
From Natural Language Requirements to Passive
Test Cases using Guarded Assertions

Daniel Flemström∗, Eduard Enoiu∗, Wasif Azal∗, Daniel Sundmark∗, Thomas Gustafsson¶ and Avenir Kobetski‖
∗ Mälardalen University, Sweden, Email: firstname.lastname@mdh.se
¶ Scania CV AB, Sweden, Email: thomas.gustafsson@scania.com

‖ RISE SICS AB, Sweden, Email: avenir.kobetski@ri.se

Abstract—In large-scale embedded system development, re-
quirements are often expressed in natural language. Translating
these requirements to executable test cases, while keeping the
test cases and requirements aligned, is a challenging task. While
such a transformation typically requires extensive domain knowl-
edge, we show that a systematic process in combination with
passive testing would facilitate the translation as well as linking
the requirements to tests. Passive testing approaches observe
the behavior of the system and test their correctness without
interfering with the normal behavior. We use a specific approach
to passive testing: guarded assertions (G/A). This paper presents
a method for transforming system requirements expressed in
natural language into G/As. We further present a proof of concept
evaluation, performed at Bombardier Transportation Sweden
AB, in which we show how the process would be used, together
with practical advice of the reasoning behind the translation
steps.

I. INTRODUCTION

In today’s vehicular software systems, new sensors and ad-
vanced features such as advanced driver-assistance systems are
introduced at an accelerating pace. The resulting complexity
has implications on the number of possible combinations and
situations that need to be tested.

Test automation is often assumed to be the only reasonable
approach to mitigate this development. However, there are still
a number of challenges that need to be solved when automat-
ing test cases from requirements. Some of these challenges
stem from the widely used industrial practice of describing
system level requirements in natural language.

While there have been some efforts in trying to automati-
cally extract information from system requirements to build
test cases e.g., [1], there are, to our knowledge, no such
approaches that have reached a level of maturity close to what
is needed in an industrial context.

In this paper, we present a process for transforming system
level requirements to passive test cases using a systematic
process that consists of five main activities. The first two
activities involve the analysis of requirements and the creation
of abstract test cases. The next two activities produce prototype
executable passive test cases, before the final step of validating
and tuning these into their final form. We envision that a
systematic process will make the translation from system
requirements to concrete and executable passive test cases
less time-consuming and error-prone. Further, this method
could be used to support and maintain the traceability between

requirements and test cases as well as integrated into a more
general software test process improvement approach [2].

In addition to the above stated process, we present a proof-
of-concept evaluation of this method, performed at Bombardier
Transportation Sweden AB using an industrial subsystem
responsible for the headlight control functionality.

The paper is organized as follows. Section II provides an
overview of testing vehicular systems, formalizing require-
ments and passive testing. Section III describes the concept
of guarded assertions and the SAGA tool chain. Section IV
and Section V present the process of deriving and defining
passive test cases using guarded assertions, as well as an
evaluation of this process on an industrial system. In Section
VI we briefly review the related work. Section VII discusses
the results and implications of using this process in practice
before we conclude the paper in Section VIII.

II. BACKGROUND

As many vehicular functions are targeted by strict standards
such as ISO 26262 for automotive and EN 50126/50128/50129
(Reliability, Availability, Maintainability, and Safety (RAMS))
for trains, the vehicular systems industry must be able to
argue that the system has been properly and sufficiently
tested against the requirements. This puts high demands on
test efficiency & effectiveness, requirements alignment and
traceability between requirements and test cases [3].

Using system level requirements to derive test cases come
with certain challenges: requirements and the test cases may
(i) differ in level of abstraction, (ii) make use of different on-
tologies [4], (iii) be written by (and for) people with different
competencies [5]. In addition, deriving test cases from natural
language requirements suffer from well-known general issues
when using natural language, such as ambiguity, vagueness,
and, wordiness [6]. Any solution to these challenges would
involve extracting relevant information from the requirement
text, such that the tester can understand what to test, how to
test, and under which circumstances it makes sense to test.

Transforming natural language requirements into formal
representations has shown to be an effective way of verifying
that the requirements are met, but so far it has been too difficult
for the general tester and the requirements engineer to express
requirements or test cases in a formal way [7], [8], [9].

Although there have been attempts to automatically process
natural language requirements using machine learning [1],

[10], few of these attempts have survived long outside an
academic setting [11] and not to the level of creating concrete
and executable test cases.

Other, manual attempts such as the method proposed by
Filipovikj et al. [12] aims to facilitate the translation between
the natural language to temporal logic by offering pre-defined
patterns, mapping common natural language constructs to tem-
poral logic patterns. In the aforementioned work, the authors
propose 17 patterns that support the translation from structured
English language into formal specifications. However, using
these patterns typically requires tool support to be practically
useful [9], [13]. Another approach is to start from the point
of the domain knowledge of the tester, trying to simplify the
specification language itself so it can be used by the average
tester. While many such attempts use a graphical representa-
tion of the language [11], the SAGA1[14] approach instead
offers interactive visual feedback while writing the test cases
with a minimal textual specification language. The approach
starts close to the domain knowledge of the test engineers
with the goal of allowing the testers (and the requirements
engineers) to think of the system as they are used to, without
the burden of mastering temporal logic languages.

Passive testing is an approach where the test cases only
monitor the system under test (SUT) and do not alter the state
of the system at all. Instead, requirements are verified when-
ever appropriate, independently of the input stimuli sequence.
A more general in-depth review of passive testing methods can
be found in [15]. In previous work on the SAGA approach,
interviews with practitioners [16] have shown that passive
testing using guarded assertions [14], [17], [18] seems to
contribute to small tests, preferably one test per requirement,
which should facilitate both alignment as well as traceability.

III. GUARDED ASSERTIONS, T-EARS AND THE SAGA
TOOL CHAIN

The concept of guarded assertions [17] was introduced as
an approach for passive testing. Initially, the target was system
level testing in the vehicular domain. The concept relies on the
separation of the input stimuli (that affects the system state)
and the test oracle (i.e., that decides if a system requirement
is fulfilled or not). In this paper we focus on the oracle,
expressed as a guarded assertion (G/A). A G/A is effectively
an executable test case that can be evaluated on arbitrary log
files extracted from the SUT, given that the required signals
for test case execution have been recorded.

A G/A consists of one guard expression G and one asser-
tion expression A. The guard expression controls when the
assertion expression A is evaluated. Depending on the type
of guard expression, the resulting verdict is either a sequence
of pass/fail events, or, a sequence of fail/pass intervals, where
fail or pass verdicts are determined by the assertion expression
A being evaluated to true (i.e., pass) or false (i.e., fail).
The possible types of expressions are further discussed in
Section III-A.

