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Abstract

Many applications in computer graphics and visualization are directly
dependent on accurate and fast intersection queries. To prevent bod-
ies passing directly through each other, the simulation system must
be able to track touching or intersecting geometric primitives. In real-
time graphics simulations, in which hundreds of thousands of geomet-
ric primitives are involved, highly efficient collision detection algorithms
are needed. The efficient handling of deformable models constitutes a
particular challenge to the simulation system, since the possibilities of
precomputing efficient data structures are decreased dramatically. The
same type of problem arises in interactive ray tracing, where a huge
number of geometric intersections must be determined in just a fraction
of a second.

For these reasons, new efficient collision detection and ray tracing
methods for deformable meshes are suggested in this thesis. The pro-
posed solutions are based on bounding volume hierarchies which allow
the models they represent to be deformed at every time step of the sim-
ulation. Different update methods to efficiently refit the bounding vol-
umes in the hierarchies as the models deform are presented. The models
considered are represented by polygon meshes that are either deformed
by arbitrary vertex repositioning or by mesh morphing. The update
methods postpone updates in the hierarchies until they are absolutely
needed in order to avoid unnecessary updating work. The results from
the experiments performed indicate that significant speed-ups can be
achieved by using these new methods in comparison with approaches sug-
gested previously. The thesis also shows that mesh morphing constitutes
a specific example of a restricted type of deformation that allows par-
ticularly efficient hierarchical data structures, with expected sub-linear
collision queries in the number of geometric primitives of the meshes.
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Chapter 1

Introduction

1.1 Background and motivation

Computer graphics is a field of study concerned with the creation, stor-
age, and manipulation of three-dimensional models and images. The
perhaps most widely known application areas for computer graphics are
in TV and moving picture production, in which images generated by
computer graphics play an increasingly important role. Other important
application areas are computer-aided design and virtual prototyping, in
which computer graphics are used with great success as an engineering
tool.

A very important application in the computer graphics field is vi-
sual simulation. For example, in flight simulation, virtual worlds are
created to mimic the real world, so that novice pilots can be trained
for future flight operations under safe conditions. Virtual surgery makes
it possible for surgeons to practise advanced operations under realis-
tic, but safe, circumstances. Architectural walk-through applications
help architects to design buildings, and make it possible for potential
customers to experience buildings before they have been built. In in-
teractive storytelling, fantasy worlds can be explored and experienced
through computer graphics imagery.

To make such applications possible, real-time rendering systems are
required [1]. In this context, the term real-time means that images of the
scene can be generated or rendered at a high and steady frame rate, for
example a pair of stereo images at 30 frames per second. How the simu-
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4 Introduction

lation is driven forward is, in general, application-specific. For example,
it can be done by applying physical laws of motion, or by applying some
kind of procedural simulation rules. In interactive graphics systems, the
user is allowed to control and dynamically change the state of the sim-
ulated scene, for example by using different kinds of input devices, such
as mice, data gloves, and force feedback devices.

The ability to model, render, and simulate different types of scenes
with bodies or models in motion is of course essential in many application
areas. Most often, however, the simulated scenarios tend to become too
complex, if realistic models are to be used. Imagine a visual traffic
simulation application using a scene that includes detailed geometric
models of all the buildings and vehicles in a city. Clearly, sophisticated
techniques would be needed to simplify the simulation sufficiently to
make it computationally possible, while ensuring that by running the
simulations we get valuable feedback and results. To be able to handle
efficiently the complexity of computer graphics simulations, specialized
data structures and algorithms are needed.

The simulation of soft or elastic bodies constitutes a particular chal-
lenge. Imagine a scene inhabited by complex deforming meshes, mod-
elled by hundreds of thousands of geometric primitives. A naive collision
detection solution would be to check all possible pairs of primitives for
intersection, which obviously would result in unacceptable inefficiency.
Acceleration data structures are needed, but since the bodies undergo
deformations, the data structures must be rebuilt or updated in some
way to remain useful.

Therefore, adaptive hierarchical data structures and algorithms for
accelerating collision detection in dynamically changing scenes are pre-
sented in this thesis. Such queries are essential, for example, in physical
simulation, robotics, computational surgery, virtual prototyping, molec-
ular modelling, animation, cloth simulation, and computer games. De-
formable models whose contact behaviours need to be simulated include
articulated characters with clothing, soft tissues and organs, biological
structures, and other soft or elastic materials.

Collision or intersection queries are not only important for the detec-
tion and resolution of the collisions of moving bodies in graphics simu-
lations. In interactive ray tracing, a huge number of ray/scene intersec-
tions must be determined as part of the rendering process. The thesis
therefore presents data structures and algorithms similar to those used
for collision detection to accelerate the ray tracing algorithm in scenes
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with deformable models.

1.2 Solutions and results

The solutions and results achieved have been published in three different
papers, now included in this thesis, and referred to as paper A, B, and
C. These are:

A Thomas Larsson and Tomas Akenine-Möller. Collision Detection
for Continuously Deforming Bodies. In Eurographics Conference
2001, Short presentations, pages 325–333, Manchester 2001.

B Thomas Larsson and Tomas Akenine-Möller. Efficient Collision
Detection for Models Deformed by Morphing. The Visual Com-
puter, 19(2–3):164–174, 2003.

C Thomas Larsson and Tomas Akenine-Möller. Strategies for Bound-
ing Volume Hierarchy Updates for Ray Tracing of Deformable
Models. MRTC Report, Mälardalen University, February 2003.
(Submitted for publication)

I am the main author of these three papers and I have performed the
work described in them aided by beneficial and constructive discussions
with my advisors.

The main contribution of paper A is a new algorithm for hierarchical
collision detection of meshes undergoing arbitrary vertex repositioning.
In particular, an efficient new hierarchy update method is given, yielding
a significant speed-up compared with previous approaches. The main
contribution of paper B is a novel algorithm for collision detection of
morphing models, whose performance is of the same order as algorithms
previously used for hierarchical collision detection of rigid bodies. In
paper C, the main contribution is a new algorithm for ray tracing of
deforming meshes. The paper shows that the hierarchy update method,
which was proposed in paper A, gives a speedup of an order of magnitude
in the reconstruction phase, which is needed in ray tracing of dynamically
changing scenes. This makes feasible the interactive ray tracing of scenes
with hundreds of thousands of deforming geometric primitives.

In all these works, the methodology employed has been based on
simulation experiments and running benchmarks. The results of the ex-
periments have been compared with those of previously suggested meth-
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ods. This part of our work clearly shows that our proposed solutions are
efficient and useful in practice.

It is also worth noting that the improvements of the performance of
CPUs, from year to year, will not be great enough to make advanced
collision detection algorithms obsolete. In computer graphics, there is
a never-ending demand for larger and more complex three-dimensional
scenes. In many respects, the solutions and algorithms proposed in this
thesis scale well with scene complexity, and they may therefore be useful
for simulation applications for many years to come.

1.3 Outline of thesis

The rest of this thesis is organized as follows. In Chapter 2 the proposed
algorithms for hierarchical collision detection of deforming meshes are
described. Chapter 3 discusses means of accelerating ray tracing of de-
forming models. These chapters include a summary of the papers A,
B, and C, and a brief description of the main contributions of each.
For a more detailed treatment, please consult the original papers, which
can be found in Chapters 5, 6, and 7. Finally, Chapter 4 presents the
conclusions as well as some interesting directions for future work.



Chapter 2

Collision detection of

deformable meshes

2.1 Related work

Hundreds of papers have been written on collision detection in various
situations, primarily in the fields of computer graphics, robotics, and
computational geometry. Most described efforts, however, have been fo-
cused on solving the collision detection problem in rigid body simulation
[2, 3, 4]. There is currently no single best collision detection method.
The algorithm to be choosen depends on many factors that play different
roles in different applications [5].

In some applications it is sufficient to use approximate methods
whereas other applications might require accurate collision calculations.
The best performance is often achieved by using specialized or simplified
methods that utilize specific knowledge about the application. For ex-
ample, in a virtual bowling application, simple cylinder approximations
were used to represent the pins in the collision detection calculations
with plausible results [6].

In many other cases, a sufficient accuracy of the collision calculations
must be guaranteed. For example, in robotics, inaccuracies in the virtual
simulation process might lead to severe damage, since the simulations
are often used to verify the correctness of the corresponding real world
simulations. Furthermore, in rigid body simulation, when the force com-
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8 Collision detection of deformable meshes

putations are based on the intersection data reported from the collision
detection algorithm, small errors might cause fundamentally different
body trajectories, which is unacceptable in certain applications.

The combined need for accuracy and speed in real-time simulations
makes the collision detection problem very challenging. The time avail-
able to resolve the collisions may be less than 10 milliseconds, so highly
efficient solutions are needed. Some fast search methods are available,
when the involved bodies are convex [7, 8, 9, 10]. Concave objects can
also benefit from these methods if they are decomposed into convex
parts. For more general and complex rigid bodies, bounding volume
hierarchies have often been found to be the best choice. Examples of
types of bounding volumes (BVs) that have been used in such hierar-
chical data structures are spheres [11, 12], axis-aligned bounding boxes
(AABBs) [13, 14], arbitrarily oriented bounding boxes (OBBs) [5], dis-
crete orientation polytopes (k-DOPs) [15, 16], spherical shells [17], and
convex pieces [18].

To check the collision status of two models, their bounding volume
hierarchies are traversed in tandem while searching for intersecting prim-
itive pairs. The performance of such a dual hierarchy traversal is depen-
dent on the number of geometric primitives in the models, as well as
the number of intersecting primitive pairs found during the traversal.
For rigid bodies, a traversal is expected to be sub-linear in most cases,
since the height of a hierarchy storing n primitives is expected to be
proportional to log n.

The choice of which bounding volume to use is not simple. To eval-
uate the performance of bounding volume hierarchies, it has been sug-
gested that a cost function can be used [5, 15]. This function states that
the cost, t, of a certain collision query is given by

t = nvcv + npcp + nucu (2.1)

where nv is the number of performed BV/BV intersection tests and cv

is the cost of one such test. Similarly, np is the number of geometric
primitive pairs that are intersection-tested and cp is the cost of one such
intersection test. Finally, nu is the number of BVs that are updated or
recalculated because of model changes and cu is the cost of updating one
BV. By using tighter bounding volumes in the hierarchies, nv, np, and
nu can be lowered, but on the other hand, tighter volumes often mean
larger values of cv and cu. To minimize the cost function, one has to
deal with such conflicting goals.
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To further speed-up hierarchical collision detection methods, tempo-
ral coherence can be utilized in many types of simulations. By using
different types of caching techniques, results from the previous simu-
lation time step can be reused for faster determination of new results
[19, 20, 18].

In the case of soft or deformable bodies, much work remains to be
done [3]. Some interesting initial efforts aimed at different geometries
and types of applications have been described. Examples of these include
methods for higher order surfaces [21, 22, 23], triangle soups [24, 25] and
cloth simulation [26, 27].

Some initial work has also been performed in the field of virtual
surgery. One proposed method relies on graphics hardware to test the
interpenetration of a deformable organ and a user-controlled rigid tool
[28]. In a work on laparoscopic surgery, a special bucket data structure
was used to store closely located polygons [29]. This data structure was
then used to search for contacts between a simple tool and an organ
represented by a polygonal mesh.

Despite these initial efforts, new and faster collision detection meth-
ods are needed to increase speed and realism in deformable body sim-
ulations. The algorithms proposed in this thesis are fast and accurate
down to the finest resolution of the models. The methods are based
on bounding volume hierarchies that can be updated efficiently as the
models deform. Summaries of the approaches are given in the following
sections together with a description of the main contributions.

2.2 Technical contribution of paper A

2.2.1 Summary

This paper suggests a new collision detection algorithm for multiple de-
forming bodies represented by polygon meshes. The bodies are allowed
to undergo a complete change of shape from one time step to another by
arbitrary vertex movements, but the topology or mesh structure must
be kept the same. First, potential collisions are sorted out in a broad
phase, which is done by a sweep and prune method which was originally
suggested by Cohen et al. [9]. The result is a list of close body pairs
that need to be examined more carefully. This is done in a narrow phase,
where a hierarchical search is performed for each body pair in the list
by using bounding volume hierarchies of axis-aligned boxes. When the
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bodies deform, the boxes can be refitted very efficiently and they also
make the needed BV/BV intersection tests very efficient.

The bounding volume trees are constructed in a pre-process before
simulation time. A simple top-down tree building strategy is used in
which the mesh is recursively split into new tree nodes until only one
face remains. During simulation, the structure of the tree is kept fixed.
When a body deforms, the axis-aligned bounding boxes in the nodes
are refitted according to a scheme referred to as the hybrid bottom-
up/top-down update method, which aims at finding an efficient balance
between the number of updated tree nodes and the number of tree nodes
encountered during collision traversals.

The performance of the proposed collision detection algorithm com-
pares very favourably with other suggested approaches. In the exper-
iments performed, it was found to be four to five times faster than a
previously leading method. Deforming meshes of up to tens of thou-
sands of geometric primitives were used in these experiments.

2.2.2 Main contributions

The main contributions of paper A are summarized below:

– A new collision detection algorithm is proposed for deforming meshes.
All the vertices of the meshes can be arbitrarily deformed at every
simulation time step. The algorithm is based on bounding vol-
ume hierarchies that can be pre-built and then efficiently updated
during simulation.

– A novel hierarchy update method is presented. The upper levels
of the hierarchies are updated bottom-up in an incremental way,
whereas the lower levels of the hierarchies are updated lazily, as
needed, during the collision traversals. This update method is
significantly faster than previously suggested methods.

