
Hybrid Adaptive Checkpointing for Virtual Machine

Fault Tolerance

Abel Souza∗, Alessandro Vittorio Papadopoulos†, Luis Tomás Bolivar∗‡, David Gilbert‡, Johan Tordsson∗

∗Department of Computing Science, Umeå University, Sweden.
†IDT, Mälardalen University, Sweden.

‡Red Hat Inc.

Email: ∗{abel,tordsson}@cs.umu.se, †alessandro.papadopoulos@mdh.se, ‡{ltomasbo,dgilbert}@redhat.com.

Abstract—Active Virtual Machine (VM) replication is an
application independent and cost-efficient mechanism for high
availability and fault tolerance, with several recently proposed
implementations based on checkpointing. However, these methods
may suffer from large impacts on application latency, excessive
resource usage overheads, and/or unpredictable behavior for
varying workloads. To address these problems, we propose a
hybrid approach through a Proportional-Integral (PI) controller
to dynamically switch between periodic and on-demand check-
pointing. Our mechanism automatically selects the method that
minimizes application downtime by adapting itself to changes in
workload characteristics. The implementation is based on modifi-
cations to QEMU, LibVirt, and OpenStack, to seamlessly provide
fault tolerant VM provisioning and to enable the controller to
dynamically select the best checkpointing mode. Our evaluation
is based on experiments with a video streaming application, an
e-commerce benchmark, and a software development tool. The
experiments demonstrate that our adaptive hybrid approach im-
proves both application availability and resource usage compared
to static selection of a checkpointing method, with application
performance gains and neglectable overheads.

Index Terms—Fault Tolerance, Resource Management, Check-
point, COLO, Control Theory

I. INTRODUCTION

Fault tolerance is the ability of a system to keep working

even in case of failures. It is mainly used to increase system

uptime and to improve its dependability, reliability and avail-

ability [13]. Fault tolerance is a desirable feature especially

for mission critical applications residing in data centers [27].

One method to achieve fault tolerance is through replication,

where critical parts of a system are duplicated using additional

hardware, software and/or network resources, to provide extra

guarantees in case any of these resources fail [13]. Most

fault-tolerance systems have an asymmetry in the sense that

a primary host executes the application, and a secondary

host takes over the workload in case the former fails. A key

requirement for any replicated system is that failures in a host

must be recovered without human intervention no matter when

they occur or what the host is doing at the time of failure.

A. Existing Solutions

Fault tolerance can be achieved at different levels of a

system stack. Existing solutions range from (i) implementing

fault tolerance capabilities inside applications [3]; to (ii) using

fault tolerant hardware to provide component redundancy [1];

to (iii) using application agnostic solutions based on virtual-

ization, where applications are wrapped in Virtual Machines

(VMs) and the state of a Primary VM (PVM) is replicated to

a secondary VM (SVM) running on a different physical server

[6]. Solutions of type (i) may not be feasible since applications

may not be easily modified to support specific replication

strategies and fault tolerance hardware. Type (ii) solutions tend

to be very expensive. Type (iii) approaches, also known as

general-purpose methods, aim to detect and handle hardware

faults at the virtualization layer of the software stack. All types

hide system errors from end-users, who can access applications

without interruptions even in the presence of faults.

For interactive applications handling network requests,

replication approaches are usually based on active/active (A/A)

and active/passive (A/P) [9]. In A/A mode, all replicas actively

receive and process the same requests concurrently. In A/P

mode, only the primary host receives and processes requests,

whereas the secondary only receives memory state synchro-

nizations. These two approaches mainly differ in resource

consumption tradeoffs, as A/A requires additional CPU and

A/P more network bandwidth.

One replication method is Checkpointing [11], a technique

to enable a system or application to store its state, and to

handle failures by recovering from previously stored states.

Checkpoint based techniques can be classified as periodic and

on-demand [9]. The former performs checkpoints at fixed time

intervals. For interactive applications, periodic checkpoint-

ing can affect system performance (e.g., latency) depending

on the network bandwidth and checkpoint size. On-demand

checkpointing tries to address these problems by reducing

the frequency of synchronizations in order to maximize the

amount of time an application runs (also known as application

uptime). One on-demand checkpoint approach is the COarse-

grained LOck-stepping Virtual Machines for Non-stop Service

(COLO) [10]. COLO simultaneously runs two identical VMs

containing the application. They are synchronized through

a checkpoint only when it is detected that their executions

diverged, defined as when they generate different responses to

the same network request. Notably, due to symmetric multi-

processing, thread scheduling, etc., the actual execution inside

the PVM and SVM frequently diverges, but this is ignored

in COLO unless the deviation is noticeable from the client

perspective.

12

2018 IEEE International Conference on Cloud Engineering

0-7695-6371-6/18/31.00 ©2018 IEEE
DOI 10.1109/IC2E.2018.00023



In contrast, passive checkpointing no comparison of VM

outputs are required as a synchronization (checkpoint) is

triggered at fixed-length interval times, e.g., at every 250ms

as illustrated in Figure 1 (a). This guarantees the consistency

of both replicas, as the application is not executed in the

SVM. As client requests are withheld until both replicas are

synchronized, application performance, as perceived by the

clients, may be impacted.

As mentioned, COLO (Figure 1 (b)) requires twice the

amount of memory and additional CPU resources in the

secondary host: for the running process and for the state

synchronization mechanism. Every client request is forwarded

to both replicas, and their responses are compared by a proxy

module located in the PVM host (the diamond in Figure 1

(b)). If VM responses are identical, the request is released

from the proxy to the client. Otherwise, the SVM memory

state is synchronized with the PVM by checkpointing, before

the response is released to the client.

Fig. 1: Overview of operation in PVM (shown above) and

SVM (shown below) for checkpointing (a) and COLO (b).