1Situation-based Integration Testing of Automotive Systems using Guarded
Assertions

0 1 2 3 4 5 6 7 8 9

A
B

A and B
A or B

E1
B and E1

B or E1
E2

E1 and E2
E1 or E2

undefined

Fig. 1: Example of operations between expressions. A high
signal on the y-axis illustrates the intervals when the expres-
sion evaluates to true and a dot denotes an event that only
represents a point in time (x-axis).

Before examining the technical details of G/As, consider
the following illustrative example: “whenever the brake pedal
is pressed, the brake light should be lit”. Assuming that we
successfully created a guard and an assertion expression for
this example, the guard expression G would decide whether
the brake pedal is pressed or not (a sequence of time intervals
where the guard is true), and the assertion expression A would
evaluate to true whenever the brake light is lit. For each guard
interval, as long as A is true, the test is considered to be
passed. Conversely, if A is false any time during the guard
interval, the test has failed during the interval where A was
false. Outside the guard intervals the result of the assertion
expression is not evaluated.

The SAGA approach [14] is used to express such guarded
assertions. The SAGA approach is supported by a tool chain
consisting of an interactive test case editor as well as a de-
scription language (i.e., the T-EARS language). This language
is based on the Easy Approach to Requirement Specification
(EARS) language [6]. Below, we present the T-EARS language
in detail, beginning with the principles and concepts of the
expressions in Section III-A, followed by a description of the
three kinds of guarded assertions that are possible to express
in Section III-C through Section III-D. The three kinds of
guarded assertions correspond to three of the EARS require-
ment patterns (i.e., event-driven, state-driven and ubiquitous).
Which pattern to choose depends on the expected behavior of
the test object as described by a requirement.

A. Concepts and Principles

When working with guarded assertions, we consider
three expression types that can be used for the guard
expression and the assertion expression. The considered
types are: EventExpression, IntervalExpression, and
TimeExpression.

An IntervalExpression can be built from combining
signals, values or another IntervalExpression using the

T-EARS built-in operators <, >, ==, !=, and, or,
xor. The result of evaluating an IntervalExpression on a
test log is a sequence of time intervals where the expression
evaluates to true. For simplicity such a sequence can be
thought of as a digital signal (e.g., the result of a > 3, where
a is a signal) that is true during the intervals in the sequence.

An EventExpression evaluates to a sequence of events.
In this context, each unique event maps to a single point
point in time in the test log. An EventExpression can be
built from combining an IntervalExpression with another
EventExpression, using the T-EARS built-in operator and.
The result will be a set of events confined to the intervals of
the IntervalExpression. Using the binary signal analogy,
we keep the events for which IntervalExpression is true.
An EventExpression can also be built using the T-EARS
built-in functions rising_edge(IntervalExpression) or
falling_edge(IntervalExpression) that are explained
further in the following examples. Figure 1 illustrates event
expressions (E1, E2), signals (A,B) and the result of different
combinations.

Lastly, the temporal specification, TimeExpression, in T-
EARS applies to both guards and assertions and uses the
following keywords:

• within: the time within which a condition must hold.
• for: minimum time that a condition must hold.

B. Event-driven Guarded Assertion

An event driven guarded assertion observes the system
at discrete points in time and is described by the following
pattern:
when EventExpression < TimeExpression > shall
AssertionExpression < TimeExpression >

0 1 2 3 4 5 6 7 8 9 10 11 12 13

B==4

A==1

Guard

Verdict

pass fail

within 2s within 2s

Fig. 2: Event driven G/A example: when
rising_edge(A==1) shall B == 4 within 2s.

The guard expression EventExpression evaluates to a
sequence of guard events (i.e., single value at discrete time
points) for which the result of the AssertionExpression can
be either an IntervalExpression or an EventExpression

that should be observed. The result (verdict) is a sequence
of pass or fail events. The optional TimeExpression allows
concentrating on the guard expression. There are currently
three sources of events for the guard expression:

• Time-out: In some cases we need to detect when a signal
has been stable during a minimum amount of time. Using
the pattern “when IntervalExpression for timeout”
we can specify that an event occurs each time an interval
from IntervalExpression is long enough.
If the interval is long enough, the event is elicited
at the end of the timeout interval. If we choose to
use the signal analogy, we get an event at the end of
the timeout if and only if the “signal”, represented by
IntervalExpression, is true during the whole timeout.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

B==4

A==1

Guard

Verdict

pass fail

within 2s within 2s

for 1s for 1s for 1s

Fig. 3: Event driven G/A example with timeout: when A==1
for 1s shall B == 4 within 2s.

In Figure 3 the guard when A == 1 for 1s evaluates
to one event, one second after each time step in which
the clause A == 1 has changed from false to true, but
only if A == 1 stays true during exactly one second.
In our example, only the first two pulses (i.e., 1-4s and
6-8s) are long enough. The last pulse (i.e., 11-11.5s) is
too short and does not result in any event. The verdict
is thus evaluated at two points in time (i.e., 3 and 7s).
At time point 2s the guard starts observing whether the
expression B == 4 is true within the specified 2 seconds.
After one second, B == 4 is true and the verdict is pass.
In the same way, the guard starts observing the expression
B == 4 at time point 7s, but the expression never
evaluates to true, and thus, a fail verdict is reported after
two seconds (as specified in within 2s). For a tester, the
interval between the guard event and the reported (fail)
verdict can be helpful to narrow down the root cause of
the failure.

• Edge Detection (rising/falling) can be used on any binary
signal expression using the T-EARS built-in function
rising_edge and falling_edge.

• Boundary Crossing: events can be constructed by us-
ing edge detection on a signal boundary: e.g., “when

rising_edge(S > 10)”. This would evaluate to
a sequence of events with one event each time the signal
S crosses the boundary from S <= 10 to S > 10. A
falling_edge would, conversely, elicit one event each
time S crosses the boundary from S > 10 to S <= 10.

C. State-driven Guarded Assertion

A state driven guarded assertion observes the system while
the system is in a particular state and is described by the
following pattern:
while IntervalExpression < TimeExpression >
shall IntervalExpression < TimeExpression >.

In practice this means that a state-driven guarded assertion
takes as input a sequence of guard intervals and returns the
continuous evaluation of the assertion expression for these in-
tervals in time. The result is one sequence of passed intervals,
and one sequence of failed intervals. It should be noted that
one guard interval can result in several pass/fail intervals since
the assertion expression is evaluated continuously during the
whole of each guard interval.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

B==4

A==1

Guard

Verdict

pass pass fail

within 2s

Fig. 4: State-driven G/A example: while A==1 shall B
== 4 within 2s.

In some cases, we need to define “entering a relevant system
state” separately from “leaving that state”. The main reason
is that describing the guard interval with one long expression
would make the expression complex and hard to comprehend.
For these purposes, the built in function between(S,E)
can be used for constructing interval sequences from event
sequences. The function takes two event sequences as argu-
ments. Consider the following example: S = {s1, s2, s3} and
E = {e1, e2, e3}. Further, assume that s2 occurred before e1
and e2 occurred before s3. The S would then evaluate to the
time intervals {(s1 − e1), (s3 − e3)}. We note that the start
event s2 occurred before e1 and was thus ignored. In the same
way, e2 occurred before s3 and was also ignored.

