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Abstract—Nowadays, we live in a society with billions of
devices that are interconnected and interact together to improve
the quality of our lives. The management and processing of
information and knowledge have by now become our main
resources, and the fundamental factors of economic and social
development, and it is achieved through Big Data Frameworks
(BDFs). The amount of such data is becoming larger every day,
and this calls for scalable and reliable BDFs, that can process
such data also with real-time requirements. For example, the data
collected by an autonomous car should be processed, combined,
and interpreted as fast as possible in order to guarantee a
safe interaction with the surrounding environment, and of the
passengers.

This paper analyses the main limitations of current BDFs while
providing some key challenges for increasing their flexibility.
In particular, we focus on performance aspects, envisioning
adaptation as a viable way to automate and improve performance
in Big Data Applications.

Index Terms—big data; self-adaptive systems; autonomic com-
puting

I. INTRODUCTION

The term big data is used to refer to non-traditional strate-

gies and technologies used to gather, organize, and process

large datasets [34]. Big data refers to the problem of working

with data exceeding the computing capacity (computation

or storage) of a single computer. This problem is not new,

but its pervasiveness and scale are unprecedented. In the

past few years, the development of big data frameworks

has revolutionised the industrial practice in many different

domains [38]: From robotics [41] to smart cities [18], [39], to

automotive applications [27], [42], and to handling patient data

for large-scale healthcare databases [17]—in all these domains

processing a large amount of data is an enabler of new research

and new solutions. Big data systems are uniquely suited for

surfacing difficult-to-detect patterns and providing insight into

behaviors that are impossible to find through conventional

means. Think for example about analysing in parallel hundreds

of thousands tumor images [29] and determining, based on
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the results of the analysis, the best therapy to be applied in a

specific patient case.

The goal of most big data systems is to surface insights and

connections (i) from large amount of data (Volume) (ii) of het-

erogeneous data (Variety), (iii) almost in real-time (Velocity),

that would not be possible using conventional methods. These

three dimensions are typically called the big data “3 Vs” [26],

and are the essential ingredients of a big data application.

In addition to the classical “3 Vs”, emerging domains, such

as autonomous vehicles or smart grids, call for additional

dimensions [21], like, for example:

• the data should be meaningful for the problem being

analyzed, even if data can be biased, noisy, or incomplete

(Veracity),

• the data should be accurate and correct for the intended

use, especially if decision making is based on the col-

lected and processed data (Validity),

• how long the collected data should be stored depends on

the specific application at hand (Volatility)

• the data can be geo-distributed, making difficult to syn-

chronize the different sources of data [2] (Venue).

For example, in a smart traffic light system, a smart traffic

light needs to both locally get information from the vehicles

approaching the intersection, analyze the pedestrians crossing

the intersection, but also to coordinate with the other traffic

light in the surrounding areas to avoid or at least reduce

congestions in the city. Such a complex scenario, involves both

local and global calculations, and motivated the introduction

of new computation paradigms, such as fog computing [2].

In this paper, we analyze the main features of the main

BDFs currently available, highlighting their technical limi-

tations in terms of flexibility, and adaptability with respect

to changes in the environment where corresponding big data

applications can be deployed. The main goal of the paper

is to identify possible research directions in creating high-

performance and flexible BDFs.

II. RELATED WORK

The amount of data produced by mobile phones, wearables,

sensors and computers brings novel challenges in data storage

and analysis. A number of different big data technologies

have been developed to cope with such an increasing demand,

such as Hadoop, Hbase or CouchDB. Occasionally, big data
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technologies are used to implement data-mining techniques,

but more often the they are used for data processing in support

of the data-mining techniques and other data-science activities,

and even for real-time processing, i.e., data streaming appli-

cations.

The term big data was first used in 1944, to refer to the

imminent explosion of stored information, and then remained

unused until the nineties. In the beginning of the third mil-

lennium, Google publishes a paper describing the Google File

System [11]. While the paper does not explicitly mention the

term “big data”, the content of the work precisely fits the

paradigm of modern big data frameworks. The Google File

System introduces a new technology to handle the complexity

of processing amount of data that previous technologies could

not process. Nowadays, this technology has gained traction

and has been far more important, as the amount of collected

data in many different domains steadily increases [34].