The dials in the right hand side illustrate common resource

usage patterns for the two methods.

B. Problem Statement and Objectives

COLO and checkpointing modes alter the frequency of

state synchronizations between the PVM and SVM. They also

highlight an important resource utilization tradeoff: given the

non-deterministic nature of (multi-threaded) applications and

workload variations, the frequency of COLO checkpoints is

itself non-deterministic and can in some cases even exceed that

of periodic checkpointing, which results in both performance

degradation and inefficient use of resources.

Conversely, periodic checkpointing may impose an ex-

cessive overhead under different circumstances, which may

severely limit its feasibility. For instance, by freezing the

PVM during execution and/or by withholding requests from

users until its state synchronization is completed, periodic

checkpointing mode may increase application latency signifi-

cantly. Hence, there is no single checkpointing mechanism that

achieves acceptable performance tradeoffs in all scenarios.

To tackle these problems, we propose a hybrid approach

that dynamically switches between periodic checkpointing and

COLO. Such dynamic switching enables system administrators

to select the most appropriate checkpoint approach without

having to investigate the behavior of the workload in detail.

This is particularly useful for data center scenarios with thou-

sands of applications with varied workload behaviors. To opti-

mize the use of this hybrid approach, we design an autonomic

mechanism to dynamically select the best checkpointing mode.

We provide two implementations of the selection mechanism.

The first is based on a threshold feedback loop that continu-

ously calculates the frequency of checkpoint synchronizations

in order to decide the best checkpoint mode. The second is

based on a Proportional-Integral (PI) controller that automat-

ically adapts the time spent in periodic (fixed-length check-

point) and on-demand (COLO) checkpoint modes based on

the uptime ratio: the relation of time spent checkpointing over

the total run time before a checkpoint is triggered. This ratio

is used to dynamically select the best mode for a workload

in a given time interval. Our implementation of the hybrid

mechanism is open-sourced and is based on modifications to

QEMU, LibVirt, and OpenStack. Our experimentation with a

mix of applications shows that the hybrid approach is superior

to statically selected checkpoint mode, and that our controller

further improves system’s uptime by up to 10% with neglected

performance degradations.

II. BACKGROUND AND RELATED WORK

There is a range of fault tolerance mechanisms to enable

the recovery (or the application to keep working) after a

failure occurs. Usually, the next actions triggered to resume

normal operation [15] are: (i) Reconstruction, where the pri-

mary server/site is restored either at its original server/site

or another server/site; and (ii) Failover where there exists a

secondary or back-up server/site where the primary server/site

is being replicated. This secondary server/site becomes the

active/working site after the primary site fails.

For both cases redundant hardware is required. However,

without replicated data, redundant hardware is of little use

[15]. Thus, not only the secondary storage needs to be repli-

cated, but also the in-memory data (i.e., the application state)

needs to be replicated so that the failover is fully transparent to

users—a failure should not be noticed from clients’ viewpoint.

To enable this, fault tolerance techniques should minimize both

the recovery time and the data loss in case of a failure.

Reconstruction-based solutions, also known as storage-

based application fault tolerance solutions, provide a relatively

high Recovery Time Objective (RTO) due to the time needed

for the application restart on the backup host, and it may also

cause data loss or corruption if the running application does

not have built-in mechanisms (such as transactional commits

in relational databases) to ensure data is not lost, providing

a non-zero Recovery Period Objective (RPO). One example

of this type of fault tolerance mechanism is VMWare High

Availability (HA) [28].

13



Nevertheless, if a transparent recovery from the clients’

point of view is needed, both RPO and RTO need to be

minimized, and thus failover techniques are needed.

Mechanisms that provide fault tolerance in an application-

agnostic manner can be classified in Server Lockstep and

Server State Synchronization Fault Tolerance techniques. The

former is based on a technique called Lockstep Processing in

which the server is outfitted with Dual Modular Redundancy

(DMR) that enables redundant components to process the same

instructions simultaneously. Many enterprises that require a

high degree of availability for running mission-critical appli-

cations use hardware based solutions such as ftServer from

Stratus [25] that guarantees 99.999% uptime. Lockstep Pro-

cessing hardware configuration includes two CPUs, chipsets

and memory units, thus, eliminating any single point of failure

in the system, as each CPU or memory units can function even

if its counterpart is offline due to failure or planned downtime.

An equivalent to ftServer is the VMWare FT/vLockstep [29]

hypervisor based software-only solution, which relies on de-

terministic record/replay of non-deterministic inputs.

These application-agnostic approaches have minimal per-

formance degradation and low bandwidth use as only non-

deterministic events (e.g., interrupts) are recorded on the pri-

mary server and transmitted to the secondary server. However,

they require either dedicated hardware (with an integrated

lockstep support mechanisms), or cannot support non-SMP

(Symmetric Multi-Processing), thus limiting their use.

Server State Synchronization techniques address these prob-

lems. They mainly use a modified version of asynchronous

replication methods to better handle the trade-offs between

keeping the replica as closely synchronized as possible, and

minimizing the impact on application performance, as well as

other co-located VMs [14], [20], [30].

Examples of active fault tolerant approaches include Mi-

croCheckpointing [12], Remus [7] and Kemari [26]. These

all provide high-availability by using efficient 1+1 topology

where a single physical server can act as standby host for

multiple applications. These approaches differ from the pre-

viously mentioned Lockstep Processing as the active VM

is the only VM to execute operations. Remus provides a

high degree of fault tolerance for a VM by asynchronously

propagating changed states to a backup host at frequencies

as high as forty times per second. Adaptive Remus quantifies

VM metrics as CPU and memory usage to infer the current

hosted application load. With this information, the mechanism

adjusts the checkpointing frequency between two modes [8].

