
Allocation Optimization for Component-based
Embedded Systems with GPUs

Gabriel Campeanu, Jan Carlson and Séverine Sentilles
Mälardalen University, Västerås, Sweden

Email: {gabriel.campeanu, jan.carlson, severine.sentilles}@mdh

Abstract—Platforms equipped with GPU processors help mit-
igating the ever-increasing computational demands of modern
embedded systems. Such systems can be specifically developed
by using component-based development thanks to the concept
of flexible components. Through this concept, a component can
be transparently executed either on a CPU or a GPU. However,
this flexibility complicates the allocation process, i.e., it is more
difficult to know where to allocate the components to best utilize
the limited resources of the platform. In this work, we address
this problem by providing an optimization model for component-
based embedded systems executing on both CPU and GPU. The
model addresses important optimization goals, characteristic to
the embedded system domain, such as memory usage, energy
usage and execution time. A novelty of this work is the formal
description of the optimization model, which supports the usage
of mixed integer nonlinear programming to compute optimal
allocation schemes. To examine the feasibility of the proposed
method, we apply the optimization model on a vision system
constructed using the industrial Rubus component model.

Index Terms—Optimization, component allocation, flexible
component, embedded systems, CBD, component-based devel-
opment, GPU.

I. INTRODUCTION

The new boards with general-purpose Graphics Processing
Units (GPUs) are feasible solutions employed in embedded
systems to tackle the demanding requirements of modern ap-
plications. Equipped with a parallel execution model, the GPU
is a processing unit that excels in handling the huge amount
of information, which, for some embedded systems, often
originates from e.g., the interaction with the environment.

Another trend in embedded systems is the usage of
component-based development (CBD). This software engi-
neering paradigm promotes the construction of applications
through the composition of already existent software blocks
called software components. Nowadays, CBD is successfully
integrated in industry, and also in the embedded systems
domain, through state-of-the-practice component models such
as AUTOSAR [1], IEC 611-31 [2] and Rubus [3].

Our previous work facilitates the development of embedded
systems with GPUs via two complementary concepts, i.e., the
flexible component and adapter [4]. A flexible component has
the functionality that can be indifferently executed by either
CPU or GPU. This concept exists at design time, when the
system designer decides where to place the flexible compo-
nents for execution (i.e., either on CPU or GPU) in order to
achieve the required system performance. Once the allocation
has been decided, adapters are automatically generated to

facilitate communication between components allocated on
different processing units.

After designing the system, an important step is the al-
location process, i.e., how to allocate functionality over the
hardware in order to utilize, in the best way, the limited
resources of the embedded platform. Deciding which func-
tionality should be placed on a given processing unit is an
NP-hard problem referred to as software deployment [5]. In
the context of embedded systems with GPUs, the complexity
is further increased due to: i) the heterogeneity of the hardware
(i.e., platforms with CPU and GPU) and, ii) the flexible
components (i.e., components with variable allocation) and
adapters (i.e., automatically generated artifacts that connect
components allocated on different processing units).

This paper presents a method that automatically provides
suitable allocation schemes for component-based systems. The
schemes are optimized w.r.t. particular system goals, and
describe the flexible component allocations on the CPU or
GPU. The proposed method receives as input the system
model that describes the interconnected components and their
characteristics, and the platform properties. The considered
optimization goals are related to the focused domain of this
work (i.e., embedded systems) and address the memory usage,
energy usage and execution time of the system.

An optimization problem may be solved using a heuristic
method such as genetic algorithms, or exact methods such
as the mixed integer nonlinear programming (MINLP). While
heuristics offer approximate solutions in shorter calculation
times, exact methods provide optimal solutions for formally-
defined optimization models, but with a longer computation
time for complex problems [6]. A part of the novelty of
this work is in the formal definition of the optimization
model, allowing in this way, to employ MINLP for solving
it. To examine the feasibility of the approach, we applied the
optimization model on a vision system constructed using the
state-of-the-practice Rubus component model, and solved it
with a MINLP solver.

The reminder of the paper is divided as follows. The
background of GPUs and CBD in the context of embedded
systems is presented in Section II followed by the solution
overview in Section III. The formalized optimization model is
covered by Section IV. We introduce a case study in Section V,
which is used to examine the feasibility of the optimization
model. The related work is described in Section VI, followed
by conclusions in Section VII.

II. GPUS AND CBD IN EMBEDDED SYSTEMS

This section presents, in two parts, the background of this
work, i.e., GPUs (in the first part) and CBD (in the second
part). As our focus is in the embedded systems domain, the
background notions are introduced in the targeted domain.

A. GPUs in embedded systems

GPUs were initially developed for graphics-based appli-
cations. Over time, GPUs have been equipped with more
resources and, being easier to program, has led to them being
employed in general-purpose applications.

The usage of GPUs has been adopted in industry as a way to
tackle the stringent requirements (e.g., limited energy usage)
of modern applications. Nowadays, embedded platforms with
GPUs are feasible solutions in e.g., providing the required
performance when processing the data produced by the sys-
tem’s sensors. For example, DRIVE PX Xavier1 is a platform
developed by NVIDIA to be used in the automotive domain,
for autonomous transportation applications.

Today, there are many embedded platforms with GPUs, with
different characteristics. Various vendors such as NVIDIA,
Intel, AMD, Xilinx and IBM, provide their solutions regarding
the resources and physical architecture of the platforms with
GPUs. One of these architectures is represented by platforms
with the GPU and CPU integrated on the same chip. The
reduced physical size, energy usage and cost make this type
of architecture to be the most used in industry.