As a result, a number of BDFs were created, giving rise to

an articulated scenario [25], [30]. Currently, there are three

main types of big data frameworks:

1) Batch-only frameworks, such as Apache Hadoop.

2) Stream-only frameworks, such as Apache Storm, Apache

Kafka [20], and Apache Samza.

3) Hybrid frameworks, such as Apache Flink and Apache

Spark [43].

Independently of the typology of the BDF, there are several

commonalities of the frameworks, in terms of operators, e.g.,

stateless and stateful operators, as well as models, e.g., the

MapReduce programming model, and the abstraction of BDA

description based on Directed Acyclic Graphs (DAGs).

MapReduce is a popular programming model and execution

environment for BDAs [8], and there have been some pioneer-

ing works on performance modeling [10], [40] and control [1],

[3], [4], [22].

Spark is an alternative to MapReduce that generalises the

types of data flows supported, overcoming the limitation

of acyclic data flow models, and extending it with a data-

sharing abstraction called “resilient distributed datasets,” or

RDDs [43]. It was originally developed to support interactive

data exploration and analytics, and for iterative jobs. Spark

tries to keep data in memory at each cluster node, and

avoids reloading data from disk as much as possible, trying to

minimize memory latency.

Another very famous framework is Kafka [20], that targets

real-time processing of data with high throughput and low

latencies. Kafka was originally developed by LinkedIn but now

it is an open-source project of Apache. Kafka is a streaming

platform with three main capabilities: (i) publish and subscribe

to stream of records (called topics), (ii) store streams of

records, and (iii) process streams of records as they occur. The

main structure of Kafka is a distributed producer-consumer

architecture, where producers store messages at a set of

(stateless) servers (called brokers), from where consumers can

pull messages. Kafka targets real-time streaming applications,

and data pipelines connecting systems or applications. Kafka

can scale horizontally by adding or removing brokers to a

cluster.

From a conceptual modelling viewpoint, however, Kafka,

Spark, MapReduce and similar technologies can be described

in analogous ways without loss of generality. In fact, virtually

any BDF is nowadays based on MapReduce, or built on top

of it, trying to optimize how resources are accessed or utilized.

This allows one to address the need to exploit parallelism,

which is inherent to big data applications. Parallelism appears

both at the application level, which is apparent, and at the data

level, i.e., when parallelism does not appear among parts of

the application, rather it is intrinsic to the individual operation

that is being executed on the data.

III. LIMITATIONS AND CHALLENGES

There are several limitations of current BDFs. We here

identified four main limitations, and corresponding challenges

for the development of the next generation BDFs. Such lim-

itations result in researchers that need to develop their own

big data frameworks [6], [13], [14], and also it may hinder

the possibility to adopt big data frameworks in safety-critical

applications, such as in human-robot interaction, autonomous

vehicles, or health-care applications.

A. Programming language

Most of the BDFs are written in Scala, Java, or Python [33].

The reason why Java was adopted was the rich set of libraries

and used extensively in industrial applications. However, they

are not optimized for high performance computing, and real-

time operation, and the utilization of compiled languages, such

as C/C++, can significantly improve their run-time execution,

providing a more predictable behavior, thanks also to program-

ming models like MPI and OpenMP [28], [31].

B. Adaptive resource management

The programmer that wants to take advantage of the

performance-potential offered by BDFs must know a lot of

the internals of the framework that he/she selects, and should

then optimize many parameters of the execution, including

resource-allocation, data-processing, and data-storage param-

eters. This calls for self-adaptiveness of the software system,

to adapt to the dynamic and uncertain environment in which

the big data application is deployed [5], [35].

Although all modern BDFs do take care of parallelism

and its exploitation, they typically employ threshold based-

mechanisms for scaling horizontally or vertically, and this

significantly limits their performance. Such an approach has

proven successful in practice, but the underlying standpoint

makes it difficult to guarantee a priori any characteristic of the

BDA execution based on conveniently qualified expected envi-

ronmental conditions. More advanced mechanisms for scaling

the applications can be used, exploiting machine learning [24],

or control-theoretic approaches [7], [16], [22].

