
A Model-Checking-Based Framework For
Analyzing Ambient Assisted Living Solutions

Ashalatha Kunnappilly, Raluca Marinescu, Cristina Seceleanu

Mälardalen University, Väster̊as, Sweden
(first.last)@mdh.se

Abstract. Since modern ambient assisted living solutions integrate a
multitude of assisted-living functionalities, some are safety-critical, it is
desirable that these systems are analyzed already at their design stage to
detect possible errors. To achieve this, one needs suitable architectures
that support the seamless design of the integrated assisted-living func-
tions, as well as capabilities for the formal modeling and analysis of the
architecture. In this paper, we attempt to address this need, by proposing
a generic integrated ambient assisted living system architecture, consist-
ing of sensors, data-collector, local and cloud processing schemes, and an
intelligent decision support system, which can be easily extended to suite
specific architecture categories. Our solution is customizable, therefore,
we show three instantiations of the generic model, as simple, interme-
diate and complex configuration, respectively, and show how to analyze
the first and third categories by model checking. Our approach starts by
specifying the architecture, using an architecture description language, in
our case, the Architecture Analysis and Design Language that can also
account for the probabilistic behavior of such systems. 69 ecifications
are semantically anchored into a formal model. To enable formal anal-
ysis, we describe the semantics of the simple and complex categories as
stochastic timed automata. The former we model check exhaustively with
UPPAAL, whereas for the latter we employ statistical model checking us-
ing UPPAAL SMC, the statistical extension of UPPAAL, for scalability
reasons. Our work paves the way for the development formally-assured
future ambient assisted living solutions.

1 Introduction

Elderly people across the world are offered enhanced care via the Ambient As-
sisted Living (AAL) solutions that support their independent and low-risk liv-
ing. In order to facilitate the elderly support efficiently and safely, it is often
required that these solutions integrate various assisted-living functionalities like
health monitoring, home monitoring, fall detection, robotic platform support,
communication support, etc. Such integration is extremely beneficial in safety-
critical situations, for instance, the case of a fall event occurring due to low
pulse, which should trigger sending timely alerts to caregivers, for immediate in-
tervention or else the life of the elderly can be endangered. This requires timely
integration of health monitoring (in this case, pulse monitoring) and fall detec-
tion functionalities. However, in literature, there are only few architectures, that



address the concern of multiple-functionality integration in a timely and robust
manner [32,33]. Due to their critical nature, it is beneficial that such behaviors
(especially those emerging due to multiple functionality integration) are ana-
lyzed at early stages of development, for instance, at design stage, using formal
techniques, to provide some formal guarantees of meeting requirements. There
has been some work in this direction, however, the existing frameworks [15,44]
are still in infancy and cannot be used to specify the complete AAL system
architecture including its artificial intelligent algorithms, timeliness, reliability,
and fault-tolerance attributes.

In this paper, we describe these shortcomings and propose an integrated ar-
chitecture framework for describing AAL systems and a formal analysis frame-
work that can be employed at the design stages of development. The integrated
AAL architecture that we propose supports a range of assisted-living functional-
ities, like health monitoring, fall detection, reminder services, home monitoring,
robotic platform support, etc. and follows the design of common AAL frame-
works, with a variety of sensors, data collector unit, user interfaces, intelligent
decision support system (DSS), local and cloud processing, etc. Our archi-
tecture gives due importance to intelligent decision making by proposing a DSS
that employs a mix of artificial intelligent (AI) techniques, like fuzzy reasoning,
rule-based reasoning (RBR) and case-based reasoning (CBR) for effectively mod-
elling the context space and taking the respective actions based on the current
context. The system architecture and its DSS is designed as a generic model that
can be customized to fit various categories of architectures, of different complex-
ity. In this work, we show three of such instantiations of our generic model, that
is, i) a minimal configuration that contains two sensors (pulse and fall), one
user interface (a mobile phone), and a cloud controller with a simple DSS sys-
tem to handle the events from both the sensors, ii) an intermediate one with
added sensors for blood pressure monitoring, motion detection and exercise mon-
itoring and an enhanced cloud DSS, and iii) a complex one comprising wider
categories of health monitoring and home monitoring sensors, multiple user in-
terfaces inclusive of robotic telepresence and vocal interactions, and a complex
DSS system for handling multiple events simultaneously, and possessing both
local and cloud copies for ensuring fault-tolerance via redundancy. The system
architecture, its DSS, and instance models are explained in detail in Section 4.

Our contributions also include a modelling and analysis framework proposed
for the design-time analysis of complex AAL systems as described earlier. The
architecture design relies on the Architecture Analysis and Design (AADL) lan-
guage in which we show the structure and communication between the compo-
nents of our proposed solution. In AADL, we are able to design the architecture
together with the functional and error behavior of the constituting components
(Section 2.1). Once described, the architecture needs to be analyzed formally
for meeting functional and quality-of-service requirements (end-to-end deadlines,
fault tolerance, etc.). To enable this, we transform the architecture specifications
to a formal model, in our case, the stochastic timed automata (STA) model, that
can effectively capture the probabilistic behaviour of AAL components such as



random component failures. We demonstrate our formal analysis via two tech-
niques: a) exhaustive model-checking using the state of art model checker,
UPPAAL, in case of the minimal architecture configuration (for which exhaustive
verification scales) and b) statistical model-checking with UPPAAL SMC for
analyzing the complex model instance [20]. The analysis results are described
in (Section 7). Although the analysis results are not exact in case of statistical
model-checking, these simulation-based methods are sometimes the only choice
for reasoning of such complex cyber-physiscal systems (CPS) [16,35].

2 Preliminaries

In this section, we briefly overview AADL, and the other formal notations and
tools used for architecture analysis.

2.1 The Architecture Analysis and Design Language

AADL [25] is a textual and graphical language in which one can model and
analyze a real-time system’s hardware and software architecture as hierarchies
of components at various levels of abstraction. AADL component categories
like Application Software (Process, Data, Subprogram, Thread, and Thread
Group, etc.), Execution Platform(Device, Bus, Processor, Memory, etc.) and
System are used to represent the run-time architecture of the system, however
a more generalized representation is possible by specifying a component type as
abstract.

AADL allows possible component interactions via ports/features, shared data,
subprograms, and parameter connections. In AADL, the input/output ports can
be defined as: event ports, data ports, and event-data ports. Based on the compo-
nent interactions, explicit control flows and data flows can be defined across the
interfaces of AADL components by specifying the components as flow source,
flow path or flow sink. The components can also be associated with various prop-
erties, like the period and execution time and the dispatch protocol. The dispatch
protocol specifies if the component trigger is periodic or aperiodic.

A component in AADL can be defined by its type and implementation. The
component type declaration defines the interface of the component (defining the
component category and its interaction points with other components) and its
externally observable attributes, whereas the component implementation defines
its internal structure in terms of its subcomponents and connections between
them. In this paper, we distinguish the subcomponents that are composed within
a component in port interfaces in terms of their port interfaces. For instance, a
data component, has no interfaces defined in terms of input-output ports, how-
ever it can be defined as a subcomponent of another component. We refer such
components as Atomic Components. However, if a component is composed of an-
other component with port interfaces (like device, thread, abstract, etc.), then
a well-defined component hierarchy is identified and we call such components as
Composite Components.

The functional and error behavior of a component are described by the Be-
havior Annex (BA) [28] and the Error Annex (EA) [22] respectively, which



model behaviors as transition systems. The BA state machine interacts with
the component interface and represents the system behavior. Given finite sets
of states and state variables, the behavior of a component is defined by a set of

state transitions of the form s
guard, actions−−−−−−−−−→ s′, where s, s′ are states, guard is a

boolean condition on the values of state variables or presence of events/data in
the component’s input ports, and actions are performed over the transition and
may update state variables, or generate new outputs. Similarly, the EA mod-
els the error behavior of a component as transitions between states triggered
by error events. It is also possible to represent the different types of errors, re-
covery paradigms, probability distribution associated with the error states and
events, and also specify error flows and propagations within the component, and
between various components.

In this paper, we focus on abstract components that allow us to defer from
the run-time architecture of the system. The need for this generic model stems
from the fact that in real-world applications like AAL, it is difficult to assign
run-time semantics to components before the design matures. These generic
component categories can be parametrized, and can be refined later in the design
process through the “extends” capability of AADL. AADL allows us to archive
these components and reuse them. For this, we partition them into two public
packages in AADL, namely component library and reference architecture [24]. A
component library creates a repository of component types and implementations
with simple hierarchy. It can be established via two packages: (i) Interfaces
Library comprising generic components like sensors, actuators and user-interfaces
(UI), and (ii) Controller Library that includes the control logic. The Reference
architecture creates a repository of components of complex hierarchy, e.g. the
top-level system architecture.

2.2 Formal Notations and Tools

The formal analysis technique employed in this paper is model checking. We
employ two different types of model checking in this paper- 1) exhaustive-model
checking using the state-of-the-art model checker UPPAAL, and 2) statistical
model-checking, using the statistical extension of UPPAAL model checker, UP-
PAAL SMC. In the following, we overview the semantics of the input models
and the mentioned tools.

2.3 Timed Automata and Stochastic Timed Automata

A timed automaton (TA) as used in the model checker UPPAAL is a formal
notation for describing real-time systems [14], and is defined by the following
tuple:

TA = 〈L, l0, A, V, C,E, I〉 (1)

where: L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ is a
set of actions, where Σ is a finite set of synchronizing actions(c! denotes the send
action, and c? the receiving action) partitioned into inputs and outputs, Σ =
Σi ∪Σo, and τ /∈ Σ denotes internal or empty actions without synchronization,



V is a set of data variables, C is a set of clocks, E ⊆ L×B(C, V )×A× 2C × L
is the set of edges, where B(C, V ) is the set of guards over C and V , that is,
conjunctive formulas of clock constraints (B(C)), of the form x ./ n or x−y ./ n,
where x, y ∈ C, n ∈ N, ./∈ {<,≤,=,≥, >}, and non-clock constraints over V
(B(V )), and I : L −→ Bdc(C) is a function that assigns invariants to locations,
where Bdc(C) ⊆ B(C) is the set of downward-closed clock constraints with
./∈ {<,≤,=}. The invariants bound the time that can be spent in locations,
hence ensuring progress of TA’s execution. An edge from location l to location l′

is denoted by l
g,a,r−−−→ l, where g is the guard of the edge, a is an update action,

and r is the clock reset set, that is, the clocks that are set to 0 over the edge.
A location can be marked as urgent (marked with an U) or committed (marked
with a C) indicating that the time cannot progress in such locations. The latter
is a more restrictive, indicating that the next edge to be transversed needs to
start from a committed location.

The semantics of TA is a labeled transition system. The states of the labeled
transition system are pairs (l, u), where l ∈ L is the current location, and u ∈ RC≥0

is the clock valuation in location l. The initial state is denoted by (l0, u0), where
∀x ∈ C, u0(x) = 0. Let u � g denote the clock value u that satisfies guard g. We
use u+ d to denote the time elapse where all the clock values have increased by
d, for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u � I(l) and (u + d′) � I(l),

for 0 ≤ d′ ≤ d, and

(ii) Action transitions: < l, u >
a−→< l′, u′ > if l

g,a,r−−−→ l′, a ∈ Σ, u � g, clock
valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks
in the reset set r of the edge, such that u′ � I(l′).

A stochastic timed automaton (STA) refines TA as follows: (i) probabilis-
tic choices between multiple enabled transitions, where the output probability
function γ may be defined by the user, and (ii) probability distributions for
non-deterministic time delays, where the delay density function µ is a uniform
distribution for time-bounded delays or an exponential distribution with user-
defined rates for cases of unbounded delays. Formally, an STA is defined by the
tuple:

STA = 〈TA, µ, γ〉 (2)

The delay density function (µ) over delays in R≥0 is either a uniform or an
exponential distribution depending on whether the time in location l is bounded
by an invarinat, or is unbounded, respectively. With El we denote the disjunction

of guards g such that l
g,o,-−−−→ - ∈ E for some output o. Then d(l, v) denotes the

infimum delay before the output is enabled, d(l, v) =inf {d ∈ R≥0 : v+d � E(l)},
whereas D(l, v) =sup {d ∈ R≥0 : v + d � I(l)} is the supremum delay. If the
supremum delay D(l, v) < ∞, then the delay density function µ in a given
state s is the same is a uniform distribution over the interval [d(l, v);D(l, v)].
Otherwise, when the upper bound on the delays out of s does not exist, µs

is an exponential distribution with a rate P (l), where P : L → R≥0 is an
additional distribution rate specified for the automaton. The output probability



function γs for every state s = (l, v) ∈ S is the uniform distribution over the set
{o : (l, g, o, -, -) ∈ E ∧ v � g}.