However, the major drawbacks of such active fault tolerance

approaches are degraded performance and increased network

consumption, as they depend on heavyweight tracking and

synchronization of the entire system state. COLO [10] was

designed to mitigate this problem and is also based on server

state synchronization but, unlike the previous works, uses ac-

tive replication. To avoid the excessive overhead of current VM

replication techniques, COLO monitors the output response

of both VMs and only forces a synchronization (checkpoint)

between them when their responses differ, i.e., the client would

notice the deviation. If the responses do not match, network is

withhold until the PVM’s state is synchronized to the SVM.

Although the differences between COLO and periodic

checkpoint are clear, it is non-intuitive to assess the impact

of each method on a given application [16], [24]. On the

downside, periodic checkpointing does not consider applica-

tion performance. Furthermore COLO would not perform well

with highly non-deterministic applications because it may lead

to a high number of checkpoints, which in turn would lead to

performance degradation due to the continuous VM pauses to

perform checkpoints. Based on the same argument, periodic

checkpointing may not perform well for similar applications

as it assumes static workload behavior, thus unnecessarily

pausing the VM at constant times.

In fact, it may happen that COLO performs differently

over time even for a single application. Given deviations on

application workload, COLO may perform better or worse than

periodic checkpointing. In cloud scenarios, COLO may also be

affected by other co-located VMs (noisy neighbors) that may

cause additional replication actions. These observations sug-

gest that a hybrid mechanism can outperform static selection

of either COLO or checkpoint mode for an application.

III. HYBRID MECHANISM ARCHITECTURE

In this paper, we propose a hybrid fault-tolerance mecha-

nism that combines COLO with the periodic checkpointing

approach, and dynamically decides which is the most suited

mode on the basis of current application downtime. The overall

goal of our approach is to improve application availability

here defined as uptime/(uptime+downtime), where uptime

denotes that the application is running and downtime that it is

not running due to checkpointing.

The hypothesis is that PVM/SVM resource usage and client-

observed performance are optimized the longer the application

is available to answer requests. For instance, if synchroniza-

tions are too frequent, because the workload is too non-

deterministic while in COLO mode, CPU and bandwidth

would be poorly utilized and checkpoint mode would save

SVM’s CPU usage while using the bandwidth more efficiently.

On the other hand, if the workload is very deterministic while

in checkpoint mode, then the frequency of synchronizations

would potentially be low, and COLO would improve applica-

tion performance, while saving bandwidth and making better

usage of SVM’s CPU.

Figure 2 shows the overall system architecture of our hybrid

mechanism. We target a cloud scenario, with OpenStack [23]

being used to manage servers and VMs. We further use

a software stack composed of modifications to QEMU [2],

LibVirt [21], and the OpenStack Nova components. In our

setup, OpenStack is used on top of LibVirt to manage a

collection of hosts similarly to a cloud provider managing

many VMs. Libvirt is a system orchestrator that interacts

with the virtualization capabilities, i.e., wraps hypervisors at a

low level to provide an easier interface to both operators and

management tools. The hypervisor, QEMU, is the software that

performs hardware virtualization. In our modified OpenStack,

14



15



actual mode in which the system operates. The outer layer

monitors the number of checkpoints per second (here denoted

as cps), and it computes what is a good target value ρ for ρ, in

order to dynamically enforce higher or lower likelihood for the

system to be in COLO or checkpoint modes. For example, if

cps is low, COLO mode is preferable, and ρ should be chosen

to be high. The parameter ρ determines whether to make the

switch to the other mode faster or slower.

A. Inner layer: Monitoring and Actuation level

The inner layer of the proposed decides the mode of

operation, i.e., Checkpoint or COLO mode. The behavior

can be represented by a discrete-time hybrid automaton [18],

i.e., for each discrete state – here called discrete state or

simply state – of a hybrid automaton, a discrete-time dynamic

system is defined—here called continuous component. All

the continuous components share a set of state variables,

describing the actual state of the system. A transition from one

mode to another is therefore defined on the basis of conditions

on the state variables of the continuous components, and reset

maps can be executed when a transition occur.

We here consider a set of three modes Q = {q1, q2, q3}, as-

sociated with Checkpoint mode (q1) and with COLO mode (q2
and q3). The overall status of the automaton is characterized

by the current mode q(k) at the k-th time interval, and two

counter variables b(k) (a time budget for staying in Checkpoint

mode), and σ(k) (the switching-to-Checkpoint likelihood, that

is high when the system should switch back to checkpoint

and low, when it should stay in COLO mode). In addition,

we monitor the current value of ρ(k), which works as a mode

switcher. The continuous components are defined as follows:

• if q(k) = q1, the time budget b(k) is linearly decreased

over time, while σ(k) is kept constant, i.e.{
b(k + 1) = b(k)− 1

σ(k + 1) = σ(k),
(1)

• if q(k) = q2, the time budget b(k) is linearly increased

over time, while the variable σ(k) is kept constant, i.e.{
b(k + 1) = b(k) + 1

σ(k + 1) = σ(k)
(2)

• if q(k) = q3, the counter variable σ(k) is decreased over

time by a fixed value d > 0 down to a minimum value

σmin, while the time budget b(k) is kept constant, i.e.{
b(k + 1) = b(k)

σ(k + 1) = max (σ(k)− d, σmin)
. (3)

The transitions from one node to the others and the corre-

sponding reset actions are defined as follows:

• A transition from q1 to q2 happens if and only if b(k) ≤ 0.

When the transition occurs, the time budget is reset as:

b(k) = 0 (4)

q1
Eq. (1)

q2
Eq. (2)

q3
Eq. (3)

C: b(k) ≤ 0
R: b(k) := 0 C: b(k) ≥ b

C: ρ(k) > ρ(k)
R:b(k) := σ(k) + ρ(k)

Fig. 5: Scheme of the hybrid state automaton in the inner layer.