D. Guarded Assertions for Ubiquitous Requirements

This is a special case of the state driven guard where the
guard expression always evaluates to true. An ubiquitous guard
is thus described by the pattern while 1==1.

IV. TRANSLATING REQUIREMENTS INTO T-EARS
GUARDED ASSERTIONS

In order to derive passive test cases in the form of T-
EARS guarded assertions from system level requirements, we
need the following: i) the set of available system requirements
together with ii) the corresponding design documentation for
the, iii) current implementation and, iv) a selected feature of
the system under test (SUT) that we want to create test cases
for. The result of the process is a set of Guarded Assertions
that can be automatically evaluated on a set of log files from
the SUT. Such log files may come from executing a manual or
automated test scenario on, either a software simulator (also
known as Software In the Loop (SIL)) or from a hardware
rig (also known as Hardware In the Loop (HIL)) or from a
real vehicle. The proposed process does not take the stimuli,
required to put the system in a testable state, into account.
Instead, we rely on a set of already available executed and
recorded test scenarios, containing realistic input sequences
involving the selected feature. We further assume that all the
required signals have been recorded when executing the test
input.

The process structures the work into the following five main
activities mirrored in Figure 5: (A) Requirement Analysis, (B)
Abstract G/A Construction, (C) Implementation Analysis, (D)
G/A Concretization and (E) Tuning and Validation.

The process starts with the activity Requirement analysis,
denoted (A) in Figure 5, where information required to under-
stand the feature under test, and its relations to other features,
is collected. The details on this activity are presented in the
Section IV-A.

The collected information is formalized and eventually
formed to the first version of the Guarded assertions in the
sub sequent activity Abstract G/A construction, denoted (B)
in Figure 5. In this context, abstract means that it cannot be
automatically evaluated. This is because the requirements are
often based on logical entities such as velocity or distance,
rather than the physical signals or events to be observed.
Keeping the logical names of involved entities also simplifies
communication with the requirements engineers. The details
on this activity are presented in the Section IV-B.

In order to evaluate the guarded assertions, each abstract
entity needs to be mapped to the actual implementation by first
analyzing the design documentation. This analysis work ranges
from simple lookups of a given signal from a subsystem,
to fusing information from different sensors and performing
necessary calculations. This activity is denoted Implementa-
tion Analysis (C) in Figure 5 and is further described in
Section IV-C.

The concretization activity, denoted (D) in Figure 5, in-
cludes the mapping between abstract entities and their physical
counterparts (result from the implementation analysis). The
result of this activity is an initial version of the guarded
assertion(s), ready to be evaluated in the interactive SAGA
tool. This activity is described in Section IV-D.

Writing test cases containing timing information that result
in correct verdicts based on temporal specifications is a

Requirement
Documentation

Design
Documentation

System
Implementation

Sensors
 &

Signal
Defini tions

Concretization
Validation

&
Tuning

Requir ement
Analysis

Implementation
Analysis

A

D

C

E

L1

L2

Abstract G/A
Construction

B

Validated
G/As

G/As
(Concrete)

G/As
(Abstract)

Fig. 5: Process overview— A Roadmap for Transforming System Requirements to Guarded Assertions as Passive Test Cases.

difficult and error prone task. Therefore the process includes
a validation and tuning activity, denoted (E) in Figure 5,
where the guarded assertions can be evaluated on different
log files to check that the verdict is what is expected. From
this activity, there is a feedback loop (L1 in Figure 5) to update
the expressions in the guarded assertion.

Since the input stimuli used when producing the test
logs typically involves simultaneous use of several features,
unknown functional interference is likely to affect the test
verdict. Thus, one purpose of the validation activity is to
try to disclose as much as possible of unknown functional
interference. The feedback loop L2 in the figure, illustrates
the process of including the missing requirements for those
features and updating the Guarded assertion to consider the
identified functional interaction. Another reason to go back
to the requirements is unfeasible temporal specifications, such
as time limitations that can never be met. The Validation and
tuning activity is described in Section IV-E

In the remaining sections, each step of the process will be
further explained in detail.

A. Requirements Analysis

The basic approach for this step is to establish all related
requirements and their dependencies as well as identifying the
guard and assertions expressions using the identified logical
signals and values.

Information gathering takes as input the feature that is tested
and the all system requirements and its related documentation
including all available information related to know dependen-
cies and relations between the SUT and other functions and
environment entities. Each selected feature aims to accomplish
a set of required goals and is provided explicitly in the
requirement to a test engineer. The output of this step is
a subset of the system requirements and related documents
that sufficiently describes the feature under test and how
it influences the other features. In this study we consider
two distinct attributes in the requirement documentation: the
features and the dependencies between features. In turn, fea-
ture dependencies are functionalities required for requirement

analysis, test execution, and are part of the guarded assertions.
The problem with identifying feature dependencies is that

these need to be distinguished and taken into consideration
before a test engineer constructs a G/A. One important dif-
ference between traditional testing of checking the observable
behavior based on a sequence of input stimuli (i.e., in the
form stimuli-check-stimuli-check sequence) and passive testing
using G/As, is that G/As are completely independent of the
input stimuli sequence and cannot actively affect the state of
the system. Instead, a realistic input sequences is assumed to
be constructed outside the scope of writing the G/As. Thus,
it is likely that other features may interact with the verified
property at any point in time during system execution.

Consider the following “brake light” example: A request
for brake light should be sent when the brake pedal is pressed
more than 10%. In a traditional representation of a test case,
this requirement could contain enough information for writing
a standalone test case, since the test sequence can be designed
to limit the stimuli to the system to “pushing the brake pedal”,
thus guaranteeing that no other system function can interfere.
However, when using G/As, we need to find other system
features affecting the feature under test. In the “brake light”
example this could be an automatic emergency brake feature
that is also requesting the brake light. As a consequence, rele-
vant requirements related to this feature needs to be included
as well. It should be noted that, in practice, one of the major
issues in developing large embedded systems is that feature
dependencies are not easily accessible for a test engineer due
to the sheer size of the system and its complexity. Passive
testing has been suggested as way to facilitate the identification
of such dependencies, since these test cases will often fail due
to feature interactions during system execution. These feature
interactions can be either the result of an unknown and albeit
correct interdependency indicating a missing requirement or a
fault in the actual software.

After this gathering of information, the chosen requirements
are extracted from the requirement documentation and inter-
dependences are identified, we guarantee that only the sub-set
of requirements related to the feature under test are assessed.