A characteristic of this type of architecture is the distinct
CPU and GPU memory addresses. Although both processing
units are integrated on the same physical chip, the memory is
divided in two distinct memory address spaces, one for each
processing unit. As an effect, the data needs to be transferred
back and forth between the memory addresses in order to be
accessed by the CPU or GPU.

B. Component-based development

Component-based development is a software engineering
methodology that promotes the development of applications
via composition of already existing software blocks referred
as software components. CBD has been successfully adopted
by industry through several state-of-the-practice component
models that specifically target the development of embed-
ded systems, such as AUTOSAR [1], IEC 611-31 [2] and
Rubus [3]. A common characteristic of component models
used in development of embedded and real-time systems, is
that they typically follow a pipe-and-filter interaction style.
This particular interaction style allows an easy mapping of
the control requirements in the domain.

Rubus is a state-of-the-practice component model used by
e.g., Volvo Construction Equipment to develop embedded soft-
ware. The Rubus component, called software circuit, follows
a Read-Execute-Write semantics, i.e., when it receives the
control, it reads the data from the input data ports, executes the
behavior, writes the results to the output data ports and finally

1https://blogs.nvidia.com/blog/2016/09/28/xavier/

hands off the control to the next connected component. An-
other characteristic of the component model is the distinction
between data and control flow. Fig. 1 presents two connected
Rubus components and their control and data flow description.
The element that triggers C1 is a periodic trigger source (i.e.,
a clock), characterized by a particular activation period (e.g.,
2 ms).

C1 C2
sensor

Output ports
of C2

Input ports
of C1

…

Legend:

Rubus component

Data port

Trigger port

Control flow

Data flow

Clock

2 ms

Fig. 1: Connected Rubus components

Up until recently, there has been limited work in CBD
w.r.t. dedicated GPU support. We introduced the concepts of
flexible component and adapter to facilitate the development
of embedded systems with GPUs [4]. A flexible component
has a functionality that can be executed by either CPU or
GPU. The flexibility, however, only exists at design-time.
Based on the allocation, decided at design-time, the flexible
component is realized as a regular component that encloses
all the information required to be executed on the allocated
hardware.

C2

C3

C4

CPU-to-GPU
adapterC1…

…

…

Fig. 2: Adapter connecting Rubus components allocated on
different processing units

The adapter is a concept that complements the flexible
component notion, and decreases the development complexity
and error-proneness. Due to the platform characteristics, data
needs to be transfered between CPU and GPU memory spaces,
in order to be accesses by the components. The data transfer is
automatically achieved by adapters, which are seen as artifacts
that connect components allocated on different processing
units. While the flexible component concept exists at design-
time, the adapter is introduced in a later stage, i.e., the system
realization stage. Based on the allocation of the flexible com-
ponents, adapters are automatically generated where needed,
realized as components that transfer data between the CPU
and GPU memory addresses. Fig. 2 illustrates a CPU-to-GPU
adapter that facilitates the communication between the CPU-
allocated C2, and GPU-allocated C3 and C4. The adapter

transfers data from the CPU to the GPU memory space, in
order to be accessed by C3 and C4. There is no need for
adapter between C1 and C2 as both are allocated on the CPU,
accessing the same memory address.

III. OVERVIEW OF THE APPROACH

In the context of embedded systems with flexible compo-
nents, a challenge appears when determining the allocation of
the flexible components with respect to certain optimization
goals. Moreover, the challenge is also increased by the fact
that, at the realization of the allocation solution, adapters
are generated for data transfer activities, and these adapters
influence the suitability of the allocation due to e.g., their
memory usage and energy consumption.

In this paper, we propose a method that automatically
computes optimized allocation schemes for a component-
based embedded system with GPU. As input, the method
receives the system model (capturing relevant properties of
both software and hardware), and the optimization criteria.

In the rest of the section, we give high level descriptions of
the system model, the optimization criteria and the allocation
result. Details about the how these concepts are represented
in the optimization problem, are presented in Section IV.

A. System model

The system model includes both software and hardware
aspects. The software is represented by connected components
that follow the pipe-and-filter interaction style. We distinguish
two types of components used: i) regular components with
CPU functionality, and ii) flexible components with function-
ality that can be executed either on CPU or GPU.

We consider that each component is characterized by the
following three properties when allocated on the CPU:
• The internal memory usage represents the CPU memory

requirement of a component to properly execute its func-
tionality. The requirement refers to the internal memory
used by the behavior, such as the variables defined in the
functionality, excluding memory for the data ports.

• The energy usage describes the amount of energy spent
by a component to execute its functionality.

• The execution time specifies the time required by a
component to execute its functionality in isolation.

When a component is allocated on the GPU, it is charac-
terized by four properties, as follows:
• The internal GPU memory usage represents the compo-

nent requirement of GPU memory.
• The internal CPU memory usage represents the CPU

memory requirement. Besides the GPU memory require-
ment, a GPU-allocated component may also contain
variables that reside in the CPU memory space.

• The energy usage is the amount of energy used in the
component execution.

• The execution time describes the component execution
time on GPU.

Each component is characterized by the two previously
described property sets, i.e., one for the CPU and the other

cpuMem = 1.8 MB
cpuEnergy = 7 Wh
cpuTime = 4 ms

gpuMem = 2 MB
gpuCpuMem = 0.2 MB
gpuEnergy = 7 Wh
gpuTime = 2 ms

C1

C3

C4

C2

cpuMem = 30 kB
cpuEnergy = 5 Wh
cpuTime = 2 ms

gpuMem = 0
gpuCpuMem = 0
gpuEnergy = 0
gpuTime = 0

Legend:

Flexible component

Regular component

…

…

…

Fig. 3: Connected (flexible and regular) Rubus components

for the GPU. Regular components, being only CPU executable
(i.e., allocated on CPU), have the GPU-related properties set
to zero.