The conditions for the transition to occur, and the reset map

to apply are indicated with “C” and “R” respectively in the

figure.

• A transition from q2 to q3 happens if and only if b(k) ≥ b,
with b being a prescribed maximum threshold. When the

transition occurs, no reset occurs.

• A transition from q3 to q1 happens if and only if ρ(k) >
ρ. When the transition occurs, the time budget is reset as:

b(k) = σ(k) + ρ(k) (5)

Figure 5 summarizes the functionality of the inner layer

of the automated solution. The layer is initialized to be in

mode q(0) = q3, i.e., in COLO mode, and the variables are

initialized to be: {
b(0) = 0

σ(0) = 1

The overall idea is that when the VM is run in checkpoint

mode (mode q1), there are regular checkpoints periodically.

Therefore, if we assign an initial budget b(0) > 0 where the

system is operated in such a mode. When the budget is elapsed,

the system tries to switch to COLO mode for a fixed amount

of time b (mode q2), and we measure with a moving average

mechanism the average pause ratio ρ. After b checkpoints,

ρ is considered to be a good estimate of the actual average

interarrival time, and the system switches to mode q3, where

ρ is still computed on the basis of the measured frequency of

checkpoints and pause time. At the same time a variable σ
decreases over time.

B. Outer layer: External controller

The outer layer is in charge of adapting the value of the

threshold ρ on the basis of the actual behavior of the system.

While the inner layer is mainly enforcing a transition from one

mode to the other, an outer controller is used to decide how

fast this should happen. In particular, the value of ρ affects

the likelihood to stay in Checkpoint or COLO mode.

In order to compute dynamically the value of ρ we use a sat-

urated PI controller. In particular, the controller is implemented

as shown in Algorithm 1, where K and Ti are parameters of

the controller, and Ts is the time elapsed from the last mea-

surement. The controller measures the checkpoints per second

cps(k), and, on the basis of this value, it decides what is a good

value for the Downtime ratio threshold ρ(k). More specifically,

cps(k) is compared with the setpoint sp(k), and, on the basis

16



Algorithm 1 Computation of the saturated PI controller.

function COMPUTECONTROL(sp,ρ)

Δsp← sp− spold
Δρ← ρ− ρold
ΔP ← K · (Δsp−Δρ) � Computing proportional

ΔI ← K · Ts/Ti · (sp− ρ) � Computing integral

Δρ← ΔP +ΔI � Computing control action

ρ← ρold +Δρ
if ρ > ρmax then � Saturation

ρ← ρmax

if ρ < ρmin then � Saturation

ρ← ρmin

ρold ← ρ � Storing state variables

ρold ← ρ
return ρ

of the PI control strategy, ρ is dynamically adapted, so that the

error between the desired amount of checkpoints per second

sp(k) and the measured cps(k) decreases over time. The value

for the setpoint is chosen empirically to be sp(k) = 1.5.

The values K = 0.01 and Ti = 3 were selected and used

in all the following experiments. The lack of a dynamical

model hinders the possibility of a model-based tuning of the

PI controller, therefore we tuned the controller, with a grid of

values for the parameters K ∈ [10−3, 5] and Ti ∈ [10−3, 5],
and optimizing the obtained performance with respect to the

experimental results obtained with the BugZilla workload

considered in this paper (see the next section).

V. EVALUATION

In this section, we evaluate the performance, resource usage

and downtime ratio for different applications with three dif-

ferent characteristics. We compare our results against running

the different applications with four different fault tolerant

mechanisms, explained in the following sub-sections.

A. System Environment

For evaluating the proposed mechanism, we built a fault

tolerant environment with the same characteristics as explained

in Section III with one OpenStack controller and two workers.

We configured three different VMs with three applications,

described in the following, all with the fault tolerance option

enabled. This option invokes the SVM on a different server,

while the PVM is put in paused mode. It allows the SVM to

be ready to start simultaneously with the PVM in a consistent

state. The hosts are assumed to fail in a non-byzantine manner

- i.e. they either fail or they keep on working perfectly. Cyclic

Redundancy Check (CRC) hardware systems must be used

to guard against memory/bus/cache corruptions, and such are

present in most modern server systems.

Our tests and measurements were performed on a testbed

formed of 3 servers, each with 24 Intel Xeon (E5-2620 v2

@ 2.10GHz - Core i7) cores, 64 GB of memory, managed

by OpenStack (Juno version): one server for generating client

web requests, and the other two servers to host the PVM

and SVM, respectively. All hosts are interconnected through

a 1 Gbps Network (for client requests), but the checkpoint

stream between the PVM and SVM is carried over a 56 Gbps

Infiniband connection (using a Mellanox ConnectX-3 card).

All tests were done using a modified OpenStack VM Flavor

to enable the guest fault tolerance support - with 4 vCPUs -

using the same version of our modified hypervisor (QEMU

2.5.50). One OpenStack (Nova) controller is used to submit

network requests for both PVM and SVM, and two workers

for package comparison (See Figure 2). All codes for the

OpenStack, LibVirt and QEMU modifications are available

through the ORBIT (Business Continuity as a Service) Project

[17] at a GitHub repository 1.

B. Experiment Overview

We executed 3 different applications (described in the

next sub-section) in four configurations with fault tolerance

mechanisms: forced checkpoint mode, COLO mode and the

two herein proposed Hybrid modes.

1) Checkpoint Mode: When a VM is set into checkpoint

mode, a synchronization happens at every 250ms regardless

of what is going on inside the PVM. The 250 number was

used as a (empirical) tradeoff between application latency

and performance overheads due to the time to migrate the

PVM’s state to the SVM. Depending on the intensity of the

workload, a higher number would change more of PVM’s

(memory )state, negatively affecting the time to complete state

synchronizations between replicas.