In this paper, we use STA to model our AAL system architecture.

2.4 UPPAAL and UPPAAL SMC

UPPAAL model checker provides exhaustive model-checking of timed-automata
models like the ones overviewed in Section 2.2. A real-time system can be mod-
eled as a network of TA (NTA) composed via the parallel composition operator
(“||”), which allows an individual automaton to carry out internal actions, while
pairs of automata can perform handshake synchronization. The locations of all
automata, together with the clock valuations, define the state of an NTA. The
properties to be verified by model checking on the resulting NTA are specified
in a decidable subset of (Timed) Computation Tree Logic ((T)CTL) [13], and
checked by the UPPAAL model checker. UPPAAL supports verification of live-
ness and safety properties [34]. The queries that we verify in this paper are of the
form: i) Reachability: E♦p means that there exists a path where p is satisfied
by at least one state of the path, and (ii) Time bounded Leads to: p ≤t q,
which means that whenever p holds, q must hold within at most t time units
thereafter.

UPPAAL SMC [20], the extension of UPPAAL for statistical model check-
ing, provides means to formally analyze stochastic models. A model in UPPAAL
SMC consists of a network of interacting STA (NSTA) that communicate via
broadcast channels and shared variables. In a broadcast synchronization one
sender c! can synchronize with an arbitrary number of receivers c?. In the net-
work, the automata repeatedly race against each other, that is, they indepen-
dently and stochastically decide how much to delay before delivering the output,
and what output to broadcast at that moment, with the “winner” being the
component that chooses the minimum delay. In addition to the classical queries
supported by UPPAAL, UPPAAL SMC also uses an extension of weighted met-
ric temporal logic (WMTL) [19] to provide probability evaluation Pr(∗x≤Cφ),
where ∗ stands for ♦(eventually) or �(always), which calculates the probability
that φ is satisfied within cost x ≤ C, but also hypothesis testing and prob-
ability comparison. In this paper, we will analyze only properties of the type
“probability evaluation”.

3 A Framework for Formal Analysis of AAL Systems:
Proposed Methodology

In this section, we present in detail the framework that we propose for mod-
eling and verification of the AAL system architectures. We consider a generic
architecture category for AAL systems that supports a variety of assisted liv-
ing functionalities including health monitoring, home monitoring, fall detection,
user interactions, and communication with family, caregivers. Accordingly, the
architecture supports a variety of components like sensors, a data collector unit



Fig. 1: Methodology overview.

to collect the sensor data, local and cloud processing, and intelligent decision
support. The system architecture and its requirements are explained in detail
in Section 4. This architecture design and the requirements in natural language
form the input to our analysis framework. As depicted in Fig. 1, the framework
is composed of the following steps:

Step 1 Create an abstract component-based model of the proposed architecture
in AADL.

This step focuses on specifying the architecture using an architecture description
language. In our case, we have chosen AADL due to its rich semantics and suit-
ability to model real-time embedded systems. In our approach, we demonstrate
the modeling of AAL systems as abstract components and show how it can be
extended to suit the specific instantiations (from simpler to more complex con-
figurations, as shown in Section 4). The system modeling in AADL is presented
in Section 5.

Step 2 Define a semantic encoding of AADL model as an NSTA model.

Following the AADL modeling, in Step 2, we define the semantic anchoring of
the AADL model as NSTA (Section 6). We present the semantic anchoring of
the generic model and also show the the above-mentioned instantiations of the
latter to various configurations of increasing complexity. The NSTA model so
formulated can be further analyzed via exhaustive model checking or statistical
model-checking, depending upon the technique’s ability to cope with the model’s
complexity. For the simple architecture configuration, we use exhaustive verifica-
tion with UPPAAL and for the complex configuration, we use statistical model
checking, using the tool UPPPAAL SMC.

In the subsequent step, the functional and non functional requirements of
the architecture, which are initially specified in natural language are formal-
ized as Timed Computation Tree Logic (TCTL) or Weighted Metric Temporal
Logic( WMTL) queries to enable analysis in the NSTA model, using UPPAAL
or UPPPAAL SMC. Thus, Step 3 is formulated as follows:



Step 3 Formalize the system requirements as queries expressed in the input lan-
guage of the chosen model-checker.

As the final step, we verify the queries against the NSTA model of the archi-
tecture and gather the results (exact for UPPAAL and statistical for UPPAAL
SMC) leading to Step 4 formulated as below:

Step 4 Verify the queries in the model checker and gather verification results.

If the verification results do not meet the requirements, we feedback information
from the verification (counter example or statistical information) to our design,
which we modify and iterate steps 1, 2, 3 and 4.

4 A Generic AAL System Architecture

In this section, we detail the generic AAL system architecture that we propose.
In addition, we also present the design of a novel decision support system for
our system architecture that supports the integration of multiple functionalities
and provides efficient decision making by combining multiple artificial-intelligent
(AI) techniques as detailed later in this section. Finally, we present three specific
instantiantions of the generic architecture model that follow the same modeling
paradigms, yet vary in their degree of complexity with respect to integrated
functionalities.

The generic AAL system architecture is presented in Fig.2, and follows the
architecture of many commercial AAL systems with various sensors, a data col-
lector, DSS, security and privacy, database (DB) systems, user interfaces (UI),
and cloud computing support. This architecture can act as a base for the devel-
opment of many integrated AAL system architectures. We classify the sensors
in the AAL environment as follows:

– Wearable sensors that send information as data (W data), e.g., sensors mea-
suring health parameters like pulse, ECG, etc. They are represented by Sen-
sor A category in Fig 2;

– Non-wearable sensors measuring ambient parameters and health parame-
ters (NW data), e.g., camera sensors, motion sensors, etc., represented by
Sensor B category;

– Wearable sensors that detect events (W event), e.g., fall sensors, marked as
Sensor C category;

– Non-wearable sensors detecting events (NW event), e.g., fire sensors, denoted
by Sensor D category.

A particular instantiation of the generic architecture can contain n sensors
of each category, respectively, n ∈ N . As depicted in Fig.2, the data from the
sensors are collected by the Data Collector unit, which processes the data by as-
signing labels and priorities. The Data Collector sends the data to the message
queue in the Local Controller, where it gets sorted according to its priority such



Sensor_A
(W_data)

Sensor_B
(NW_data)

Sensor_C
(W_event)

Sensor_D
(NW_event)

Data 
Preprocessing

UI

Cloud DB

Decision Support System

C 
o 
m 
m 
u 
n 
I 
c 
a 
t 
I 
o 
n

Data
Collector

User Message Queue

    Decision 
   Support System

Security & 
   Privacy module

       Local DB

Cloud

C 
o 
m 
m 
u 
n 
I 
c 
a 
t 
I 
o 
n 
 

C 
o 
m 
m 
u 
n 
I 
c 
a 
t 
I 
o 
n 
 

Local Controller Third-party UI 
(Care givers, firefighter, family) 

Health platforms and services 

Fig. 2: The generic AAL system architecture.

that when the DSS processes the first element in the queue, it processes the mes-
sage with the highest priority. Our architecture has both local and cloud-based
processing in order to ensure fault tolerance with respect to the DSS. The com-
ponents of the architecture can interact via various communication protocols.

The crux of our AAL system is the intelligent context-aware DSS, shown
in Fig.3. The novelty of our architecture stems from the combination of various
AI algorithms, like rule-based reasoning (RBR), fuzzy logic, and case-based rea-
soning(CBR) with context reasoning for efficient decision-making, as detailed
below.

Fig. 3: The DSS architecture

Our DSS architecture is inspired by the work of Zhou et al. [46], where the
authors have proposed a context-aware, CBR-based ambient-intelligence system
for AAL applications. CBR reasoning works very well in scenarios that are not
specific and need to adapt accordingly with inputs. For instance, CBR reasoning
is suited in a clinical decision support system that prescribes medicines/treat-
ment, where the treatment, prescription and medicine dosage vary depending
upon individual patients. CBR is an attractive choice due to its reasoning tech-
nique resembling more of human problem-solving competence, (i.e., trying to
reason out a new scenario by looking at the similar solved cases in the past and



Fig. 4: Internals of the DSS architecture (List of AI techniques)

adapting them according to the current needs) and less of knowledge engineering,
however there are many scenarios that are specific and involve domain expertise,
where RBR can be employed with more efficiency and ease. For instance, if a fire
occurs at home, the action to be taken by the system is to notify the firefighters,
which can be easily implemented using “if-then-else” rules rather than via a
CBR system that needs to compare across all cases using a case-matching algo-
rithm to retrieve a matching case and act accordingly. Moreover, RBR systems
using fuzzy logic are very efficient to determine sensor data deviations compared
to crisp logic. For instance, the normal pulse range of a person is between 60-
120, and a crisp rule-based-reasoning system (Boolean logic) will classify a pulse
value of 59.5 or 120.5 as an abnormal range (which in reality is not) and raises
a pulse- deviation alarm to the caregiver. Using fuzzy logic, a degree of mem-
bership can be associated to each value, i.e., a pulse value of 59.5 or 120.5 is
strictly not within abnormal or normal boundaries, rather it is considered 97%
within normal range and 3% within abnormal range. Thus, by replacing the crisp
boolean logic with fuzzy logic, a multitude of false pulse deviation alarms can
be avoided. However, RBR (even fuzzy based) cannot work efficiently in many
other ill-defined scenarios that require adaptability, like that of a clinical deci-
sion support system or a system that sends personalized recommendations to its
users.

The DSS triggers the various AI algorithms based on a change in context
[46]. The context-modeling (CM) and the usage of different AI algorithms are
depicted in Fig. 4. As indicated, CM module identifies the context space based
on: (i) the personal profile of the user, e.g., gender, age, disease history etc., (ii)
the activity of daily living (DA) performed by the user, e.g., exercising, sleeping
etc., (iii) spatio-temporal properties, like time, location of the user, etc., (iv)
environmental, e.g., temperature, pressure, fire, etc., and (v) health parameters,
for instance, like blood pressure, pulse, etc. Each of these context-space com-



Pulse
monitoring

sensor

Fall sensor

M 
o 
b 
i 
l 
e 
 

Cloud DB

Decision Support 
 System

GPRS/ 
GSM 

User
Cloud Controller

Internet
protocols 

Data
collector

Bluetooth

Bluetooth

 
Third-party UI 

(caregiver) 

Fig. 5: Category 1: A minimal configuration

ponents can be associated with one of the three properties - sensed, profiled or
predicted. Sensed contexts are those directly derived from sensor values. How-
ever, predicted contexts correspond to the output resulting from further analysis
of sensed inputs, e.g., activity-recognition. Profiled values are usually descriptive
and remain unchanged.

In our DSS, fuzzy reasoning is used for detecting DA [40], and also for de-
termining sensor-data deviations 1. To take decisions in various situations, we
employ RBR first, CBR as second paradigm, i.e., upon a change in context, the
RBR triggers first and checks if there exists a rule to handle that particular con-
text, if not, it allows the CBR system to tackle the context based on its learning
from previous scenarios. Developing an efficient case base, case matching and
formulating the adaptation rules are the most complex aspects of a CBR sys-
tem. In our system, each time an RBR outputs a rule, we save it as a case in
the CBR system with the case-id represented by the DA of the user, the context
space represented by the case features, and the triggered rule represented by the
solution for a particular case. The KB stores the context, rules, and cases. The
internal structure of the DSS is represented in Fig.4. An example scenario of the
DSS reasoning employing different AI techniques is presented in detail in Listing
1.1 of Section 6.2.

The generic architecture, and its DSS can be instantiated to create a family
of AAL architectures that follows the same design principles. In this paper, we
present three such architectures and their DSS instantiations.

– Category 1: A minimal configuration - The minimum configuration ar-
chitecture consists of the following modules: Two sensors (a fall sensor and
a pulse monitoring sensor), a mobile phone UI, and cloud controller with
third-party UI and DSS system with a minimum context-space information
including the health data (pulse and fall) and DA. The simplified DSS em-

1 In order to reduce the complexity of our analysis, we have not explicitly modeled the
DA detection using fuzzy logic and has often assumed that the user’s DA is known
in various scenarios.



ploys only RBR with fuzzy logic as AI techniques. The minimal configuration
is shown in Fig. 5.