Fig. 3 presents a section of a Rubus application composed of
a regular (i.e, C2) and three flexible components (i.e., C1, C3
and C4). As illustrated by the figure, a flexible component has
two sets of properties with non-zero values. The component
C2 is characterized by the properties related to the CPU such
as it executes on CPU for 2 milliseconds and consumes 5
Watthours; the GPU-related properties are set to zero.

The hardware platform contains a CPU coupled with a GPU,
where each processing unit has its private memory address
space. The properties that characterize the hardware platforms
are: i) the available GPU memory, and ii) the available CPU
memory.

B. Constraints and optimization criteria

An allocation scheme is decided based on the properties
of the application, the characteristics of the platform and
the system requirements. A given system may have several
feasible allocations. However, not all allocations are equiv-
alent, i.e., there are trade-offs when selecting an allocation
over the other. For example, one feasible allocation may
optimize the system memory utilization to the detriment of
the performance. Therefore, it is important to decide, from all
feasible allocations, which one is suitable for a given system.

A suitable allocation is determined by the constraints and
optimization criteria. The constraints need to be satisfied in
order for the allocation to be feasible. For example, a constrain
forces to place on GPU a number of components that together
do not require more memory than is available. The opti-
mization criteria are used to decide which allocation solution
is better. In this work, we place ourself in the context of
embedded systems and address related criteria to this domain.
We introduce optimization criteria such as memory usage,
energy usage and performance. For example, because many
embedded systems have stringent requirements regarding the
power consumption, a criterion for our allocation method is
to minimize the energy usage of the system.

An important factor to be considered by the constrains and
optimization criteria is the adapters (see Section II-B). These
artifacts are generated to facilitate component communication
between processing units, where needed. For instance, using
the example presented in Fig. 3, if C1 is decided to be allocated
on the GPU, then its communication with the regular (CPU-
allocated) C2 component is facilitated via an adapter. The
constraints and optimization criteria must not only consider
the properties of the system components, but also the costs
(e.g., energy usage) introduced by the generated adapters.

C. Allocation result

The allocation result is the product of the optimization
process, and contains a feasible solution of the mapping of
software components onto the processing units. The result
satisfies the requirements introduced as input, i.e., the soft-
ware characteristics and the hardware constrains. Focusing,
in this work, on systems composed of flexible components,
the allocation result presents which flexible components are
allocated to the CPU and which are allocate to the GPU, in
order to satisfy the optimization criteria. The allocation result
is represented by a mapping between the (flexible) components
and the processing units (i.e., CPU/GPU). For example, using
the application described in Figure 3, one of the possible
allocation results that minimizes the CPU memory usage is
described as follows:

C1→ GPU C3→ GPU

C2→ CPU C4→ GPU

IV. OPTIMIZATION MODEL

The proposed optimization model is formally defined in
the following paragraphs. The model contains the formal
definitions of the input and output, and the constraints and
optimization criteria included in this work.

A. Input

The model of the system structure is described in the
following paragraphs.

Let C = {c1, . . . , cn} be a set of n components, divided
into two disjoint subsets, C = R ∪ F , representing regular
and flexible components, respectively. Each component is
characterized by one or several unique input data ports, and
output data ports. Let I = {ip1, . . . , ipm} be a set containing
the input data ports of all the components of the system, and
O = {op1, . . . , opk} a set containing the output data ports of
all the components of the system.

Moreover, we define the set S = {〈f1, C1〉, . . . , 〈fq, Cq〉}
describing the triggering of components, where Ci ⊆ C is
a subset containing the components that are triggered by the
same unique trigger source (i.e., clock) that has the frequency
of fi. Each component from C must be in exactly one trigger
set Ci, i.e., C1, . . . , Cq are disjoint, with C1 ∪ . . . ∪ Cq = C.

Based on the defined sets, we introduce two functions to
describe the system structure (i.e., comp and connect), and

eight functions to represent properties of individual compo-
nents and ports. The definitions of the functions are described
by Table I.

TABLE I: Ten functions describing the system model

Function Description

comp(p) = the component that has p as
comp : I ∪O → C an input or output data port.

connect(op) = the set of input ports
connect : O → 2I connected to op.

portSize(p) = the size of data sent
portSize : O → N through the output port op.

cpuMem(c) = the internal CPU memory
cpuMem : C → N usage of c when allocated to a CPU.

gpuMem(c) = the internal GPU memory
gpuMem : C → N usage of c.

gpuCpuMem(c) = the internal CPU mem
gpuCpuMem : C → N usage of c when allocated to a GPU.

cpuT ime(c) = the execution time of c
cpuT ime : C → N on CPU.

gpuT ime(c) = the execution time of c
gpuT ime : C → N on GPU.

cpuEnergy(c) = the energy usage of c
cpuEnergy : C → N on CPU.

cpuEnergy(c) = the energy usage of c
cpuEnergy : C → N on GPU.

Regarding the hardware platform, we introduce two vari-
ables to describe the platform characteristics:

AvailCpuMem = available CPU memory
AvailGpuMem = available GPU memory

Moreover, we define two constants as follows:
• keng to describe the energy usage of transferring one unit

of data between CPU and GPU memory addresses, and
• ktm to describe the time used to transfer one unit of data

between distinct memory addresses.
We assume that the same energy/time is used when transferring
one unit of data from the CPU to GPU memory space, and
vice-versa.