In this respect, there is a clear need of performance models

of components and operators of big data frameworks, for

designing and analysing their behavior, and the fundamental
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limitations from a theoretical perspective. One example is

provided in [12], where the stream join operator is modeled

and validated with a real implementation from a performance

perspective, providing insight on how the number of threads

affect latency and throughput of tuples as a function of the

incoming workload, even in overloaded scenarios. In general,

however, building models to represent complex static and

dynamic component compositions in both the system and

the underlying infrastructure, exploiting multiple architecture

styles, and accurately representing combinations of heteroge-

neous and uncertain workloads challenges the state of the art

in performance modeling [19].

Finally, big data computation is now best effort: a compu-

tation is started with no guarantees on its completion time, its

accuracy, or its resource consumption. It is clear that this limits

the applicability of BDFs, and safety-critical applications

cannot be addressed easily with the current technology.

C. Self-adaptation of big data applications

As highlighted in [36], current BDFs do not provide an ex-

tensive support for the development self-adaptive applications.

The self-adaptation is typically limited to the internal mech-

anisms of the BDF, and to optimize the resource utilization.

BDFs should, on the other hand, include suitable interfaces

for the runtime adaptation of the big data applications them-

selves [9].

D. Safety assurances

Criticality of systems implies stringent requirements on

safety assurance and security. When a system might harm

humans or the environment, decision-makers require assurance

that it manages risk acceptably. Most safety standards are pri-

marily focused on closed or controlled models of development

and on pre-release assurance of safety.

Currently, BDFs are inflexible and cannot really handle

seamlessly the needs emerging in different application do-

mains, especially regarding safety properties. The need for

new dimensions with respect to the classical “3 Vs”, is just

one way to see this problem.

The safety-critical nature of many big data applications, e.g.,

human-robot interaction, autonomous vehicles, and the smart

traffic light system, require the system designer to provide

safety guarantees on the actual execution of the overall system.

This is not only true when humans are in the loop, but also to

avoid accidents that would cause economic losses, e.g., when

two autonomous robots crash in a factory.

BDFs are not able to provide such guarantees, especially

due to the large scale of the application that make performance

prediction at design time (without performance models) prac-

tically infeasible. Due to the data growth, shared cloud-based

infrastructures, and application evolution, even assurances at

design time would become invalid almost immediately. Some

researchers provided some preliminary results on runtime

certification [23], [32], [37], but they do not extend easily

to big data applications.

E. Challenges

The main challenges for the development of high-

performance BDFs that should be overcome can be summa-

rized as follows:

1) BDFs are mainly developed with programming languages

not explicitly targeting high performance computing, e.g.,

Java, Python or Scala. The main challenge is to develop a

high performance framework, and to improve the real-

time support.

2) Performance models, that would allow both fast proto-

typing of big data applications, as well as improve the

efficiency of how the resources are utilized, are missing.

Performance models are also important for providing

fundamental limits on the obtainable performance, and

can constitute the basis for a deeper understanding of big

data technologies.

3) There is currently little support for runtime adaptation and

resource management, resulting in difficulty in designing

autonomic computing solutions [15]. The main challenge

is to develop suitable interfaces and mechanisms for the

efficient runtime adaptation, in order to design big

data applications that require very little knowledge of

the environment where they will be developed, providing

plug-and-play solutions.

4) Most of the existing BDFs do not target safety-critical
applications explicitly. The main challenge is to develop

suitable verification-oriented models of big data com-

ponents, that can provide runtime guarantees of their

execution, even for safety-critical applications.

IV. CONCLUSION

In this paper we briefly analyzed the main BDFs present

on the market, highlighting their main limitations. It is clear

that big data is an enabling technology for several application

domains, but big data technologies have not been extensively

used in the context of high performance computing, and

for safety-critical applications. We believe that this could be

addressed by the introduction of self-adaptive mechanisms

that would increase the capabilities of current BDFs, as well

as their flexibility. In particular, we identified four main

challenges for big data technologies, discussing the main

limitations that should be addressed to solve such problems.

There are several other challenges related to BDFs, includ-

ing data quality, data security, data management, privacy [21],

but we limited the scope of this work to only performance and

assurance issues.
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