
Enabling Compliance Checking against Safety
Standards from SPEM 2.0 Process Models

Julieth Patricia Castellanos Ardila, Barbara Gallina, and Faiz UL Muram
School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

{julieth.castellanos, barbara.gallina, faiz.ul.muram}@mdh.se

Abstract—Compliance with process-based safety standards
may imply the provision of a safety plan and its corresponding
compliance justification. However, the provision of this justifica-
tion is time-consuming since it requires that the process engineer
checks the fulfilment of hundred of requirements by taking into
account the evidence presented in the process entities. In this
paper, we aim at supporting process engineers by introducing our
compliance checking vision, which consists of the combination of
process modeling capabilities via SPEM 2.0 (Systems & Software
Process Engineering Metamodel) reference implementations and
compliance checking capabilities via Regorous, a compliance
checker, used for business processes compliance checking. Our
focus is on the identification and exploitation of the appropriate
(minimal set of) SPEM 2.0-like elements, available in the selected
reference implementation, which can be used by Regorous for
compliance checking. Then, we illustrate our vision by applying
it onto a small excerpt from ISO 26262. Finally, we draw our
conclusions.

Index Terms—Compliance checking, SPEM 2.0, Regorous.

I. INTRODUCTION

Compliance with process-based safety standards, which im-
pose requirements on the processes to be adopted to engineer
safety-critical systems [1], may imply the provision of a
safety plan (used to manage and facilitate the execution of
safety activities) together with a compliance justification [2].
The provision of this justification is time-consuming since it
requires that the process engineer checks the fulfilment of hun-
dred of requirements by taking into account the evidence pro-
vided by the process entities. In order to support compliance
checking, existing tools and their methodologies are available.
On the one hand, the software processes can be modeled
by using SPEM 2.0 [3], a metamodel that provides generic
process concepts and extension mechanisms for modeling and
documenting software processes [4]. SPEM 2.0 characteristics
have been used to support the creation of compliance tables
(mapping between standard’s requirements and process enti-
ties [5]). On the other hand, there is Regorous [6], a tool-
supported methodology for automated compliance checking
used in the business and legal contexts. Regorous provides
a generic framework in which formally captured normative
requirements can be propagated in the process models as
compliance effects to derive proofs of compliance. Compliance
effects are those effects that are caused by the cumulative
interaction between the process tasks that are adhered to the
standard requirements influences [7]).

Compliance checking of software process plans against
safety standards may add value during the negotiation with the

certification bodies in the planning phase. Therefore, In this
paper, we aim at supporting process engineers by introducing
our compliance checking vision, which consists of the com-
bination of process modeling capabilities via SPEM 2.0 (Sys-
tems & Software Process Engineering Metamodel) reference
implementations and compliance checking capabilities via
Regorous, a compliance checker, used for business processes
compliance checking. Our focus is on the identification and
exploitation of the appropriate (minimal set of) SPEM 2.0-like
elements, available in the selected reference implementation,
which can be used by Regorous for compliance checking. We
illustrate our vision by applying it onto a small excerpt from
ISO 26262 [8], and show how the report with compliance
results can help the process engineer to trace the unfulfilled
requirements.

The rest of the paper is organized as follows. In Section II,
we provide background. In Section III, we present our compli-
ance checking vision and the mechanism to annotate software
process. In Section IV, we examine an ISO 26262-based small
example. In Section V, we present related work. Finally, in
Section VI, we provide conclusions and future work.

II. BACKGROUND

In this section, we provide essential background on which
we base our work.

A. SPEM 2.0

SPEM 2.0 [3] is a standard that describes Method Content
(knowledge base for describing process) and Processes. We
recall some elements used in this paper. A task definition is an
assignable unit of work which has expected input/output work
products. Guidance provides additional descriptions to method
content elements, e.g., Concept and Reusable Asset. Custom
Category is a way to organize elements. A Delivery Process,
which is an integrated approach for performing a project,
contains a Breakdown Structure, which allows the nesting of
units of work (as task use). SPEM 2.0 supports variability
management, e.g., Contributes, which allows extending a base
in an additive fashion without altering its existing properties.
The open-source tool EPF (Eclipse Process Framework) Com-
poser [9], implements UMA (Unified Method Architecture),
a metamodel that exhibits a good coverage of SPEM 2.0
concepts. Also, EPF Composer has a proprietary activity
diagram which partially generates the execution semantics of a
defined process, and permits importing and exporting libraries



with projects (a.k.a. plugins) allowing reusability. Some of the
concepts mentioned are described with icons (see Table I).