B. Output

The result is a scheme that contains the allocation of all
flexible components. Let A = {ac1 , . . . , acn} be a set of
boolean variables, where each element aci represents the
mapping of the corresponding component ci to a processing
units.

aci =

{
0, when ci is allocated on CPU
1, when ci is allocated on GPU

C. System properties

We define four system properties, as illustrated in Table II:

TABLE II: System properties

GpuMemory =
∑
ci∈C

aci ∗ gpuMem(ci) +
∑

opi∈O
min

(
1, acomp(opi)

+
∑

ipj∈connect(opi)

acomp(ipj)

)
∗ portSize(opi) (1)

CpuMemory =
∑
ci∈C

(
(1− aci) ∗ cpuMem(ci) + aci ∗ gpuCpuMem(ci)

)
+

∑
opi∈O

min

(
1, 1− acomp(opi)

+
∑

ipj∈connect(opi)

(
1− acomp(ipj)

))
∗ portSize(opi)

(2)

Energy〈fl,Cl〉 =
∑
ci∈Cl

(
aci ∗ gpuEnergy(ci) + (1− aci) ∗ cpuEnergy(ci)

)
+

∑
opi∈O∧comp(opi)∈Cl

(
acomp(opi)

∗min

(
1,

∑
ipj∈connect(opi)

(
1− acomp(ipj)

))
+

(1− acomp(opi)
) ∗min

(
1,

∑
ipj∈connect(opi)

acomp(ipj)

))
∗ portSize(opi) ∗ keng

(3)

Energy =
∑

〈fl,Cl〉∈S

Energy〈fl,Cl〉 ∗ fl (4)

T ime〈fl,Cl〉 =
∑
ci∈Cl

(
aci ∗ gpuT ime(ci) + (1− aci) ∗ cpuT ime(ci)

)
+

∑
opi∈O∧comp(opi)∈Cl

(
acomp(opi)

∗min

(
1,

∑
ipj∈connect(opi)

(
1− acomp(ipj)

))
+

((
1− acomp(opi)

)
∗min

(
1,

∑
ipj∈connect(opi)

acomp(ipj)

))
∗ portSize(opi) ∗ ktm

(5)

1) GpuMemory: the total GPU memory usage of the
system. This property, presented by equation 1, describes the
amount of GPU memory required by the system components.
GpuMemory is composed of two members, as follows. The
first member sums the internal GPU memory usage of only
the (flexible) components that are allocated on the GPU (i.e.,
components ci that have the allocation aci as 1).

The second member addresses the GPU memory usage
of: i) the output ports of GPU-allocated components, and ii)
possible adapters that transfer data from the CPU to GPU
memory space. The output ports of components with GPU
capability, are used to pass large data with multiple elements
(e.g., 2D images), and have an important impact on the
components’ GPU memory requirement. Another aspect that
affects the system’s GPU memory usage is the fact that, when
a CPU-allocated component communicates with at least one
GPU-allocate component, the sent data is copied, by a late
realized adapter, from the CPU to the GPU memory space
(see Figure 2).

These aspects are captured by the second member of the
equation, which uses a min function to verify both aspects, as
follows. For each output port opi of the O set:
• if it belongs to a GPU-allocated component (i.e.,
acomp(opi) is 1), the min function produces the value 1,

regardless of the connections of the output port.
• if it belongs to a CPU-allocated (flexible or regular)

component (i.e., acomp(opi) is 0), then the port’s con-
nections are verified in order to examine if an adapter
would be generated. This situation is captured by the
sum member inside the min function, where, if, at least,
one connected port (i.e., ipj) belongs to a GPU-allocated
(flexible) component, than an adapter exists. In this case,
the min produces the value 1.

To calculate the memory requirement of an output port or
adapter, the value computed by the min function is multiplied
with the port size provided via the portSize() function.

2) CpuMemory: the total CPU memory usage of the
system. This property is calculated in a similar manner as
the previous one, using two sum members, as follows. The
first member adds, in the first part, the internal CPU memory
requirement of the components that are allocated on the CPU
(i.e., components ci with (1− aci) as 1). Furthermore, in the
second part of this member, it is added the CPU memory
requirement of the components that are allocated on the GPU.
The second member adds the CPU memory requirement of:
i) the output ports of CPU-allocated (flexible) components,
and ii) the adapters that transfer data from the GPU to CPU
memory space.

3) Energy: the total energy usage of the system. This
property is calculated by adding the energy usage of each
set of components Cl triggered by the same source with the
frequency fl, as illustrated by equation 4. The energy usage
of each of such component set Cl, described by equation 3,
is obtained from two members, as follows.

The first member calculates the energy usage of the compo-
nents in the set Cl by adding each of the components’: i) GPU
energy usage (i.e., provided by the gpuEnergy() function),
and ii) CPU energy usage (i.e., provided by the cpuEnergy()
function).

The second member calculates the energy spent in adapters
transferring data between CPU and GPU memory spaces, as
follows. The energy spent to transfer data from the GPU to
the CPU memory space, illustrated in the first part of the
member, takes each output port opi of the components ci that
are allocated on CPU (i.e., acomp(opi) is 1), and examines
its connected (input) ports ipj . The min function counts how
many connected ports belong to CPU-allocated components.
If there is at least one such connected port, an adapted will
be generated for this transfer, and the min function returns the
value 1. To calculate the energy spent on the transfer, the size
of the output port (i.e., returned by the portSize() function)
is multiplied with the keng constant.