2) COLO: In COLO, a synchronization occurs only when

a miscompare is detected between the PVM and SVM (Figure

1(b)). COLO can provide better latency performance than

traditional checkpointing by lengthening the checkpoint period

if the behavior of the two VMs are consistent as seen from

the network traffic they generate.

3) Hybrid Modes: We include two different methods for

evaluating our proposed Hybrid approach: a Threshold and

a Controlled mechanism. Both methods switches between

the two aforementioned fault tolerant methods - checkpoint

and COLO -, but they differ on when and for how long a

mode should be used and probed. Additionally, both hybrid

methods were designed to increase PVM’s uptime.

Threshold. It is a threshold-based hybrid heuristic that

combines checkpoint and COLO modes. The threshold

method rationale is as follows. If the moving average of the

time between two checkpoints falls below a configurable

minimum limit (set to 400ms), the system starts using

checkpoint (passive) mode. The 400ms limit was empirically

set for switching modes as many applications would timeout

in case checkpoints were to be performed more frequently

than so. This limit indicates to the SVM that, once crossed,

the checkpoint mode is to be used. On reception of this

signal, the SVM receives the checkpoint as normal, but does

not start to execute the application. The primary triggers a

1http://www.orbitproject.eu/portfolio/github/

17



new passive checkpoint after a small, configurable time (set

to 250ms). The system next stays in checkpoint mode for

100 checkpoints, and then retries with COLO mode again.

If the calculated average downtime is lower than 400ms,

the Threshold approach keeps in COLO mode. Otherwise,

it switches back to checkpoint mode, and repeats this cycle

until the application completes execution. We note that the

moving average downtime used by the Threshold mode to

switch mechanisms (COLO or checkpoint) is calculated as

the average of total downtime since the last 10 seconds. This

is weighted so that a few short checkpoints do not trigger a

transition, and a previous long history of long checkpoints

does not inhibit a transition when the workload behavior

changes.

Controlled. As explained in Section IV, the controlled

hybrid mode is configured to dynamically adapt the downtime

ratio threshold at run-time depending on the frequency of

checkpoints per second and the moving average of the

Uptime Ratio from the last 10 seconds. Every time the

moving average for the downtime ratio is greater than

the controlled ratio, the mode is switched from COLO to

Checkpoint. It stays in Checkpoint mode for a minimum of

b (= 25) checkpoints, before switching to COLO. If COLO

is still worse, it switches back to Checkpoint and updates the

likelihood σ of switching back to Checkpoint (or to COLO).

Overall, the adaptation strategy tries to adapt to the current

workload by increasing or decreasing the switching likelihood

σ, and thus changing the time budget to stay in checkpoint.

The time horizon of the moving average was set to 10 sec-

onds because QEMU performs a checkpoint after 10 seconds

in case no miscompare is detected while running in COLO

mode. This is made to avoid large downtimes due to large

VM (memory) state changes.

C. Applications

Three applications were used in order to evaluate the

proposed hybrid checkpointing approach: the RUBiS online

auction benchmark, the BugZilla Tracking System, and a video

streaming application.

1) RUBiS online auction benchmark: RUBiS (Rice Univer-

sity Bidding System) is an auction site prototype modeled after

eBay.com that is used to evaluate application design pattern

and server performance scalability [4], [22]. The number of

requests for this workload follows a rectangular step function.

It is initiated with a load of 5 parallel web requests per second

for 5 minutes, suddenly increasing it to 50 parallel requests per

second for another 5 minutes. This pattern is repeated three

times and was chosen to illustrate a variable high and low

workload.

2) BugZilla: The BugZilla bug tracking system [19] is used

here as a benchmark to represent a multi-threaded application

with random behavior, and a common use-case in data centers.

For this test, a BugZilla server was installed in a VM and

populated with random bugs and a set of users. An external

test harness (running on a 3rd host) interacts with the BugZilla

database server via its API using the Python BugZilla package.

The VM was configured to reduce randomness, thus in-

creasing the chance of benefiting from COLO; in particular

Perl’s hash randomization was disabled. For this test, a multi-

threaded BugZilla create method was used, which spawns

a variable number (up to 16) of parallel create new bug

invocations at every second, making it very nondeterministic

and thus not suitable to any static checkpointing fault-tolerant

mode selection.

3) Video Streaming: For this workload, we used VLC

(VideoLan [5]) in order to do two concurrent things. The first

is to encode a 13 minutes video with a high resolution: A H264

video and resolution of 1920x1080 pixels with a ratio of 30

frames per second (fps). The second is to stream (in loop-back)

its content over an UDP connection. This workload has high

randomness due to high CPU and thread usage. This workload

should thus result in a high number of miscompares and the

use of checkpoint mode should generally be beneficial.

D. Measurements

For all experiments, we collected the following metrics:

downtime (percentage of how long the VM was paused during

the whole execution), checkpoints per second (percentage of

how long the VM was frozen due to a checkpoint in each

second), SVM CPU and Network Usage, average response

time (frames per second (fps) for the Video Streaming work-

load), throughput (total number of requests, bugs created, and

elapsed-time in seconds for the RUBiS, BugZilla and Video

Streaming workloads respectively). The average downtime

ratio was calculated based on the averages downtimes and

uptimes. Each test was performed for 30 minutes and repeated

for 10 times. The times presented are based on the hardware

wallclock measured by QEMU. This decreases the possibility

of inaccuracies in the guest clock due to checkpointing.

E. Results

Table I shows the averages for all the experiments. Unless

shown, the standard deviation is lower than 0.1% from the

average shown. We highlighted in bold the best performance

obtained with the considered methods, for each metric and for

each application. We also report the standard deviation for the

average downtime, since it is the main metric that the herein

proposed algorithm aims to optimize.