TABLE I: Subset of Icons used in SPEM 2.0/EPF Composer.

SPEM 2.0/EPF Composer Icon
Task Definition/Use /
Work Product

Delivery Process

Custom category

B. IBM Standards Mapping Method

Within AMASS project [10], the IBM approach for mapping
software processes to standard’s requirements [5] was adopted
and adapted resulting in an approach to model standard’s
requirements with EPF Composer [11]. This approach requires
the definition of three plugins. First, the Standard’s require-
ments plugin, in which requirements are captured in a user-
defined type and grouped into a nested table of content by
using custom categories. Second, a Lifecycle elements plugin
which contains the documented process elements. Third, a
Requirements mapping which contains an extended copy (by
using a contributes relationship) of the standards requirements
to be mapped to the process elements that fulfil them.

C. Regorous

Regorous [6] is a tool-supported methodology that imple-
ments compliance by design, an approach that helps process
engineers to reach compliance by providing, in a compliance
report, the causes of regulations violations and reparation poli-
cies. For this, Regorous defines a logical state representation
of the process model to be contrasted with a compliance rule
set. Three are the main inputs of Regorous. First, the rule
set, which is obtained from the formalization of the normative
requirements in FCL (Formal Contract Logic, the underlying
rule-base language used by Regorous). Second, the execution
semantics of the process, which is obtained from the modeling
of the process. Third, the compliance effects annotated in the
process tasks, which are effects extracted from the set of
formulas of the logic that represent the regulations.

D. ISO 26262

ISO 26262 [8] is a standard that addresses functional safety
in automotive. ISO 26262 prescribes a safety lifecycle and
uses ASIL (Automotive Safety Integrity Levels) to specify
applicable safety requirements. In this section, we present
a set of rules extracted from the requirements presented in
Table II. The interested reader may refer to our previous
work [12] for the complete explanation of the formalization
process. However, we briefly explain the meaning of the rules.
Initially, a rule (r1 in the Ruleset 1) indicates initiation of the
Software Unit Design process (R1 in Table II). The expression
in accordance with (R2) recalls the concept of precondition,
namely a task is prohibited (specification of the software units)
until the previous tasks or elements are provided (architectural
design and safety requirements) (rules r2 and r′2). The use of

mandatory methods in the description of software units which
are conditioned by the ASIL and the recommendation levels
(R3) can be tailored by providing a rationale that the selected
methods comply with the corresponding requirement (see r3,
r′3). Conflicts between r2 and r′2 as well as r3 and r′3 due
to the presence of contradictory conclusions can be solved
by adding superiority relations. Superiority relations give high
priority to a rule over the other allowing the checker to derive
conclusions without contradictions.

TABLE II: Requirements for ISO 26262:6 clause 8.

ID Ref Description
R1 8 Software unit design phase initiation.

R2 8.1 Specify software units in accordance with the architectural design and
the associated safety requirements.

R3 8.4.2 The software unit design shall be described using specific notations,
according to ASIL and recommendation levels.

RuleSet 1: ISO 26262-Software Unit Design Process

r1 :⇒ [OM ]addressSwUnitDesignProcess

r2 : addressSwUnitDesignProcess

⇒ [OANPNP ]− performSpecifySwUnit

r
′
2 : performProvideSwArchitecturalDesign,

performProvideSwSafetyRequirements

⇒ [P ]performSpecifySwUnit

r3 : performSpecifySwUnit

⇒ [OANPNP ]selectMandatoryNotationsforSwDesign

r
′
3 : provideRationaleForNotSelectMandatoryNotationsforSwDesign

⇒ [P ]− selectMandatoryNotationsforSwDesign

r
′
2>r2, r

′
3>r3

(1)

III. AUTOMATED COMPLIANCE CHECKING VISION

Our automated compliance checking vision uses SPEM 2.0
elements that implemented in EPF Composer can be used
to provide the minimal set of elements to be process by
the compliance checker Regorous. As depicted in Figure 1,
a process engineer should support an FCL expert in the
formalization of the rules, as well as model and annotate the
software processes, by using EPF Composer. The interaction
between these two tools requires data transformation since
EPF Composer and Regorous have different data schemas. In
particular, EPF Composer produces the standards description
and their formalization, the annotated software process and
a diagram model, which should be transformed into the rule
set, the compliance annotated tasks and the process execution
semantics required by Regorous. Regorous produces a com-
pliance report, which includes rules violations and reparation
policies. The information provided by the compliance report
can be, through back-propagation into EPF Composer, support
the analysis and improvement of the software process.