– By examining and comparing the performance of bounding vol-
umes trees with k-ary tree nodes, where k = 2, 4, and 8, it was
found that k = 8 gave slightly better performance in all conducted
experiments. A higher value of k gives lower heights of the trees,
but increases the work to be performed per node in the collision
traversals.
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– Two different ways of partitioning the faces of the meshes into the
hierarchy nodes during tree construction are proposed. The first
operates on the initial shape of the deforming body and the other
on the interconnectivity of the faces of the mesh, which remains
the same during simulation. Which is the better method depends
on the model and how it is deformed.

2.3 Technical contribution of paper B

2.3.1 Summary

In this paper, a new algorithm for the rapid detection of collisions or
intersections between morphing models is proposed, which further ex-
tends the usage of bounding volume hierarchies for collision detection.
The morphing model is a polygonal mesh that is gradually transformed
or blended between a set of reference meshes. All the possible deforma-
tions are bounded locally by the reference meshes, which make it possible
to create a morphing-aware bounding volume hierarchy per morphing
model that can be updated by transforming or blending sets of reference
bounding volumes, which correspond to associated parts of the reference
meshes.

The hierarchies are built in a preprocess before simulation and then
their structures are never changed. Collision queries are performed by
dual hierarchy traversals which sort out possible intersections in an effi-
cient way. Whenever an outdated tree node is reached during a traversal,
it is updated by a constant time bounding-volume blending operation.
In practice, the performance of such queries is expected to be sub-linear,
as in hierarchical collision detection methods for rigid bodies. Note that
only for face pairs that are found to be located closely during the collision
traversals, must the actual blended vertices of those faces be calculated.
This means that for rendering, the vertices of the meshes can be blended
by the graphics processing unit (GPU), which saves CPU time, and may
improve the overall performance.

The expected high performance of the proposed algorithm has been
verified by different types of experiments with morphing meshes defined
by tens of thousands of triangular polygons. This algorithm for morphing
models was found to be significantly faster than the more general collision
detection method presented in paper A.
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2.3.2 Main contributions

The main contributions of paper B are summarized below:

– A novel collision detection algorithm for morphing models is sug-
gested. It is based on morphing-aware bounding volume hierar-
chies. The performance of this algorithm is of the same order as
that for hierarchical rigid body collision detection.

– A simple hierarchy construction method is presented that creates a
single hierarchy per morphing model with k-ary tree nodes, which
store one bounding volume per reference model per tree node.

– In the experiments, k = 8 was found to be a slightly more efficient
choice when compared with k = 2 and k = 4. Note that it is very
common in other works on hierarchical collision detection for rigid
bodies to suggest binary tree structures.

– A top-down update method is proposed, which is completely in-
tegrated with the collision traversals. Only the nodes that are
encountered during the dual hierarchy traversals are updated, and
a node is updated simply by blending the stored reference bound-
ing volumes. This is a constant time operation since the number
of volumes to blend is fixed.

– It is shown that the proposed method works for bounding volume
hierarchies of axis-aligned bounding boxes, discrete oriented poly-
topes, and spheres.

– The proposed collision detection strategy applies generally to other
types of bounded deformations for which a bounding volume refit
function is known that is independent of the geometric primitives
stored in the volume.



Chapter 3

Ray tracing of

deformable meshes

3.1 Related work

Ray tracing is a classic image synthesis technique. It was introduced
as early as 1968 by Appel as a shadow determination technique [30].
In 1980, Whitted published an article describing the basic recursive ray
tracing algorithm, which extended the original algorithm to handle spec-
ular reflection and refraction [31]. This version of the algorithm is essen-
tially the basic ray tracing method described in many computer graphics
textbooks of today [32, 33]. Hundreds of articles on different aspects of
the subject have been published and there are books entirely devoted to
ray tracing [34, 35].

In ray tracing, images are generated by tracing rays of light back-
wards, from the eye though the pixels in the image plane. These rays
are then recursively traced according to the rules that have been set
up for their interaction with the three-dimensional scene while the color
contributions are gathered.

While ray tracing is well-known for its ability to create stunning
pictures, it seems to be equally well-known for its extremely high com-
putational cost. For example, to generate a single image of 800x600
pixels, super-sampled with 9 primary rays per pixel, over 4 million pri-
mary rays need to be intersected with the geometry in the scene and

13



14 Ray tracing of deformable meshes

potentially more than 20 million secondary rays, i.e., shadow, reflections
and refraction rays. Thus, given complex scenes, with millions of ge-
ometric primitives, the number of intersection calculations required is
huge. This disadvantage of ray tracing caused it for many years to be
considered as an offline rendering method only.

The tremendous recent improvements in computer technology, how-
ever, have begun to change the view of ray tracing as a rendering method
which is too slow for interactive graphics applications. In interactive ray
tracing, something like 5–30 generated images per second are needed.
To be able to handle the computational burden, clever algorithms are
needed to reduce the number of intersection computations and utilize
the inherent parallelism of the ray tracing process.

Today, it has been shown that interactive ray tracing is possible, even
on affordable PCs [36, 37, 38]. Fast ray tracing can also enable faster
global illumination computations, since there are many global illumina-
tion algorithms that rely heavily on ray tracing [39]. Thus, ray tracing
may play an important role in achieving a long term goal in computer
graphics — physically correct simulation of light transport at interactive
frame rates in complex and dynamic environments.

Most proposed ray tracing approaches, however, are dependent on
acceleration data structures that are pre-built before simulation. Many
of these methods rely on certain limiting assumptions, such as that it
is only the camera which is animated, the rest of the scene remaining
static. Others have permitted the presence of certain dynamic models
in the scene, as a special case, but these have been assumed to be rigid
bodies [36]. Recently, programmable shaders have also been used to im-
plement ray tracing on commodity graphics hardware, but the suggested
approach was found unsuitable for dynamic scenes [40].

To make ray tracing an interesting alternative for interactive graphics
applications in general, dynamically changing scenes must be supported.
This also includes scenes with complex deformable or flexible models.
Very few data structures have been proposed for such scenes [41]. The
acceleration algorithm proposed in paper C is based on bounding volume
hierarchies that permit the models to deform over time. A summary
of this approach for ray tracing of deforming bodies is described next
together with its main contributions.



3.2 Technical contribution of paper C 15

3.2 Technical contribution of paper C

3.2.1 Summary

In this paper, a new acceleration method for ray tracing of deforming
meshes is presented. In complex and dynamically changing scenes, the
reconstruction phase, responsible for updating the data structures as the
simulation proceeds, is likely to become a major bottleneck. Further-
more, the ray tracing phase can be parallelized very efficiently, as com-
pared with the reconstruction phase, for which it seems much harder to
create successful parallel solutions. With the new approach, it is shown
that by only updating the upper levels of the pre-built bounding volume
hierarchies, the reconstruction phase can be made an order of magni-
tude faster. The remaining parts of the hierarchies are updated lazily as
needed in the ray tracing phase. This approach saves computation and
leads to significant speed-ups in many scenes.

The high performance of the approach has been verified in complex
scenes. It has been demonstrated that scenes with hundreds of thousands
of deforming and reflective triangles can be ray traced at interactive
frame rates. Completely dynamic and interactive scenes are supported,
since no a priori information of forthcoming deformations are used.

3.2.2 Main contributions

The main contributions of paper C are summarized below:

– The proposed solution extends the set of scenes that can be ray
traced at interactive frame rates. It is shown that interactive ray
tracing is possible for scenes with complex deforming meshes con-
sisting of hundreds of thousands of geometric primitives.

– By using the hybrid bottom-up/top-down update method from pa-
per A, the reconstruction phase runs an order of magnitude faster
as compared with using bottom-up refitted hierarchies. This is
important since the reconstruction phase risks becoming the bot-
tleneck in complex dynamic scenes.

– The suggested update scheme takes advantage of the fact that the
hierarchies do not need to be updated for the occluded parts of
the scene, although they may be deforming. This yields significant
speed-ups in the total rendering time of many complex scenes.





Chapter 4

Conclusions and future

work

4.1 Summary

A new hierarchical collision detection algorithm for moving and deform-
ing polygonal meshes was presented in paper A. It was demonstrated
that this method can be used in real-time graphics simulations, even for
meshes consisting of tens of thousands of triangles. The novel way of
updating the hierarchies is significantly faster than previously suggested
approaches, and it is efficient in both simple and hard collision detec-
tion cases. The algorithm works for meshes undergoing arbitrary vertex
repositioning, and all the vertices of the meshes may be repositioned
simultaneously in every simulation time step. The suggested way of up-
dating the hierarchies is linear in the number of vertices of the meshes.
These advantages of the method make it attractive for use in many dif-
ferent types of simulations of soft or elastic materials. For example, it
has already been used to speed-up the collision detection process in a
work on realistic cloth simulation [42].

In paper B, a new collision detection algorithm for morphing meshes
was described. In this case, any bounding volume in the created hierar-
chies can be updated by a simple and extremely fast bounding volume
blending operation. This makes it possible to update only those bound-
ing volumes that are visited during the collision traversals. The algo-
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rithm was used in a number of practical experiments and it was found to
be significantly faster than the more general method for meshes under-
going arbitrary vertex deformations. In fact, its performance is expected
to be sub-linear in the number of faces, just as in hierarchical collision
detection for rigid bodies. Other types of deforming bodies, for which
the deformations are bounded by some known function can also benefit
from the same basic strategy of updating the bounding volumes in the
nodes of the hierarchies top-down, as they are reached in the collision
traversals.

If a hundred, or more, morphing models are included in a simulation,
an efficient broad phase [43] must be added to the algorithm, whose
purpose is to sort out all body pairs out of n bodies that are potentially
capable of colliding. The sweep and prune method suggested by Cohen et
al. for rigid body simulation seems to be particularly suitable for this [9].
For the morphing bodies, all that needs to be done to use this method is
to first update the root nodes of the hierarchies by blending the reference
bounding volumes they store, an extremely efficient operation.

Furthermore, since both suggested collision detection approaches are
based on bounding volume hierarchies and rather similar hierarchy traver-
sals, they are easily integrated to support simulation that includes both
morphing meshes and meshes deformed by repositioning the vertices ar-
bitrarily. Hierarchies of AABBs have also been shown to be an efficient
alternative in the case of moving rigid bodies [14]. By using small vari-
ations on the AABB trees and adding dual tree collision traversals for
all pairs of tree types, collisions between all combinations of the types of
models mentioned can be efficiently tracked. The only intersection tests
that must be supported between tree nodes for all these methods are the
trivial AABB/AABB test and the OBB/OBB test.

As a possible extension, the integration of OBB trees in the collision
detection framework would be straightforward and beneficial in certain
applications [5]. Other types of bounding volumes trees can also be sup-
ported if efficient intersection tests between tree nodes can be provided.
One possible example is the sphere tree. An efficient sphere/AABB over-
lap test method exists [44] and a sphere/OBB test can also use this test
by first transforming the sphere into the coordinate system of the OBB.
By permitting the use of different types of hierarchies, it is also possi-
ble to choose the most suitable for each model, which can improve the
tightness and lead to better performance.

Finally, in paper C, a means of accelerating ray tracing of deforming
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meshes was presented. This is of great importance for extending the set
of scenes which can be used in interactive ray tracing. With the proposed
way of updating the hierarchies, the reconstruction phase executes an
order of magnitude faster in comparison with a complete bottom-up
hierarchy update. This is important since the reconstruction phase might
very well become a bottleneck, because it seems to be much harder to
parallelize than the actual ray tracing phase. The experiments conducted
also showed that a substantial improvement in the total rendering time
can be expected for scenes in which some deforming models only partly
contribute to the final image.

4.2 Directions for future work

Much further work remains to be performed in the field of deformable
body simulation. Certain directions in which research relating to col-
lision detection and interactive ray tracing is desirable are described
briefly below:

- The extension of the proposed collision detection methods to sup-
port efficient handling of self-intersections would be beneficial. This
is very important in certain applications. In cloth simulation, for
example, some approaches have already been published [45, 46, 47].

- The proposed collision detection methods are not designed to han-
dle situations where a single model is torn apart or cut into several
separated parts. The generalization of the algorithms to support
body cutting in an efficient way is a subject worth more attention,
and could lead to algorithms useful in, for example, virtual surgery.

- For rigid bodies, a technique designated front tracking has been
suggested to utilize the temporal coherence that is present in many
types of simulations [20, 18]. It would be interesting to examine
this technique further in the context of deformable body simula-
tion.

- The extremely fast developments of new GPUs make it very in-
teresting to study how they can be utilized to accelerate collision
detection. Such an approach for deformable triangulated objects
has been suggested recently [48]. Alternative approaches, which for
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example take advantage of the programmability of modern GPUs,
may be of interest for use in future applications.

- In the field of bioinformatics and computational biology new spe-
cialized collision detection algorithms are needed. The simulation
of protein folding, for example, is expected to become very impor-
tant.

- The design of a set of standardized benchmark scenes for colli-
sion detection of deformable bodies would make fair comparisons
between algorithms much easier. Such scenes must be designed
with care so that they include a broad spectrum of different and
interesting contact scenarios.