Figure 6 shows the evolution over time of some of the

most relevant application metrics considered in our evaluation:

CPU, bandwidth utilization, and downtime ratio. In compar-

ison, Figure 7 shows the evolution of response time for the

three workloads.

Figure 6 shows that the hybrid approach adapts its behavior

to the current workload. For example, in the Video Streaming

case, it can be noticed in the CPU Usage column that it

adapts over time using increasingly longer intervals in COLO

mode between spikes. This learning gives an improvement in

the downtime over the Threshold and Checkpoint approaches.

The Threshold approach stays in checkpoint mode for a fixed

18



TABLE I: Experiment Results showing averages for 120 experiments, 10 for each application in each mode. Bold columns

indicate the best value for each metric.

* Throughput is the total number of requests, bugs created and elapsed-time (in seconds) for RUBiS, BugZilla and Video

Streaming workloads respectively.

Application Mode

Average
Downtime

(%)

Average
Downtime

Ratio
(%)

Average
Checkpoint

Time
(ms)

Average
SVM CPU
Utilization

(%/s)

Average
SVM Network

Usage
(MB/s)

Average
Response

Time
(ms/s)

Average
Throughput*

RUBiS

Checkpoint 7.6 ± 0.7 8.3 118 4.1 34 337 45055
COLO 50.5 ± 0.8 10.2 823 10.8 54.8 163 38008
Threshold 8.0 ± 0.7 8.7 131 4.3 34.5 230 46532
Hybrid 7.3 ± 0.6 8.2 122 4.8 33.5 244 46319

BugZilla

Checkpoint 39.1 ± 5 64.03 ± 13 634 0.3 312 4460 3289
COLO 42.1 ± 3 73.52 ± 10 737 20.3 251 3870 3505
Threshold 40.2 ± 6 68.93 ± 17 682 16.4 281 4478 2626
Hybrid 37.1 ± 5 61.16 ± 11 647 10.7 289 3720 3882

Video
Streaming

Checkpoint 42.2 ± 4.6 64.6 636 4.1 264 15.85 907
COLO 45.4 ± 4.2 83.3 749 19.8 251 7.46 408
Threshold 40.0 ± 5 61.5 615 5.6 271 15.72 885
Hybrid 39.0 ± 4.6 56.3 581 4.5 278 15.90 906

0 500 1000 1500

0
5

10
15

RUBiS

C
P

U
 [%

/s
]

0 500 1000 1500

0
5

10
15

20
25

Bugzilla

0 500 1000 1500
0

5
10

15
20

Video Streaming

0
20

0
40

0

0 500 1000 1500B
an

dw
id

th
 U

se
 [M

B
/s

]

0
20

0
60

0
10

00

0 500 1000 1500 0 500 1000 1500

0
50

15
0

25
0

0 500 1000 1500

0
1

2
3

4

D
ow

nT
im

e 
R

at
io

Time [s]
0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

2.
0

Checkpoint COLO Threshold Hybrid

Fig. 6: Results for three example experiments, detailing over for the duration of the experiment the average measurements of

three main metrics: SVM CPU, bandwidth, and downtime ratio.

amount of time, and then trying COLO once again, i.e., it did

not learn COLO was not good.

The BugZilla Workload is the most complex workload to

adapt. The high and variable number of threads increase the

out-of-order instructions in parallel, increasing the number of

comparisons resulting in a checkpoint triggering event. Given

the CPUs assigned to the guest, a maximum of 16 threads

with the create_new_bug_test() method, all running

in similar times without COLO and only increase as the load

increases past the number of CPUs available. In COLO mode

the performance degrades as the amount of randomness in-

creases and the size of each checkpoint increases. This can be

seen from a comparison of the bandwidth and downtime. The

hybrid approach identified some better scenarios for COLO

19



0 500 1000 1500

0
20

0
60

0
10

00
RUBiS

R
es

po
ns

e 
T

im
e 

[m
s]

0 1000 2000 3000 4000

20
00

30
00

40
00

50
00

60
00

Bugzilla

Time [s]

0 200 400 600 800

8
9

10
11

12
13

14
15

Video Streaming

Checkpoint COLO Naive Hybrid

Fig. 7: Results for three example experiments, detailing over time the average measurements for response time for RUBiS and

Video Streaming as well as throughput for Bugzilla.

during execution and thus was able to switch modes, turning

the workload into a less resource hungry one and with better

performance (throughput). Overall, the hybrid mode had the

lowest average downtime ratio, checkpoint had low downtime,

though many pauses, and used the least CPU (due to its

characteristics). The throughput was very similar between all

methods.

VI. DISCUSSION

The experimental results highlight the advantages of the

proposed hybrid mechanism. By rapidly adapting to current

workload, the proposed approach improves the application

run-time over the other methods by at least 10%, with negli-

gible performance overheads in CPU and network bandwidth.

The comparisons per second and the downtime ratio metrics

seem to provide a good indication how to select checkpointing

mode depending on the workload.

Moreover, we can also conclude that the threshold approach

cannot outperform checkpoint mode, because when the system

was set in Checkpoint and often tried COLO, the moving

average of the time between checkpoints was still lower than

the threshold (400ms) due to randomness in the workload.

This pushed the threshold solution to switch to checkpoint

mode again. The hybrid approach, conversely, adapts the

threshold based on the actual behavior of the system, avoiding

unnecessary switches. The hybrid approach is designed to

try COLO sporadically, so to understand if COLO mode can

achieve better performance.

In fact, the dynamic switching to checkpoint mode pro-

vides a means for users of a fault-tolerant system to select

the operation mode appropriate to their applications without

having to investigate the behavior of the workload in detail.

This phenomenon is particularly relevant when considering the

BugZilla application: Workloads that are primarily CPU bound

get the full advantage of COLO, whereas those with random

network traffic get a more traditional checkpointing system,

that uses little additional CPU on the secondary host.