– Category 2: An intermediate configuration - This instantiation (see
Fig. 6) is more complex than the previous one and it contains sensors belong-
ing to all four types of the generic architecture (health monitoring sensors
that detect pulse and blood pressure, smart home sensors that detect user
movements, a wearable fall sensor, and a set of physical exercise monitoring
sensors), as well as a local controller with inbuilt data collection function-
ality, which forwards the data to the cloud controller. The cloud controller
has a DSS with context modeling, fuzzy logic and RBR.

Phone
    Linkwatch 
    Data
Collection 

PC

Tablet / Laptop

Smart Home
Sensors

Physical Exercise
Sensor

Sensor Unit

Health Sensors

Fall Sensors

CAMI Gateway

Robotic Telepresence

Multimodal User Interface

Voice, Gesture and Touch comands

Message Queue

Health Channel

Home Monitoring Channel

User Notification Channel

Decision System Support

Communication to 3rd Party

Fall Detection + Alerts 

Reminder + Dynamic Program Management

Intelligent Health Analysis

MySQL DB

 Cloud

3rd Party  
Health Platforms 

Linkwatch

User Account Setup Security & Privacy

System Configuration Service

B
LE

Physical Exercise
Analysis Service 

OpenHab  
Server

Z
-W

av
e

OpenTele 

Fig. 6: Category 2: An intermediate configuration

– Category 3: A complex configuration - In this category, we present the
most complex version, the CAMI AAL architecture [33] derived from our
generic model, and represented in Fig. 7. The latter supports various sen-
sors (e.g. A multitude of health and home monitoring sensors like the A&D
UA-651 BLE blood pressure sensor [10], Fibaro temperature and motion
sensor FGMS-001 [2], Fitbit bracelet [3], Vibby fall detection sensor [11],
etc.), data collector, local controller (EXYS9200-SNG [1] referred as CAMI
gateway), the CAMI cloud, and third party health platforms like Open Tele
[5] and [4]. There is a set of user interfaces (UI) in CAMI, including robotic
platforms (TIAGo [9] and Pepper [7]), mobile phone and vocal interface to
facilitate the interaction with the elderly user. There is also a local backup
of DSS in the CAMI gateway apart from the cloud. The communication
between various modules can employ a variety of communication protocols,
for instance, Bluetooth, Zigbee, Wifi, etc,. The local processor is called the
CAMI gateway and is responsible for all critical functionalities. The Mes-
sage Queue is implemented by Rabbit MQ Message Broker [8]. The DSS is



complex and employs context modeling, fuzzy logic, RBR and CBR. There
are also redundant copies of DSS in the local controller and cloud controller.

Fig. 7: Category 3: A complex configuration: The CAMI AAL System Architec-
ture [33]

In the following, we present the modeling and analysis of the simplest architec-
ture (Category 1), as well as of the most complex one, the CAMI architecture
(Category 3). We start by describing the use-case scenarios and system require-
ments of the two architecture instantiations, in the following section.

4.1 Use Case Scenarios and System Requirements

AAL systems should assist the elderly users with a variety of health, home-
related functions, as well as social inclusion ones. Let us assume the following
critical scenarios where we can employ systems whose architectures conform to
the ones of Categories 1 and 3 described above, respectively.

Overall Scenario: Jim is an elderly user living alone in his home. Jim
suffers from chronic cardiac disease, slight memory loss, and falls frequently.

If Jim uses the AAL system architecture of category 1, the latter should
assist in fulfilling the scenarios below:

– Scenario 1 - Assistance for detecting health parameter deviations: Jim has
sudden pulse variations, detected by the pulse monitoring sensor, which are
critical for cardiac patients. If the pulse is low, the DSS alerts the caregiver
of a low pulse. If the pulse is high and the user is currently exercising (if this
is the case, a high pulse is considered as normal) and if not, it sends an alert
to the caregiver.

– Scenario 2 - Fall detection: Jim falls heavily while exercising, the fall sensors
detect the fall and the system immediately notifies the fall event to the
caregiver.



However, if Jim needs additional functionality support, then he needs to acquire
the CAMI AAL system (Category 3), which can handle additional scenarios
besides the already mentioned ones. The fall detection in CAMI is complex, as
it employs a combination of wearable fall sensor (Vibby) and camera sensor for
detecting the fall event.

– Scenario 3 - Home-monitoring functionalities: Jim forgets to switch off the
cooker after cooking his dinner, which results in a fire in the house. The
fire detection sensor of CAMI detects the fire and the system alerts the
firefighters of the fire incident in Jim’s house.

– Scenario 4 - Combining various functionalities in case of multiple events
occurring together : Jim is cooking his breakfast. He suddenly feels dizzy
and falls. The gas-based cooker is still on, and eventually starts a fire in
Jim’s house. In this case, the CAMI system detects the simultaneously oc-
curring events, and alerts the firefighter and caregiver of both the events.
As a result, the firefighters and caregivers can immediately start the res-
cue without waiting for alarm confirmations, avoiding potentially dangerous
consequences [32]. Further, if there are any health parameter variations de-
tected for Jim along with the fall (for instance, a low pulse), the fall event
can be associated with the low pulse, and the caregiver notified accordingly,
which can help in further diagnosis.

All these scenarios are safety critical and have to be processed in real time. For
architecture 1, we consider verifying the following requirements:

Requirements of the minimal architecture model (Category 1):

– R1Arch1: If a high pulse is detected by the pulse sensor and the elderly user’s
DA is not exercising, then the DSS sends a notification to caregiver within
20 s. This requirement relates to Scenario 1.

– R2Arch1: If a fall is detected by the fall sensor, then the DSS sends a noti-
fication to caregiver within 20 s. It is associated with Scenario 2.

Requirements of the CAMI architecture (Category 3):

For the CAMI architecture, we consider verifying the following functional and
quality-of-service (QoS) attributes, like fault tolerance and data consistency.
Such verification is beneficial, as the system needs to be prototyped and the
analysis offers some assessment of the system’s dependability.

– R1CAMI: If the fire sensor detects a fire, then the DSS sends a notification
to the firefighters, within 20 s. This requirement corresponds to Scenario 3.

– R2CAMI: If a fall is detected by the wearable or the camera sensor, then
the DSS sends a notification to the caregiver, within 20 s. This requirement
relates to Scenario 2.



– R3CAMI: If there is a pulse data deviation indicating high pulse, the DA
is “not exercising”, and the user has a disease history of a cardiac patient,
then the DSS sends a notification to the caregiver, within 20 s. This relates
to Scenario 1.

– R4CAMI: If fire and fall are detected simultaneously by the respective sen-
sors, then the DSS should detect the presence of the simultaneous events
and send notifications to both the firefighters and the caregiver indicating
the presence of both events, within 20 s. This relates to Scenario 4.

– R5CAMI: The decisions taken by the local DSS are updated in the cloud
DSS such that they are eventually synchronized. This requirement relates to
the data-consistency requirement of CAMI.

– R6CAMI: If the local DSS fails, then the cloud DSS eventually becomes ac-
tive. It corresponds to the fault-tolerance aspect of the CAMI system.

The overall goal is to analyze the satisfaction of the above requirements by
the respective architectures. We achieve this by first specifying the architectures
in AADL, and then by semantically mapping the specification into a (network of)
STA (N(STA)) that we model-check with UPPAAL (for architecture category
1) or statistically model-check with UPPAAL SMC (for CAMI).

5 System Modeling in AADL

The generic architecture, depicted in Fig. 2 can be modeled in AADL as a set
of interacting components. All the components are modeled as abstract, and can
be easily extended to suit particular run-time representations appropriate for
specific requirements.

In order to develop the AADL model, we classify the AADL components as:

1. Atomic Components (AC): Components that do not have hierarchy
in terms of sub-components with port interfaces, but might contain sub-
components without port interfaces.

2. Composite Components (CC): Hierarchical components that contain
sub-components with and without interfaces. For example, data is a sub-
component without interface and it can be part of an AC or CC hierarchy.

The system architecture itself can be considered a CC with other AC or
CC as its sub-components. In order to encode the complex modeling aspects
and facilitate the reasoning with functional behavior and errors, we propose a
modeling format for both AC and CC as defined below.



AAL Atomic Components: An AC is defined by its component type, imple-
mentation, behaviour annex (BA), and error annex (EA). The component type
definition specifies its name, category (i.e., “abstract”) and interfaces. We can
also specify particular component properties and flows in the type definitions2.
The implementation of an AC defines the data sub-components. The AC’s BA
has two states, Waiting and Operational. Waiting represents the initial state
where the component waits for an input, and Operational represents the state to
which a component switches upon receiving the input (if it has not failed). The
AC’s EA uses four states to represent failure: Failed Transient, LReset, Failed
Permanent, and Failed ep. The state Failed Transient models transient failures,
from which a recovery is possible via a reset event. Since reset is modeled as an
internal event that occurs with respect to a probabilistic distribution, we model
an additional location LReset to encode a component’s reset action upon the
successful generation of the reset event. Failed Permanent models a permanent
failure of the RBR, from which the component cannot recover. Failed ep models
a failure due to error propagation from its predecessor components.

An example of an AC in the architecture is the RBR component of the CAMI
DSS. In this paper, we illustrate the RBR for R3CAMI (Scenario 1), described in
Section 2.1. The RBR component type, implementation, BA, and EA are shown
in Listing 1.1. The component type definition specifies its name, category (i.e.,
“abstract”) and interfaces (Lines 2-15). The RBR component type describes that
the component gets activated aperiodically, has an execution time of 1 s, and
illustrates the data flows between the respective input and output ports. The
implementation definition of RBR (Lines 16-20) defines the data sub-components
like the fuzzy data output, personal information and daily activity of the user,
which forms the context-space of Scenario 1.

In the BA (Lines 22-28), Waiting represents the initial state where the com-
ponent waits for an input from the pulse sensor. In the Operational state, the
system monitors the fuzzy logic output to identify any pulse variations. The
fuzzy reasoning is not shown in Listing 1.1 as it is part of the context-reasoning
module and not RBR, however we present the underlying reasoning in a nutshell.
First of all, fuzzy data memberships are assigned to the range of pulse data values
: Low [40 70], Normal [55 135], and High [110 300], where the numbers represent
heart beats per minute. The pulse data inputs from the sensor are classified as
Low, Normal or High. If a high pulse is detected by the RBR, then the user
context is tracked by checking the elderly’s activity of daily living and disease
history. If the activity is “not exercising” and the user has a cardiac disease his-
tory, a notification alert is raised and sent to the caregiver. The information is

2 While defining the component properties, we chose to include thread-related proper-
ties like the Dispatch Protocol, Component Execution Time etc., which later aid us
in reasoning. All these thread-related properties need to be instantiated by a value
and hence we chose it to be instantiated with some values specific to our architec-
ture chosen. If the reader wishes to use the AADL model for a specific architecture
of choice, we recommend to extend the abstract models and manually update the
property values under consideration or add/delete properties.



encoded as a rule in the BA depicted in Listing 1.1. Upon triggering a particular
rule, the RBR output is stored in the DB as a case input for CBR, where the
case-id is represented by daily activity (DA), case features are the context space
and the case solution is the RBR output (refer Fig. 4 to see the behavior of
the various AI algorithms). The RBR output is also synchronized with Cloud
DSS such that the data consistency is maintained. In the EA (Lines 30-49), we
show the states - Waiting and Failed Transient, Failed Permanent, LReset and
Failed ep plus their transitions based on a TF event (event that causes tran-
sient failures), PF (event that causes permanent failure) and resetevent. If a TF
or PF event occurs when the component starts, the latter moves to the Failed
Transient state or Failed Permanent state respectively. From Failed Transient,
the system can generate a reset event with occurrence probability of 0.9 and
moves to LReset. If the recovery is successful with the reset event, the system
moves to Waiting state with probability 0.8, else it moves to Failed Permanent
with probability 0.2. In this work, we have considered the Waiting state in the
EA and BA to be similar. For a full description of the RBR model in AADL,
the user can refer to the Appendix A.