- In interactive ray tracing, it would be interesting to study accel-
eration data structures for scenes with millions of independently
deforming primitives, including parallelization of the reconstruc-
tion phase. In the method proposed in this thesis, the deforming
models are limited to polygonal meshes undergoing arbitrary ver-
tex deformation. The meshes were not allowed to be torn apart
during simulation.
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Abstract

Fast and accurate collision detection between geometric bodies is essen-
tial in application areas like virtual reality, animation, simulation, games
and robotics. In this work, we address the collision detection problem
in applications where deformable bodies are used, which change their
overall shape every time step of the simulation. We propose and eval-
uate suitable bounding volume trees for deforming bodies that can be
pre-built and then updated very efficiently during simulation. Several
heuristics for updating the trees due to deformations are compared to
each other. By combining a top-down and a bottom-up update strat-
egy into a hybrid tree update method, promising results were achieved.
Experiments show that our approach is four to five times faster than a
previously leading method.
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5.1 Introduction

Fast and reliable collision detection is of great importance in areas like
real-time graphics, virtual reality, games, animation, CAD, robotics and
manufacturing. Today, scenes of hundreds of thousands of polygons can
be rendered in real-time using dedicated commodity graphics hardware
and powerful workstations or desktop PCs. This rendering and com-
putational power make new kinds of applications possible, with higher
demands on performance and geometric detail. One such possibility
is the simulation of geometrically complex scenes of multiple continu-
ously deforming bodies. Some examples of deformable objects include
soft tissues and organs, articulated characters with clothing, biological
structures as well as other soft or elastic objects or materials.

A significant amount of research has been done regarding collision
detection algorithms in virtual environments. Most of the efforts have
been concentrated around solving the collision detection problem for
rigid body simulation. When rigid bodies are used, many of the tech-
niques used for collision detection are heavily based on data structures
that can be more or less pre-computed before the simulation start. This
work is of great importance in many industrial applications, for example
in virtual prototyping or in virtual walkthroughs of architectural models.
But in cases where deformable bodies are used, the proposed methods
for rigid bodies cannot be used directly. Since the shapes of the bodies
are changed, the data structures used to accelerate the collision queries
must either be rebuilt or updated in ways that are not normally needed
for rigid bodies.

In this paper we describe a method for efficient collision detection of
multiple translating, rotating and deforming bodies. It is assumed that
all bodies change their overall shape every time step throughout the
simulation, i.e. all the meshes’ vertices are repositioned at every time
step. The proposed algorithm uses bounding volume trees adapted for
such deforming bodies. The effects of different variations in the way the
trees are constructed and updated are examined. Some of the interesting
questions are: What kinds of bounding volume trees are suitable to use?
What heuristic should be used to partition the geometric primitives of a
body into its tree? How can the bounding volumes in a tree be updated
efficiently? We examine trees where the nodes can have up to two, four
or eight children. For the partitioning we use two basic strategies. The
first is based on the initial body’s shape and primitives close to each
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other are grouped together in the nodes of the tree. The second strategy
is based on the body’s mesh connectivity; all the primitives placed under
any given node in a tree are neighbours in the body’s polygon mesh. In
the first case we call a tree the initial shape tree and in the latter case we
call it the mesh connectivity tree. Both of these two tree hierarchies can
be pre-constructed and efficiently updated during simulation. To update
the necessary bounding volumes in a tree after a deformation has been
applied to a body, we use a combination of an incremental bottom-up
update and a selective top-down update, which we call a hybrid update.

The rest of this paper is organised as follows. The next section gives
a brief overview of some of the previously suggested methods for solving
the collision detection problem. Then follows a description of the new
collision detection algorithm. After that, experiments and results are
presented. Finally, some possible future work and conclusions that can
be drawn from this work are described.

5.2 Previous Work

The collision detection problem has been addressed in many papers. A
recent survey[1] classifies different solving approaches into four general
groups. Another survey[2] focuses more on how the model representation
leads to different collision detection algorithms.

In environments with n moving bodies, the first step of an algo-
rithm is typically to reduce the O(n2) running time needed to perform
intersection tests on all possible pairs out of n bodies. This part of a col-
lision detection algorithm is commonly referred to as the broad phase.
One possibility is to use a spatial subdivision of the space in cells[3].
In another approach[4], a sort and prune method is used. Other spa-
tial decomposition techniques that have been used are octrees[5], k-d
trees[6], BSP-trees[7] and brep-indices[8]. An event-driven approach has
also been proposed[9] that efficiently detects collisions among multiple
moving spheres by using a hierarchical uniform space subdivision scheme.

Typically, in those cases where the broad phase of the algorithm
is not able to determine the collision status, the narrow phase takes
over in order to do more detailed intersection calculations. To speed
up the intersection tests of these close body pairs, bounding volume
hierarchies are commonly used. Some of the bounding volumes that have
been used to build such hierarchies are for example spheres[10, 11, 12,
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13], Axis Aligned Bounding Boxes (AABBs)[4, 6], Oriented Bounding
boxes (OBBs)[14, 15], k-DOPs[16], Quantized Orientation Slabs with
Primary Orientations (QuOSPOs)[17] and spherical shells[18]. Another
possibility is to partition objects into voxelised containers, without using
any hierarchical organisation within the containers[19].

Another class of algorithms efficiently tracks the closest features be-
tween convex bodies or bodies decomposed into a set of convex pieces.
By doing so, they are not only able to report collisions, but also to re-
port the shortest distance between bodies. Some of these methods use
pre-computed Voroni regions[4, 20]. Others treat the body as the con-
vex hull of a point set and operate on simplices defined by subsets of
these points[21, 22, 23]. The incremental hierarchical walk algorithm[24]
efficiently maintains the distance between moving convex bodies by ex-
ploiting both motion coherence and hierarchical representations.

There are also some four-dimensional approaches for solving the col-
lision detection problem for moving bodies[10, 25]. By considering the
intersection of four-dimensional volumes swept out by body motion over
time, future contact times can be calculated. These methods require
that information about the bodies’ velocities and accelerations can be
given beforehand. Some cases of dynamic object-object intersection are
described by Eberly[26].

Usually these mentioned methods have been demonstrated to work
efficiently in different kinds of environments for rigid body simulations.
When we consider the problem of deforming bodies, they are not as
useful, since they rely heavily on pre-computed data and data structures
or they are dependent on certain body characteristics, for example bodies
that must be decomposed into convex pieces. In fact, even if there exist
many documented works on collision detection in virtual environments,
there are significantly fewer that have dealt with deforming bodies.

A very general collision detection method for deformable objects has
been proposed by Smith et al.[27] The input models can be groups of
deforming triangle soups freely moving in space. At every time step,
the AABB of all objects is calculated. When two overlapping AABBs
are found, object faces are first pruned against their overlap region.
Remaining faces from all such overlap regions are used to build a world
face octree, which is traversed to find faces located in the same voxels.
The high performance of this method breaks down in hard cases, i.e.
when an overlap region is large and there are many geometric primitives
(overlapping or not) in that region, which are passed on to the face octree
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building stage.

A data structure called the BucketTree has also been proposed[28],
which is an octree data structure with buckets as leaves where geomet-
rical primitives can be placed. At every time step of a simulation, the
models’ primitives are assigned to an appropriate bucket. Then the in-
tersection tests between any two models are done recursively by testing
the nodes AABBs as their trees are traversed. This algorithm is also very
general, since it only sees an object as a soup of freely moving primitives.

Another approach is suggested by van den Bergen[29], which is also
used in the collision detection library called SOLID[30]. Initially, AABB
trees are built for every model in its own local coordinate system. The
AABBs in the trees are then transformed as the models are moved or
rotated in the scene. This transformation causes the models’ locally
defined AABBs to become OOBs in world space. When a model is
deformed an update of the affected nodes in the trees has to be done.

In the literature, there are also some other algorithms for flexible
objects[5, 31]. Some methods are designed for bodies undergoing poly-
nomial deformations[32, 33].

All the work mentioned above is interesting, but efficient interference
detection between deformable bodies is definitely an area worth more
attention[1]. Better methods are needed and much work remains to be
done. In the following sections we describe our implemented method in
more detail.

5.3 Algorithm Overview

Many practical algorithms are for performance reasons so called discrete
methods, i.e. they report contact between bodies when they have already
interpenetrated each other. Our algorithm is also a discrete method. If
needed, back tracking in simulation time might be used to determine the
colliding bodies’ first contact.

To efficiently detect collisions between multiple continuously deform-
ing bodies represented by polygon meshes, we propose an algorithm di-
vided into two loosely coupled main phases. The first or the broad phase
uses a sort and prune method[4] to find the bodies that are close to each
other, and the second or the narrow phase uses bounding volume trees
to determine the intersection status between bodies, which have already
been found to be close to each other, in a more detailed manner. A
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schematic overview of the algorithm’s main parts and its working con-
text is given in Figure 5.1. It is assumed that the application using the
collision detection module drives the simulation forward and calls the
collision detection algorithm at appropriate time intervals. The applica-
tion is also responsible for translating the reported collision status into
suitable response actions.

Figure 5.1: Schematic overview of the collision detection module for
deforming bodies and its communication with an application specific
simulation module.

In the narrow phase of the collision detection algorithm, there are
three main problems that have to be solved efficiently. First of all,
nodes in the bounding volume trees must be updated every time step of
the simulation, since the bodies are deformed continuously. Therefore,
we chose AABBs as our bounding volume. When bodies deform, the
corresponding AABBs can be recalculated very efficiently to reflect the
changes in the geometry. Also, when testing the intersection status of
tree nodes during collision traversals, AABBs are very efficient to do
intersection tests with. Finally, the close face pairs that the collision
traversals sort out must be interference tested explicitly. For this test,
we use the method provided by Akenine-Möller[34].

Different parts and aspects of the algorithm, as well as some varia-
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tions, are described in more detail in the following sections.

5.3.1 Deformation Types

A body might undergo a complete change of shape, from one time step
to the other, by moving the relative position of all of its vertices. We
refer to this type of deformation as arbitrary vertex repositioning. During
such deformations, the mesh connectivity stays the same, i.e. the mesh
is not torn up in any way. Our method efficiently handles this kind of
deformation. Sometimes other types of deformation are desired; such as
increasing or decreasing the number of geometric primitives in the mesh
or splitting the body into new separated pieces. Currently, we do not
support these kinds of deformation in our method.

5.3.2 Bounding Volume Pre-processing

For all input bodies, bounding volume trees are initially built as a pre-
processing stage. A tree is built by repeatedly splitting the geometry in
the parent AABB into smaller AABBs until there is only one geomet-
ric primitive left in them. We have chosen to support the building of
bounding volume trees where the maximum degree of a node can be two,
four or eight, and we refer to these trees as binary trees, 4-ary trees or
8-ary trees.

For the geometric splitting, many different rules can be used. We
have tried two different main strategies. Both of them build the trees
in a top-down manner. The first one builds the tree based on the initial
shape of the body. Depending on the maximum degree of a tree node,
a parent AABB is split along one, two or three coordinate axes into
two, four or eight sub-volumes. Then the midpoint of each geometric
primitive is assigned to one of these sub-volumes and a child node is
created for every non-empty sub-volume. If the degree of the tree is two,
then the parent AABB is split along its longest side, if it is four the
split is done along the two longest sides and if it is eight all three sides
of the parent AABB are split. To choose the actual values for the split
planes two different heuristics have been examined. The simplest one
picks values from the coordinates of the centre point of the box. The
other heuristic calculates the average point of all polygons’ midpoints
and the values for the split planes are chosen from that point. In our
experiments, there is no significant difference between these two ways of
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choosing the values for the split planes, but we prefer the first one since
it is a more efficient operation. (Some other split methods have also
been described and examined[29, 16]). The partitioning into new child
nodes is repeated recursively until there is only one geometric primitive
left per node. We call the resulting tree an initial shape tree.

Another interesting way of building the trees is based on partition-
ing the geometry of a body into a tree we call the mesh connectivity
tree. The partitioning is done so that all faces under a certain node in
the tree form a connected neighbourhood. Even for highly deformable
bodies, the connectivity of our meshes always stays the same. This way
of partitioning the geometry does not pay much attention to the initial
shape of a body, which might be completely different after some defor-
mations have occurred. A tree is built in the following way. The whole
mesh is associated with the root node. Then, depending on the maxi-
mum node degree in the tree, which in our case can be either two, four or
eight, the mesh is split into a suitable number of sub-meshes and placed
in new nodes inserted as the root node’s children. The partitioning into
new child nodes is repeated recursively until there is only one geometric
primitive left in a node. A possible advantage of these trees is that they
avoid the potential risk of grouping faces deep down in the trees that are
very close to each other initially, although they may not be close at all,
when we only consider the connectivity of the faces in the mesh. This
type of surface-based hierarchy has been suggested for building good fit
OOBs and used to speed up radiosity calculations as well as for collision
detection of rigid bodies[35]. In contrast, we are interested in examining
their properties when dealing with deforming bodies.

A potential problem with building the bounding volume trees initially
is that deformations applied during run-time can drastically change the
volumes of the AABBs and also cause increases in their overlap among
themselves. An alternative to pre-build the trees would be to rebuild
them when their qualities have degenerated to a certain extent. Rebuild-
ing the trees, however, is a much more expensive operation compared to
only updating the bounding volumes in an otherwise fixed tree. In many
practical cases, rebuilding is not needed[29].

When dealing with continuously deforming bodies, we have also found
in our experiments that using 8-ary tree versions of the bounding volume
trees was a slightly better choice than both 4-ary and binary versions of
the trees. In the 8-ary tree case, fewer bounding boxes need to be cal-
culated each time step and the search towards contact regions converges



36 Paper A

faster per entered level in the tree traversals.