In a similar way, the second part of the member calculates
the energy used on transferring data from the CPU to GPU
memory space. The connections of each output port that
belong to CPU-allocated components, are examined. If there
is at least one connected port that belongs to a GPU-allocated
component, then the energy used to transfer the data is given
by the size of the output port multiplied with the keng constant.

4) Time〈fl,Cl〉: the end-to-end execution time for a set
of components Cl activated by the same trigger source. This
property is expressed for each triggering of a group source.
The execution time of a particular set of components Cl is
formally defined in equation 5, through the sum of two sum
members, described in the following paragraphs.

The first member calculates the execution times of the
system components. The sum adds the GPU execution times of
GPU-allocated (flexible) components and the CPU execution
times of CPU-allocated (regular or flexible) components.

The second member deals with the time spent on trans-
ferring data between the distinct memory spaces, as follows.
For the GPU-to-CPU transfers, the connections of the output
ports of GPU-allocated (flexible) components are analyzed. If
at least one of the connected ports belongs to a CPU-allocated
(flexible or regular) component, an adapter will be generated,
and its transferring time is calculated by multiplying the size
of the output data port with the ktm constant. In a similar way,
the CPU-to-GPU transfer time is calculated in the last part of
the second equation member.

D. Constraints

The optimization model considers four constraints related
to the system properties, and one regarding the regular com-
ponents, as follows:

1) GPU memory - the required GPU memory of components
allocated on the GPU should not exceed the available
GPU memory of the platform. Using the definition of
the system’s GPU memory usage (i.e., equation 1), the
constrain is formally defined as:

GpuMemory ≤ AvailGpuMem

2) CPU memory - similarly, the required memory of compo-
nents allocated on the CPU should not exceed the CPU’s
available memory. Using the system’s CPU memory
usage (i.e., equation 2), the constrain is formalized as:

CpuMemory ≤ AvailCpuMem

3) Maximum energy - the energy consumed by the system
should be less or equal with a particular (maximum) limit.
Using equation 4, the constrain is formalized as follows:

Energy ≤MaxEnergy

4) Maximum time - the execution time of a particular
trigger group should be less or equal with a specific
(maximum) execution time. The constraint is formalized
using equation 5, as follows:

Time〈fl,Cl〉 ≤MaxTime〈fl,Cl〉

5) All regular components must be allocated on the CPU:

ac = 0 for all c ∈ R

Because a system may be constructed from several sub-
systems, the properties of each sub-system may be indi-
vidually calculated using the equations defined in Table II.
The constraint 3 may be used to delimit the energy us-
age of each separate sub-system, while constraint 4 delimits
the execution times of groups enclosed by particular sub-
systems. MaxEnergy and MaxTime〈fl,Cl〉 are user-defined
constants. Similarly, constraint 1 and 2 my be used to delimit
the memory limitations of each sub-system.

E. Optimization criteria

Our optimization is concerned with the following aspects:
• Minimize memory usage on the GPU.
• Minimize memory usage on the CPU.
• Minimize the system energy usage.
• Minimize the execution time of the system trigger groups.

In order to allow the developer to select which of the properties
are more important, or to exclude one or several properties
from the optimization process, weight parameters are intro-
duced. We merge all of the concerns in a linear combination,
and minimize the result, as follows:

minimize(F), where
F = wg ∗GpuMemory + wc ∗ CpuMemory+

we ∗ Energy +
∑
〈fl,Cl〉

wt
l ∗ Time〈fl,Cl〉, and

wg + wc + we +
∑
〈fl,Cl〉

wt
l = 1

C1
 Camera1

C2
Camera2

C3
Merge
And

Enhance

C4
Convert

Grayscale

C5
Edge

Detection

C6
Object

Detection

Sync
Sensor

Camera1

Sensor
Camera2

C9
LoggerC7

Compress
RGB

C8
Compress
Grayscale

Fig. 4: The vision system of the underwater robot

F. Simplification of properties realization

The system properties described in Table II are formalized
in a general manner, to cover systems with any number of
components equipped with any number of ports, resulting in
rather complicated equations due to the nested sum and min
operations.

However, for any given system, the properties are calculated
by unrolling the sum functions, leading to simpler versions
of the generic equations. The arithmetic expressions of the
equations are further simplified by:
• replacing the allocation variables ac with 0 for regular

components due to constraint 5 (see Section IV-D), and
• removing min functions when their second argument

cannot exceed 1, for example when it consists of a single
aci element.

For instance, for an output port of a component c2 that is only
connected to an input port of a component c3, the first min
function used for the energy calculation (i.e., equation 3), is
initially min(1, (1−ac3)) but is reduced to just (1−ac3) that
corresponds to the connected c3 component. A more detailed
example that describes the calculation and simplification of a
system properties, is presented in the next section.

V. CASE STUDY

In this section, we introduce the component-based system
on which we apply the optimization model. The case study is
the vision system of an underwater robot. The robot navigates
autonomously underwater, fulfilling various missions such as
tracking red buoys. As a hardware platform, the robot is
equipped with an embedded board that contains a CPU and
a GPU integrated on the same chip. The board is connected
to a pair of camera sensors that provide a continuous flow
of images of the surrounding environment, and to several
actuators (i.e., thrusters) that allow underwater movement.
The architecture of the vision system is constructed using the
Rubus component model, as illustrated in Fig. 4.