The rest of the content of this paper focuses on the region
delimited by the dotted line depicted in Figure 1, which has
a twofold function. First, we identify which modeling capa-
bilities should be used for capturing standard’s information,



Fig. 1: Automated Compliance Checking Vision.

i.e., we use the guidance kinds offered by SPEM 2.0 called
Reusable Asset to capture superiority relations between rules,
Concept to capture compliance effects, and custom categories,
to organize a nested list of the standard requirements. These
elements are customized with the icons depicted in Table III.
Second, we provide mechanisms to model and annotate the

TABLE III: SPEM 2.0 Customization

SPEM 2.0 Compliance Information Suggested Icons
Reusable Asset Rule Set

Concept Compliance Effect

Custom category Standard requirement

process with compliance effects. This mechanism includes the
creation of three plugins in a similar way as presented in
Section II-B. The first plugin captures standard’s requirements
by using the customized SPEM 2.0 elements presented in
Table III. The second plugin captures the process elements
required to support the software process description. The third
plugin captures the annotated process, in which compliance
effects are added (in the guidance part) to the process tasks that
shows adherence to the rules that they represent. Process tasks
are an extended copy of the tasks defined in the plugin that
contains the process elements (the extension is done by using
a contributes relationship to the original ones). The delivery
process and its corresponding activity diagram are created with
the annotated tasks. Finally, we export our three plugins.

IV. MODELING AND ANNOTATING A SMALL EXAMPLE
FROM ISO 26262

In this section, we apply the mechanism to model and
annotate software process using EPF Composer (described in
Section III) by modeling a simple example from ISO 26262.
Initially, we create the plugin for capturing standard’s re-
quirements. For this, we define a custom category root called
Standard Requirements ISO 26262 Software Unit Design, to
which we associate the requirements presented in Table II,
with a short but descriptive name, in a nested list of custom

categories. Then, we create the rules that are associated to the
requirement. For example, R3 is a requirement that has two
associated rules r3.1 and r3.2. Then, we associate to the rules
the corresponding compliance effects, which are presented
in the precedent and consequent of the rules described in
RuleSet 1. The customized list of standard’s requirement, the
rules and compliance annotations are depicted in Figure 2.

Fig. 2: Requirements and their Associated Elements.

The actual rule is written in the main description field of
the compliance effect (See Figure 3).

Fig. 3: Specification of Rule r3.1

The rule set is defined in a customized reusable asset (called
Rule Set-ISO 26262-Software Unit Design), which contains the
superiority relations between rules (See Figure 4).

Fig. 4: Rule Set Specification

Then, we create the plugin for capturing process elements.
In this example (See Figure 5), the definition of the process
elements is based on our interpretation of the requirements
provided in Table II. From R1, we deduce that there is one
task called Start Software Unit Design Process in which the re-
quirements for the process are collected, namely, the Software
Architectural Design and the Software Safety requirements,
which are work products resulting from previous phases. From
R2 we deduce the existence of the task Specify Software Unit
and from R3, we deduce that we have a task called Design
Software Unit which output is the Software Unit Design.



Fig. 5: Process Elements Plugin.

Finally, we create the third plugin, in which we copy
and extend (with contributes) the tasks that are part of the
delivery process. Then, we annotate the tasks by deducing
the compliance effects that they produce. For example, the
task Start Software Unit Design Process, produces the com-
pliance effect addressSoftwareUnitDesignProcess, since with
this task we initiate addressing the process. This task has two
inputs, i.e., the software safety requirements and the archi-
tectural design. Thus, it also produce the compliance effects
performProvideAssociatedSwSafetyRequirements and perform-
ProvideSwArchitecturalDesign. The annotation can be seen in
the section called Concepts (See Figure 6).

Fig. 6: Start Software Unit Design Process Task

Then, we create the delivery process, in which the annotated
tasks (storage in the method content of the plugin) are used
to describe the breakdown structure and the activity diagram.
Once created, we export the plugins. We get two files that we
briefly describe (for space reasons, we do not provide code).
First, we get an XMI file (usually called diagram), which
contains enough elements for defining the process execution
semantics required by Regorous and described in the activity
diagram (See Figure 7).

Fig. 7: Activity Diagram of the Software Unit Design Process.