Listing 1.1: An excerpt from the RBR component in AADL for CAMI

1 −−−RBR (Component Type +Implementation)−−−
2 abs t ra c t RBR
3 f e a t u r e s
4 input : in event data port ;
5 output : out event data port ;
6 f l ows
7 F1 : f low path input −> output ;
8 p r o p e r t i e s
9 Dispatch Protoco l => Aper iod ic ;

10 prope r ty eventgene ra t i on : : Aper iodicEventGenerat ion =>1.0;
11 property eventgenera t i on : : D i s t r i b u t i o n=> Exponentia l ;
12 p r o p e r t y f a i l u r e r e c o v e r y : : Fai lureRecoveryRate =>1.0;
13 p r o p e r t y f a i l u r e r e c o v e r y : : D i s t r i b u t i o n=> Exponentia l ;
14 Compute Execution Time =>1s . . 1 s ;
15 end RBR;
16 abs t ra c t implementation RBR. impl
17 f u z z y o u t p u l s e : data f u z z i f i e d d a t a p u l s e ;
18 DA: data ADL;
19 u p r o f i l e : data user ;
20 end RBR. impl
21 −−BA−−
22 s t a t e s
23 Waiting : i n i t i a l complete f i n a l s t a t e ;
24 Operat iona l : s t a t e ;
25 t r a n s i t i o n s
26 Waiting −[on d i spatch input]−>Operat iona l
27 { i f ( f u z zyo pu l s e=high and DA!= e x e r c i s i n g and u pro f =c a r d i a c p a t i e n t )
28 {output := n o t c a r e g i v e r h i g h p u l s e }
29 −−EA−−
30 s t a t e s
31 Waiting : i n i t i a l s t a t e ;
32 Fa i l ed Trans i en t : s t a t e ;
33 Failed Permanent : s t a t e ;
34 LReset : s t a t e ;
35 Fa i l ed ep : s t a t e ;
36 events
37 Reset : r e cove r event ;
38 TF: e r r o r event ;
39 PF: e r r o r event ;
40 Trans i t i on s



41 t1 : Waiting −[PF]−>Failed Permanent
42 t2 : Waiting −[TF]−>Fa i l ed Trans i en t ;
43 t3 : Fa i l ed Trans i en t −[Reset]−> {LReset with 0 . 9 ,
44 Failed Permanent with 0 . 1} ;
45 t4 : LReset−[]−>{Waiting with 0 . 8 , Fai led Permanent with 0 .2}
46 p r o p e r t i e s
47 EMV2: : Durat i onDi s t r ibut i on => [ Duration => 1 s . . 2 s ; a p p l i e s to Reset ;
48 EMV2: : Occur renceDi s t r ibut ion =>[Probab i l i tyVa lue => 0 . 9 ;
49 D i s t r i b u t i o n => Fixed ; ] a p p l i e s to Reset ;

AAL Composite Components: A CC is defined in a similar way as that of AC,
except that its BA is not explicitly defined (We assume that the behaviour of
the CC is already encoded by its sub-components). Also, the EA definition of
CC shows the failure behaviour of its sub-components. In Listing 1.2, we present
an excerpt of the DSS component, as an example of CC. The component type
definition (Lines 2-12) is similar to that of an AC, except that we do not de-
fine explicitly properties like execution time of a CC (it is considered based on
the execution time of each component, respectively). However, component im-
plementation (Lines 13-26) shows the prototypes used to define sub-components
and connections between them. The EA (Lines 28-39) shows the composite error
behavior of DSS and shows that the DSS moves to Failed Transient or Failed
Permanent, if each of its sub-components move to these states, respectively.
No BA is created for the DSS since the behavior is defined by the BA of the
sub-components.

Listing 1.2: An excerpt from the DSS component in AADL for CAMI

1 −−DSS Component Type + Implementation−−
2 abs t ra c t DSS
3 f e a t u r e s
4 input : in event data port ;
5 d e c i s i o n o u t : out event data port ;
6 p r o p e r t i e s
7 Dispatch Protoco l => Aper iod ic ;
8 p rope r ty eventgene ra t i on : : Aper iodicEventGenerat ion =>10.0;
9 property eventgenera t i on : : D i s t r i b u t i o n=> Exponentia l ;

10 p r o p e r t y f a i l u r e r e c o v e r y : : Fai lureRecoveryRate =>1.0;
11 p r o p e r t y f a i l u r e r e c o v e r y : : D i s t r i b u t i o n=> Exponentia l ;
12 end DSS ;
13 abs t r a c t implementation DSS . impl
14 prototypes
15 RBR DSS : abs t ra c t RBR;
16 CBR DSS : abs t ra c t CBR;
17 CM DSS: abs t ra c t context model ;
18 subcomponents
19 RBR: abs t ra c t RBR DSS ;
20 CBR: abs t ra c t CBR DSS ;
21 CM: abs t ra c t CM DSS;
22 connect ions
23 C1 : port input −> CM. input ;
24 C2 : port CM. output−> RBR. input ;
25 C3 : port RBR. output−> CBR. input ;
26 C4 : port CBR. output−> d e c i s i o n o u t ;
27 −−DSS EA−−
28 annex EMV2{∗∗
29 composite e r r o r behavior
30 [RBR. Failed Permanent and CBR. Failed Permanent and
31 CM. Failed Permanent ] −> Failed Permanent ;
32 [RBR. Fa i l ed Trans i en t and CBR. Fa i l ed Trans i en t and
33 CM. Fa i l ed Trans i en t ] −> Fa i l ed Trans i en t ;



34 [RBR. Operat iona l or CBR. Operat iona l or
35 CM. Operat iona l ]−> Wait ;
36 EMV2: : Occur renceDi s t r ibut ion =>[Probab i l i tyVa lue => 10 ;
37 D i s t r i b u t i o n =>Exponentia l ; ] a p p l i e s to Failed Permanent ,
38 Fa i l ed Trans i ent , Wait ;
39 end composite ; ∗ ∗} ;

The assumptions made in the AADL model are: (i) all the system components
have a reliability of 99.98%, (ii) the sensors have a periodic activation, (iii) all
the system components interact via ports without any delay of communication,
and (iv) the output is produced in the Operational state and there is no loss of
information during transmission.

6 Semantics of AAL-Relevant AADL Components

AADL is a “semi-formal” language and in order to formally verify our AAL
systems specified in AADL, we give formal semantics to AADL components (of
the type used in this paper) in terms of stochastic timed automata, to be able
to encode annex behaviors also. First, we provide the tuple definition of AADL
components (Section 6.1), after which we perform a semantic anchoring of the
AADL component tuple via a mapping between the elements of the AADL and
the elements of the STA (Section 6.2).

6.1 Definition of AADL Components for AAL

An AADL component that we employ in this paper can be defined as a tuple:

AADLComp = 〈Comptype, Compimp, EA,BA〉, (3)

where Comptype represents the component type, and Compimp represents the
component implementation, BA the behavioral annex specification, and EA the
error annex, as follows:

– Comptype is defined as a tuple: Comptype = 〈Features, F lowspec, P rop〉,
where:
• Features = INp ∪ OUT p, where INp, OUT p represent the sets of
input ports and output ports respectively, and INp, OUT p ∈ {data-
ports, event-ports, event-data-ports};

• Flowspec = 〈Flowso, F lowp, F lowsi〉, where Flowso, Flowp, Flowsi rep-
resent flow sources, flow paths and flow sinks respectively. Let F s0 :
Flowso → OUT p be a function that associates certain OUT p to Flowso

with Flowso ⊆ OUT p, F p : Flowp → OUT p × INp be a function that
associates and an input and an output to a flow, and F si : Flowsi → INp

be a function that associates certain INp to Flowsi, with Flowsi ⊆ INp.
For instance, in our AAL architecture, we can define Flowspec for fall
events by defining the output port of the fall sensor as Flowso, the input
port of the cloud DSS as Flowsi, and the input and output ports of all
the intermediate components defining the Flowp;



• Prop is the set of associated properties of the component, likeDeployment,
Communication, Timing, Thread-related properties, etc. [24]. In this
work, we only consider a subset of Timing, Thread-related properties,
and user- defined properties, that are represented as follows: Prop =
{T p, T e, Dispatch protocol, event gen dist, failure recovery dist} where
T p and T e represent the period and execution-time of the component, re-
spectively, T p, T e∈ Timing properties, Dispatch protocol ∈ {P,AP}3,
where P represents a Periodic and AP represents an Aperiodic protocol,
and P,AP ∈ Thread-related properties, and event gen dist, failure
recovery dist ∈ user- defined properties represent the set of user-

defined properties used for specifying the occurrence distribution of ape-
riodic events and failure recovery, respectively.

– Compimp is defined as Compimp = 〈SC,P t, Con,MSM,F lowimp, ETF 〉,
where:

• SC represents the set of sub-components of the system with port inter-
faces (SC i) and without port interfaces (SCData), i.e., SC = SCData ∪
SC i;

• P t denotes the set of Prototypes used to define SC via Fp : P t →
SC i × SCData, a function that associates SC to a P t, respectively;

• Con represents the set of connections. F con : Con → Features is a
function that assigns Features to Con;

• MSM is the mode state machine that is modeled by a tuple, as follows:
MSM = 〈M s,→〉, where M s is the set of states, and→⊆M s× ev×M s

is the transition relation (with ev being the set of events, such that Fe :

event-ports → ev, event-ports ∈ Features). We write s
e−→ s′ as short

for (s, e, s′) ∈→, where s, s′ ∈Ms, and e ∈ ev. The set of Con is defined
with respect to MSM , if present;

• Flowimp are the flow implementations, represented as Flowimp : SC →
Flowspec;

• ETF represents the set of end-to-end flows as complete flow paths from
a starting SC i to the final SC i, respectively.

– The error annex EA is defined as the tuple: EA = 〈Eflows, Ebeh, Eprop〉,
where:

• Eflows denotes the error flows, Eflows = 〈Epp, Errso, Errp, Errsi〉, where
Epp describes error propagations, and Errso, Errp, Errsi represents er-
ror sources, error paths, and error sinks, respectively; F e1 : Errso →
OUT p is a function that associates certain output ports with error
sources, F e2 : Errp → (INp, OUT p) is a function that associates in-
put and output ports via Errp, F e3 : Errsi → INp is a function that
assigns certain input ports as error sinks;

3 The dispatch protocol property of a thread determines when the thread is executed.
A periodic thread is activated at time intervals of the specified period T; an aperiodic
thread is activated when an event arrives at a port of the thread.



• Ebeh represents error behavior, Ebeh = 〈Es,→ e, Ee, EMComp〉, where
Es represents the set of error states, → e denotes an error transition
relation, → e ⊆ Es× Ee× Es, with Ee, the set of error events. For a
CC, the error behavior is represented as EMComp (error-model for a
CC) with respect to the failure of its SC i. Let se and se

′ be two error
states, se, se

′ ∈ Es, and→ e the transition between them due to an error
event ee ∈ Ee, then se

ee−→ e se
′. We represent initial state as s0e ∈ Es.

FEpp : Epp → (INp, OUT p) is a function that associates input and
output ports to error propagations;

• Eprop denotes the error properties. In our work, we focus only on two
error properties: Duration distribution (Durdist), and Occurrence dis-
tribution (Occurdist), which aid in our error analysis, thus Eprop =
{Durdist, Occurdist}.

– The Behaviour Annex, BA is defined as: BA = 〈Bv, Bs,→ b〉, where Bv, Bs,
represent the set of variables, and the states of BA, respectively and → b is
a BA transition relation. Let sb and s′b be two states of BA, sb, s

′
b ∈ Bs,

and → b the transition between them, → b ⊆ Bs ×Bv × SCData ×Bs, with
SCData being the set of data subcomponents. We denote by s0b ∈ Bs the
initial state of a BA path.

Formally, we distinguish the Atomic Component from the Composite Com-
ponent as follows:

– AC ∈AADLComp, where CompImplAC= {SCData}, EAAC 6= ∅, where Ebeh ∈
EAAC = {Es,→ e, Ee}, BAAC 6= ∅,

– CC ∈ AADLComp, where CompImplCC= {P t, SC i, SCData, Con,MSM,
F lowimp, ETF}, EACC 6= ∅, where Ebeh ∈ EACC = {EMComp}, BACC =
∅. A CC represents the system-level view of the architecture.

Next, we present an instantiated example of an AC and a CC from the CAMI
architecture. The RBR component of DSS is an AC and it is defined by its type,
implementation, BA, and EA (Listing 1.1). In formal semantics, we define it as
follows:

RBRAADL = 〈Comptype RBR, Compimp RBR, EARBR, BARBR, 〉 (4)

where the elements are defined as follows:

– Comptype RBR = 〈FeaturesRBR, F lowspec RBR, P ropRBR〉, with:

• FeaturesRBR =INp ∪ OUT p, and INp, OUT p ∈ { event-data-ports},
• Flowspec RBR = 〈Flowp〉,
• PropRBR = {T e, AP}.