The nine components of the vision system are divided in two
trigger groups, i.e., group 1 containing six components (upper
part of Fig. 4), and group 2 containing three components. The
component functionalities are the following. Two components

TABLE III: The unrolled energy equations for the two groups
of the vision system

Energy〈f1,C1〉 =

cpuEnergy(c1)+

cpuEnergy(c2)+

ac3 ∗ gpuEnergy(c3) + (1− ac3) ∗ cpuEnergy(c3)+

ac4 ∗ gpuEnergy(c4) + (1− ac4) ∗ cpuEnergy(c4)+

ac5 ∗ gpuEnergy(c5) + (1− ac5) ∗ cpuEnergy(c5)+

cpuEnergy(c6)+

ac3 ∗ portSize(opc1) ∗ keng+

ac3 ∗ portSize(opc2) ∗ keng+(
ac3 ∗min(1, 1− ac4 + 1− ac7) + (1− ac3) ∗min(1, ac4 + ac7)

)
∗

portSize(opc3) ∗ keng+(
ac4 ∗ (1− ac5) + (1− ac4) ∗ ac5

)
∗ portSize(opc4) ∗ keng+(

ac5 + (1− ac5) ∗ ac8
)
∗ portSize(op5) ∗ keng

(6)

Energy〈f2,C2〉 =

ac7 ∗ gpuEnergy(c7) + (1− ac7) ∗ cpuEnergy(c7)+

ac8 ∗ gpuEnergy(c8) + (1− ac8) ∗ cpuEnergy(c8)+

cpuT ime(c9)+(
ac7 ∗ (1− ac8) + (1− ac7) ∗ ac8

)
∗ portSize(opc7) ∗ keng+

ac8 ∗ portSize(opc8) ∗ keng

(7)

(i.e., Camera1 and Camera2) are connected to the physical
sensors, and convert the received raw data in readable frames.
These frames are forwarded to the MergeAndEnhance compo-
nent that reduces the noise and merges the frames. The output
is converted into grayscale format by ConvertGrayscale. The
EdgeDetection component filters the inputed frame and pro-
vides a black-and-white frame, where the white lines delimits
the objects from the frame. There are two components (i.e.,
CompressRGB and CompressGrayscale) that compress system
frames, while the Logger component stores them for logging
purposes.

The system contains a total of five flexible components
that are fit to be executed, if required, on GPU due to their
functionality, i.e., processing images. For simplification, we

numbered as c1 to c6 the components of group 1, from left
to right. Similarly, the three components belonging to group
2 are numbered, from left to right, as c7 to c9.

The vision system properties calculated using the equations
from Table II have a simplified form. For instance, Table III
presents the unrolled energy usage calculation for both vision
system groups. Equation 6 details the energy usage of group 1.
The equation is not linear due to the fact that component
c3 (i.e., MergeAndEnhance) has an output port connected to
two ports; this requires the min functions to remain. C5 (i.e.,
EdgeDetection) is another component that also has an output
port that communicates with two different components (i.e.,
c6 and c8). However, because c6 (i.e., ObjectDetection) is a
regular component (i.e., ac6 = 0), the min function is removed
from the equation.

For group 2, where each output port is single connected
to a component, the energy usage reduces to equation 7.
Furthermore, because c9 (i.e., Logger) is a regular component
(i.e., ac9 = 0), this simplifies the equation even more. In this
case, the equation is linear.

To compute allocation schemes, we use the CPLEX solver2

developed by IBM. The unrolled system properties alongside
with the constraints and optimization function of the vision
system are converted into a CPLEX optimization model.

TABLE IV: The properties of the vision system components

Properties

Group Component Memory (bytes) Time (msec)

CPU GPU GPUCPU CPU GPU

1 Camera1 56 0 0 3.2 0
1 Camera2 56 0 0 3.2 0
1 MergeAndEnhance 69 10575 24 4 0.6
1 ConvertGrayscale 60 8550 22 4 0.5
1 EdgeDetection 132 24750 22 1 0.6
1 ObjectDetection 124 0 0 6 0
2 CompressRGB 100 15300 22 3.1 0.5
2 CompressGrayscale 100 15300 22 3.2 0.5
2 Logger 70 0 0 4 0

GPU - The GPU memory requirement when allocated on the GPU
GPUCPU - The CPU memory requirement when allocated on the GPU

The requirements and characteristics of the vision system
components are described in Table IV. As we do not have
means for energy usage measurements, we use the literature
results that show the GPU energy efficiency [7], and assume
2 energy usage units for each CPU-allocated component, and
1 energy usage unit for each GPU-allocated component. The
flexible components and their characteristics are highlighted in
gray. For example, the flexible component MergeAndEnhance
requires 69 bytes of memory when allocated on the CPU, and
delivers and execution time of 0.6 msec when allocated on the
GPU. We mention that the time used to transfer a unit of data
between distinct memory spaces (i.e., ktm) is 0.00002 msec.

2https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-
optimizer

Regarding the platform, the embedded board of the underwater
robot is equipped with an AMD Accelerated Processing Unit3,
where the CPU and GPU are integrated on the same chip. The
total memory of the chip is 200MB, but this memory should be
used by the entire system of the robot. Therefore, only a part
of the platform memory is available for the vision system.
To make the allocation more interesting, we decided to use
350000 bytes as available CPU memory, and 500000 bytes as
available GPU memory, respectively.