B. Abstract G/A Construction

Using the set of requirements from the previous step, we
analyze these requirements with respect to the test objects
(what) of the asserted properties, their expected behavior
(how), and, the circumstances (when) under which the be-
havior is expected. The (when) part results in one or more
guard expressions, while the (what) and (how) parts result
in one or more assertion expressions. The construction of
the G/A is performed sequentially, taking each requirement
one by one, by accessing only the information available. At
this level, the guard and assertion expressions are built using
abstract signals and abstract values so they can easily be traced
back to the original requirement. Thus, the G/As are abstract
since these cannot be directly evaluated using passive testing
by assessing it using log-file extracted from the SUT. These
G/As are using abstract instead of concrete elements, because
the abstraction level and the focus of the G/A is directly
linked with the selected features under test. Throughout this
paper, the term ‘abstract G/A’ will be used to denote both
the deliberate omission of details in the G/A construction and
the encapsulation of details by means of high-level signal
and values representing states and events. Details that are
not encoded at this stage obviously cannot be included on
the grounds of the requirement documentation. In addition, it
entails the use of bridging the different levels of abstraction
between the requirement document and the the SUT: the G/As
need to be concretized before it is usable on the SUT. The
hope is that an engineer can split the inherent complexity of a
system into an abstract G/A first, and at a later stage analyze
the implementation and driver components needed to perform
G/A concretizations. On the other hand, the abstract G/A must
be sufficiently precise to serve as a basis for passive testing.
This means that these should be complete enough in terms of
asserted and expected behaviors as well as temporal constraints
and rules.

In practice, an engineer performing the abstract G/A con-
struction based on the requirement analysis step needs to fulfill
the following four activities:

1) Language Harmonization. In some occasions, the level
of ambiguity of a requirement make it difficult to extract
the needed information. Language harmonization is used
to discover the meaning of a particular requirement.

2) Extraction of G/A Information. This activity describes
the process of gathering the test objects, behaviors and
constraints needed to formalize a set of requirements
using the following steps: (i) Extraction of Asserted
Properties and Test Objects, (ii) Extraction of Expected
Behaviors, (iii) Extraction of Conditions and Rules and
(iv) Extraction of Temporal Constraints.

3) Pattern Selection. This activity deals with the selection
of a guard pattern and an assertion expression type
needed for determining the actual formalization.

4) Abstract G/A Formalization. In this activity a require-
ment is formalizable if there is a guard pattern and
assertion type that captures its semantics. The guarded

Asserted
Property

&
Test Object

Conditions
(Rules),

Temporal Aspects

Expected
Behavior,

Temporal Aspects

Abstract
G/A

Requirement Documentation

Formalize
Guard

Expression U
se

/
R

eu
se

E
xt

ra
ct

 &

H
ar

m
on

iz
e

Extract &
Harmonize

Patterns,
Definitions

E
xt

ra
ct

 &

H
ar

m
on

iz
e

Formalize
Assertion

Expression

2a

2b2c

3

2c 2b

4 44

Fig. 6: An Overview of the Requirement Analysis and Abstract
G/A Construction.

assertion is formalized by defining the abstract signals
and signal feature shapes and finally composing the
T-EARS expressions for the guard and the assertion.
The timing-specification of these signals is also taken
into account. Practically, the following steps have to be
fulfilled: (i) Definition of Abstract Signals and Shapes,
(ii) Guard Expression Composition, (iii) Assertion Ex-
pression Composition, and (iv) Temporal Specification.

In the rest of the section we present how the different
activities of constructing an abstract G/A are performed. First,
a set of related requirements together with other sources
of information (e.g, corresponding manual or automated test
cases, sequence diagrams) and the set of already defined G/As
and G/A expressions are used as an input to the abstract G/A
construction. The result of this step is a set of abstract G/As
corresponding to the features under test.

The Figure 6 outlines the requirement analysis process.
The arrows describe the information flow and the numbers
on the arrows denote the listed activities resulting in the
entities shown as boxes (i.e., test objects, conditions, expected
behaviors and finally the abstract G/As). When selecting the
pattern for the guard and assertion expressions, the available
patterns, conditions as well as the expected behavior must be
considered together. This activity is illustrated in Figure 6 with
the iteration symbol (3).

In more detail, the analysis starts with extracting the asserted

properties, (2a) in Figure 6. The asserted properties describe
what is tested (test object), how the test object should behave,
and, when it should behave in that way. Within the asserted
property, the test object captures the system-related entity,
addressed by a certain requirement (e.g., ”The doors shall
be locked within 3s when vehicle is underway”). However,
when using natural language the requirement is analyzed to
recognize the test object. In practice, this can be identified in
a sentence as a noun. Although there are tools developed to
to automatically detect these nouns [1], which of the nouns
in the sentence to choose is heavily depended on the context
and requires human reasoning and domain knowledge. One
way is to identify what is the test goal and what is actually
tested for a particular requirement. By finding this goal in the
requirement we identify the test object.

Once the test objects are determined, the corresponding
expected behaviors are extracted and identified (i.e., (2b) in
Figure 6) by capturing the expected system behavior for
each test object (e.g., ”The doors shall be locked within 3s
when vehicle is underway”). The context indicates whether
the behavior is discrete by denoting a discrete event (e.g., a
signal going from low to high can be described as single value
at a discrete time step) or continuous requiring a continuous
state or function over time (e.g., a signal having a specific
value for a certain interval). In this context, this behavior
representation is important when selecting the T-EARS pattern
for the final formalization of the assertion expression, (3) in
Figure 6. For example, phrasal verbs, such as “be locked”
typically indicate a state type assertion expression, while verbs
directly representing actions, such as “lock” or “begin” may
indicate the use of an event type assertion expression2.

The requirement example “The doors shall be locked within
3s when vehicle is underway” contains a temporal constraint
(i.e., “within 3s”) which is annotated together with the ex-
pected behavior and the selection of the assertion type (i.e.,
state or event).

Before formalizing the expected behavior to an assertion
expression, the conditions under which the behavior are es-
tablished by directly extracting from the requirement written
in natural language, (2c) in Figure 6. In our example, the
condition is described at the end of the sentence representing
the requirement example: e.g., ”The doors shall be locked
within 3s when vehicle is underway”. Once again, the behav-
ioral context is required to decide if the condition describes
a discrete event or a continuous state. In this example “is
underway” indicates that a certain property is true over an
interval and can thus be considered as an abstract continuous
system state, as opposed to “starts moving” which indicates
a discrete momentary event (e.g, events only require single
values at discrete time steps).

While performing the extraction activities (i.e., (2a)-(2c) in
Figure 6), language harmonization of the G/A information
makes sure that all chosen entities from the requirements
text align with some commonly agreed taxonomy or pattern.

2Described IntervalExpression(state) and EventExpression(event)

This activity reduces the risk of defining duplicate abstract
signals, guards or assertions and facilitates reuse of formalized
expressions.