– Compimp RBR = 〈SCDataRBR〉
– EARBR ={Errp, Es,→ e, Ee, Durdist, Occurdist}
– BARBR= {Bs,→ b}



On the other hand, the DSS in our CAMI architecture is a CC, with multiple
subcomponents and hence it is defined by its type, implementation and EA (no
BA) as shown in Listing 1.2. Formally, it can be represented as follows:

DSSAADL = 〈Comptype DSS, Compimp DSS, EADSS〉 (5)

where the elements are defined as follows:

– Comptype DSS ={FeaturesDSS, Flowspec DSS, PropDSS}, where:
• FeaturesDSS =INp ∪ OUT p, and INp, OUT p ∈ {event-data-ports},
• Flowspec DSS = 〈Flowp〉,
• PropDSS = {AP}.

– Compimp DSS={SCDSS, PtDSS, ConDSS, Flowimp DSS}, where:
• SCDSS = {CM,RBR,CBR},
• PtDSS ={CM,RBR,CBR},
• ConDSS ={INpDSS → INpCM, OUT pCM → INpRBR, OUT pRBR →
INpCBR, OUT pCBR → OUT pDSS},

• Flowimp DSS={CM → Flowp, RBR→ Flowp, CBR→ Flowp}.
– EADSS = {EMComp}

In the next sub-section, we present our semantic encoding of atomic and com-
posite components, in terms of NSTA.

6.2 Formal Encoding of AADL Components as NSTA

Using the definition of AADL components given in Section 6.1, the formal defi-
nition of STA as STA = 〈L, l0, A, V, C,E, I, µ, γ〉, and of NSTA = ||iSTAi (see
Section 2.2), we define a semantic encoding of the AADL components, respec-
tively, in terms of NSTA.

Definition 1 (Formal Encoding of AC). Any atomic component in AADL,
defined by: AC = 〈ComptypeAC, CompimplAC, EAAC, BAAC〉 is encoded as an
NSTA as follows: AC  NSTAAC = ACiSTA||ACaSTA, where ACiSTA is
the so-called “Interface STA” of AC, which corresponds to ComptypeAC and
CompimplAC, whereas ACaSTA is the “Behavioral STA” that encodes the EA
and BA of an AC.

– The ACiSTA is defined according to a template STA (see Fig. 8) with L ∈
{Idle,Op, Fail, start, stop}, l0 = Idle, Op corresponds to the Operational
state of the RBR, start, stop represent the locations to initiate the synchro-
nizations with ACaSTA and E = {Idle −→ start, start −→ Op,Op −→
stop, stop −→ Idle,Op −→ Fail, Fail −→ Idle}. This template is annotated
with the following information:

• V = out port∪in port∪{PF, TF}∪SCData , where out port and in port
represent the set of output and input ports ∈ {data-ports, event-ports,
event-data-ports}, respectively, and the Boolean variables, PF, TF , rep-
resent the error events associated with the transient failure and perma-
nent failure of AC, plus the variable associated with SCData ∈ Comp imp;



Declarations:
broadcast chan start_AC, 
stop_AC, start_Aci, stop_ACi;
bool TF_AC=0, PF_AC=0;
int in, out, data1, data2;

Declarations
Clock x;

Declarations
Clock x;

STA1: Template TA STA2: STA1+Ports STA3: STA2+Trig.1+Exec.time

STA4: STA2+Trig.2+Exec.time

Fig. 8: Step-by-step formulation of AC iSTA

• C = {x} is the set of clocks that models the period and execution time
of AC;

• A = {start ACi?, start AC!, stop AC!, stop ACi!}∪{x = 0}, where A is
the set of synchronization channels associated with input-output ports ∈
{event-data-ports, event-ports}, that is, channels start AC!, stop AC!,
and the synchronization channels for the interface of the corresponding
CC, that is, start ACi?, stop ACi! and the reset actions on x;

• E = {Idle
start ACi?∧x==Tp−−−−−−−−−−−−−→ start, start

start AC!,x=0−−−−−−−−−→ Op,

Op
TF AC==1∨PF AC==1−−−−−−−−−−−−−−−−−→ Fail, Op

x==Te,stop AC!−−−−−−−−−−−→ stop,

stop
stop ACi!,x=0−−−−−−−−−→ Idle, Fail

TF AC==0∧PF AC==0−−−−−−−−−−−−−−−−−→ Idle,

Fail
TF AC==1∧PF AC==1−−−−−−−−−−−−−−−−−→ Fail}, where E is defined by the template

populated with A and guards that ensure the correctness of transitions.
• I(Idle)=(x ≤ T p), if the dispatch protocol associated with AC is peri-

odic, and I(Op) = x ≤ T e, where T p and T e represent the period and
execution-time of AC;

• P (Idle) = µ1, and P (Fail) = µ2, where P (Idle) = µ1 represents the
occurrence distribution of aperiodic event (if the dispatch protocol asso-
ciated with AC is aperiodic), and P (Fail) = µ2 represents the probability
of leaving location Fail;

– The ACaSTA is created in a similar way with:
• L = {Wait,Op, TrF, PrF, Fail ep, LReset, L1, L2}, l0 = Wait, where
L comprises the set of states in EA and BA (Wait, Operational (Op),
Transient Failure (TrF), Permanent Failure (PrF), Failed due to error
propagation (Fail ep), and reset location (LReset), plus additional com-
mitted locations (L1, L2) that ensure that receiving is deterministic in
UPPAAL SMC;



• A = {start AC?, stop AC?} ∪ {actionBA,EA(), TF = 0, TF AC = 1,
PF AC = 1, reset AC = 0, reset AC = 1, err pAC = 0, err pAC =
1, err p = 1, y = 0}, where A is composed of the actions defined in BA
and EA (actionBA,EA()), plus the synchronizations channels to concord
with ACiSTA (start AC?, stop AC?), and the reset of clock y;

• V = {PF AC, TF AC, reset AC, err pAC}, where V consists of the set
of error events defined in the EA, that is, PF AC : Permanent Failure of
AC, TF AC: Transient Failure of AC, reset AC: Reset of AC, err pAC:
error propagation of AC;

• C = {y} is the clock that measures the time elapsed for reset action of a
particular component;

• E = {Wait
start AC?−−−−−−−→ L1, L1

TF AC=1,err pAC=1−−−−−−−−−−−−−−→ TrF, L1
PF AC=1,err pAC=1−−−−−−−−−−−−−−→ PrF,L1 −→ L2, L2 −→ Op,Op

stop AC?,actionBA()
−−−−−−−−−−−−−−→

Wait, TrF
reset AC=1,y=0−−−−−−−−−−−→ LReset,

T rF
PF AC=1,err pAC=1,reset AC=0−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

LReset
TF RBR=0,err pAC=0,reset AC=0−−−−−−−−−−−−−−−−−−−−−−−−→Wait,

LReset
PF AC=1,err pAC=1,reset AC=0−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

Wait
err p==1−−−−−−→ Fail ep}, where E consists of the transitions in EA, BA

and those between L1 and L2;
• I(LReset)= (y ≤ Durdist(Reset));
• P (Wait) = µ, that is the occurrence-distribution of Wait;

• L1
γ1−→ L2, L1

γ2−→ TrF , L1
γ3−→ PrF, where γ1, γ2, γ3, are defined

according to the occurrence-distribution of the error events. ut

Definition 2 (Formal Encoding of CC). The formal encoding of a CC de-
fined by the tuple: CC = 〈ComptypeCC, CompimplCC, EACC〉 is also a network
of two synchronized STA, CCNSTA = CCiSTA||CCaSTA, where CCiSTA is the
“interface” STA of the CC component, and CCaSTA is the “annex” STA that
encodes the information from the error annex in AADL.

– The CCiSTA is defined by formally encoding (ComptypeCC, CompimplCC), as
follows:

• L = {Wait, Fail}
n⋃
i=1

{LiSync}
n⋃
i=1

{SCi}, where L contains one location

for each sub-component defined by SC, one additional location for each
sub-component that ensures the correct synchronization, location Fail to
model the component failure, and Wait to model the initial location;

• E is defined according to Con. For each connection in Con, we define 2
edges, l −→ LiSync and LiSync −→ l′, where l, l’∈ L are locations cre-
ated based on the sub-components for which the connections are defined,
and LiSync ∈ L is a location created for synchronization;

• V = out port∪in port∪{PF, TF}∪SCData , where out port and in port
represent the set of output and input port variables ∈ {data-ports, event-
ports, event-data-ports}, respectively, and the Boolean variables, PF, TF ,



represent the error events associated with the transient failure and perma-
nent failure of CC, plus the variable associated with SCData ∈ Comp imp;

• C = {x} if T p 6= ∅;
• A is defined based on the updates defined by MSM , the updates defined

by Flowimp, the synchronizations defined by Con, the synchronization
with CCaSTA, ACaSTA, and in case C is not void, we add the clock reset
of the clock(s) in C;

• I(Wait)=(x ≤ T p) if T p 6= ∅;
• P (l) = µ, where l ∈ L and µ is defined by Prop.

– CCaSTA is defined as follows:
• L = Es ∈ EA, l0 = s0e ∈ Es, where Es is the set of states of EA;
• E =→ e;
• A = {TF CC = 1, TF CC = 0, PF CC = 1};
• V is represented by the global variables defined in CCiSTA;
• C = ∅;
• P (l) = µ, where l ∈ L and µ is defined by Occurdist ∈ Eprop.

All the other CC elements are transformed based on the encoding EA of AC.
ut

Next, we show the rules instantiated on our previously selected AADL com-
ponents of CAMI, that is, RBR and DSS, as examples of transforming AC and
CC into corresponding STA. There are also some additional transitions defined
which are not the direct result of applying the rules, but are needed due to the
requirements of our modeling tool, UPPAAL SMC.

The RBRAADL defined by Eq.(4), is mapped into an NSTA (RBRNSTA) fol-
lowing the Definition 1:RBRNSTA=RBRiSTA||RBRaSTA (Fig. 9), whereRBRiSTA

is the so-called “Interface STA” of RBR which corresponds to Comptype RBR and
Compimpl RBR, whereas RBRaSTA is the “Annex STA” of RBR that encodes its
EA and BA.

– The RBRiSTA is formally represented as a tuple, where:
• L = {Idle, Start, Op, Fail}, l0 = {Idle}
• A = {start RBRi?, start RBR!, stop RBR?} ∪ {x = 1}
• V = {out port, in port, PF RBR, TF RBR}
• C = {x}
• E = {Idle start RBRi?−−−−−−−−→ start, start

start RBR!,x=0−−−−−−−−−−→ Op,

Op
TF RBR==1∨PF RBR==1−−−−−−−−−−−−−−−−−−−→ Fail, Op

x==1,stop RBR!−−−−−−−−−−−→ Idle, Fail
TF RBR==0∧PF RBR==0−−−−−−−−−−−−−−−−−−−→ Idle, Fail

TF RBR==1∧PF RBR==1−−−−−−−−−−−−−−−−−−−→ Fail}
• I(Op)=(x ≤ 1)
• P (Idle) = 1, P (Fail) = 1, given by γ

– RBRaSTA is defined in a similar way:

• L = {Wait,Op, TrF, PrF, Fail ep, LReset, L1, L2, LSync}, {l0 = Wait}
• A = {start RBR?, stop RBR?, stop RBRi!}∪{rules(), TF RBR={0, 1},
PF RBR={1}, reset RBR={0, 1, }, err pRBR={0, 1}, err p={1}, y=0}

• V = {PF RBR, TF RBR, reset RBR, err pRBR, errp}



(a) Interface STA (RBRiSTA) (b) Annex STA (RBRaSTA)

Fig. 9: The STA for the RBR

• C = {y}
• E = {Wait

start RBR?−−−−−−−−→ L1, L1
TF RBR=1,err pRBR=1−−−−−−−−−−−−−−−−−→ TrF, L1

PF RBR=1,err pRBR=1−−−−−−−−−−−−−−−−−→ PrF,L1 −→ L2, L2 −→ Op,Op
stop RBR?,rules()−−−−−−−−−−−−→

Lsync, Lsync
stop RBRi!−−−−−−−→Wait, TrF

reset RBR=1,y=0−−−−−−−−−−−−→ LReset,

T rF
PF RBR=1,err pRBR=1,reset RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF,

LReset
TF RBR=0,err pRBR=0,reset RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait,

LReset
PF RBR=1,err pRBR=1,reset RBR=0−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF,Wait

err p==1−−−−−−→ Fail ep}
• I(LReset) = y ≤ 2
• P (Wait) = 10, given by µ

• L1
0.9998−−−−→ L2, L1

0.001−−−→ TrF , L1
0.001−−−→ PrF, assigned by γ

Similarly, the DSSAADL, shown in Listing 1.2, and represented by Eq.(5), is
mapped into an NSTA: DSSAADL  DSSNSTA=DSSiSTA||DSSaSTA (Fig. 10),
where DSSiSTA is the so-called “Interface STA” of DSS, which corresponds to
Comptype DSS and Compimpl DSS, whereas DSSaSTA is the “Annex STA” that
encodes the EA of CC.