5.3.3 Run-time AABB Updates

During run-time, we have to update bounding volume trees due to defor-
mations. But in a typical collision traversal, far from all bounding boxes
in a tree are needed. Therefore, we have tried to update as few AABBs
as possible by updating them top-down, as they are needed during the
traversals. In this case the AABB of a node is calculated by traversing
the faces placed under it. If the meshes have connectivity information,
i.e. the polygons share a list of common vertices, we update the node’s
AABB by traversing the shared vertices of the faces in the node, instead
of the faces themselves, which is typically much faster. As an alterna-
tive, the AABBs in a tree can be updated incrementally bottom-up[29],
starting from the AABBs of the leaves and merging them upwards to
the root of the tree. The strength of this method is that a parent AABB
can always be calculated very efficiently directly from the AABBs of its
children, but on the other hand all tree nodes are visited and updated,
despite the fact that only some of them will be needed in the following
tree traversal.

Figure 5.2: Example of a hybrid tree update method, combining the
bottom-up and top-down strategy.
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We have found that in hard cases, where many deep nodes in a tree
are reached during a collision test, it gave a better overall performance
to update the AABBs in a tree bottom-up. In simple cases, however,
with only a few deep nodes visited in a collision test, the top-down
update normally performs better. What we would like is a method to
update the trees, which performs well in both simple and hard cases.
Therefore, our approach is to use a hybrid update method that combines
efficient bottom-up calculations with selective top-down updates, which
gives the desired result. The method attempts to update as few AABBs
as possible, while still updating the ones covering most faces in the top of
a tree bottom-up. For a tree with depth n, we initially update the n / 2
first levels bottom-up, which we have found to be an efficient choice.
During a collision traversal, when non-updated nodes are reached, they
can either be updated top-down as needed or a specified number of levels
in their sub-trees may be updated bottom-up. For the models that we
have examined, with a typical triangle count between 5000 and 32000,
we have found it fastest to update these nodes top-down as they are
needed. An illustration of the hybrid tree update is given in Figure 5.2
for a very simple binary tree. First the three topmost levels in the tree
are updated bottom-up (step 1 to 3). Then during a collision traversal,
when non-updated nodes are reached, they are updated on the fly (step
4 and 5). There are 31 nodes in this small example tree, but only 11 of
them are updated (those that are marked grey). In practise, the trees are
much larger and so is the difference between the number of non-updated
and updated nodes.

A drawback of our hybrid update method (as well as the top-down
method) is that we have to store vertex or face information in the internal
tree nodes, not only in the leaf nodes. This memory cost is another
reason for using 8-ary trees, with fewer nodes, compared to 4-ary or
binary trees.

5.3.4 Multiple Body Simulation

For simulations with up to approximately 100 bodies, the naive brute
force technique, comparing n(n-1)/2 body pairs for n bodies, performs
very well. But if there are more bodies in a simulation, our first phase
uses the sweep and prune sorting technique suggested by Cohen et al.[4]
Initially, all extents of the objects along the three principal axes are
sorted into three lists. These lists can be used to efficiently find all
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objects close to each other. As objects move, the lists are resorted during
all stages of the simulation. The changes in relative placement of the
bodies are expected to be small from one time step to the next and the
resorting operation is thus expected to take O(n) time for n bodies. The
O(n2) running time complexity for checking collision among n bodies is
reduced to O(n+m), where m is the number of pairwise overlaps between
the bounding volumes of the bodies.

To avoid calculating the best fitting AABB for all bodies in the world
at every time step, we first use predetermined loose AABBs that are
large enough to bound every possible orientation and deformation of the
bodies, whenever possible. If it is not possible to determine such loose
AABBs, for example, because of the unknown bounds of the possible
deformations, then an AABB has to be calculated for all bodies before
the sweep and prune technique can be used.

5.4 Experiments and Results

We have done many different experiments to investigate the performance
characteristics of our proposed method. The experiments used have to be
chosen with care, since the results depend on the shapes of the models,
their relative orientation and the deformations applied. Three of the
experiments are presented here, which were all done using a Pentium
III, 550 MHz CPU. Our scenarios were chosen before our hybrid update
method was developed and the results of our algorithm are compared
to the results from our implemented version of the method by van den
Bergen[29], which is similar to ours.

In the first experiment, two continuously deforming bumpy sphere
bodies were moved slowly into each other during 200 simulation time
steps. Each one of the two bodies consisted of 20 480 triangles. The
collision queries ranged from very simple cases in the beginning to quite
hard cases towards the end of the simulation. The very first intersection
of the bodies was reported at time step 60. In the last time step, 3760
intersecting triangle pairs were reported. We used the 8-ary version of
our initial shape trees and we reported the collision detection times per
time step for the top-down, bottom-up as well as the hybrid tree up-
date methods. The results are given in Figure 5.3. In Figure 5.3a, the
timings for reporting all intersecting triangle pairs are reported, and in
Figure 5.3b the timings for finding a first arbitrary intersecting triangle
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pair is reported, which in cases where there are a lot of intersecting trian-
gles is much faster. Reporting only one triangle pair might be sufficient
for many applications. For example, if we want to search for the exact
time for the bodies’ first contact, it is sufficient to find one intersecting
triangle pair to know that we need to back track in simulation time. As
we can see, the hybrid update method performs best, both in simple and
hard cases. Furthermore, it is approximately five times faster than the
competing method[29].

In the second experiment, we used the same scenario as in the first
experiment, but this time we ran the simulations multiple times with
varying polygon counts for the bumpy spheres. For every simulation
the collision detection time at the time step where the bodies first hit
each other as well as the worst time were reported. In Table 5.1 we
can see the results. The last column reports the number of intersecting
triangle pairs that were found during the worst time step. It is obvious
that, for this experiment, the measured results indicate roughly linear
performance in the number of used faces.

faces per first worst triangle
body contact (ms) contact (ms) intersections

1280 2 4 138
5120 6 15 562
8192 8 28 1010
16384 15 64 2422
20480 20 98 3760
32768 30 151 4775
65536 62 334 12358

Table 5.1: Running time for deforming bodies with different polygon
counts.

In the third experiment, 27 translating, rotating and deforming bod-
ies hit each other frequently during 200 simulation time steps in a rather
dense environment. A simple collision response method was applied to
prevent the bodies passing through each other. Each one of the bodies
consisted of 5120 triangles. The simulation was repeated twice. In the
first simulation, the bodies were bumpy spheres and in the second sim-
ulation the bodies had multiple deforming arms. The collision detection
performance using our hybrid update method with 8-ary versions of the
initial shape trees is presented in Figure 5.4. Also, the performance of
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Figure 5.3: Collision detection performance reported from the first ex-
periment when a) all intersecting triangle pairs were reported, b) only
the first found intersecting triangle pair was reported.
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van den Bergen’s method is included for comparison. When using our
method, the average collision detection time per time step is about a fac-
tor of 5.6 faster, in Figure 5.4a, and a factor of 4.5 faster, in Figure 5.4b,
than when using the method by van den Bergen.

The major differences between our method and van den Bergen’s
are in the way the trees are updated and how the intersection tests are
done between the bounding volumes in the nodes during tree traversals.
Where van den Bergen uses a complete bottom-up update of the bound-
ing volume trees, visiting every node, we use the hybrid update, com-
bining benefits from both bottom-up and top-down approaches. Also,
because we use world coordinate space AABB trees, we have to calcu-
late world coordinates of the vertices in the bodies before a collision tree
traversal, i.e. if the simulation process does not already provide them.
(In some cases it might be more convenient to apply deformations di-
rectly in world coordinate space). Anyway, this makes it possible to
use very fast AABB intersection tests during the tree traversals. Van
den Bergen, on the other hand, uses local coordinate space AABB trees,
which in fact becomes OBBs in world coordinate space, and then the in-
tersection tests between tree nodes are a more expensive operation, like
the used SAT lite test[29], which starts to dominate the running time in
hard cases (see Figure 5.3a). Another difference is that we use 8-ary trees
instead of binary trees for our bounding volume hierarchies. (We have
implemented an 8-ary tree version of van den Bergen’s method, which
runs approximately 10 to 20 percent faster than the binary version of
it in our experiments). Finally, it is worth mentioning that the purpose
of van den Bergen’s method is to deal with both rigid and deformable
bodies in a unified framework. We have not aimed at supporting rigid
bodies efficiently in our algorithm.

We have also tried our mesh connectivity trees in these experiments,
but the performance difference is very small between them and the initial
shape trees for the type of bodies we have used. The average collision
detection time per time step is typically between zero to 10 percent
better for the mesh connectivity trees than for the initial shape trees
in these experiments. Despite this small difference, we believe that it
would be interesting to study the mesh connectivity trees further.

In Figure 5.5 and 5.6, images of the types of bodies that were used
in our experiments are shown. Animations showing the reported exper-
iments have also been produced.
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Figure 5.4: Collision detection performance per time step according to
experiment 3 where a) 27 bumpy sphere bodies were used. b) 27 bodies
with multiple arms were used.
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Figure 5.5: Some moving deforming bodies before and
after they have interpenetrated each other.
Intersecting triangles are in red colour.

Figure 5.6: Multiple deforming bodies moving from a
simple start case towards a common goal
point in order to stress the collision detec-
tion algorithm.
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5.5 Future Work

There is much more interesting work to do regarding collision detec-
tion and deforming bodies. For example, cut operations, where bodies
are torn into two or more separated pieces, might yield very hard close
proximity situations for the collision detection algorithm and more effi-
cient solutions would be desirable to increase realism while maintaining
interactive performance. Fusion operations, where different bodies are
merged together, form another interesting type of deformation, which
might be interesting for certain kinds of applications.

Efficient algorithms that automatically create suitable mesh connec-
tivity trees would be another interesting topic to study, so their useful-
ness for operations like collision detection could be evaluated. Another
very important feature for deforming bodies is to avoid self-intersections.
We have not included any support to avoid such situations automatically.
Instead, we have assumed that the algorithm that applies the deforma-
tions to the bodies does it in a proper way. Another possible direction for
future work would be to design parallel algorithms for collision detection
of deformable bodies. It would also be beneficial to create test scenes
suitable for comparison of different algorithms for collision detection of
deforming bodies. If some suitable test scenes together with some gen-
eral software were available, such comparisons would be much simpler
to do.

5.6 Conclusions

Real-time graphics simulations, where the shapes of the bodies deform
continuously over time, constitute a particular challenge since the possi-
bilities of using pre-calculated data and data structures are dramatically
decreased. The result of this work is an efficient collision detection al-
gorithm that works well in real-time simulations for multiple moving
and deforming bodies represented by polygonal meshes. The proposed
bounding volumes trees are suitable to pre-build before simulation time
for many types of deformable bodies and very fast to update during sim-
ulation time, due to the applied deformations. Our proposed hybrid tree
update method performs well in both simple and hard collision detection
cases. In our experiments, our method has been found to be approxi-
mately four to five times faster than a previously leading method for
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deformable bodies. The performance of the algorithm has been verified
by experiments in complex dynamic environments with multiple contin-
uously deforming bodies.
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Abstract

We describe a fast and accurate collision-detection algorithm specialised
for models deformed by morphing. The models considered are meshes
where the vertex positions are convex combinations of sets of reference
meshes. This new method is based on bounding-volume trees that are
extended to support efficient tree-node updates by blending associated
sets of reference bounding volumes. With our approach, it is possible to
use either axis-aligned bounding boxes, discrete-orientation polytopes,
or spheres as bounding volumes. The expected performance of our al-
gorithm is of the same order as for rigid hierarchical collision detection.
In our tested scenarios, the speed-up we achieved ranged from 1.5 to 58,
compared to another more general algorithm for deforming bodies.

Key words: Collision detection – Morphing – Deformable bodies –
Hierarchical data structures – Virtual reality
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6.1 Introduction

Fast and accurate collision detection is an essential part in almost all
graphics applications that involve the simulation of moving models or
bodies. In this paper, we present a very efficient collision-detection al-
gorithm specifically developed for models deformed by mesh morphing
(also called mesh inbetweening or blending). This deformation technique
has become very important in many computer graphics applications, be-
cause of its ability to model living material and objects in a simple and
efficient way. In fact, morphing techniques have been used in various ap-
plication areas, ranging from games, animation and special movie effects
to industrial design and scientific visualisation. The efficiency of our al-
gorithm makes simple morphing a feasible technique to use in real-time
applications.

Recent advances in consumer graphics hardware have made certain
deformation techniques, such as morphing, even more attractive, since
the deformed meshes can be both deformed and rendered by the graphics
processing unit (GPU) [1]. This means that we can expect more detailed
and realistic deforming models to be used in graphics applications in the
near future, which in turn calls for new or improved collision detection
algorithms.

Our proposed algorithm is based on using pre-built bounding-volume
trees. Some popular types of bounding volumes that can be used in these
trees are axis-aligned bounding boxes (AABBs), discrete-orientation poly-
topes (k-DOPs), or spheres. We show how the bounding volumes can
be conservatively updated using the same morphing function as used
for the vertices. Since only the bounding volumes, and not the entire
geometry in them, are updated, this operation is extremely fast. In
addition, the bounding volumes are only updated lazily in a top-down
manner, which further improves performance. This way of refitting the
volumes is expected to work very well for all types of deformations where
there is an efficient bounding-volume update function available that is
not dependent on knowing the details of the model geometry inside the
bounding volumes but still able to refit each volume reasonably tightly.
Our methods do not require that the deformed local vertices of the mod-
els be calculated before the collision tests are done. Instead, the vertices
are calculated sparsely, as they are needed, being when leaves are reached
in our tree traversals. As expected, experiments have shown that our
collision-detection solution is very efficient in practice.
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The rest of this paper is organised in the following way. In the next
section, related work is presented. Then, in Section 6.3 and 6.4, the de-
tails of our collision-detection method and the promising results we have
achieved are discussed. In Section 6.5, further optimisation techniques
are presented. Finally, our conclusions and some opportunities for future
work are given.