When all necessary information is extracted from the
requirement text, harmonized and analyzed, it is used for
choosing appropriate guard and assertion expression patterns,
(3) in Figure 6. Depending on the available information on
the expected behavior, we choose to use an event or a state
assertion expression pattern. This decision in turn influences
which of the guard patterns that are applicable. Since this
decision depends on the available information in the require-
ment, several iterations may be required until a satisfactory
result is achieved.As a general rule, an event triggered guard
can only result in a verdict that is a series of fail and pass
verdicts at discrete points in time. In practice, this means that
we can assert that a system event leads to another event or
signal change. Any other behavior that happens outside this
point in time is not checked. On the other hand, a state-based
guard results in a continuous verdict over a whole continuous
range of time steps while the system is in the described state.
This means that any glitches or irregularities in the test object
will result in a partial fail verdict. Finally, the formalization
and pattern selection step should result in the creation of an
abstract guarded assertion, (4) in Figure 6.

C. Implementation Analysis

Abstract guarded assertions are mapped to the actual im-
plementation by analyzing the design documentation. De-
sign documents contain information about the implementa-
tion elements of a system and their interactions, as well as
the relation between signals and requirements. An engineer
needs to take this information into account and identify the
given signals and their characteristics. By identifying suitable
implementation and concretization details from these design
documents, we define a set of sensors and signals related
to the feature under test that is needed to fully describe the
entities used in the abstract G/A (e.g., vehicle_underway,
or train_between_platforms).

For example, an abstract signal vehicle_underway can
be defined in multiple ways, and the design documentation
may provide a set of possible sensors (e.g., SpeedSensor1,
StandStill) represented using physical identities, relevant
values and scaling property for each source of information.
In this step alternative concrete data channels for the abstract
signals, events and their values are collected by identifying
relevant sensors, signals or other system state information
sources that will be used in G/A concretization.

D. G/A Concretization

The concrete G/A is built upon actual signals and events
containing sensors and signals identified in the previous
activity. The result is a set of guarded assertions that can
be evaluated on a system log using the following steps: (i)
Identification of data sources and (ii) Value interpretation.

The input of this concretization step is an abstract G/A
definition. For each information entity in the produced abstract

G/A, domain knowledge is used to identify the underlying
meaning of each signal. As an example, an abstract signal
vehicle_underway can be read from different speed sen-
sors on the wheels in the vehicle or from a higher level system
output on a vehicle control unit. In this case, we can use the
highest level possible, given that all steps between the source
sensor on the different wheels are validated through a series of
G/As, and therefore ensuring the signal propagation. However,
ultimately, this decision depends on the overall context of the
requirement and requires deep domain knowledge. The next
step is to interpret abstract values such as “high” or “low” in
the context of the selected source of information. This depends
on the overall context and the measured unit and scaling
properties of the selected data source. Oftentimes, the same
abstract entities are used over and over again, so the definitions
of the abstract signals/events should be accumulated in a global
list and thoroughly documented (i.e., in which context and
testing level these are relevant).

E. Tuning and Validation

This last activity takes as input the executable G/A. The
G/A is validated using the following two phases: (i) Interactive
Validation and (ii) Temporal Tuning. The goal of the interactive
validation is to ensure that the expressions of the guard
and the assertion work as expected. Any missing signals or
requirements, will show as unexpected fails. The temporal
tuning allows experimentation to ensure e.g., that timeouts are
adequately dimensioned.

In practice this means that the list of concrete signals is
logged during a manual exploratory test session. Using the
interactive SAGA tool, the G/A can be applied to a log file and
the guards can be examined to observe that the asserted time
periods behave as expected. Any adjustments are immediately
reflected in the tool-output. In the same way, the assertions
can also be tuned in the editor and adjusted to ensure that the
requirement is fully covered by the set of G/As produced.

V. PROOF OF CONCEPT EVALUATION

In the following example we present the analysis of an
authentic, albeit slightly simplified set of requirements for the
selected feature “headlight” of a metro train at Bombardier
Transportation Sweden AB’s part of a Train Control Manage-
ment System (TCMS). TCMS is the name of the software-
based system in charge of the overall train control including
the operation-critical, safety-related functionality. TCMS is a
system with multiple types of software and hardware com-
ponents that controls all parts of train operation, including
propulsion, line voltage and passenger comfort systems. The
software part of TCMS is part of a distributed system running
on multiple hardware units distributed across the whole train.

The “headlight” functionality works as follows: At each end
of a metro train, there is a cab where the driver controls the
train, but for clarity, we consider only one of the cabs. The
full beam of the headlights is controlled using a pushbutton
on the driver’s desk in the cab. One push to turn it on, and
the next to turn it off. However, the full beam is only active

whenever the train is ready to run. To get the train in that
state, the train driver needs to perform a specific sequence of
actions (e.g., log in to the train panel). The train is normally
taken out of that state when the driver deactivates the cab, or
by other system functions, such as emergency brake or safety
features, overriding the manual control.

The proposed process described in Section IV is applied
on this “headlight” example by focusing on each step of
transforming system requirement to guarded assertions and
running these as passive test cases on the actual system
implementation.

A. Requirements Analysis

Following the process outlined in Section IV-A, we analyze
the system requirements and extract all the ones that relate
to the “headlight” function. For the sake of simplicity, we
only consider the feature “full beam” of the lights. The set
of identified requirements consist of two textual requirements
presented in Table I. The two requirements define when the full
beam of the train headlight should be on and off respectively.

B. Abstract G/A Construction

As described in Section IV-B, the goal of this activity is to
systematically identify, organize and harmonize information to
finally create one or more abstract guarded assertion(s).

1) Language Harmonization: Since the requirements in our
example are written in natural language, we needed to under-
stand the underlying meaning of the text as well as identify
entities of interest. We performed this activity in parallel with
the extraction activities: expected behaviors, conditions and
temporal constraints for the behaviors and conditions.

2) Extraction of G/A Information: The goal of this activity
is to extract and structure the information in order to facilitate
the upcoming formalization step, where the abstract guarded
assertion is formed.

Extracting the asserted properties and test object: Given
an overall read through of the requirements, we identified the
asserted property for REQ-1 as “full beam of the headlights
being on”, under the conditions described on lines 1.a through
1.c in Table I . The asserted property in REQ-2 was the inverse
case, describing when “full beam of the headlights being off”
given the conditions on lines 2.a through 2.c in the same Table.
This helped us to identify the test object, “full beam lights”,
which answers the question what should be tested?

Extracting Expected Behaviors: For the identified test ob-
ject “full beam lights” we extract the expected behaviors “start
to request” and “stop to request” on line 1 and 5 respectively,
and add this to Table II in the column “expected behaviors”.
These are our raw material for the assertion expressions and
answers the question how. There is no information on timing
requirements for these behavior. Thus, we note N/A in the
Time column.

Extracting Conditions and Rules: For each listed behav-
ior in Table II, we identify the circumstances under which
these behaviors are expected. The sentence “when all of the
following is fulfilled” in row 1 of Table I guide us to add

TABLE I: Outcome of the Requirements Analysis: The set of collected requirements for the train head lights.