The elements of interest are an Activity that provides the
name of the process, an inital node and a final node that

represent the start and the end event respectively, one Activity
parameter node for every task and one control flow for
every sequence. We did not model other process elements
in this example, but the file can also provides a decision,
merge, fork and join nodes for modeling exclusive and par-
allel gateway respectively, which can be useful for complex
processes. Second, we get an XML file, which provides the
compliance annotated process information (see Table IV). As
the table shows, the activity name corresponds to the process
name. Tasks has associated concepts which correspond to the
compliance effects. We can also create the rule set since every
concept is described with the actual rule and the reusable asset
with the superiority relations (not represented in the table for
space reasons).

TABLE IV: Process Description

Element Information
Activity name Software Unit Design Process
task use name Start Software Unit Design Process

-concept
addressSwUnitDesignProcess
performProvideAssociatedSwSafetyRequirements
PerformProvideSwarchitecturalDesign

task usename Specify Software Unit Design
-concept performSpecifySoftwareUnit
task use name Design Software Unit
-concept selectMandatoryNotationsForSwDesign

The process previously described is manually modeled in
Regorous and checked for compliance. To identify how back-
propagation of standard’s requirements violations should be
done, we have purposely introduced a fault in the description,
i.e., the compliance annotation selectMandatoryNotationsFor-
SwDesign was eliminated. Regorous report is presented in Ta-
ble V. As expected, Regorous reports the compliance violation
that occurs in the process model. Specifically, it says that the

TABLE V: Regorous Report

Compliance Check Results: Process is non-compliant.
Description: Unfulfilled obligation to ’selectMandatoryNotationsFor-
SwDesign’ (Achievement, non-pre-emptive, non-persistent).
Element name: Specify Software Unit.

obligation selectMandatoryNotationsForSoftwareDesign is un-
fulfilled. Tracing back (manually) this compliance effect in the
plugin that describes the standard information (see Figure 2),
we can find that the violation is related to the rule r3.1 which
is related to the requirement R3. With this information, the
process engineer can refer to the requirement description and
understand how the process could be improved.

V. RELATED WORK

To the best of our knowledge, there are no attempts for
enabling compliance checking from SPEM2.0 process mod-
els. Apart from the IBM method presented in Section II-B,
works related to mapping regulations have been proposed to
facilitate process engineers work. In [13], the authors examine
techniques to map a single taxonomy to multiple regulations.
In [14], authors, use Semantics of Business Vocabularies and



Rules (SBVR) to represent similarity between concepts from
regulations and organization operational specifics concepts.
Ontological approaches to map regulations can be seen
in [15], in which the authors propose a metamodel (SafetyMet)
that includes concepts and relationships for safety targeted for
facilitating safety compliance. In [16], the authors present a
method for mapping the information security knowledge of
the French EBIOS (Expression des Besoins et Identification
des Objectifs de Scurit - Expression of Needs and Identifi-
cation of Security Objectives) standard and the German IT
Grundschutz Manual to an OWL-DL security ontology. In
our work, we based our mapping on SPEM 2.0 metamodel,
and we do not design a specific ontology or schema to map
standards concepts. The usage of SPEM 2.0 elements to
map standards can be seen in [17], in which the concepts
involved in the Capability Maturity Model Integration (CMMI)
standard are mapped to SPEM 2.0. As in [17], we have
used Category to classify standard’s requirements. Approaches
for verifying software process models are presented in [18]
and [19]. In [18], BPMN is used to formally specify the
software project management and the software process, to de-
ploy and execute agile avionics software development process,
adopting the idea of model checking to enable detection and
elimination of inconsistencies in process interaction. However,
this approach does not explicitly address the checking of
software process model against safety standards. In [19], a
validation of the process model is carried out with formal tools,
specifically model-checkers available in the area of Petri nets.
The validation consists of evaluating process properties such
as termination of the process, and process planning fulfillment
(process constraints). This work is only conceptual, and no
tool support is provided. In our case, we have provided tool
support for our methodology in EPF Composer and determined
compliance with Regorous.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explained our compliance checking vi-
sion which consists of the combination of process modeling
capabilities via SPEM 2.0 reference implementation, and
compliance checking capabilities via Regorous. Then, we
focus on the identification and exploitation of the appropriate
(minimal set of) SPEM 2.0-like elements available in the
selected reference implementation. We illustrated our vision
by applying it to a simple example from ISO 26262. Also,
we manually map the obtained model into the input model of
Regorous to check compliance and show how a compliance
report can help the process engineer to trace the unfulfilled
requirements.