The adaptation abilities of the proposed approach can be

relevant in many applications, as it is fully rare to find

very predictable behavior in cloud applications. Also, by

checking the average response times and throughput, identify

a few noticeable tradeoffs: the Hybrid mechanism has not

underperformed in any of the metrics for performance, and

only by small overheads for CPU and Network usages. In

particular, unpredictable behavior can be caused by many

different factors. Examples of some factors that we managed to

identify while conducting the experimental evaluation include:

• Timestamping: many applications include a timestamp

in the output message or as part of an internal ID. The

higher precision of time used, the higher the chances are

that the timestamp timestamp by the other hosts differ,

thus causing a checkpoint.

• Unique IDs: Applications that allocate unique IDs to

requests based on a sequence of incoming requests incor-

porate randomness due to interactions between different

clients.

• Hashes: Some applications that produce apparently con-

sistent output may internally use a hashed list whose

output order is non-deterministic. One example that we

observed was HTTP headers from BugZilla; the headers

were always the same, but their order varied between

requests.

• Intentional – but non-obvious – randomness: e.g., web

based applications that appear to give consistent output

may hide variability in the HTML or Javascript delivered

to the client.

Whenever network data is non-deterministic the advantage

of COLO is reduced, depending on how much variability there

is in the data; e.g. a workload that is compute-intensive but

produces a non-deterministic output every 3 seconds, does still

benefit from a reduced checkpoint frequency compared to a

simple checkpointing mode. The reality for many applications

is that they contain a mix of different behaviors, and it is

difficult for a user or administrator to predict whether their

application will benefit from COLO.

20



A. Application Performance

Simultaneously and efficiently managing a data-center from

a dual perspective - operators who seek to save costs and

improve resources’ utilization, and users, who want their

service to run at full performance and to be highly available

- is a hard problem. Particularly, if performance is taken into

account and one does not know how workload and application

resource profiles look.

COLO aims at improving application availability for im-

proving responsiveness. Based on this, COLO aims to decrease

the amount of checkpoints an interactive application triggers

at the expense of doubling usage of CPU and Memory, but

generally lowering network usage on deterministic workloads.

So does our controller, which targets optimizing application

availability in data-centers by using a active replication in

a second site. Notable, COLO does not aim to improve

application performance and neither does our hybrid approach.

However, as Table I shows, our approach performed with

neglected performance losses.

Table I also shows that the performance of an application

is not directly correlated with its increased availability, as can

be seen in the Video-Streaming experiment: the throughput

for Checkpoint mode, which stopped the PVM at every 250ms

was higher than for COLO, which performed very poorly. This

experiment shows that checkpoint mode is to be used: peri-

odically checkpointing the PVM results in better performance

(Figure 7) than dynamically checkpointing it, as checkpoint

mode reduces synchronization frequency and improves frame

continuity in the Video-Streaming experiment. As the video

streaming workload is very unpredictable - common scenario

in data-centers - checkpoint mode performed better. Our

proposed controller dynamically learned that Checkpoint was

a better mode for such workload.

This is why our proposed hybrid mechanism fits very well

these applications, though other tradeoffs related to perfor-

mance metrics like CPU Usage and memory footprint could

also extend the controller model. There is potential for further

performance improvements in terms of CPU usage in the

passive checkpoint mode, by a leaner implementation when

compared to the more complex execution paths required for

COLO. For example, in checkpoint mode (A/P) the SVM does

not write to memory or disk during a checkpoint period. Also,

note that when low-latency is the critical metric, COLO mode

(A/A) behaves generally better than any other modes. This

happens simply due to fast response release, lowering the

latency experienced by users. This cannot happen in any of

the other modes as they delay responses by choosing a mode

which makes the VM to pause less frequently.

VII. CONCLUSION

VM replication through checkpointing is a well-known

approach to achieve high availability and to enable disaster

recovery. A set of mechanisms have been proposed for this,

based either on periodic or on-demand checkpointing. These

have different benefits and drawbacks in terms of performance

(application response time and unavailability due to VM freeze

during migration) and resource usage (the overhead imposed

by replication and checkpointing in terms of CPU, memory

usage, and/or network transfers). We combine the best of the

two checkpointing schemes by proposing a hybrid approach

that dynamically switches between periodic and on-demand

checkpointing depending on how long the application executes

in relation to how long it performs checkpoint synchro-

nizations. A PI controller is designed to dynamically select

the optimal checkpointing method over time, to maximize

application availability based on the Downtime Ratio metric,

that considers the performance of takes into consideration

network bandwidth, CPU and memory. The proposed approach

was implemented through modifications to QEMU and was

integrated in OpenStack. An experimental evaluation based

on three application benchmarks – RUBiS, a streaming video

server, and a BugZilla server – demonstrates that the hybrid

approach performs better than other checkpointing approaches

by at least 10% reduction in downtime. A threshold-base

mechanism (naive) was also used for the evaluation as a

baseline hybrid approach. In all three use-cases, our controllers

followed the best possible mode selection in regards to perfor-

mance and resource utilization, simultaneously, autonomously

and with no prior application knowledge. In large-scale data-

center operations, this has a practical impact when dealing

with fault-tolerance.

The developed mechanism can be used in infrastructures

where fault tolerance is of critical importance but operators

are not able to timely and dynamically select the correct mode

based on the application workload, while trying to optimize

different performance indicators. The benefits are particularly

noticeable on long running and non-deterministic applications,

where the aggregated downtime will be reduced over and

over. Finally, with learning mechanisms, like Statistical and

Machine Learning techniques, workload pattern variations can

be matched with resource utilizations and the switch operation

between modes can be optimized for various applications.