– The tuple elements of DSSiSTA are as follows:
• L = {Wait, CM,RBR,CBR,Fail, L1Sync, L2Sync, L3Sync, L4Sync},
l0 = {Wait}

• A = {start DSSLC, start CMi!, stop CMi?, start RBRi!, stop RBRi?,
start CBRi!, stop CBRi?, stop DSSLC!, start DSSCC!}∪{iCM in =
iDSSLC in, iRBR in = iCM out, iCBR in = iRBR out, iDSSLC out
=iCBR out, iDSSCC in = iDSSLC out}

• V = {iDSSLC in, iCM in, iRBR in, iCBR in, iDSSCC in, iDSSLC
out, iCM out, iRBR out, iCBR out, iDSSLC out, PF DSS, TF DSS}

• E = {Wait
start DSSLC?−−−−−−−−−−→ L1Sync, L1Sync

start CMi!,iCM in=iDSSLC in−−−−−−−−−−−−−−−−−−−−−→
CM,CM

stop CMi?−−−−−−−→ L2Sync, L2Sync
start RBRi!,iRBR in=iCM out−−−−−−−−−−−−−−−−−−−−−→ RBR,



(a) Interface STA (DSSiSTA) (b) Annex STA (DSSaSTA)

Fig. 10: The STA for the DSS

RBR
stop RBRi?−−−−−−−−→ L3Sync, L3Sync

start CBRi!,iCBR in=iRBR out−−−−−−−−−−−−−−−−−−−−−−→ CBR,

CBR
stop CBRi?−−−−−−−−→ L4Sync, L4Sync

stop DSSLC!,iDSSLC out=iCBR out,iDSSCC in=iDSSLC out−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Wait, CM
(TF DSS=1∨PF DSS=1),start DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, RBR
(TF DSS=1∨PF DSS=1),start DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, CBR
(TF DSS=1∨PF DSS=1),start DSSCC!−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fail, Fail
(TF DSS==1∨PF DSS==1)−−−−−−−−−−−−−−−−−−−→ Fail, Fail

(TF DSS==0∧PF DSS==0)−−−−−−−−−−−−−−−−−−−→Wait}
• P (Wait)=10, P (CM)=10, P (RBR)=10, P (CBR)=10, P (Fail)=1

EACC  DSSaSTA

– DSSaSTA has the following syntactic elements:
• L = {Wait, TrF, PrF}, l0 = {Wait}
• A = {TF DSS = {0, 1}, PF DSS = {1}}
• V = {TF DSS, TF CM,TF RBR, TF CBR,PF CM,PF RBR,
PF CBR,PF DSS}

• E = {Wait
TF CM==1∧TF RBR==1∧TF CBR==1,TF DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ TrF,

Wait
PF CM==1∧PF RBR==1∧PF CBR==1,PF DSS=1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ PrF, PrF

PF DSS==1−−−−−−−−−→ PrF, TrF
TF CM==0∨TF RBR==0∨TF CBR==0,TF DSS=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Wait}
• P (Wait) = 10, P (TrF ) = 10, P (PrF ) = 10

In addition to the above description, for the reader to have a deeper un-
derstanding of modeling the AI algorithms in the respective STA, we show an
excerpt of the variable declarations and functions encoding that we have used to
describe our DSS AI algorithms in Listing 1.3. We show the context modeling,
fuzzy reasoning and RBR in the following and also show how the successful RBR
outputs are stored as cases for CBR.

In the context modeling, we describe our data structures that we have defined
for specifying user profile, spatio-temporal properties, activity of daily living of



the user, health and ambient data. The context information changes based on
the sensed data and events. In the fuzzy reasoning module, we show how the
pulse data of the user is fuzzified into low, normal and high values and the
corresponding update of the context information. The RBR takes the input from
the context modeling module and is represented by various if-then-else rules as
shown. We also demonstrate how the RBR output is stored as a case in the
case-base of the CBR module.

Listing 1.3: DSS model in STA in detail

−−−Context modeling−−−
typede f s t r u c t {
i n t user name ; //1 Jim
i n t age ; //Age =65 years
i n t d i s e a s e h i s t o r y ; //3−Heart d i s e a s e
} u s e r p r o f i l e ;
u s e r p r o f i l e up ;
typede f s t r u c t {
i n t p o s i t i o n ;
//1= i n s i d e home , 0 −o u t i s i d e home
} s t e m p o r a l p r o p e r t i e s ;
typede f s t r u c t {
i n t pu l s e ;
i n t f a l l w ;
i n t f a l l c ;
} hea l th parameter s ;
typede f i n t uADL; u s e r p r o f i l e p r o f i l e ;
uADL ADL; //2− e x e r c i s i n g , 1− r e s t i n g
s t e m p o r a l p r o p e r t i e s s temp ;
hea l th parameter s hea l th ;
ambient parameters ambient ;
typede f s t r u c t {
u s e r p r o f i l e p r o f i l e ;
uADL ADL;
s t e m p o r a l p r o p e r t i e s s temp ;
hea l th parameter s hea l th ;
ambient parameters ambient ;
} context model ;

−−−Fuzzy Logic Reasoning−−−
void f u z z i f y ( )
{
i f ( i F I S i n . data va l>=55 and i F I S i n . data va l <=135)
{FIS out . hea l th . pu l s e =2; }
e l s e i f ( i F I S i n . data va l>=40 and i F I S i n . data va l <=70)
{FIS out . hea l th . pu l s e =1;}
e l s e i f ( i F I S i n . data va l<=300 and i F I S i n . data va l >=110)
{FIS out . hea l th . pu l s e =3;}
FIS out . hea l th . pu l s e=fuz zyou t pu l s e ;
FIS out . p r o f i l e . user name=upro . p r o f i l e . user name ;
FIS out . p r o f i l e . age=upro . p r o f i l e . age ;
FIS out . p r o f i l e . d i s e a s e h i s t o r y=upro . p r o f i l e . d i s e a s e h i s t o r y ;
FIS out .ADL =upro .ADL;
FIS out . s temp . p o s i t i o n=upro . s temp . p o s i t i o n ;
}
void update contextEU ( )
{

FIS outsave . ambient . f i r e= EU out . ambient . f i r e ;
FIS outsave . hea l th . f a l l c= EU out . hea l th . f a l l c ;
FIS outsave . hea l th . f a l l w= EU out . hea l th . f a l l w ;
}

−−−RBR −−−
void r u l e s ( )
i f ( ( iRBR in . hea l th . f a l l w==1 or iRBR in . hea l th . f a l l c ==1)



and iRBR in . ambient . f i r e ==1)
{ r u l e . n o t i f i c a t i o n s c a r e g i v e r =2;
r u l e . n o t i f i c a t i o n s f i r e f i g h t e r =2;}
e l s e i f ( iRBR in . hea l th . pu l s e ==3 and iRBR in .ADL==1
and iRBR in . p r o f i l e . d i s e a s e h i s t o r y ==3)
{ r u l e . n o t i f i c a t i o n s c a r e g i v e r =1;}

e l s e i f ( iRBR in . hea l th . pu l s e==1 and iRBR in .ADL==1
and iRBR in . p r o f i l e . d i s e a s e h i s t o r y ==3)
{ r u l e . n o t i f i c a t i o n s c a r e g i v e r =3;
}
e l s e i f ( iRBR in . ambient . f i r e ==1)
{ r u l e . n o t i f i c a t i o n s f i r e f i g h t e r =1;}
e l s e i f ( iRBR in . hea l th . f a l l c ==1 or
iRBR in . hea l th . f a l l w ==1)
{ r u l e . n o t i f i c a t i o n s c a r e g i v e r =7;}
RBR o . case =upro .ADL;
RBR o . c a s e f e a t u r e s =iCM out ;
RBR o . r u l e =r u l e ;
}

It should be noted that the CAMI architecture, the semantic encoding of
its components are restricted to the scope of the verification, and hence the
components like the Database, UI, Security and Privacy are not encoded as
STA. The semantic encoding produces a complex NSTA comprising 32 STA,
out of which 18 STA are produced by encoding the 10 AC of CAMI (4 sensors:
one for detecting pulse data deviation, two for fall detection and one for fire
detection, data collector, MQ, RBR, CBR, daily activity detection, fuzzy logic)
and the remaining 12 by encoding 6 CC (Local Processor, Cloud Processor,
DSS (Local and Cloud), Context modeling in DSS( Local and Cloud) of the
AADL model of CAMI. On the other hand, the NSTA model of the minimum
architecture configuration comprises of only 18 STAs and is shown to be scalable
with exhaustive analysis.

7 AAL Architecture Verification and Discussion

In this section, we verify if the minimum configuration architecture, and the
most complex one, the CAMI architecture introduced in Section 4, satisfy their
requirements as described in the same section, respectively. We apply exhaustive
model checking for the first case and statistical model checking in the second
case.

Exhaustive verification of the minimum configuration using UPPAAL.
The results of the exhaustive verification of the minimum configuration archi-
tecture using UPPAAL model checker are tabulated in Table 1. To check that
our system meets its requirements, we employ a monitor STA that monitors
the sensor values, the respective DSS output, and the corresponding clock. The
monitor automaton for R1Arch1 is shown in Fig. 11. As described, we start the
monitoring clock s1 when the pulse sensor produces the data, marked by transi-
tion to L2 triggered by the synchronization channel and we stop the clock when
a decision is produced by the cloud DSS. Similar monitors have been employed
for R2Arch1. We have used queries of the form A leads to B for our analysis



Fig. 11: The monitor automaton for requirement R1Arch1.

Req. Query Result

R1Arch1

(110 ≤ sd w.data val ≤ 300 and ADL = 1 and

M pulse.FIS out == 3 and op DC == 1

and op fuzzy == 1 and op RBR == 1)

→M pulse.pulse not == 3 andM pulse.s1 ≤ 20 Pass
E <> (110 ≤ sd w.data val ≤ 300 and and ADL = 1

M pulse.FIS out == 3 and op DC == 1

and op fuzzy == 1 and op RBR == 1) Pass

R2Arch1

(se w.fall == 1 and op DC == 1

and op EU == 1 and op RBR == 1)

→M fall.fall not == 7 andM fall.s1 ≤ 20 Pass
E <> (se w.fall == 1 and op DC == 1

and op EU == 1 and op RBR == 1) Pass

Table 1: UPPAAL analysis results for the minimum configuration architecture

and therefore a pre-check of each corresponding “A”, being reachable is first
carried out. Moreover, since our model is an STA model where each component
has associated failure probabilities and failure of a component does not yield the
intended results during exhaustive verification, we verify the properties consid-
ering all the components are operational. R1Arch1 requires that if the pulse is
high and the user is not exercising, then an abnormal pulse alert is raised to the
caregiver within 20 s. In R2Arch1, we verify that if the fall sensor detects a fall
event, then a fall alert is raised to the caregiver within 20 s. The aforementioned
requirements are safety requirements of the system and it is shown that these
requirements are met provided all the system components are operational.

Statistical Verification of the CAMI architecture using UPPAAL SMC.
In case of CAMI architecture, which is the most complex instantiation of our
proposed generic architecture, exhaustive verification does not scale and hence
we chose to verify the CAMI system requirements using UPPAAL SMC [20], the
statistical extension of UPPAAL model checker to perform probabilistic analysis.
To verify the functional requirements, we employ monitor STA to monitor the
sensor values, the respective DSS output and the corresponding clock. For in-
stance, an example of monitor STA for R1CAMI is given in Fig. 12. As shown, we
start the monitoring clock s1 when the fire sensor produces the data, marked by
transition to L2 triggered by the synchronization channel and we stop the clock



when a decision is produced by local DSS or the cloud DSS. Similar monitors
are employed for R2CAMI, R3CAMI, R4CAMI andR5CAMI.