1 REQ-1 TCMS shall start to request full beam lights when all of the following is fulfilled:
2 1.a full beam control on driver’s desk is pressed (rising edge-triggered)
3 1.b the cab is Ready to run
4 1.c no request for full beam request is currently active.
5 REQ-2 TCMS shall stop to request full beam lights when all of the following is fulfilled:
6 2.a full beam control on driver’s desk is pressed (rising edge-triggered)
7 2.b the cab is Ready to run
8 2.c request for full beam request is currently active.

TABLE II: Final Result of Extracted Conditions and Expected Behaviors for REQ-1&2, test object “full beam light”

Row Expected Behavior −→ Assertion Time Conditions(rules) −→ Guard Expression Time
1 full beam control on driver’s desk is pressed (rising edge-triggered) and

2 start to request full beam lights N/A the cab is Ready to run and N/A

3 no request for full beam request is currently active .

4 full beam control on driver’s desk is pressed (rising edge-triggered) and

5 stop to request full beam lights N/A the cab is Ready to run and N/A

6 request for full beam request is currently active .

the contents of the rows 2-4 to the conditions for “start to
request full beam” to Table II. We further add and between
the individual rows since the requirement says “all of them”
should be fulfilled. These rules are our raw material for the
guard expressions. There is no timing requirements for the
conditions either. We repeat the procedure for REQ-2 as well,
and add the results to the same table.

3) Pattern Selection: By consulting other testers with nec-
essary domain knowledge, we interpret the expected behavior
“start to request”, as the full beam lights going from “not
requesting” to “requesting full beams”. This is something that
happens momentarily. The rules of T-EARS says that we in
such cases need to create an event driven guarded assertion.

4) Abstract G/A Formalization: Before we can formalize
the guard and assertion expressions in Table II we have to
harmonize the language and define abstract signals we can
use in the expressions for the guards and for the assertions.

Definition of Abstract Signals and Shapes: Reading
Table II we notice that “full beam request” (lines 3 and 6)
has the same meaning as “full beam lights” (in the expected
behavior column). Our domain knowledge guides us to the
interpretation that it is an abstract signal, telling that the full
beam should be lit. We note both wordings in the same cell
in Table III and assign an abstract signal name, full_beam,
to facilitate the upcoming formalization process. This cannot
be automatically decided, but comes from domain knowledge
and asking around among other experienced testers. In the
same way, we cluster each entity surrounded by a solid box in
Table II (if they have the same meaning) and finally assign
an abstract signal name to each cluster. Correspondingly,
the behaviors (marked with a dotted box in Table II) were
harmonized and assigned abstract values such as on or off.

Guard Expression Composition: In Section V-B3 we
concluded that we need an event triggered guard expression.
The T-EARS pattern for an event triggered guard is when

TABLE III: Harmonized Language and logical definitions,
requirement REQ-1 and REQ-2.

Entity −→ Abstract signal Behaviors −→ Abstract Values
- full beam lights
- full beam request
full_beam

- start to request
- request for... active
on
- no request for
- stop to request
- request for ... removed
off

- full beam control on
drivers’s desk
fb_btn_pressed

- is pressed (rising edge-triggered)
rising_edge(fb_btn_pressed)

- the cab
cab_ready_to_run

- Ready to run
true
- Ready to run ... is removed
false

EventExpression. The task is to translate the rows 1-3 of
Table II to an event expression assigning abstract guard clauses
to the rows :
G1 rising_edge(fb_btn_pressed) - (events)
G2 cab_ready_to_run == true - (binary signal)
G3 full_beam == off - (binary signal)
Revisiting the requirement again reveals that all three clauses
should hold. Given the T-EARS documentation in Section III,
the first expression (G1) results in an event sequence. One
event each time the button is pressed. However the button
pushed events should only be considered whenever the two
other clauses (G2 and G3) holds. Therefore, we need to
discard all the events where (G2 and G3) evaluates to false.
The overloaded and operation in T-EARS does this for us.
Thus, the event triggered guard clause results in the definition
E_full_beam_on in Listing 1 row 2. The corresponding
steps were undertaken for the REQ-2, resulting in the define
E_full_beam_OFF on row 12 in the same listing.

Assertion Expression Composition: The goal of this step is
to form abstract assertions from the expected behaviors listed

in Table II. We use the abstract signal and value names from
the Table III for the requirements, resulting in the expression
on row 9 in Listing 1 for REQ-1 and row 19 for REQ-2.

Temporal Specification: In our requirements, there are
no temporal requirements available. However, we still add
“within 0.2s” as an illustration of a temporal specification
in Listing 1 (line 9 and 19). The practical meaning is that, for
each event of the guard expression, where we allow a delay
of 0.2 seconds for the assertion clause to evaluate to true.

1 # REQ-01
2 def E_full_beam_ON
3 rising_edge(fb_btn_pressed == on) and
4 (cab_ready_to_run == true and
5 full_beam == off)
6

7 when E_full_beam_ON
8 shall
9 full_beam == on within 0.2 s

10

11 # REQ-02
12 def E_full_beam_OFF
13 rising_edge(fb_btn_pressed == on) and
14 (cab_ready_to_run == true and
15 full_beam == on)
16

17 when E_full_beam_OFF
18 shall
19 full_beam == off within 0.2 s

Listing 1: Resulting Abstract G/A, first iteration

Improving the Solution: Although the resulting guards in
Listing 1 cover the requirements REQ-01 and REQ-02, a drop
in the observed signal would go unnoticed.

S1 S2

E_full_beam_OFF (REQ-2)

E_full_beam_ON (REQ-1)

Fig. 7: Considering State Transitions Instead of Events.

In the G/A definitions in Listing 1 , we concentrated
on the state transitions, rather then within which intervals
the system is expected to remain in one state or another.
If we consider full beam being “on” or “off” as abstract
system states, as in Figure 7, we can use the built-in function
between, to construct such periods in time. Reinterpreting
REQ-1 and REQ-2 together now gives that full beam should
be on (represented by the state S1) from the point in time
where the E_full_beam_ON event is encountered, until the
E_full_beam_OFF event is encountered:
between(E_full_beam_ON, E_full_beam_OFF)

We also need to consider when to assert the state S2, represent-
ing where the full beam should be off. Inverting the expression,
would make sure that no other function by accident turns on
the lights when they should be off:
between(E_full_beam_OFF, E_full_beam_ON)

1 # REQ-01, REQ-02
2 while between(E_full_beam_ON, E_full_beam_OFF)
3 shall

4 full_beam == on within 0.2 s
5

6 while between(E_full_beam_OFF, E_full_beam_ON)
7 shall
8 full_beam == off within 0.2 s

Listing 2: Abstract G/A, Second Iteration

C. Implementation Analysis

The goal of this step is to list all abstract signals and values,
and find out which subsystems, sensors, vehicle control units
that can provide the necessary information and also which
concrete signal name to read. We also need to understand
and interpret the signals in relation to the specification. In
our case the information comes from different subsystems,
which is reflected in the naming schemes. In our case, a
corresponding physical signal can be found in the current
implementation of the SUT for all of our abstract signals.
We also need to make sure that the interpretation of the
signal values match the interpretation used in the abstract G/A.
By consulting the current implementation documentation, we
create the following map 3:

• full_beam = Head_light_full_beam_on
• cab_ready_to_run = TC_BI_CCUS_S_RdyToRn
• fbt_btn_pressed = DriversDesk.a1.heljuspb
• on = 1
• off = 0
• true = 1
• false = 0

D. G/A Concretization
The goal of the concretization step is to create ‘defines’

for the abstract signals that we defined in the implementation
analysis. Given the names of the physical signals found, we
can add the following definitions (Listing 3) before the abstract
G/A definition to make it a concrete guarded assertion.
1 def full_beam
2 Head_light_full_beam_on
3 def cab_ready_to_run
4 TC_BI_CCUS_S_RdyToRn
5 def fb_btn_pressed
6 DriversDesk.a1.heljuspb
7 def on
8 1
9 def off

10 0

Listing 3: Concretization Mapping

E. Tuning and Validation

In order to validate any timing specifications, and to make
sure that the G/A is complete, we record the identified signals
using an existing manual test case, where we turn on and off
the lights while performing a realistic driving cycle.

The recorded log can then be loaded into the tool, where
we also enter our abstract GA together with the defines.

Now the tool can be used for adjusting or adding missing
timing information or signals that needs to be considered.
Since there are inevitable delays in the system we must allow
for a slight delay in turning on the lights. When evaluating

3The Signal names have been shortened and where necessary obfuscated.

Fig. 8: Cut-out snapshot of the SAGA tool. Demonstrating
how a missing requirement may cause the G/A to report fail-
ure. Yellow denotes active guard interval. Green/red indicates
passed/failed assertion.

the G/A against the test log, we discover that the lights go
off without anyone pushing the light button (Figure 8). This
happened when the emergency stop was tested, with the effect
that ready to run was removed for the cab. The feedback loop
L2 in Figure 5 reveals a third (missed) requirement. Whenever
the cab is not ready to run, the lights should be off. Adding this
information to the OFF event, the Guarded Assertion reported
all success for the given log file, without having to redo the
manual test case and the recording.

VI. RELATED WORK

In automotive system testing, scenario-based testing is com-
monly used, where a scenario is typically a sequence of system
events [19]. This typically results in hardcoded scripted test
cases that are difficult to test for non-determinism [18] as
well as for interactions among various configurations and
signal combinations. The proposed independent guarded as-
sertions [20] allow for parallel execution of test cases, with
frequent evaluation of assertions that are not typically captured
in requirements and thus allows for testing of functional
interactions. The concept of guarded assertions is similar to
the use of Automotive Validation Function by Zander-Nowicka
et al. [21] where an Automotive Validation Function makes
assertions if pre-conditions are true. The difference between
an automotive validation function and an independent guarded
assertion is that the later can be used to concurrently test
several functions. The concept of declarative testing [22] is
also related where, for example, test automation is modular-
ized into Answer, Executor and Verifier entities. The Answer
represents the goal of a scenario, Executor transforms Answer
declaration into executable operations while Verifier compares
the final actual state with the original Answer entity. Lastly,
as we mentioned in Section III, the concept of passive testing
also has interesting parallels with the concept of independent
guarded assertions.

There exists some previous work on the translation of

natural language requirements in to representations suitable
for model-based testing. For example, Silva et al. [23] show
the translation process from natural language text to colored
petri nets and Sarmiento et al. [24] show a transformation
of requirements into UML activity diagrams. Recently, some
research has focused on using natural language processing
techniques to generate test cases from functional require-
ments [25] [26].

The EARS (Easy Approach to Requirements Syntax) lan-
guage, created at Rolls-Royce to improve expressing natural
language requirements [6], is also central to the translation
process explained in this paper. There is some evidence on
the usefulness of EARS for large scale requirements from
multiple domains [27] [28]. Similar to our effort, different
other extensions to EARS have been proposed, such as EARS-
CTRL by Lúcio et al. [29] for writing and analyzing EARS
requirements for controllers and Adv-EARS for derivation of
use case models by Dipankar et al. [30].

VII. DISCUSSION

The SAGA approach of using guarded assertions to define
passive test cases is an attempt to bridge the gap between
traditional scenario-based testing (which, in our experience,
is relatively straightforward and widely used in the vehicular
industry, but limited in terms of test variability, coverage of
functional interference and test efficiency), and more formal
approaches (that may be exhaustive, rigorous and more ro-
bustly defined, while at the same time seldom seem to reach
a broad usage among testing and development practitioners).

A. Towards Industrial Adoption of SAGA and G/As

In order for a new testing method to reach industrial use, it
is not sufficient that it is useful beyond today’s best practices.
It also needs to be usable by the people that are intended to
use it. The focus of this paper is the description of the process
of translating natural language requirements into passive test
cases in the form of guarded assertions. Along with a mature
toolchain and underlying method, we consider the existence
of such a structured guiding process to be a key element in
the industrial update and adoption of passive testing.

In accordance with most contemporary approaches to de-
velopment of complex systems, the proposed process supports
the iterative nature of complex problem-solving. Given the
inherent temporal logic nature of many vehicular system re-
quirements (e.g., whenever A happens, B should occur within
C ms), combined with the inherent complexity of temporal
logic, we believe that an interactive and incremental way of
expressing passive tests is likely to be more applicable in an
industrial context.

B. Limitations

While we are continuously improving this situation by
working with several test engineers at multiple industrial
partners, our experience of translating requirements to guarded
assertions (either by doing it ourselves or by observing the
results of it being done by testers at our industry partners [16])

is still limited. Similarly to each guarded assertion derived
through the proposed process, it is likely that the process itself
will need to be refined and made more efficient and effective.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented and demonstrated a de-
tailed process for translating natural language requirements
for vehicular systems to passive test cases, expressed in the
form of SAGA guarded assertions. This systematic process
has been established with the primary objective to support
industrial uptake and adoption of the SAGA approach, and
of passive testing approaches in general. Our future work
will be conducted in three distinct, but interrelated, directions:
(1) Further development of the SAGA methodology and
toolset (including continued work on the T-EARS language
and support for automated input sequence genaration), (2)
empirical work on the cost-effectiveness of passive testing in
the embedded software industry, and (3) further support for
industrial uptake and adoption.

ACKNOWLEDGMENT

This work was supported by The Knowledge Foundation
(KKS) through the projects 20160139 (TESTMINE) and
20130258 (Volvo Chair), by VINNOVA within the FFI pro-
gram (SAGA) and from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement
No. 737494 (MegaM@Rt2).

REFERENCES

[1] H. M. Sneed, “Requirement-based testing-extracting logical test cases
from requirement documents,” in International Conference on Software
Quality, pp. 60–79, Springer, 2018.