TABLE V: Four allocation scenarios for the vision system

Group Component Allocation

Fitness1 Fitness2 Fitness3 Fitness4

1 MergeAndEnhance GPU CPU CPU GPU
1 ConvertGrayscale GPU GPU GPU GPU
1 EdgeDetection CPU GPU GPU CPU
2 CompressRGB GPU GPU GPU GPU
2 CompressGrayscale CPU GPU GPU GPU

Fitness1 - Minimize the execution time of group 1
Fitness2 - Minimize the execution time of group 2
Fitness3 - Minimize all system properties (all weights are equal)
Fitness4 - Minimize all system properties (the CPU memory weight is double
than all other weights)

Table V presents four allocation schemes of the vision
system computed by the CPLEX solver when using a machine
with a 2,6 GHz i7 processor and 16 GB of memory. For the
Fitness1 case, we focused on only minimizing the execution
time of group 1 (i.e., wt

1 = 1, and all other weights set to
0). The result shows that two of the flexible components from
group 1 are allocated on the GPU. The third flexible compo-
nent, that has a lower execution time efficiency compared to
the other two components, was allocated on the CPU, due to
e.g., the memory limitation constraints. In the second case, we
aim to instead minimize the execution time of group 2 (i.e.,
wt

2 = 1, and all other weights set to 0). The result shows
the allocation on the GPU of the two flexible components
of group 2. Furthermore, in this case, two of the flexible
components of group 1 are allocated on the GPU due to
e.g., memory limitation constraints. In Fitness3 case, when
all weights have equal non-zero values (i.e., 0.2), all flexible
components, except MergeAndEnhance, are distributed over
the GPU. In the last case, where wc (i.e., CPU memory weigh
parameter) has a double importance than the other weights, all
flexible components, except EdgeDetection, are allocated on
the GPU.

The time used by the solver to compute the allocation
schemes is 0.01 seconds. To examine the calculation time for
bigger systems, we constructed three scenarios described in
Fig. 5. Scenario 1 consists of a chain of connected flexible
components. While in Scenario 2, each flexible component
communicates, via a single output port, with two other flexible
components, in Scenario 3, each flexible component has two
output ports connected to different components. In each sce-
nario we vary the number of contained components, resulting

3https://unibap.com/product/advanced-hetereogeneous-computing-modules/

…

(a) Scenario 1

…

(b) Scenario 2

…

(c) Scenario 3

Fig. 5: Three types of scenarios for scalability evaluation

in three versions with 21, 31 and 41 components, respectively.
In Scenario 2 and 3, in order for each component to have two
output connections, an extra component is added, hence the
even number of components. We added an extra component
in Scenario 1 to have the same number of components in all
three scenarios.

TABLE VI: Implementation and execution of the scenarios

Number of Average
flexible output data total optimization

components data ports connections operators time (ms)

21 20 20 638 65
Scenario 31 30 30 938 142

1 41 40 40 1273 3806

21 20 38 883 146
Scenario 31 30 58 1344 395

2 41 40 78 1784 (5918)

21 38 38 1089 174
Scenario 31 58 58 1661 520

3 41 78 78 2235 (10602)

Each version of the three scenarios was implemented in
CPLEX by unrolling the general equations (see Table II).
Table VI presents different information about the scenarios and
their implementation, such as the total number of output data
ports, data connections and implemented arithmetic operators.
We provided random values between 1 and 99999 for the
component properties and ran the optimization 1000 times for
each scenario version, with different random property values
each time. The last table column presents the average of the
optimization time, using a quad-core 2.6Ghz machine.

Figure 6 gives a more detailed perspective of the time
spent computing solutions for the considered scenarios. We
notice from the figure and table information that the solver
easily handles all the considered scenarios, in less than 30
seconds. Scenario 3 takes the longest time due to the fact
that the equations have the highest number of operators.
The experiment shows that the optimization time is mainly
influenced by the number of flexible components. Other factors
that have an impact over the optimization time are the number
of output data ports and their distinct connections.

VI. RELATED WORK

There is a huge amount of work on the software optimiza-
tion subject such as the systematic literature review on the
architecture optimization methods [8]. Among other aspects,

20 30 40 20 30 40 20 30 40

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

Number of components

Ti
m

e
(m

se
c)

Scenario 1 Scenario 2 Scenario 3

Fig. 6: The execution time used for computing solutions

the authors show that, from the total number of papers that
study the optimization of component-based systems (i.e., 30
papers), only 13% (i.e., 4 papers) use exact optimization
strategies (e.g., MINLP). Although exact methods provide
optimal solutions, the difficulty of formally defining the al-
location model, the search-space and the usually non-linearity
(and computationally expensive) of the objective functions are
major challenges in adopting them. We managed to formally
define our optimization model, allowing us to use exact
methods. Furthermore, we showed that our generic allocation
model simplifies its search-space and complexity when applied
on existing systems.

We mention the work of Seo et al. that focuses on the energy
consumption estimation of component-based Java systems [9].
The work constructs a detailed optimization model of the
system energy consumption. An interesting aspect is the
energy usage of the communication when components reside
in different Java Virtual Machines, on the same host. In our
optimization model, the communication aspect is implicitly
covered by the component’s computational cost. We also
treat the energy usage of components communication, but we
specifically capture it in the optimization model.

Another work that deals with the energy usage is proposed
by Goraczko et al. [10]. The authors develop an optimiza-
tion model expressed using integer linear programming, that
minimizes the system energy usage when the end-to-end time
constraints are given. It is shown that (an older version of)
the CPLEX solver calculates solutions on a dual-core 2GHz
machine, in up to couple of minutes, for systems with more
than 30 components. The model applies on embedded systems
that have multi-CPUs. Similarly, our work focuses also on

embedded systems, but the processing units (i.e., CPU and
GPU) have different characteristics. Therefore, the model of
our system is more complex, containing the two distinct
perspectives of the (CPU and GPU) processing units. Further-
more, when applying our optimization model on systems with
e.g., 90 components, the newest version of the CPLEX solver
computes solutions in a fast manner (i.e., 10 msec), when
executed on a powerful machine (i.e., with four-core 2.6Ghz).