Req. Query Result Runs

R1CAMI

Pr[<= 1000]([]((M fire.fire alarm == 1)

imply (se nw.fire == 1 and M fire.s1 <= 20)))

Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (M fire.fire alarm == 1))

Pr [0.99975,1]

confidence 0.998 4901

R2CAMI

Pr[<= 1000]([]((M fall.fall not == 7)

imply ((se w.fall == 1 or sd nw.data val == 1)

and(M fall.s1 <= 20))))

Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (M fire.fire alarm == 1))

Pr [0.99975,1]

confidence 0.998 4901

R3CAMI

Pr[<= 1000]([]((M pulse.pulse not == 3)

imply (110 <= sd w.data val <= 300 and

M pulse.FIS out == 3 and ADL == 1 and

upro.disease history == 3 and M pulse.s1 <= 20))

Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (M pulse.pulse not == 3))

Pr [0.99975,1]

confidence 0.998 3868

R4CAMI

Pr[<= 1000]([]( M firefall.fire not == 2 and

M firefall.fall not == 2 imply

((se w.fall == 1 or sd nw.data val == 1) and

se nw.fire == 1 and M firefall.s1 <= 20))

Pr [0.99975,1]

confidence 0.998 3868
Pr[<= 1000](<> (Pr[<= 100](<> (M firefall.

fall not == 2 and M firefall.fire not == 2))

Pr [0.99975,1]

confidence 0.998 7905

R5CAMI

Pr[<= 1000]([](M consistency.stop imply

(RBR om == iCBRCCm)))

Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (M consistency.stop))

Pr [0.99975,1]

confidence 0.998 5777

R6CAMI

Pr[<= 1000]([](INT CC.DSSCC imply

PF DSS == 1))

Pr [0.99975,1]

confidence 0.998 3868

Pr[<= 1000](<> (INT CC.DSSCC))

Pr [0.01,0.04]

confidence 0.998 2885

Table 2: UPPAAL SMC Analysis Results of CAMI.

The verification results are tabulated in Table 1. The CAMI architecture
model satisfies all the requirements with probabilities close to 1 with a high
confidence within 4 minutes until a result is returned. As in the other case, since
most queries contain terms of the form A imply B, we first check the reachability
of A. From the analysis, it follows that the probability of the cloud DSS to get
activated ((R6CAMI) is [0.01, 0.04]. This is justified that it becomes active only
when the local DSS has failed and the failure probability of local DSS is between
[0.01, 0.04] for a simulation over 1000 time units, which is a safe value to assume
for safety-critical systems.

Discussion. The approach presented in this paper paves the way for the de-
velopment of formally assured future intelligent AAL solutions that integrate
multiple functionalities. Our approach can be applied at earlier design stages



Fig. 12: The monitor automaton for requirement R1CAMI.

to capture potential errors that can propagate across the development stages,
which may result in significant re-engineering costs. Our architecture description
framework (AADL) has a commercially available tool support, OSATE [6] for
automated modeling, and provides some preliminary architecture-level analysis.
It also allows us to model the behavior of the architecture components via be-
havior annex and encode the probabilities of failures of various components, via
the error annex. However, AADL also has its limitations of expressing complex
behaviors of algorithms such as CBR, which we have omitted in this work.

There are two analysis approaches presented in this paper: (1) using ex-
haustive model checking (2) using stochastic model checking, both automated
automated via a commercial tools UPPAAL and UPPAAL SMC. The analysis
approaches are chosen based on the system complexity. If the architecture model
is scalable with exhaustive model-checjing, then it can be applied. Although the
exhautive verification resulst are accurate, one cannot take into account the
probabilistic behaviour of our systems. In case of complex models that needs
to be analyzed for stochastic behaviours, the user can opt for simulation-based
approaches, although it does not yield 100% accuracy. The verification results
shown in this ppaper are specific to our architecture models defined, however one
can use the approach to verify any set of requirements for various architecture
types defined by the generic architectural model defined in this work. In case
of exhaustive model-checking, the resulst are derived assuming that all compo-
nents are operational such that we devoid the system of its probabilistic failure
behaviour. Also, for the case of statiscal model checking, it is worth mentioning
that the results are derived assuming high reliability of individual architecture
components and considering specific values for the periods and execution times.
However, taking into account the wide variety of available sensors and other
components, we can easily adapt the values to account for requirements of any
specific architecture.

In addition, the approach presented in this paper is generic and easily exten-
sible. Our modeling methodology based on AADL abstract components is easily
extensible to suit particular run-time representations of the system. The AADL
semantics as networks of STA is also generic and can be extended to accommo-
date other AADL properties that we have not accounted for in this work. We
expect that similar results can be reproduced if the approach followed in this
paper is used in other instances of integrated AAL solutions.



8 Related Work

In recent years, there has been a lot of work in the area of AAL due to the need of
supporting an increased elderly population [37]. Moreover, many functionalities
that need to be tackled by AAL solutions are of a safety-critical nature, e.g.,
health emergencies like cardiac arrest, fall of the elderly, and home emergencies
like fire at home, etc. [43], therefore work on their modeling and analysis is fully
justified.

A study on existing AAL architectures shows that there are certain architec-
ture types that address the construction of integrative AAL applications, some
of the common ones being : Multi-Agent System (MAS) [21,30,41], Cloud-based
[12,26] and Internet-of-Things (IoT) centric [23].

– Agent-based architectures: These are the most commonly used architec-
tures for AAL applications owing to its flexibility, autonomy, adaptability,
better response and service continuity due to its distributed nature . Some
examples of health care frameworks that relies on a distributed agent archi-
tecture are [45], [21]. However, the agent based architectures also have some
drawbacks (i) Restricted communication protocols for agent communication
and the delay overhead in taking a collective decision and (ii) maintaining
the consistency of the framework .

– Cloud-based AAL solutions: AAL solutions that leverage the potential
of cloud computing for context modeling, intelligent decision making and use
it as a data storeAlthough cloud based solutions are scalable, cost-effective,
reusable, adaptable, and extendable, the sole processing with cloud cannot
guarantee strict hard real-time properties and the system fails completely in
the absence of Internet.

– IoT architectures: IoT technology is now getting widely getting utilized in
the filed of AAL owing to its technological advancements. The IoT concept of
communication between smart objects and people and people are widely ex-
ploited in the field of AAL, thereby providing connectivity, context-awareness
and adaptivity. . There are also approaches to integrate the autonomous be-
havior of agent-based systems with IoT technology [27,36]. Although AAL
systems based on IoT offer high flexibility, adaptability, the system depends
only on the availability of the Internet for operation; which can lead to a
complete failure of such systems in places where Internet connectivity is
meager. Our architecture follows the design paradigms of Cloud-based AAL
solutions, where the cloud is utilized for intelligent, context-aware decision
making and as a data store, and is also augmented with local processing
schemes to guarantee real-time properties. In many situations, cloud ser-
vices cannot guarantee hard-real time properties and hence we adopted a
local processing scheme as well in our model, and the cloud is a back-up
which activates only when the primary has failed.

The formal assurance of AAL systems has been the focus of some related research
in the recent years. Parente et al. provide a list of various formal methods that
can be used for AAL systems [42]. In another interesting work, Rodrigues et



al. [44] perform a dependability analysis of AAL architectures using UML and
PRISM. Other interesting research work uses temporal reasoning [15,39] and
Markov Decision Processes to formally verify the reliability of AAL systems [38].
Although these approaches target the formal analysis of AAL systems, most of
the above work addresses only simple scenarios and are not used to analyze
complex behaviors resulting from integrating critical AAL functions (e.g. fire
and fall), as well as their decision making. In addition, these approaches do not
aim to develop an overall framework for the verification of AAL systems, starting
from an integrated architectural design, their design specifications, followed by
a verification strategy, as proposed in this paper.

The use of Architecture Description Languages (ADL) to specify AAL designs
has not been exercised previously, yet this is common when designing automo-
tive or automation systems. There have also been approaches to formally verify
AADL designs in other domains. The transformation approach from AADL to
TA or variants has been already addressed by related work [17,29,31]. Although
these approaches are automated verification techniques, there is a lack of focus
on abstract components/patterns with stochastic properties. In addition, these
approaches also suffer from state-space explosion, therefore they might not scale
well to complex AAL designs. Nevertheless, there is interesting research that
deals with stochastic properties and statistical model checking for the analysis
of extended AADL models. One such example is in the work of Bruintjes et al.
[18], where the authors have used SMC approach for timed reachability anal-
ysis of extended AADL designs. Although our approach also focuses on linear
systems, it is different from the mentioned work in the fact that we focus on ab-
stract components, and also introduce BA modeling for capturing the functional
behavior of our modules, specifically for modeling the behavior of intelligent
DSS. In their work, Bruintjes et al. use the SLIM Language, which is strongly
based on AADL and is specific to avionics and automotive industry, including
the error behavior and modes. However, we use the AADL core language with its
standardized annex sets (EA and BA) for the architecture specification, thereby
enabling us to represent the functional and error behaviour with the architec-
ture model. The abstract component based modeling also brings exensiblity and
reusability to our approach. Moreover, the authors only consider the event oc-
currences or delay variations using uniform or exponential distributions, wheras
by employing our user-defined properties, we can also specify other distribu-
tions. Furthermore, the approach of Bruintjes et al. only deals with evaluation
of time-bounded queries, however we also evaluate properties like reliability, data
consistency, etc., along with timeliness. Another interesting work [16], possibly
carried out in parallel with our work, employs statistical model checking using
UPPAAL SMC to evaluate the performance of nonlinear hybrid models with
uncertainty modeled in extended AADL. Although the approach is not specific
to the AAL domain, it is promising to specify complex CPS systems consider-
ing uncertainties from physical environment. Unlike our model, the authors use
Priced Timed Automata (PTA) models. In comparison, our approach considers
only linear models that evolve continuously (yet the analysis is carried out in



discrete time due to sampling of continuous data). In brief, the two approaches
resemble, yet our approach is all contained in the core language of AADL (as
different from the mentioned work where the authors resort to other annexes
integrated in OSATE), is tailored to systems that contain AI components, and
assumes the random failure of various components, which is not considered in
the related work.

9 Conclusions and Future Work

In this paper, we have proposed a generic AAL architecture and its intelligent
Decision Support System that can tackle a multitude of functionalities by ana-
lyzing the interdependencies between simultaneously occurring events. We have
also presented three specific instantiantions of the generic model, following an in-
creasing order of complexity. In addition, we have also presented a framework for
modeling and verification of our specific integrated AAL system architectures.
To provide formal analysis for the AAL systems, we have semantically encoded
the AADL model as NSTA model. These formal models has been shown to
be analyzable exhaustively with UPPAAL or statistically with UPPAAL SMC,
(chosen based on system complexity), to ensure that the required functional be-
havior is met. Our contribution is generic and paves the way for the development
of formally assured intelligent AAL system architectures.

The framework is intended to augment existing AAL solutions with formal
analysis support and provide analysis prior to implementation. Such an analy-
sis is crucial in domains such as AAL, which are real-time, safety-critical, and
require high levels of dependability. Due to the heterogeneity of components
available in the AAL domain, the component failure probabilities, periods and
execution times are not chosen w.r.t to any specific components, nevertheless the
results presented in the paper are promising because the abstract components
that have been proposed can be refined further.

In the future, we plan to enhance our DSS model with more rules for RBR
and full functionality support of CBR and activity recognition, thereby providing
an extensive analysis of AAL systems behaviors in possible critical scenarios. An-
other interesting direction to proceed with is providing automated tool support
for the semantic mapping. We are also currently investigating on a distributed
version of the integrated architectures for AAL, especially the one that supports
multiple intelligent agents and its analysis.

