowledge, there is no work on using analytical
approach for analysis of WSAN applications.

Formal Verification.
Real-time model checking is an attractive approach for

schedulability analysis with guarantees [5]. Model checking
tools systematically check whether a model satisfies a given
property [4]. The strength of model checking is not only in
providing a rigorous correctness proof, but also in the ability
to generate counter-examples, as diagnostic feedback in case
a property is not satisfied. This information can be helpful
to find flaws in the system. Norström et al. suggest an ex-
tension of timed automata to support schedulability analysis
of real-time systems with random tasks [21]. Fersman et al.
studied an extension of timed automata which its main idea
is to associate each location of timed automata with tasks,
called task automata [10].

TIMES [3] is a toolset which is implemented based on the
approach of Fersman et al. [9] for analysis of task automata
using UPPAAL as back-end model checker. TIMES assumes
that tasks are executed on a single processor. This assump-
tion is the main obstacle against using TIMES for schedu-
lability analysis of WSAN applications, which are real-time
distributed applications. De Boer et al. in [7] presented
a framework for schedulability analysis of real-time concur-
rent objects. This approach supports both multi-processor
systems and random task definition, which are required for
schedulability analysis of WSAN applications. However,
asynchronous communication among concurrent elements of

WSAN application results in generation of complex behav-
ioral interfaces which lead to a state space explosion even
for small size examples.

Real-Time Maude is used in [22] for performance estima-
tion and model checking of WSAN algorithms. The ap-
proach supports modeling of many details such as commu-
nication range and energy use. The approach requires some
knowledge of rewrite logic. Our tool may be easier to use by
engineers unfamiliar with rewriting logic: our language ex-
tends straight-forward C-like syntax with actor concurrency
constructs and primitives for sensing and radio communica-
tion. This requires no formal methods experience from the
WSAN application programmer, as the language and struc-
ture of the model closely mirror those of the real application.

8. CONCLUSION
We have shown a compositional approach for modeling

and schedulability analysis of WSAN applications. WSAN
applications are very sensitive to their configurations: the
effects of even minor modifications to configurations must
be analyzed. However, analyzing the real installation of a
WSAN application with many concurrently executing sen-
sors nodes, with a high level of confidence, is impossible.
In this paper, we showed that our approach provides an
accurate view of the behavior of a WSAN application and
its interaction with the operating system and distributed
middle-ware services.

Our realistic—but admittedly limited—experimental re-
sults support the idea that the use of compositional model-
ing and analysis approach may result in more robust WSAN
applications. This would greatly reduce development time
as many potential problems with scheduling and resource
utilization may be identified early.

An important direction for future research is the addition
of probabilistic behavior analysis support to the tool. In
many non-critical applications, infrequent scheduling viola-
tions may be considered a reasonable trade-off for increased
efficiency in the more common cases. Development of a
probabilistic extension is currently underway.
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