In the context of embedded real-time systems, Wang et al.
provide a component-to-platform allocation model [11]. The
proposed model considers the computation, communication,
and memory resources of the components, and uses weights to
define their importance in the allocation process. Interestingly,
the components that require more resources have priority, be-
ing allocated first. In our work, all components have equal allo-
cation priority w.r.t. their resource requirements. Furthermore,
through the used flexible component concept, we increase the
flexibility of the allocation regarding the component resource
requirements. Similarly, we use the weight parameters to
define the properties importance in the allocation process. The
communication cost, represented in our work by adapters, is
integrated in the way we calculate the system properties.

In our previous works, we have addressed the optimization
challenge as follows. In one work, an optimization model
is formally constructed to allocate component-based systems
with GPUs [12]. This work presents its system model through
a hypothetical component model and targets distributed sys-
tems. The model defines abstract system properties such as
CPU capacity that describes the processor workload w.r.t. a
conceptual reference unit. Another work that we also built on
a hypothetical component model, allocates components during
run-time on a distributed platform [13]. Similarly, this work
formally describes the system using abstract properties such as
CPU capacity, and covers the parallel allocation of components
on GPU. Similarly to these previous two works, we formally
define a component allocation for embedded systems with
GPUs. In difference, the present work is constructed using
an existing component model (i.e., Rubus) with its defined
elements (e.g., flexible components, adapters). The previous
works do not consider, as the present model does, the data
transfer overhead between the CPU and GPU. Furthermore,
we characterized the system using realistic properties. We do
not explicitly cover parallel allocation of components on GPU
as there are no defined mechanisms to support this feature in
Rubus. Another difference is that we focus on the component
allocation over compact platforms with single (CPU-GPU)
processing chips.

Regarding the assumptions we made related to the energy
usage of GPUs and CPUs, Huand et al. show the GPU
efficiency over the CPU [7]. Using an existing (parallelizable)
application, the authors compare the energy usage of a system
when the application is executed by: i) the GPU, and ii) a
single-thread CPU. It is showed that, to execute the same
application, the GPU consumes 20 times less energy than
the CPU. The energy calculations from the experiments are
done using a power meter tool. Another aspect that helped us

in constructing the reasoning related to the energy usage of
components is that the energy consumption of a functionality
that executes on GPU is not influenced by possible previous
GPU executions. This leads to independent GPU energy usage
of functionalities that are consecutively executed [14].

VII. CONCLUSIONS

In this work, we introduce an optimization allocation model
for embedded systems with GPUs. The model optimizes
important aspects of the embedded system domain, such as
memory and energy usage. A novelty of the work is the formal
description of the optimization model which allows to employ
MINLP to compute, for given systems, optimal solutions
(when they exist). The optimization model was applied on
an existing component-based vision system showing the fea-
sibility of the method. Furthermore, a scalability examination
showed that a considered solver rapidly computes solutions
(i.e., within 30 seconds) for systems with up to 40 components.

REFERENCES

[1] “AUTOSAR - Technical Overview,” http://www.autosar.org, accessed:
2018-01-22.

[2] K. H. John and M. Tiegelkamp, IEC 61131-3: programming industrial
automation systems: concepts and programming languages, require-
ments for programming systems, decision-making aids. Springer
Science & Business Media, 2010.

[3] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and
K.-L. Lundbäck, “The Rubus component model for resource constrained
real-time systems,” in Industrial Embedded Systems, 2008. SIES 2008.
International Symposium on. IEEE, 2008, pp. 177–183.

[4] G. Campeanu, J. Carlson, and S. Sentilles, “Flexible components for
development of embedded systems with GPUs,” in 24th Asia-Pacific
Software Engineering Conference, December 2017.

[5] S. K. Baruah, “Task partitioning upon heterogeneous multiprocessor
platforms,” in IEEE real-time and embedded technology and applica-
tions symposium, 2004, pp. 536–543.

[6] T. Berthold, Heuristic algorithms in global MINLP solvers. Verlag Dr.
Hut, 2014.

[7] S. Huang, S. Xiao, and W. Feng, “On the energy efficiency of graphics
processing units for scientific computing,” in Parallel & Distributed
Processing, IEEE International Symposium on. IEEE, 2009.

[8] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” IEEE Transactions on Software Engineering, 2013.

[9] C. Seo, S. Malek, and N. Medvidovic, “An energy consumption frame-
work for distributed java-based systems,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 421–424.

[10] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao, “Energy-optimal software partitioning in heterogeneous multi-
processor embedded systems,” in Proceedings of the 45th annual design
automation conference. ACM, 2008, pp. 191–196.

[11] S. Wang, J. R. Merrick, and K. G. Shin, “Component allocation with
multiple resource constraints for large embedded real-time software
design,” in Real-Time and Embedded Technology and Applications
Symposium, 2004. Proceedings. RTAS 2004. 10th IEEE. IEEE, 2004.

[12] G. Campeanu, J. Carlson, and S. Sentilles, “Component allocation
optimization for heterogeneous CPU-GPU embedded systems,” in The
40th Euromicro Conf. on Soft. Eng. and Advanced Applications, 2014.

[13] G. Campeanu and M. Saadatmand, “Run-time component allocation in
CPU-GPU embedded systems,” in Proceedings of the Symposium on
Applied Computing. ACM, 2017, pp. 1259–1265.

[14] M. Burtscher, I. Zecena, and Z. Zong, “Measuring GPU power with the
K20 built-in sensor,” in Proceedings of Workshop on General Purpose
Processing Using GPUs. ACM, 2014, p. 28.