Appendix A: AADL Model of RBR

1 abs t ra c t RBR
2 f e a t u r e s
3 input : in event data port ;
4 output : out event data port ;
5 f l ows
6 F1 : f low path input −> output ;
7 p r o p e r t i e s
8 Dispatch Protoco l => Aper iod ic ;



9 prope r ty eventgene ra t i on : : Aper iodicEventGenerat ion =>1.0;
10 property eventgenera t i on : : D i s t r i b u t i o n=> Exponentia l ;
11 p r o p e r t y f a i l u r e r e c o v e r y : : Fai lureRecoveryRate =>1.0;
12 p r o p e r t y f a i l u r e r e c o v e r y : : D i s t r i b u t i o n=> Exponentia l ;
13 Compute Execution Time =>1s . . 1 s ;
14 end RBR;
15
16 abs t ra c t implementation RBR. impl
17 subcomponents
18 AAL event : data System Data model : : events ;
19 DA: data System Data model : U s e r a c t i v i t y ;
20 u p r o f i l e : data System Data model : U s e r p r o f i l e ;
21 fuzzy out1 : data System Data model : : f u z z i f i e d d a t a h e a l t h ;
22 fuzzy out2 : data system Data model : : f u z z i f i e d d a t a c a m e r a ;
23 annex EMV2{∗∗
24 use types e r ror mode l ;
25 use behavior e r ror mode l : : s imple ;
26 e r r o r propagat ions
27 input : in propagat ion {NoValue } ;
28 output : out propagat ion { Novalue } ;
29 f l ows
30 e f 0 : e r r o r path input{NoValue}−>output{NoValue } ;
31 component e r r o r behavior
32 events
33 Reset : r e cove r event ;
34 TF: e r r o r event ;
35 PF: e r r o r event ;
36 e r r p : e r r o r event ;
37 t r a n s i t i o n s
38 t0 : Operat ional −[TF]−>F a i l e d t r a n s i e n t ;
39 t1 : F a i l e d t r a n s i e n t −[ Reset]−>Waiting with 0 . 8 ,
40 Failed Permanent with 0 . 2 ;
41 t2 : Operat iona l −[PF]−>Failed Permanent ;
42 t3 : Operat ional −[ e r r p ]−>Fa i l ed p ;
43 t4 : Fa i l ed p −[ input]−>Operat iona l ;
44 end component ;
45 p r o p e r t i e s
46 EMV2: : Durat i onDi s t r ibut i on => [ Duration => 1ms . . 2 ms ;
47 D i s t r i b u t i o n =>Fixed ; ] a p p l i e s to r e s e t ;
48 EMV2: : Occur renceDi s t r ibut ion =>[Probab i l i tyVa lue => 0 . 2 ;
49 D i s t r i b u t i o n => Fixed ; ] a p p l i e s to Fa i l u r e Tran s i en t ;
50 EMV2: : Occur renceDi s t r ibut ion =>[Probab i l i tyVa lue => 0 . 1 ;
51 D i s t r i b u t i o n => Fixed ; ] a p p l i e s to Fai lure Permanent ;
52 ∗∗} ;
53 annex b e h a v i o r s p e c i f i c a t i o n {∗∗
54 s t a t e s
55 Waiting : i n i t i a l complete f i n a l s t a t e ;
56 Operat iona l : s t a t e ;
57 t r a n s i t i o n s
58 Waiting −[on d i spatch input]−>Operat iona l { i f
59 ( AAL event=” f i r e ”){ output :=” n o t i f i c a t i o n f i r e f i g h t e r f i r e ”}
60 e l s i f ( fuzzy out1 = ” Pul se h igh ” and DA!=” e x e r c i s i n g ” and
61 u p r o f i l e =”c a r d i a c p a t i e n t ”)
62 {output := ” n o t i f i c a t i o n c a r e g i v e r h i g h p u l s e ”}
63 e l s i f ( AAL event = ” f a l l ” or fuzzy out2 = ” F a l l h i g h ”)
64 {output := ” n o t i f i c a t i o n c a r e g i v e r f a l l ”}
65 e l s i f ( fuzzy out1 = ” pulse−abnormal low ” )
66 {output := ” n o t i f i c a t i o n c a r e g i v e r ”}
67 e l s i f ( AAL event = ” f a l l ” and fuzzy out2= ” F a l l h i g h ” and
68 AAL event=” f i r e ” and fuzzy out1= ” pulse−abnormal low ”)
69 {output := ” n o t i f i c a t i o n c a r e g i v e r f a l l , f i r e , pu l s e l ow and
70 n o t i f i c a t i o n f i r e f i g h t e r f a l l , f i r e , pulse−abnormal−low”}
71 end i f } ;
72 ∗∗} ;
73 end RBR. impl ;



Acknowledgement

This work has been supported by the joint EU/Vinnova project grant CAMI,
AAL-2014-1-087, which is gratefully acknowledged.

References

1. CAMI Gateway. https://eclexys.com/wp-content/uploads/2019/01/Exys9200-
SNG-Brochure.pdf, accessed: 2019-03-16

2. Fibaro motion sensor. https://manuals.fibaro.com/content/manuals/en/FGMS-
001/FGMS-001-EN-T-v2.0.pdf, accessed: 2019-03-16

3. Fitbit. https://www.fitbit.com/se/home, accessed: 2019-03-16
4. Linkwatch. https://www.linkwatch.se , accessed: 2018-01-15
5. Opentele. https://www.opentelehealth.com , accessed: 2018-01-15
6. OSATE—Open Source AADL Test Environment. http://osate.github.io/, ac-

cessed: 2018-05-15
7. Pepper robot. https://www.softbankrobotics.com/emea/en/pepper, accessed:

2019-03-16
8. Rabbit mq message broker. https://www.rabbitmq.com, accessed: 2019-03-16
9. Tiago robotic platform. http://tiago.pal-robotics.com, accessed: 2019-03-16

10. Ua651 bp sensor. http://www.andmedical.com.au/products-service/value-ua-651,
accessed: 2019-03-16

11. Vibby fall detection sensors. http://www.vitalbase.co.uk, accessed: 2019-03-16
12. Ahmed, M.U., Björkman, M., Lindén, M.: A generic system-level framework for

self-serve health monitoring system through internet of things (iot). Studies in
health technology and informatics 211, 305–307 (2015)

13. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Logic
in Computer Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium
on e. pp. 414–425. IEEE (1990)

14. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and computation 104(1), 2–34 (1993)

15. Augusto, J.C., Nugent, C.D.: The use of temporal reasoning and management of
complex events in smart homes. In: Proceedings of the 16th European Conference
on Artificial Intelligence. pp. 778–782. IOS Press (2004)

16. Bao, Y., Chen, M., Zhu, Q., Wei, T., Mallet, F., Zhou, T.: Quantitative per-
formance evaluation of uncertainty-aware hybrid AADL designs using statistical
model checking. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 36(12), 1989–2002 (2017)

17. Besnard, L., Gautier, T., Le Guernic, P., Guy, C., Talpin, J.P., Larson, B., Borde,
E.: Formal semantics of behavior specifications in the architecture analysis and
design language standard. In: Cyber-Physical System Design from an Architecture
Analysis Viewpoint, pp. 53–79. Springer (2017)

18. Bruintjes, H., Katoen, J.P., Lesens, D.: A statistical approach for timed reachability
in AADL models. In: Dependable Systems and Networks (DSN), 45th Annual
IEEE/IFIP International Conference on. pp. 81–88. IEEE (2015)

19. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of wmtl. RV 7687, 260–275 (2012)

20. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal smc
tutorial. International Journal on Software Tools for Technology Transfer 17(4),
397–415 (2015)



21. De Paz, J., Rodŕıguez, S., Bajo, J., Corchado, J., Corchado, E.: Ovacare: A multi-
agent system for assistance and health care. Knowledge-Based and Intelligent In-
formation and Engineering Systems pp. 318–327 (2010)

22. Delange, J., Feiler, P.: Architecture fault modeling with the aadl error-model an-
nex. In: Software Engineering and Advanced Applications (SEAA), 2014 40th EU-
ROMICRO Conference on. pp. 361–368. IEEE (2014)

23. Dohr, A., Modre-Osprian, R., Drobics, M., Hayn, D., Schreier, G.: The internet of
things for ambient assisted living. ITNG 10, 804–809 (2010)

24. Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL: an introduction to
the SAE architecture analysis & design language. Addison-Wesley (2012)

25. Feiler, P.H., Lewis, B., Vestal, S., Colbert, E.: An overview of the sae architecture
analysis & design language (aadl) standard: a basis for model-based architecture-
driven embedded systems engineering. In: Architecture Description Languages, pp.
3–15. Springer (2005)

26. Forkan, A., Khalil, I., Tari, Z.: Cocamaal: A cloud-oriented context-aware middle-
ware in ambient assisted living. Future Generation Computer Systems 35, 114–127
(2014)

27. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: Computer Supported Cooperative Work in Design (CSCWD), 2012 IEEE 16th
International Conference on. pp. 907–912. IEEE (2012)

28. Frana, R., Bodeveix, J.P., Filali, M., Rolland, J.F.: The AADL behaviour annex–
experiments and roadmap. In: Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on. pp. 377–382. IEEE (2007)

29. Hamdane, M.E., Chaoui, A., Strecker, M.: From AADL to timed automaton-A
verification approach. International Journal of Software Engineering and Its Ap-
plications 7(4) (2013)

30. Isern, D., Sánchez, D., Moreno, A.: Agents applied in health care: A review. Inter-
national journal of medical informatics 79(3), 145–166 (2010)

31. Johnsen, A., Lundqvist, K., Pettersson, P., Jaradat, O.: Automated verification
of AADL-specifications using UPPAAL. In: High-Assurance Systems Engineering
(HASE), 2012 IEEE 14th International Symposium on. pp. 130–138. IEEE (2012)

32. Kunnappilly, A., Seceleanu, C., Lindén, M.: Do we need an integrated framework
for ambient assisted living? In: Ubiquitous Computing and Ambient Intelligence:
10th International Conference, UCAmI 2016, San Bartolomé de Tirajana, Gran
Canaria, Spain, November 29–December 2, 2016, Part II 10. pp. 52–63. Springer
(2016)

33. Kunnappilly, A., Sorici, A., Awada, I.A., Mocanu, I., Seceleanu, C., Florea, A.M.:
A Novel Integrated Architecture for Ambient Assisted Living Systems. In: Com-
puter Software and Applications Conference (COMPSAC), 2017 IEEE 41st An-
nual. vol. 1, pp. 465–472. IEEE (2017)

34. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International journal
on software tools for technology transfer 1(1-2), 134–152 (1997)

35. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
International conference on runtime verification. pp. 122–135. Springer (2010)

36. Leong, P., Lu, L.: Multiagent web for the internet of things. In: Information Science
and Applications (ICISA), 2014 International Conference on. pp. 1–4. IEEE (2014)

37. Li, R., Lu, B., McDonald-Maier, K.D.: Cognitive assisted living ambient system:
A survey. Digital Communications and Networks 1(4), 229–252 (2015)

38. Liu, Y., Gui, L., Liu, Y.: Mdp-based reliability analysis of an ambient assisted living
system. In: International Symposium on Formal Methods. pp. 688–702. Springer
(2014)



39. Magherini, T., Fantechi, A., Nugent, C.D., Vicario, E.: Using temporal logic and
model checking in automated recognition of human activities for ambient-assisted
living. IEEE Transactions on Human-Machine Systems 43(6), 509–521 (2013)

40. Medjahed, H., Istrate, D., Boudy, J., Dorizzi, B.: Human activities of daily living
recognition using fuzzy logic for elderly home monitoring. In: Fuzzy Systems, 2009.
FUZZ-IEEE 2009. IEEE International Conference on. pp. 2001–2006. IEEE (2009)

41. Nealon, J., Moreno, A.: Agent-based applications in health care. Applications of
software agent technology in the health care domain pp. 3–18 (2003)

42. Parente, G., Nugent, C.D., Hong, X., Donnelly, M.P., Chen, L., Vicario, E.: Formal
modeling techniques for ambient assisted living. Ageing International 36(2), 192–
216 (2011)

43. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older
adults. IEEE journal of biomedical and health informatics 17(3), 579–590 (2013)

44. Rodrigues, G.N., Alves, V., Silveira, R., Laranjeira, L.A.: Dependability analysis in
the ambient assisted living domain: An exploratory case study. Journal of Systems
and Software 85(1), 112–131 (2012)

45. Tapia, D.I., Rodrıguez, S., Corchado, J.M.: A distributed ambient intelligence
based multi-agent system for alzheimer health care. In: Pervasive Computing, pp.
181–199. Springer (2009)

46. Zhou, F., Jiao, J.R., Chen, S., Zhang, D.: A case-driven ambient intelligence system
for elderly in-home assistance applications. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 41(2), 179–189 (2011)