6.2 Previous work

The collision-detection problem for bodies undergoing arbitrary defor-
mation is an open research area [2]. Some initial efforts are described
in the literature. For example, Smith et al. suggested a very general al-
gorithm [3, 4] based on re-computing all bodies’ AABBs in world space
at every simulation time step. A face octree is then built on the fly,
when it is necessary to sort out potential face intersections among close
faces. The generality of this method results in performance problems
that clearly can be avoided when more restricted types of deformations
are used. There are also some other proposed methods for deformable
models aimed at different types of geometry and situations. Some ex-
amples are methods for higher order surfaces [5, 6, 7] and for cloth
simulation [8, 9, 10, 11].

The fastest methods available, however, are those that solve the
collision-detection problem when all bodies are rigid. The most gen-
eral methods for rigid bodies use precomputed hierarchical data struc-
tures, like different types of bounding-volumes trees. Some interesting
collision-detection algorithms have used spheres [12, 13, 14, 15], axis-
aligned bounding boxes [16, 17], oriented bounding boxes [18], discrete-
orientation polytopes [19, 20], quantized orientation slabs with primary
orientations [21], and convex surface decompositions [22] as their bound-
ing volume of choice.

It has been shown that an approach using bounding-volume trees,
similar to the ones used in the suggested methods for rigid bodies, also
can be used for certain types of deformable models. For example, the
benefits of prebuilding the hierarchical data structures might be used
for many kinds of deforming models, primarily those that keep their
face connectivity and are not torn apart. The problem is, of course,
that the size of the bounding volumes in the trees must be recomputed
or refitted in an efficient way as the models change their shape and
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when they are needed in a collision test. Van den Bergen suggested
this approach for AABB trees [16], and he described a way to refit the
bounding volumes in the trees bottom-up, from the leaves up to the root,
during simulation time. Larsson and Akenine-Möller described a more
efficient tree update method for similar AABB trees, by combining the
benefits of a bottom-up and a top-down update into a hybrid update
method [23]. Both these methods can handle polygon models deformed
by arbitrary vertex repositioning. If all vertices in a model are deformed
arbitrarily at one time instant, this means that all of them have to be
processed during some necessary bounding-volume refit operation, which
gives the algorithms a time complexity with a linear lower bound in the
number of vertices.

The above mentioned methods can be used for bodies undergoing
specific types of deformation, for example morphing. Unnecessary com-
putations can, however, be avoided, if the deformation scheme is known
and the collision-detection algorithm can take advantage of that infor-
mation. In the following sections, such a collision-detection strategy
is discussed, primarily for models deformed by morphing. The general
approach can, however, be used also for other types of bounded defor-
mations.

6.3 Collision detection algorithm

To accelerate the collision-detection queries, we use AABB trees, defined
in model space. We also show that spheres and k-DOPs can be used as
bounding volumes in the hierarchies in the same manner. The models
we consider are assumed to be built of triangles. Other types of models
can be supported by first tessellating them into triangle primitives.

Our hierarchical data structures are built in a pre-processing pass.
Bounding-volume hierarchies are often built by using a top-down [19],
bottom-up [24] or an incremental-insertion heuristic [25]. It is unclear
how to build optimal hierarchies in most cases, even when rigid bodies are
used. How to initially build them, when the vertices of the models will
be deformed later on, is an even more complicated problem. We have
chosen a simple top-down approach, which builds a bounding-volume
hierarchy by recursively splitting the geometry of the whole input model
into sub-parts while building the tree data structure. The recursion
proceeds until child nodes with only one face left are found and these
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nodes form the leaves in the tree. We have found 8-ary tree nodes to
be an efficient choice, giving slightly better performance than both 4-ary
and binary tree nodes. The split rule we use is simply to subdivide along
the three principal coordinate axes at the mid-value of the sub-model’s
extents along these axes. Then the midpoints of the triangles are used
to determine which nodes they are assigned to. Since no triangles are
split, certain overlaps between children’s bounding volumes are necessary
to cover the geometry. If any of the child nodes are empty, after the
geometric primitives have been assigned, it is removed and the parent
node becomes a k-ary node with k < 8.

During simulation, exact collision detection between two models is
done by a dual tree traversal procedure that efficiently sorts out the close
or colliding parts of the models. It starts by testing the overlap status
of the root nodes. If no overlap is found, testing is complete. Otherwise,
the traversal proceeds by descending to the children in the tree where
the volume of the node’s AABB is largest. The overlap status between
these children and the other tree node is then determined. Whenever an
overlapping node pair is found the tree traversal continues recursively.
The whole tree traversal proceeds until the trees are separated or un-
til all intersecting geometric primitives inside the leaf nodes have been
found. The basic control flow of this collision traversal is well captured
by a procedure given by Gottschalk [26]. To improve performance, the
traversal can also be aborted as soon as the first intersecting primitive
pair has been found, whenever this is sufficient for the application.

During the tree traversals, we use an OBB–OBB overlap test that is
based on the separating-axis theorem (SAT) [18]. The reason for this is
that our refitted AABBs are defined in model space, which means the
required overlap test becomes an OBB–OBB test in world space. This
test can be implemented very efficiently when AABB trees are used, since
during a dual tree traversal all the boxes in the intersection tests have
the same orientation relatively each other. Furthermore, we do not per-
form the full SAT test. Instead, we use a variation, which is commonly
referred to as SAT lite [16]. This test gave a better overall performance,
although, it sometimes inaccurately reports overlap, resulting in further
intersections tests deeper down in the bounding-volume trees.

When we are dealing with models undergoing deformation, a refit
operation must be carried out to adjust the bounding volumes in the
tree nodes before their overlap status can be determined. This means
that, given a specific kind of operation deforming the original vertices of
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a model, we have to provide an associated update operation that is able
to refit the bounding volume of the original geometry into a bounding
volume of the deformed model. To be really useful, the update oper-
ation has to be extremely efficient, preferably an operation that runs
in constant time per node, no matter what the number of geometric
primitives in the underlying model. This gives the collision-detection
algorithm the possibility of having sub-linear performance in the num-
ber of involved faces in collision queries. The performance behaviour
of the collision-detection traversal is expected to be comparable with
collision-detection methods for rigid bodies that are using the same type
of bounding volume tree traversals. In the following sections, fast re-
fitting of bounding-volumes trees is described and evaluated for models
deformed by morphing.

6.3.1 Morphing models

Mesh morphing refers to the process of transforming a shape into another
shape in a smooth way. This is generally done by first establishing
the correspondence between geometric parts in a source model and a
target model and then interpolating between these parts to produce the
inbetween meshes. The source and target models are also called the
reference models of the morph. More than two reference models can
also be used to define a morphing shape. In this case the inbetween
meshes are defined in a space of n shapes, which might be very useful,
for example, when two reference models are not enough to describe the
needed key poses of a model.

We define our morphing objects in such a way that the reference
models are created from the same original mesh structure; that is, they
all have the same number of vertices and mesh connectivity. In many
applications, the morphing models are defined in such a simple and con-
venient way. The reference models are key poses of the “same model”
that are suitable to blend between. The morphing is often done sim-
ply by linearly interpolating corresponding vertex pairs in the reference
models [27].

To be able to handle collisions among the models efficiently, the idea
is that during a collision traversal the bounding volume of the nodes
that are visited can be updated simply by blending the right bounding
volumes created from corresponding parts of the reference models. In
this way, we can avoid calculating the blended vertices of the inbetween
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Figure 6.1: Creating a morphing-aware bounding volume hierarchy. A
source and target model and their vertex mapping, defined by the corre-
sponding vertex labels, are shown at the top. Only the mesh of the source
model is used to partition the geometric primitives into a bounding-
volume tree, which is illustrated at the bottom left where the creation
of the first two levels in the tree is shown. The corresponding hierarchy
of the target model is defined implicitly by the tree of the source model
together with the vertex mapping between the source and the target
models as shown at the bottom right. Note the resulting overlap between
the two children’s boxes
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meshes, as well as processing them to update the bounding volumes they
reside in. Note that this quality of our method fits very well together
with modern graphics hardware where the blending of the vertices in
the morphing models can be done by the GPU, thus freeing the CPU
from doing this burdensome task at each frame. To make our strategy
possible, a morphing-aware bounding-volume tree is prebuilt.

The tree building is straightforward given that the reference models
are defined as described above. We can simply build a tree structure
as we have described earlier, using one of the reference models (or one
inbetween mesh) to determine the geometry partitioning into tree nodes.
Then we assume that this tree structure is a relatively good structure
also for the other reference models, and we add one bounding volume
per node in the tree for every reference model in such a way that all
the bounding volumes in a tree node are associated with the related ge-
ometric sub-models that are blended during morphing. An illustration
of this tree building procedure for two reference models in 2D is given
in Figure 6.1. When a morphing model is defined by n reference models
each tree node has to store n bounding volumes, and each leaf node must
also store n indices to the reference faces associated to it. Which mesh
is best to use for the geometry partitioning is hard to say. The most
frequent or average mesh in the morph might be a good choice. A po-
tential drawback of our tree-building approach is that there will often be
more overlaps between the implicitly defined bounding-volume hierar-
chies than would be the case if these hierarchies were built from scratch.
This type of hierarchy is, however, motivated by the very fast updating
of the hierarchies they provide. For all the morphing models we have
used, the hierarchies have been found to give very good performance.

If more incompatible reference models are to be used, extra care has
to be taken to make sure that there is a strict correspondence between
the underlying geometry in the bounding volumes that will be blended
to refit the hierarchy during simulation. The tree-construction phase
then becomes a more challenging task. One solution is to replace the
incompatible reference models in a preprocessing operation with suitable
models having the same shape as the original models [28].

If n reference models are used to define the morphing model, each
vertex of the morphing model is defined as a convex combination of its n
associtated vertices, one from each one of the reference models. For each
time instant during the morph, there is a unique set of weights, denoted
w, that determines the influence each of the corresponding n reference
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models will have on the final morphed shape. These weights are defined
as n scalars such that

n
∑

i=1

wi = 1 where each wi ∈ [0, 1]. (6.1)

Any vertex pm of the morphing body can then be defined as a convex
combination of its corresponding reference vertices pim and weights wi,
that is,

pm =

n
∑

i=1

pimwi. (6.2)

In the following two subsections, we will show that both k-DOPs
and spheres can be morphed with the same morphing function as used
on the vertices. This allows for extremely fast and proper updating of the
bounding volumes in the hierarchical data structures during the collision
traversals. Note that AABBs also can be morphed since the AABB is a
special case of the k-DOP. Bounding volume trees of OBBs, on the other
hand, cannot be blended or morphed in the way we propose, unless all the
OBBs to be blended in the tree nodes have the same relative orientation,
which defeats the purpose of OBBs [18].

6.3.2 Blending k-DOPs

If we use k-DOPs as our bounding volume of choice, the reference k-
DOPs of the models can be denoted Bi = (si, ei), where the different
reference k-DOPs are subscripted by i, and si and ei are k/2-tuples
(note that k is always an even number) that define the start and end
values of the extents of the k-DOPs along its k/2 slabs or 1D intervals.
The directions of these intervals are along the corresponding normals
of the k-DOPs, denoted by n = (n1, n2, ..., nk/2). These normals are
normalised, and they are the same for all reference models. The blended
k-DOP, which we call B′, is then calculated in the following simple way:

B′ = (s′, e′) =

(

n
∑

i=1

siwi,

n
∑

i=1

eiwi

)

. (6.3)

We will show that the blended vertices will always stay inside the
blended intervals along the ni directions defining the k-DOPs. An in-
dividual slab in Bi is denoted by Bij = (sij , eij), where 0 ≤ j ≤ k/2.
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Figure 6.2: A morphing star polygon and its AABB in 2D. The source
model and target model are shown to the left and right respectively, and
two of the inbetween models are shown between them. Although not
optimal, the blended AABB always covers the morphing model. How
large the excess volume of the blended bounding volume is, compared to
the corresponding tight bounding volume, depends on the model

Then, for each reference k-DOP Bi, and each slab j in it, we already
know by definition that each vertex pim is within the interval, that is,

sij ≤ pim · ni ≤ eij . (6.4)

Note that pim · ni gives the signed distance from the origin to the or-
thogonal projection of pim onto the vector ni, since ni is normalised. By
multiplying with wi, it follows that

sijwi ≤ (pim · ni)wi ≤ eijwi, (6.5)

since the weights always are non-negative. Hence, as expected, the terms
from the different reference boxes can be summed to complete the blend-
ing and the following requirements hold:

n
∑

i=1

sijwi ≤
n
∑

i=1

(pim · ni)wi ≤
n
∑

i=1

eijwi. (6.6)

Equation 6.6 guarantees that the blended k-DOP is a conservative es-
timate of the bounding volume of the blended geometry at any time
instant during the morph. This means that the blended k-DOP always
will contain the blended geometry.

When a model is defined by using only two reference models, the mor-
phing is done by linearly interpolating the corresponding vertex pairs in
the reference models. For example, to blend two corresponding AABBs
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(which also are 6-DOPs) in a bounding-volume tree, we simply interpo-
late their extents linearly, using the same interpolation parameter as for
the morph of the model. This is illustrated in 2D in Figure 6.2. Clearly,
this is an extremely efficient update or refit operation.