ACKNOWLEGMENTS

We thank the anonymous reviewers whose constructive

feedback improved the quality of this work. The research

leading to the results presented in this paper has received

funding from the European Union’s seventh framework pro-

gramme (FP7) Project ORBIT under grant agreement number

609828. In addition, this work was partially supported by

the Swedish Research Council (VR) for the projects “Cloud

Control” and by the Brazilian National Council for Scientific

and Technological Development (CNPq) under project no.

207555/2014-1. The authors also thank Simon Kollberg and

the ORBIT team for technical contributions.

REFERENCES

[1] N. Ayari, D. Barbaron, L. Lefevre, and P. Primet. Fault tolerance
for highly available internet services: concepts, approaches, and issues.
IEEE Comm. Surveys & Tutorials, 10(2):34–46, 2008.

[2] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX

Annual Technical Conference, FREENIX Track, pages 41–46, 2005.
[3] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI,

volume 99, pages 173–186, 1999.

21



[4] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and
scalability of ejb applications. In ACM Sigplan Notices, volume 37,
pages 246–261. ACM, 2002.

[5] A. Cellerier et al. VideoLAN-VLC media player, 1998. Last accessed
on 2018, http://www.videolan.org.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual machine
replication. In 5th USENIX Symposium on Networked Systems Design

and Implementation, pages 161–174, 2008.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual machine
replication. In 5th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), pages 161–174, 2008.

[8] M. P. da Silva, R. R. Obelheiro, and G. P. Koslovski. Adaptive Remus:
adaptive checkpointing for Xen-based virtual machine replication. Inter-

national Journal of Parallel, Emergent and Distributed Systems, pages
1–20, 2016.

[9] X. Defago, A. Schiper, and N. Sergent. Semi-passive replication.
In Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE

Symposium on, pages 43–50. IEEE, 1998.

[10] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan. Colo:
Coarse-grained lock-stepping virtual machines for non-stop service. In
4th Annual Symposium on Cloud Computing, SOCC ’13, pages 3:1–
3:16, New York, NY, USA, 2013. ACM.

[11] J. Dongarra, T. Herault, and Y. Robert. Fault tolerance techniques for
high-performance computing. In Fault-Tolerance Techniques for High-

Performance Computing, pages 3–85. Springer, 2015.

[12] M. Hines. Qemu features - microcheckpointing, 2015. Last accessed
on 2017, http://wiki.qemu.org/Features/MicroCheckpointing.

[13] R. Jhawar and V. Piuri. Fault tolerance and resilience in cloud computing
environments. Computer and Information Security Handbook,, pages
125–141, 2013.

[14] M. Ji, A. C. Veitch, and J. Wilkes. Seneca: remote mirroring done
write. In USENIX Annual Technical Conference, General Track, pages
253–268, 2003.

[15] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Designing for
disasters. In 3rd USENIX Conference on File and Storage Technologies

(FAST), pages 59–62, 2004.

[16] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[17] D. Kyriazis, V. Anagnostopoulos, A. Arcangeli, D. Gilbert,
D. Kalogeras, R. Kat, C. Klein, P. Kokkinos, Y. Kuperman, J. Nider,
et al. High performance fault-tolerance for clouds. In Computers and

Communication (ISCC), 2015 IEEE Symposium on, pages 251–257.
IEEE, 2015.

[18] H. Lin and P. J. Antsaklis. Hybrid Dynamical Systems: An Introduction

to Control and Verification, volume 1 of Foundations and Trends in

Systems and Control. Now publisher, 2014.

[19] Mozilla Foundation, Bugzilla Team. Bugzilla documentation-5.0. 2+
release, 2015. Last accessed on 2016, https://www.bugzilla.org/docs/5.
0/en/html/integrating/api/.

[20] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and
S. Owara. Snapmirror: File-system-based asynchronous mirroring for
disaster recovery. In 1st USENIX Conference on File and Storage

Technologies (FAST), 2002.

[21] Red Hat. libvirt: The virtualization API, 2012. http://libvirt.org.

[22] Rice University. RUBiS: Rice University Bidding System, Last Accessed
on October, 2016. http://rubis.ow2.org.

[23] O. Sefraoui, M. Aissaoui, and M. Eleuldj. Openstack: toward an open-
source solution for cloud computing. International Journal of Computer

Applications, 55(3), 2012.

[24] A. Sı̂rbu and O. Babaoglu. Towards data-driven autonomics in data cen-
ters. In Cloud and Autonomic Computing (ICCAC), 2015 International

Conference on, pages 45–56, 2015.

[25] Stratus. Stratus ftserver architecture, 2008. Last
accessed on 2018, http://www.stratus.com/assets/
StratusUptimeAssuranceArchitectureForWindows.pdf.

[26] Y. Tamura. Kemari: Fault Tolerance VM Synchronization based on
KVM. KVM Forum 2010, 2010.

[27] T. Thanakornworakij, R. F. Nassar, C. Leangsuksun, and M. Păun. A
reliability model for cloud computing for high performance computing
applications. In Euro-Par 2012: Parallel Processing Workshops, pages
474–483. Springer, 2012.

[28] VMWare. VMWare High Availability (HA), 2003. Last accessed on
2018, https://www.vmware.com/pdf/ha datasheet.pdf.

[29] VMWare. VMWare vSpere 4 Fault Tolerance: Architecture
and Performance, 2009. Last accessed on 2018, https:
//vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
vmware-vsphere-fault-tolerance-architecture-and-performance.pdf.

[30] T. Wood, H. A. Lagar-Cavilla, K. K. Ramakrishnan, P. Shenoy, and
J. Van der Merwe. Pipecloud: Using causality to overcome speed-of-
light delays in cloud-based disaster recovery. In Proceedings of the 2Nd

ACM Symposium on Cloud Computing, SOCC ’11, pages 17:1–17:13,
New York, NY, USA, 2011. ACM.

22