In future, we plan to add a rule editor to support the
modeling of the FCL rules. Moreover, we plan to address the
transformation required to convert the information provided
by EPF Composer into the input format required by Regorous.
Additionally, we plan to back-propagate the compliance report
information produced by Regorous into the EPF Composer to
facilitate the analysis work that the process engineer has to
perform. From a validation perspective, we are aware that we

are using a small academic example. For this reason, we plan
to study complex use cases to further validate our approach.

ACKNOWLEDGMENT

This work is supported by the EU and VINNOVA via the
ECSEL JU project AMASS (No. 692474) [10]. We thank I.
Ayala for her contribution on requirements modeling using
customized elements in EPF Composer [11].

REFERENCES

[1] J. Castellanos Ardila and B. Gallina, “Towards Increased Efficiency
and Confidence in Process Compliance,” in 24th European Conference
EuroSPI., pp. 162–174, 2017.

[2] B. Gallina, F. Ul Muram, and J. Castellanos Ardila, “Compliance of
Agilized (Software) Development Processes with Safety Standards: a
Vision,” in 4th international workshop on Agile Development of Safety-
Critical Software, p. 5, 2018.

[3] Object Management Group Inc., “Software & Systems Process Engi-
neering Meta-Model Specification. Version 2.0.,” OMG Std., Rev, p. 236,
2008.

[4] A. Koudri and J. Champeau, “MODAL: A SPEM extension to improve
co-design process models,” International Conference on Software Pro-
cess, pp. 248–259, 2010.

[5] B. McIsaac, “IBM Rational Method Composer: Standards Mapping.,”
tech. rep., IBM Developer Works, 2015.

[6] G. Governatori, “The Regorous approach to process compliance,” in
IEEE 19th International Enterprise Distributed Object Computing Work-
shop (EDOCW), pp. 33–40, 2015.

[7] G. Koliadis and A. Ghose, “Verifying Semantic Business Process Models
in Verifying Semantic Business Process Models in Inter-operation,”
in IEEE International Conference on Service-Oriented Computing,
pp. 731–738, 2007.

[8] Internationl Standards Organization, “ISO 26262. Road vehicles Func-
tional safety.,” 2011.

[9] The Eclipse Foundation., “Eclipse Process Frame-
work (EPF) Composer 1.0 Architecture Overview.
http://www.eclipse.org/epf/composer architecture/,” 2013.

[10] AMASS, “Architecture-driven, Multi-concern and Seamless Assur-
ance and Certification of Cyber-Physical Systems. http://www.amass-
ecsel.eu/.”

[11] ECSEL Research and Innovation actions (RIA) - AMASS, “D6.5
Prototype for Cross/Intra-Domain Reuse (b). https://www.amass-
ecsel.eu/content/deliverables,” 2017.

[12] J. Castellanos Ardila and B. Gallina, “Formal Contract Logic Based
Patterns for Facilitating Compliance Checking against ISO 26262,” in
1st Workshop on Technologies for Regulatory Compliance, pp. 65–72,
2017.

[13] C. Cheng, G. Lau, and K. Law, “Mapping regulations to industry-specific
taxonomies,” in 11th international conference on Artificial intelligence
and law ., pp. 59–63, 2007.

[14] S. Sunkle, D. Kholkar, and V. Kulkarni, “Toward better mapping
between regulations and operational details of enterprises using vo-
cabularies and semantic similarity,” Complex Systems Informatics and
Modeling Quarterly, no. 5, pp. 39–60, 2015.

[15] J. L. De La Vara and R. Panesar-Walawege, “SafetyMet: A metamodel
for safety standards,” in International Conference on Model Driven
Engineering Languages and Systems, pp. 69–86, 2013.

[16] S. Fenz, T. Pruckner, and A. Manutscheri, “Ontological mapping of
information security best-practice guidelines,” International Conference
on Business Information Systems, pp. 49–60, 2009.

[17] C. Portela, A. Vasconcelos, A. Silva, A. Sinimbú, E. Silva, M. Ronny,
W. Lira, and S. Oliveira, “A Comparative Analysis between BPMN and
SPEM Modeling Standards in the Software Processes Context,” Journal
of Software Engineering and Applications, vol. 5, no. 5, pp. 330–339,
2012.

[18] P. Kingsbury and A. Windisch, “Modeling of Agile Avionics Software
Development Processes through the Application of an Executable Pro-
cess Framework,” in International Conference on Design and Modeling
in Science, Education, and Technology, 2011.

[19] R. Bendraou, B. Combemale, X. Crégut, and M. Gervais, “Definition
of an executable SPEM 2.0,” in 14th Asia-Pacific Software Engineering
Conference., pp. 390–397, 2007.