6.3.3 Blending spheres

Another common bounding volume that can be used for morphing mod-
els is the sphere. In that case, there exists n reference spheres, here
denoted Bi = (ci, ri), where ci defines the centre position and ri the ra-
dius. At all stages during a morph, the reference spheres can be blended
into a valid bounding sphere B′ with centre point c′ and radius r′ in the
following way:

B′ = (c′, r′) =

(

n
∑

i=1

ciwi,
n
∑

i=1

riwi

)

. (6.7)

This can be shown as follows. From the reference models and their
associated bounding spheres, we know that the length of each vector,
pim− ci, for any vertex pim in reference model i, compares to the radius
ri as follows:

‖pim − ci‖ ≤ ri. (6.8)

This also holds when all the terms in Equation 6.8 are multiplied with
wi (since wi ≥ 0); that is,

‖pimwi − ciwi‖ = ‖pim − ci‖wi ≤ riwi. (6.9)

Then the sum of the lengths of all scaled p − ci vectors must also be
shorter than the sum of the corresponding radii, which gives

n
∑

i=1

‖pim − ci‖wi ≤
n
∑

i=1

riwi. (6.10)

Equation 6.10 shows, as expected, that the blended sphere will always
contain the blended geometry.

Spheres might be a strong alternative to AABBs and k-DOPs in
certain cases depending on the shapes of the morphing models. The
proposed refit operation is slightly faster for spheres than for AABBs,
and also the sphere–sphere overlap test is extremely fast.
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6.4 Results

To verify the expected high performance of our method in practice, we
have done many experiments. In this section we report the results from
two of them that we have found to reveal characteristic behaviour of
the algorithm. We ran these simulations using a standard PC computer
with a 1333 MHz AMD CPU. In all the reported cases, we used our
morphing-aware AABB trees as described in Section 6.3.

In the first experiment, we used two morphing models, where both
of them were defined by three reference models, each one of them having
20480 triangles. The three reference models used can be seen in Fig-
ure 6.3. However, only two of them are used at the same time step; that
is, the morphing model first transforms from the start model to the mid-
dle model, and then from the middle model to the end model. In order to
stress the collision-detection algorithm, the two morphing bodies, which
initially were positioned in a non-penetrating situation, moved during
400 simulation time steps in such a way that they passed right through
each other. In Figure 6.4, images from some of the simulation time steps
are given.

The time to determine the intersecting primitives in each time step
in this experiment is reported in Figure 6.5, both when all intersecting
triangle pairs were reported and when only the first-found intersecting
triangle pair was reported. The timings are also given for the algorithm
we used for comparison [23], here simply called the hybrid method, which
is an efficient collision-detection method for bodies deformed by arbitrary
vertex repositioning each frame. In the case when all intersecting triangle
pairs between the models were reported, we can see that the morph
method performs better or approximately the same, during time steps
1 to 90 and 270 to 400. The first intersection occurs at time step 41
and the last intersection at time step 364. At most of the time steps
between 90 and 270 the models are at deep interpenetration, a situation
that is not expected to arise in practice, since, in real applications, a
collision-response mechanism is expected to prevent it. When only the
first-found intersecting triangle pair was reported at each time step, the
morph method is clearly superior at all time steps.

In the second experiment, twelve morphing dolphin models were used.
Each dolphin was defined by three reference models, which are shown
in Figure 6.6. In our scenario, the dolphins swam closely together as a
group in order to generate interesting intersections. Besides the ongoing
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Figure 6.3: The three reference models used to define the morphing
models in the first experiment

Figure 6.4: Images from the first experiment. The two morphing bodies
are passing through each other while all the intersections are calculated.
Intersecting triangles are in red colour. The images shown are from time
steps 60, 120, 180, 220, 260, and 320



6.4 Results 65

100 200 300 400

20

40

60

80

simulation time steps

time (ms)

Hybrid method
Morph method

100 200 300 400

2

4

6

8

10

simulation time steps

time (ms)

Hybrid method
Morph method

Figure 6.5: Measured performance of the collision-detection algorithm in
the first experiment when reporting all intersecting triangle pairs (top),
and when only reporting the first-found triangle pair (bottom)
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Figure 6.6: The three reference models used to define the morphing
dolphin models in the second experiment

Figure 6.7: Images of four frames from the second experiment. Among
the moving and morphing dolphins many different intersections occur
during the simulation. Intersecting triangles are in red
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morphing of the dolphins, they were also rolling, again to get more in-
teresting intersections between individuals in the group. The simulation
was executed for a period of 400 time steps. In Figure 6.7, images from
some of the frames in this simulations are presented.

This simulation was repeated with varying triangle counts for the
dolphin models, but we ensured that the shape of these different models
were the same. In these repetitions, all the dolphin models had 564, 2256,
9024 and 36096 triangles respectively. The results of the simulations are
reported in Figure 6.8. Results are given both when all intersecting
triangle pairs were reported and when only the first-found intersecting
triangle pair was reported at every time step. The time reported for each
triangle count is the average time per frame that the collision detection
algorithm spent during the simulation. As can be seen, the achieved
performance for the morph method is superior to that of the hybrid
method. As expected in this test case, with no deep interpenetrations or
large areas in close proximity, the performance of the morph method was
sub-linear, whereas the performance of the hybrid method was linear, in
the number of faces of the models. The speed-up we achieved by using
the morph method compared to the hybrid method ranged from 1.5 to 9
when all intersecting triangle pairs were reported and from 2 to 58 when
only the first-found intersecting triangle pair was reported.

6.5 Optimisations

During each frame, some of the bounding volumes in the trees will be
processed more than once during the tree traversals. It is, however, not
necessary to refit a bounding volume more than the first time it is used.
By adding a variable in the tree nodes that keeps track of which frame
the nodes were last updated, we can avoid reupdating nodes during the
same frame. When we reran our experiment using this technique, and
searched for all intersecting triangle pairs, the achieved overall speed-up
was approximately 15% in the first experiment and 10% in the second.

When only two reference models are used at the same time instant
during morphing, there is room for some further optimisations. Gener-
ally, the blending operation we use to refit the bounding volumes does
not produce optimal tightness, which can be seen by the simple example
in Figure 6.2. We can improve the tightness of our blended boxes by
inserting new reference bounding volumes between the ones produced
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Figure 6.8: Results from the second experiment when reporting all in-
tersecting triangle pairs (top) and when only reporting the first-found
intersecting triangle pair (bottom) for all intersecting dolphin pairs in
the scene
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from the reference models in the tree nodes. This can be done in a pre-
process before simulation. Whether this is needed or not depends on the
degree of tightness achieved for the bounding volumes along the morph
parameter interval, which is model dependent. It is also appropriate to
consider if the speed-up we can get is worth the extra memory cost of
storing extra bounding volumes in the tree nodes. In the extreme case,
there would be precomputed bounding-volume hierarchies for all inter-
mediate morph steps, which clearly would be an unreasonable approach
in terms of memory usage.

We have tried this approach in our experiments by adding one extra
bounding box between all reference boxes in every tree node. For exam-
ple, when we reran the scenario that was chosen for the first experiment,
and searched for all intersecting triangle pairs, the overall speed-up we
achieved was approximately 5%. However, during some of the time steps,
where the tightness of the boxes were improved the most, the resulting
speed-up was up to 40%.

6.6 Conclusions and future work

In this paper, a fast and accurate collision-detection algorithm for mor-
phing models has been presented. The method is based on bounding-
volume trees where each node covers the corresponding locations in the
reference models used for the morph. In this way, an efficient update
function that blends the reference bounding volumes can be applied to
update the tree nodes, as they are needed during collision tests. We have
demonstrated the usefulness of our method in a number of experiments.
The measured performance is very promising, and it is significantly faster
than the performance of the more general method [23].

The same strategy, as the one we have used for collision detection
between morphing models, might also be used for other types of deform-
ing bodies. A requirement is of course that an efficient refit operation
for the bounding volumes in tree nodes can be supplied, which is not
directly dependent on the geometric primitives inside the node’s bound-
ing volume. Our method is also easy to integrate with other commonly
used collision-detection methods using bounding-volume trees in order
to support simulations including different types of models.

There are several possibilities for future investigations related to the
work we have presented. Front tracking [22, 29] has been suggested
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as a speed-up technique utilising frame-to-frame coherence for colli-
sion queries with bounding-volume hierarchies in rigid-body simulations.
This technique might be beneficial in methods for deformable models as
well. We expect the frame-to-frame coherence to be almost as high for
many types of deforming models as it is in the rigid-body case, and it
would be interesting to examine this technique further.

Another area worth more attention is how to generalise the collision-
detection method between morphing models to more general morph-
ing schemes. We have restricted our method to support morphing be-
tween models that possess the same mesh structure. There is ongoing
research about morphing between 3D models with different surface topol-
ogy and different model representations. From 1998, there is a survey by
Lazarus and Verroust [30] describing various approaches. More recently,
an overview of available methods in the area of mesh morphing has also
been published [31].



Bibliography

[1] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-
programmable vertex engine. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages
149–158. ACM Press, 2001.
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Abstract

In this paper, we describe strategies for bounding volume hierarchy up-
dates for ray tracing of deformable models. By using pre-built hierarchy
structures and a lazy evaluation technique for updating the bounding
volumes, the hierarchy reconstruction can be made very efficiently. Ex-
periments show that for deforming triangle meshes the reconstruction
time of the bounding volume hierarchies per frame can be reduced by an
order of magnitude compared to previous approaches, which also results
in a significant speed-up in the total rendering time for many types of
dynamically changing scenes. We believe our approach is a step towards
interactive ray tracing of scenes where moving objects can be dynami-
cally changed in non-deterministic ways.

Key words: Ray tracing – Deformable models – Hierarchical data struc-
tures – Interactive simulation
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7.1 Introduction

Ray tracing is a well-known rendering method that generates high qual-
ity images of virtual scenes. Shadows as well as lighting effects aris-
ing in scenes with reflective and refractive objects are produced with
high realism [1]. The very high computational cost involved in ray trac-
ing, however, has limited its usefulness to offline renderings, but due
to computer technology advances, together with acceleration algorithms
improvements, this has started to change.

Today, interactive ray tracing systems exist, but the efficiency of the
rendering computations relies heavily on precalculated acceleration data
structures. Thus, the scenes are often restricted to scenes where only
the camera is animated and the geometry is assumed to be static, with
the possible exception of a few moving rigid objects [2].

In this work, our purpose is to extend the set of scenes that can be
ray traced at interactive rates. We have focused on ray tracing highly
dynamic worlds consisting mostly of freely moving deformable models.
To make interactive ray tracing possible under such circumstances, there
are two main phases that have to be solved; these are the reconstruction
phase, which make sure the acceleration data structures are up-to-date,
followed by the actual ray tracing process. Both phases must run fast
enough for interactive frame rates. In complex dynamic scenes, however,
the reconstruction phase is likely to become the bottleneck that destroys
the interactive performance. In fact, the ray tracing phase can be made
in O(log n) time per pixel in the worst case and practical heuristic ray
shooting methods have been found to have O(1) time complexity in
the average case [3]. This means that the reconstruction phase will
eventually be the bottleneck as the scene complexity grows, given that
it has an asymptotically worse time complexity.

Furthermore, it has been shown that the ray tracing phase is highly
suitable for parallelization; it is often referred to as “embarrassingly
parallel”. Almost linear speed-ups for approximately 64 – 128 processors
have been demonstrated [2]. On the other hand, we have not been able to
find any published results on parallelization of the reconstruction phase,
probably because it is much harder in that case to realize a successful
parallel solution. Amdahl’s law says that performance will be limited by
the part of the program that is not parallelized [4]. In our case, according
to Amdahl’s law, the total rendering time T (c) resulting from using c
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processors in the ray tracing phase, trt, can be described by

T (c) = trc +
1

c
· trt. (7.1)

Thus, the reconstruction phase, trc, limits the performance improve-
ments as c grows.

To improve this situation, we present strategies for efficiently refit-
ting or reconstructing the bounding volume hierarchies when models are
deformed during simulation. Compared to completely rebuilding the hi-
erarchies each frame, our update strategy has been found to be orders
of magnitudes faster in terms of reconstruction time.

In our solution, we use pre-built hierarchies together with a hybrid
bottom-up/top-down update scheme to refit the bounding volumes in
these hierarchies during simulation. Primarily, our approach has been
found successful for models where the vertices of the models are allowed
to be arbitrarily repositioned during simulation, but the meshes are not
torn apart, i.e., the connectivity is static. In the hybrid update method,
all the bounding volumes in a middle level of the hierarchy are refitted
first and then the volumes above are refitted bottom-up incrementally
from that level. In this way, the deeper levels are left as they are, until
they actually are needed in some later ray/tree traversal. Thus, our
update method is a kind of lazy evaluation technique, where the lower
levels are not updated until it is necessary. Our method has already
been used with successful results in collision detection [5]. It runs in
O(n) time for n deforming primitives.

For highly deforming polygon soups, where each polygon can be de-
formed completely independently of the other polygons, a different ap-
proach is generally required. But in our experiments, we illustrate how
our method can be applicable even for deforming polygon soups with
independently moving primitives under certain circumstances.

Like others have done recently, we only consider models defined by
triangle primitives [6]. Supporting other types of geometry can be done
through tessellation [7] or, when possible, by adapting the algorithm to
ensure proper updates of the data structures when the models deform.