[2] W. Afzal, S. Alone, K. Glocksien, and R. Torkar, “Software test
process improvement approaches: A systematic literature review and an
industrial case study,” Journal of Systems and Software, vol. 111, pp. 1
– 33, 2016.

[3] E. Bjarnason, P. Runeson, M. Borg, M. Unterkalmsteiner, E. Engström,
B. Regnell, G. Sabaliauskaite, A. Loconsole, T. Gorschek, and R. Feldt,
“Challenges and practices in aligning requirements with verification
and validation: a case study of six companies,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1809–1855, 2014.

[4] H. M. Sneed, “Bridging the concept to implementation gap in software
system testing,” in Quality Software, 2008. QSIC’08. The Eighth Inter-
national Conference on, pp. 67–73, IEEE, 2008.

[5] M. Paulweber, “Validation of highly automated safe and secure systems,”
in Automated Driving, pp. 437–450, Springer, 2017.

[6] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (ears),” in 17th IEEE International Requirements
Engineering Conference, RE’09, pp. 317–322, IEEE, 2009.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99, (New
York, NY, USA), pp. 411–420, ACM, 1999.

[8] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
Qualitative, Real-Time, and Probabilistic Property Specification Patterns
Using a Structured English Grammar,” IEEE Transactions on Software
Engineering, vol. 41, pp. 620–638, jul 2015.

[9] P. Filipovikj, T. Jagerfield, M. Nyberg, G. Rodriguez-Navas, and C. Se-
celeanu, “Integrating pattern-based formal requirements specification
in an industrial tool-chain,” in Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 2, pp. 167–173,
IEEE, 2016.

[10] S. Tahvili, E. F. M. Ahlberg, W. Afzal, M. Saadatmand, M. Bohlin, and
M. Sarabi, “Functional dependency detection for integration test cases,”
in Companion of the 18th IEEE International Conference on Software
Quality, Reliability, and Security., July 2018.

[11] C. Pang, A. Pakonen, I. Buzhinsky, and V. Vyatkin, “A study on user-
friendly formal specification languages for requirements formalization,”
in Industrial Informatics (INDIN), 2016 IEEE 14th International Con-
ference on, pp. 676–682, IEEE, 2016.

[12] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas, “Reassessing the
pattern-based approach for formalizing requirements in the automotive
domain,” in Proceedings of the 22nd IEEE International Requirements
Engineering Conference (RE’14), 2014.

[13] W. Miao, X. Wang, and S. Liu, “A tool for supporting requirements
formalization based on specification pattern knowledge,” in Theoretical
Aspects of Software Engineering (TASE), 2015 International Symposium
on, pp. 127–130, IEEE, 2015.

[14] D. Flemström, T. Gustafsson, and A. Kobetski, “Saga toolbox: Interac-
tive testing of guarded assertions,” in Software Testing, Verification and
Validation (ICST), 2017 IEEE International Conference on, pp. 516–
523, IEEE, 2017.

[15] A. R. Cavalli, T. Higashino, and M. Núñez, “A survey on formal
active and passive testing with applications to the cloud,” annals of
telecommunications-annales des télécommunications, vol. 70, no. 3-4,
pp. 85–93, 2015.

[16] D. Flemström, T. Gustafsson, and A. Kobetski, “A case study of
interactive development of passive tests,” in 5th International Workshop
on Requirements Engineering and Testing (RET’18), June 2, 2018,
Gothenburg, Sweden, IEEE/ACM, 2018.

[17] T. Gustafsson, M. Skoglund, A. Kobetski, and D. Sundmark, “Automo-
tive system testing by independent guarded assertions,” in Proceedings of
the 8th IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW’15), pp. 1–7, 2015.

[18] G. Rodriguez-Navas, A. Kobetski, D. Sundmark, and T. Gustafsson,
“Offline analysis of independent guarded assertions in automotive
integration testing,” in The 12th IEEE International Conference on
Embedded Software and Systems (ICESS), 2015.

[19] ISO/IEC, “Iso/iec/ieee 29119-1: 2013 software and systems engineering-
software testing-part 1: Concepts and definitions,” 2013.

[20] T. Gustafsson, M. Skoglund, A. Kobetski, and D. Sundmark, “Automo-
tive system testing by independent guarded assertions,” in 2015 IEEE
Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2015.

[21] J. Zander-Nowicka, I. Schieferdecker, and A. M. Perez, “Automotive
validation functions for on-line test evaluation of hybrid real-time
systems,” in 2006 IEEE Autotestcon, 2006.

[22] E. Triou, Z. Abbas, and S. Kothapalle, “Declarative testing: A paradigm
for testing software applications,” in 2009 Sixth International Conference
on Information Technology: New Generations, 2009.

[23] B. C. F. Silva, G. Carvalho, and A. Sampaio, “Test case generation
from natural language requirements using cpn simulation,” in Formal
Methods: Foundations and Applications (M. Cornélio and B. Roscoe,
eds.), (Cham), pp. 178–193, Springer International Publishing, 2016.

[24] E. Sarmiento, J. C. S. d. P. Leite, and E. Almentero, “C amp;l:
Generating model based test cases from natural language requirements
descriptions,” in 2014 IEEE 1st International Workshop on Requirements
Engineering and Testing (RET), 2014.

[25] A. Ansari, M. B. Shagufta, A. S. Fatima, and S. Tehreem, “Constructing
test cases using natural language processing,” in 2017 Third Interna-
tional Conference on Advances in Electrical, Electronics, Information,
Communication and Bio-Informatics (AEEICB), 2017.

[26] R. P. Verma and M. R. Beg, “Generation of test cases from software
requirements using natural language processing,” in 2013 6th Interna-
tional Conference on Emerging Trends in Engineering and Technology,
2013.

[27] A. Mavin and P. Wilkinson, “Big ears (the return of ”easy approach to
requirements engineering”),” in 2010 18th IEEE International Require-
ments Engineering Conference, pp. 277–282, Sept 2010.

[28] A. Mavin, P. Wilksinson, S. Gregory, and E. Uusitalo, “Listens learned
(8 lessons learned applying ears),” in 2016 IEEE 24th International
Requirements Engineering Conference (RE), pp. 276–282, Sept 2016.

[29] L. Lúcio, S. Rahman, C.-H. Cheng, and A. Mavin, “Just formal enough?
automated analysis of ears requirements,” in NASA Formal Methods
(C. Barrett, M. Davies, and T. Kahsai, eds.), (Cham), pp. 427–434,
Springer International Publishing, 2017.

[30] D. Majumdar, S. Sengupta, A. Kanjilal, and S. Bhattacharya, “Adv-
ears: A formal requirements syntax for derivation of use case models,”
in Advances in Computing and Information Technology (D. C. Wyld,
M. Wozniak, N. Chaki, N. Meghanathan, and D. Nagamalai, eds.),
Springer Berlin Heidelberg, 2011.