In the following section, related work is presented briefly. Then we
explain our approaches for efficient reconstruction of the acceleration
data structures. We present performance measurements from different
scenes and discuss our methods’ applicability under different circum-
stances. Finally, we present our conclusions and directions for future
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work.

7.2 Previous work

Due to the very high computational cost involved, ray tracing research
has mainly been focused on accelerating the creation of single images
[8]. Some approaches have also been proposed to accelerate the cre-
ation of animated sequences. For example, Glassner transforms the
problem of rendering moving three-dimensional objects into rendering
static four-dimensional objects in space-time [9]. This method cannot
be used in non-deterministic environments since the objects’ space-time
bounds must be known in advance.

Recently, however, it has been shown that interactive ray tracing is
possible. Promising performance has been achieved mainly by utiliz-
ing multiple CPUs and/or SIMD instructions sets on today’s computers
[10, 2, 6, 11]. These solutions are rather limited to walk-through appli-
cations, i.e., applications where only the camera is animated, but not
the objects in the scene. In some cases, a few dynamic rigid objects can
be handled separately, as a special case [2]. An acceleration data struc-
ture allowing scenes of dynamically moving models with rigid parts, like
for example walking robots, has also been proposed [12]. In this work,
pre-constructed hierarchies of oriented bounding boxes were used, where
the boxes themselves contained uniform grids. During animation, only
the transforms associated with the grids contained in boxes need to be
updated and then the rays need to be transformed into the local coordi-
nate systems of these data structures. A similar approach has also been
chosen by Wald et al. [13].

Ray tracing of dynamic scenes which allow deformations has also
become an active research area. For example, objects undergoing un-
structured motion have been handled by rebuilding the acceleration data
structures each frame. This approach, however, immediately destroyed
the interactive frame rates for a single complex model in a benchmark
scene [13]. Reinhard et al. use a logically replicated grid over space for
ray tracing dynamic scenes. Moving objects can be inserted and deleted
in O(1) time [14]. However, it might become necessary to rebuild the
acceleration data structure during simulation once in a while, depending
on how the objects move.

A hardware architecture for real-time ray tracing has also been pre-
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sented by Scmittler et al. [15]. Impressive performance was achieved for
camera animated scenes with otherwise static geometry, but no support
for dynamically changing scenes was described. Purcell et al. implement
ray tracing using commodity graphics hardware with programmable shad-
ers [16], but none of the studied architectures was found to be suitable
for accelerating ray tracing of dynamic scenes.

None of the earlier mentioned approaches seems to be suitable for
truly interactive scenes inhabited by complex deformable models. In the
following sections, we describe our approach for highly dynamic scenes,
where all the vertices of the models are allowed to be arbitrarily re-
positioned each frame of the animation. Our approach builds upon our
earlier work on efficient collision detection of deforming models [5].

7.3 Adaptive hierarchies

When ray tracing highly dynamic scenes, the possibilities to pre-compute
efficient data structures are decreased dramatically. For many types of
deforming models, however, it still makes sense to pre-build bounding
volume hierarchies that can be updated during simulation. In particular,
this is the case for models that are not torn apart and never fold into
themselves during simulation time.

Efficient approaches for updating the hierarchies have been devel-
oped as part of collision detection algorithms for such deforming bodies.
When all the vertices are repositioned in a model, it has been suggested
that hierarchies of axis-aligned bounding boxes (AABBs) can be com-
pletely refitted bottom-up from the leaf nodes [17]. A more efficient
hybrid update approach was later developed [5]. AABBs were chosen
as bounding volumes for three major reasons. First, finding the optimal
AABB of a point set or a polygon set is a very fast operation. Second, it
is very efficient to merge k child AABBs into one parent AABB with an
optimal fit. Finally, the needed intersection tests between these boxes
are very efficient operations.

In this work, we have examined the usefulness of our hybrid update
approach for speeding up interactive ray tracing of deforming models. As
mentioned earlier, our work focuses on making the reconstruction phase
as fast as possible, which is expected to become a serious bottleneck
in complex deforming scenes. Our results show that our reconstruction
method is very efficient for ray tracing scenes with deforming meshes de-
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fined by hundreds of thousands of geometric primitives. In the following
sections we discuss the hierarchy preprocessing and the adaptiveness of
the hierarchies due to model deformation during interactive simulation.

7.3.1 Initial hierarchy construction

In the hierarchy construction preprocess all the triangles are assigned
to different hierarchy nodes. This can simply be done by using the
model’s initial shape, or alternatively, some average shape of the deform-
ing model, if such information is available. The hierarchy construction
can be done by using a top-down [18], bottom-up [19, 20], or an incre-
mental insertion heuristic [21]. Very little is known about how to best
pre-build the hierarchies for models that are deformed later on. We have
chosen a simple recursive top-down tree building approach [5].

Our nodes use a branching factor of k = 8, which we empirically
have found to give slightly better performance in our test scenes than
hierarchies with branching factors 2 and 4. If a geometry split yields
empty child volumes, they are removed and the parent node becomes a
k-ary node with k < 8. Leaf nodes are formed whenever only one triangle
is assigned to a node. A simple hierarchy with binary tree nodes for a
two-dimensional model is illustrated in Figure 7.1a.

If a geometry split fails to create at least two non-empty child nodes
special handling is required to prevent infinite recursion. This happens
rarely, but when it does, we suggest the following split rule. First, sort
the primitives’ center points in three lists along the principal coordinate
axes. Then let the median value in these three lists define the split planes
for the geometry partitioning.

Note that the initial primitive partitioning in the hierarchy nodes is
not supposed to be changed during simulation. This limits the task of
the reconstruction phase to refitting the bounding volumes in the nodes
according to the current shapes of the models.

A reasonable variation of our tree building approach would be to
always build as balanced trees as possible to minimize the tree height.
Perfectly balanced trees, however, do not guarantee better performance
than our slightly less balanced trees. Furthermore, it would increase
the hierarchy construction time. Nevertheless, when pre-building the
hierarchies, without considering any possible future shapes of the models,
it can make sense to minimize the tree height.
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a) b)initial model

initial hierarchy

deformed model

hybrid update

Figure 7.1: a) A pre-built bounding volume hierarchy built from a de-
forming models initial shape. b) Example of a hierarchy update after the
model has been deformed during simulation. The hybrid update method
first updates the boxes in the middle level of the hierarchy. Then the lev-
els above are updated incrementally from the middle level boxes. Parts
of the lower levels are updated later, as needed, during the ray tracing
phase. Note that the resulting boxes have the same optimal fit regardless
of they have been directly calculated from their underlying geometry or
from child boxes
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7.3.2 Efficient hierarchy refitting

The hierarchy reconstruction can be done by completely rebuilding the
hierarchies of the deforming models in every time step. However, build-
ing a hierarchy from scratch in a top-down manner or by incremental
insertion require O(n log n) time for n triangles. Clearly, this would be
infeasible for complex deforming models. Instead, by pre-building the
hierarchy structures, we are able to update them during simulation in
O(n) time for n deforming geometric primitives.

Our hybrid update method works in the following way. For a hierar-
chy with height h, we choose to first update boxes at depth d = bh/2c.
These boxes are updated directly from the point sets or sub-meshes in-
side them. Then the boxes in the levels above are updated bottom-up by
merging child boxes to get parent boxes, starting at level d and proceed-
ing upwards, level by level, towards the root. This part of the update
operation is illustrated in Figure 7.1b. Another value of d could have
been chosen, but the value we chose was empirically found to yield good
results for the models and hierarchies we have made experiments with.
Note that the levels below level d are left as they are until it becomes
absolutely necessary to update them during the ray tracing phase. In
this way, we avoid updating sub-trees in the lower levels that are not
needed due to, e.g., occlusion.

Although still a linear operation in the number of triangles, just like
a complete bottom-up update, the hybrid update is significantly faster.
By exploiting the vertex sharing among triangles in meshes residing in
the same bounding box, the updating of the middle level at depth d
in the tree requires approximately n/2 vertices to be processed for n
triangles, given that the average vertex valence is close to six in the
triangle meshes. This is always the case for non-trivial closed meshes
without holes since the Euler formula states that

v + f − e = 2 (7.2)

where v, f , and e are the number of vertices, faces, and edges respec-
tively. For meshes built of only triangles this means that

v =
1

2
f + 2 (7.3)

since each triangle has three edges and each edge is shared by two trian-
gles [22]. Generally, however, the sub-meshes residing in the middle level
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boxes are not completely closed, but still the average vertex sharing is
almost as good in many cases. A complete bottom-up update, on the
other hand, starts by updating the lowest level in the hierarchy. Since
we have one triangle per leaf node, this would require processing 3n ver-
tices. Thus, following our reasoning above, this would be approximately
six times slower.

Also, the number of boxes to merge to update the boxes above the
first updated middle level is only a small fraction of the number of boxes
that have to be merged for a complete bottom-up update. For example,
a complete k-ary tree with height h has n = kh leaves and totally there
are

mtotal = n +
n− 1

k − 1
=

kh+1 − 1

k − 1
(7.4)

nodes in the tree. Assuming h is an even number, we know that the
number of nodes at depth h/2 is only

√
n, since

√
n =
√

kh = k
h

2 . Also,
the total number of nodes in the upper half levels in the same tree is
only

mupper =
√

n +

√
n− 1

k − 1
=

k
h

2
+1 − 1

k − 1
. (7.5)

This means that the number of boxes updated in the hybrid method will
only be

r =
mupper

mtotal
=

√
khk − 1

khk − 1
<

√
kh

kh
=

1√
kh

=
1√
n

, k ≥ 2, h ≥ 2

(7.6)
times the number of boxes updated by a complete bottom-up update
method. Furthermore, if we sum the number of vertices and boxes that
are processed during the hierarchy update, a predicted speed-up in the
reconstruction phase for the hybrid method, compared to a complete
bottom-up update, can be described by the following formula:

s =
3n + n + n−1

k−1

1

2
n +
√

n +
√

n−1

k−1

, n ≥ 4, k ≥ 2. (7.7)

Thus, s will be in the following intervals for commonly chosen values of
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k:

8 < s < 10, k = 2, h ≥ 8 (7.8)

8 < s < 8
2

3
, k = 4, h ≥ 5 (7.9)

8 < s < 8
2

7
, k = 8, h ≥ 4 (7.10)

where the tree height, h, defines lower limits for the number of leaf nodes,
n, for the different values of k. This implies that the updating of the d
top levels might execute more than eight times faster than a complete
hierarchy bottom-up update for models with triangle counts of more
than a few thousands. In our practical experiments with triangle meshes,
this reconstruction method has been found to even execute more than
an order of magnitude faster than the full bottom-up update method.
Note, however, that we will loose some of the gained execution time
during the ray tracing phase, because unlike the complete bottom-up
hierarchy update, the hybrid update method postpones updates in the
lower levels of the hierarchies until it is known by ray/hierarchy traversals
that they are necessary. These late updates are discussed further in the
next section.

As stated previously, all of the models’ vertices are deformed in every
time step of the simulations. In situations where the deformations only
occur in a few local areas of a model, there is a better alternative to
update the hierarchy. For example, if only m neighboring or close trian-
gles are deformed, where m is relatively small compared to the model’s
n triangles, the update can be done bottom-up in the hierarchy, but
only along the paths from the leaves containing the m triangles up to
the root. The running time of the hierarchy update will then be pro-
portional to O(m + log n). If the m deforming triangles are spatially
spread over the leaves in the hierarchy the update time will instead be
O(m log n). Properly implemented, however, it will be no worse than
the O(n) running time for the full bottom-up hierarchy update. This
approach have been used in a collision detection method developed for
surgical training operations [23].

7.3.3 Hierarchy traversals

Our bounding volume hierarchies are stored in simple arrays. In this way,
we increase the data locality during program execution. It is important
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to keep each tree node stored in the array as small as possible for faster
ray traversals. We have found the representation suggested by Smits to
be an efficient choice [24].

As mentioned earlier, when using the hybrid update method, the ray
tracing phase is responsible for updating the sub-trees in the lower levels
that are reached during ray/hierarchy traversals. Pseudo code for the
traversal of a deforming model’s hierarchy is given in Figure 7.2. As can
be seen, recursion has been eliminated by storing each hierarchy in an
array with skip indices in the nodes. Each node also has to store an extra
integer holding the frame when it was last updated and an additional
if-statement (line 4) is executed per reached node during the traversal to
trigger necessary node updates. The call on line 5 updates an outdated
node’s bounding volume the first time it is reached in a traversal during
the current frame, which is done directly from the geometry it contains.
Thus, we update the lower levels’ nodes in a top-down fashion sparsely
as they are needed. All that is needed to change the chosen heuristic for
updating the lower level sub-hierarchies is to change the function call on
line 5 to another node update operation. For example, when an outdated
node is reached, one can choose to immediately update the whole subtree
below it bottom-up. Another alternative would be to update the next
q levels bottom-up. The top-down approach we chose, however, was
empirically found to be a bit more efficient than the other alternatives
for the models used in our experiments.

Note that additional information, needed for the refit operations,
both during the reconstruction phase and the ray tracing phase, are
stored in other separate arrays which have references into the main hi-
erarchy arrays that we use during the ray/hierarchy traversals. In this
way, we keep the arrays accessed the most during the ray tracing phase
smaller.

When the number of deforming models in a simulation is more than
just a few, our ray tracing approach needs to be extended to handle mul-
tiple deforming models efficiently. One approach is to insert the updated
model hierarchies on-the-fly in a top scene hierarchy in which the ray
traversals can start [13]. Other data structures that might be suitable for
this case have also been described [14], [25]. Another simple alternative,
which was used in our implementation, is to sort the updated root boxes
along the three principal coordinate axes once per frame. Then, based on
a ray’s dominant direction with respect to these axes, a reasonably good
front-to-back body traversal order is easily found from these sorted lists.
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ClosestHitTraversal(r, H, b, hit)
input: r is the query ray, H the array storing the hierarchy for body b
output: hit stores the intersection result

begin

1. stopInd← H[0].skipInd
2. nodeInd← 0

3. while(nodeInd < stopInd)

4. if (H[nodeInd].lastUpdated 6= currentFrame)
5. SetBoxOfNodePointSet(b, nodeInd)
6. H[nodeInd].lastUpdated← currentFrame

7. if (OverlapBox(r, H[nodeInd].aabb, hit.t)
8. if (H[nodeInd].triInd ≥ 0)
9. IsectTri(r, b, H[nodeInd].tri, hit)
10. nodeInd← nodeInd + 1
11. else

12. nodeInd← H[nodeInd].skipInd
end

Figure 7.2: Pseudo code for the closest hit ray/hierarchy traversal in-
cluding node updates the first time outdated nodes are reached
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Note that, regardless of the number of dynamic models, these lists can
be kept sorted in expected linear time, given a high temporal coherence
for the moving bodies in the scene.

7.4 Experiments

To evaluate our update strategies, we have conducted experiments based
on a number of test scenes. Here, we report results from two different test
scenes, which reveal both the strengths and weaknesses of our approach.
Our system was implemented in C++ and the experiments were run
using a standard PC, with a single 1.5 GHz Pentium IV CPU and 512
Mb of memory.

The goal resolution we used for our images in these experiments was
640x480 pixels. However, to achieve interactive frame rates on a single
CPU computer, we used image sub-sampling techniques. In this way
the ray tracing phase can be executed 10 – 100 times faster and the
reconstruction phase is likely to become a bottleneck. We used a regular
sub-sampling pattern with bilinear interpolation to scale the image to
the goal resolution. First, we render a lower resolution image into an
internal bitmap. Then, to scale the image we let each neighboring group
of 2x2 pixels define the colors in the corners of a quad, which then can be
rendered by using OpenGL. In this way, the color interpolation was done
in hardware. We found, however, that a somewhat better image quality
was achieved when each quad was tessellated into four triangles meeting
at the quad’s midpoint, before the primitives were sent to OpenGL. A
sophisticated filtering algorithm would of course produce better scaled
images, but it would also be much slower.

Another alternative we have tried to speed up the ray tracing phase
was to use frameless rendering [26]. By only rendering a fraction of all
the pixels at a time, chosen according to a pseudo random pattern, a
significant performance gain can be expected. The image quality, how-
ever, was far from acceptable in our test scenes, since both the viewer
as well as most of the geometry in the scene are changing at nearly all
times. There is, however, some ongoing research aiming at improving
the applicability of frameless rendering [27].

In our first experiment, we used a scene with 9 deforming bodies,
where each one of them had 81,920 triangles. Thus, in total, the scene
was modelled by 737,280 deforming triangles. There were two light
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sources in the scene and all 9 bodies were reflective. Apart from pri-
mary rays, shadow rays as well as the first order reflection rays were
cast. The simulation was run for 280 frames. We defined the camera
movements so that the number of visible bodies varied throughout the
simulation, but during the majority of the frames more than half or all of
the bodies contributed to the ray traced image. No a priori knowledge
about the forthcoming deformations was utilized. The simulation can
thus be regarded as completely dynamic and interactive. Some images
from the experiment are shown in Figure 7.3.

We report the performance of this simulation for three different cases.
First, we traced one ray per pixel. Then we used image sub-sampling
for the other two cases, so that one traced ray was mapped to a pixel
area of 5x5 and 10x10 respectively. We report the average update time
as well as the ray tracing time over all frames. Furthermore, we give the
best and the worst frame times in the whole simulation. These results
and the achieved speed-ups are given in Table 7.1.

As we can see, in the two cases where sub-sampling were used, the
hybrid update method was superior, yielding a total average speed-up of
1.5 and 2.6 respectively. In the best case, which occurred at frame 200,
the speed-up was approximately 8 and 12, respectively. Note that the
update phase took the same time every frame and it was not affected
by the ray tracing time. The update phase runs in O(n) time for n
faces for both methods. Nevertheless, in this experiment the hybrid
update method was approximately 17 times faster in every frame of
the simulation. Part of this performance advantage was, however, lost
during the ray tracing phase, when parts of the lower subtrees had to be
updated as they were needed during the ray/hierarchy traversals.

In another experiment, we used the Museum scene defined in BART
Benchmark scenes [28]. This scene includes a deforming piece of art,
which essentially is a triangle soup with drastic changes over time. There
are two light sources in the scene. We traced primary rays, shadow rays
as well as the first order reflection rays. The deforming model exists
in different levels of details, but note that we only consider the most
detailed version of it which is modelled by 65,536 triangles. We generated
300 frames for the whole animation. Images from four of the frames are
shown in Figure 7.4.

This scene is an example of a scene that clearly is unsuitable for our
pre-constructed hierarchies. The deforming art piece is in fact defined
by five different triangle soup constellations, each one having 65,536



90 Paper C

Figure 7.3: Images of frames 50, 65, 185, and 250 in the first experiment

Figure 7.4: Images of frames 20, 120, 190, and 230 from the second ex-
periment. The test scene used was the BART Museum with complexity
level 8
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case sampl bottom-up method (s) hybrid method (s) speedup
up rt tot up rt tot

ave 1x1 0.449 8.249 8.698 0.026 8.705 8.730 0.996

5x5 0.449 0.375 0.825 0.026 0.527 0.553 1.492

10x10 0.449 0.100 0.550 0.026 0.183 0.209 2.633

worst 1x1 0.450 15.940 16.390 0.026 16.516 16.542 0.991

5x5 0.451 0.711 1.161 0.026 0.912 0.938 1.237

10x10 0.450 0.188 0.638 0.025 0.308 0.333 1.916

best 1x1 0.450 0.581 1.031 0.026 0.604 0.630 1.636

5x5 0.450 0.035 0.484 0.026 0.037 0.063 7.738

10x10 0.448 0.010 0.458 0.026 0.012 0.038 12.042

Table 7.1: Performance measurements from the first experiment. Tim-
ings are given for the reconstruction phase (up), the ray tracing phase
(rt), and the sum of them (tot)

triangles, defined at the following key frame times: 0.0, 1.0, 2.0 3.0, and
4.0 seconds. During simulation, the triangles are deformed by linear
interpolation between the key frame triangle soups. We ray traced the
scene by pre-constructing five different bounding volume hierarchies, one
for each key frame triangle soup. Then, during the course of simulation,
we switched the active hierarchy. In this way, we always had an active
pre-constructed hierarchy for the triangle soup and we were able to use
the bottom-up update method as well as our hybrid update method.
Note that we used a priori information for the deforming model in this
experiment.

Despite this solution, the scene is still a really bad case for our method
for two major reasons. There are no connected triangles in the trian-
gle soup, which means that updating the middle level of the hierarchy
requires processing 3n vertices for n triangles. Furthermore, almost all
parts of the scene contribute to the final image, with the exception of
the very last part of the whole animation. This is because the scene only
consists of a single room and the deforming polygon soup is positioned
in the center area of the room and it reflects much of the environment
around it.

We report the results from rendering the Museum scene in Table 7.2.
As can be seen, the update times are very fast for both update methods,
16 ms for the hybrid update and 63 ms for the bottom-up update. This
can be compared to the on-the-fly hierarchy construction time reported
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case sampl bottom-up method (s) hybrid method (s) speedup
up rt tot up rt tot

ave 1x1 0.063 32.1 32.163 0.016 31.9 31.916 1.008

5x5 0.063 1.32 1.383 0.016 1.40 1.416 0.977

10x10 0.063 0.335 0.398 0.016 0.395 0.411 0.968

Table 7.2: Performance measurements from the BART Museum scene,
complexity level 8, in the second experiment

by Wald et al. [13]. For exactly the same scene their reconstruction phase
took more than 1 second.1 Thus, their reconstruction method prohibits
interactive simulation of complex deforming scenes.

Note, however, that since almost all parts of the scene contributes to
the rendered frames at almost all times, the hybrid update method gives
no advantage over the bottom-up update method in the average frame
time. What was won in the reconstruction phase was later lost during
the necessary remaining updates in the ray tracing phase. The overall
performance was almost the same for both methods in this case.

7.5 Discussion

Drawing from the experiments we have carried out, we believe the hy-
brid update method is applicable and preferable in several different sit-
uations. For example, in scenes with much occluded geometry, many of
the models in the scene do not contribute to a particular ray traced view
at all and other models are only visible in parts. Hence, completely up-
dating the acceleration data structures for such models might become a
serious bottleneck. The hybrid update method, however, updates these
structures very efficiently and sparsely. Note also that the benchmarks
that we used here do not contain much occluded or otherwise invisible
deformable geometry, and therefore, we expect that our algorithm will
work even better for such scenes.

Although we have not tried, we expect our method to work well in
multi-processor ray tracing [2, 6]. For example, when scene replication is
used among the different nodes, the master machine would first execute
the efficient hybrid update method and then the clients can get an early

1They used a cluster of dual AMD AthlonMP 1800+ machines with a dual AMD

AthlonMP 1700+ server in their experiments.
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start tracing rays. This also decreases network bandwidth because nodes
only need to request the upper part of the hierarchies first, as they are
needed, and only when it is absolutely necessary the bottom sub-trees
would be updated and sent to clients.

Special purpose ray tracing hardware has also been designed, increas-
ing the performance of the ray tracing phase by orders of magnitudes [15].
If the reconstruction phase is done on the CPU for the deformable mod-
els, it is very likely to become the bottleneck. Also in this situation, we
expect the hybrid update method to be an attractive choice.

For time-critical ray tracing, we believe our method can be very at-
tractive. To achieve a constant frame rate, the ray tracer is aborted
according to a time budget of say 50 ms per frame. In this case, the rays
are traced in a breadth-first manner to ensure that at all the primary
rays are cast before any shadows, reflection, or refraction rays. If com-
plete bottom-up refit operations are executed before the first ray is cast,
there would be no time left to cast a single ray in many scenes. Among
our test scenes, only the hybrid method would allow the tracing of rays
to start.

Furthermore, we have found that the hybrid update method is com-
pletely superior when relatively few rays are cast in a scene with many
complex deformable models. This means, for example, that we can ex-
pect our method to be highly suitable for applications that need picking
or other algorithms depending on a moderate number of line/scene in-
tersection tests.

When the scene includes triangle soups undergoing unstructured mo-
tion, a more general approach is needed. Pre-built bounding volume hi-
erarchies, updated as we have described, tend to become more and more
unsuitable as the simulation proceeds, given that drastic changes occur
in the geometric primitives relative location to one another. In this case,
a data structure that allows primitive insertion in O(1) time would be
beneficial, so that all the primitives in a triangle soup can be inserted in
the acceleration data structure in linear time during interactive simula-
tion.

A simple solution in this case can be based on uniform grids [29, 7].
First the AABB of the deforming model is calculated and the resolution
of the uniform grid within this box is determined, for example, one can
use the 3

√
n-criterion, or some more efficient variation of it [19, 30]. Then

all the primitives can be assigned to all cells they intersect in expected
linear time. For deforming polygon soups, where the primitives stay
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rather uniformly distributed, this might be a very efficient approach.
Some other data structures, that might be suitable for this situation,
have also been suggested [14, 25].

7.6 Conclusions and future work

Interactive ray tracing needs multi-processor environments or specialized
hardware to be a feasible alternative for interactive graphics applications.
Still, by using a single standard PC together with image sub-sampling
and adaptive acceleration hierarchies, we were able to achieve interactive
frame rates for dynamic scenes with hundreds of thousands of deforming
polygons.

The reconstruction phase executes more than an order of magnitude
faster when using the hybrid update method compared to the complete
bottom-up update for connected triangle meshes. This allows the ray
tracing phase to get an early start, because not so much time is wasted on
updating parts of the hierarchies that are not needed in the ray/hierarchy
traversals.

Our update approach, however, requires additional bounding volume
updates in the lower levels of the hierarchies during the ray tracing phase.
When a lot of volumes have to be updated in this way, the time won
during the reconstruction phase might be lost in the ray tracing phase.
Nevertheless, we have found that in scenes where some deforming models
only partly contribute to the final image, they might be out of sight or
occluded by other models, a significant speed-up can be achieved also
in the total rendering time. For example, in the first experiment the
average speed-ups were 1.5 and 2.6.

In our future work, there are many possible optimizations that would
allow us to improve the frame rate and image quality. For example, in our
current implementation we have not taken advantage of the frequently
occurring coherence for neighboring rays [6]. Neither have we used any
SIMD instructions, e.g., to optimize intersection or shading calculations.

Future improvements also include supporting different types of de-
forming geometric primitives as well as porting our implementation to
a multi-processor environment. Apart from only parallelizing the ray
tracing phase, it would also be interesting to examine possible ways of
parallelizing the reconstruction phase. Another possibility would be to
create hierarchies that are aware of how the models can deform and
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take advantage of that information for faster reconstruction. Such an
approach has been developed for collision detection between morphing
models [31]. The same approach would also be possible in ray tracing
of morphing models. Finally, it would also be interesting to investigate
the possibilities for a hardware implementation of our approach.
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