
Test Agents: Adaptive, Autonomous and Intelligent Test Cases
Eduard Paul Enoiu and Mirgita Frasheri

Mälardalen University, Västerås, Sweden.

ABSTRACT
Growth of so�ware size, lack of resources to perform regression
testing, and failure to detect bugs faster have seen increased re-
liance on continuous integration and test automation. Even with
greater hardware and so�ware resources dedicated to test automa-
tion, so�ware testing is faced with enormous challenges, resulting
in increased dependence on complex mechanisms for automated
test case selection and prioritization as part of a continuous inte-
gration framework. �ese mechanisms are currently using simple
entities called test cases that are concretely realized as executable
scripts. Our key idea is to provide test cases with more reasoning,
adaptive behavior and learning capabilities by using the concepts
of intelligent so�ware agents. We refer to such test cases as test
agents. �e model that underlie a test agent is capable of �exible
and autonomous actions in order to meet overall testing objectives.
Our goal is to increase the decentralization of regression testing
by le�ing test agents to know for themselves when they should be
executing, how they should update their purpose, and when they
should interact with each other. In this paper, we envision so�-
ware test agents that display such adaptive autonomous behavior.
Emerging developments and challenges regarding the use of test
agents are explored—in particular, new research that seeks to use
adaptive autonomous agents in so�ware testing.
ACM Reference format:
Eduard Paul Enoiu and Mirgita Frasheri. 2016. Test Agents: Adaptive,
Autonomous and Intelligent Test Cases. In Proceedings of ACM Conference,
Washington, DC, USA, July 2017 (Conference’17), 4 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Even if so�ware testing is widely used in industry for veri�cation
and validation, in many cases due to the increased use of continuous
integration and the sheer amount of test cases created, automation
becomes a bo�leneck in so�ware development and is expensive to
perform in a cost-e�cient manner. Several such challenges have
been identi�ed in the automated regression testing of complex
so�ware systems [16, 20]: costly scheduling of test cases, badly
prioritized test suite, and forgo�en test cases. Automated testing is
the process of designing, continuously executing and maintaining
the con�dence in the system dependability in a cost-e�ective and
automated manner. In this context, test cases are created by human
testers satisfying di�erent test requirements and domain needs,
are scripted and executed automatically and repeatedly. �ese test
cases contain some mechanism for test evaluation that is embedded
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, Washington, DC, USA
© 2016 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

in a test script. Traditional regression test selection mechanisms
are not designed to exhibit capabilities of responsiveness, �exibility,
robustness and re-recon�gurability, since they are built upon cen-
tralized systems that strive to achieve overall test suite optimization,
but have a weak and rigid response to complexity and changes at
runtime. Such centralized regression testing mechanisms normally
lead to situations where test cases are not adapting, resulting in
ine�cient and costly test scheduling mechanisms. In these cir-
cumstances, the current challenge is to develop collaborative and
recon�gurable test cases that support characteristics of adaptation,
autonomy and intelligence.

In this paper we outline our vision to decentralize test automation
and the control of regression testing by developing tests cases that are
capable of intelligent, autonomous and adaptive actions. Such test
cases are named test agents. We envision the use of a test agent as a
self-contained and self-aware test case capable of interactions with
other test agents. �ese test agents represent another way for an
engineer to design test cases that will e�ectively test so�ware. �e
use of test agents tackles these test automation challenges by en-
abling test engineers to create autonomous and adaptive test cases
which can take decisions about their action-execution mechanism
and scope of interactions at run-time.

Many possible de�nitions of agents exist in the literature [8].
Here we explicitly consider that agents are so�ware systems that
operate in an execution environment which they can perceive and
respond to, take initiatives and select own goals, and interact with
others when deemed �t [12]. Over the past few years, this paradigm
has been applied in di�erent application domains, with varying
levels of product maturity [17]. �ese solutions are being deployed
in the telecommunication, logistics, e-commerce, and robotics do-
main. Having learned from the successes and drawbacks of using
agents in other domains, our vision is to introduce and implement
the test agent paradigm. Practically, our vision goals are to: (i) help
test engineers create test cases capable of adaptive and autonomous
actions using test agents, (ii) develop a language for describing test
agents, i.e., agents with a speci�c purpose in terms of test e�ective-
ness and e�ciency, a set of interaction and execution mechanisms,
and the ability to perceive the test evaluation results a�er each run,
and (iii) investigate how test agents and their interactions evolving
in time could be represented using speci�c rules.

2 REGRESSION TEST AUTOMATION
So�ware testing is the primary method used in industrial practice
to evaluate so�ware and can be divided [1] in three distinct tasks:
test design, test execution and test evaluation. A test engineer de-
signs tests by creating test requirements which are then wri�en
into actual scripts that are ready for execution. �ese scripts are
executed against the so�ware and the results are evaluated. Test
automation is using so�ware to control these activities with the aim
to reduce the cost of testing. One integral part of test automation
is regression testing, the process of continuously testing so�ware

Conference’17, July 2017, Washington, DC, USA Eduard Paul Enoiu and Mirgita Frasheri

that has been modi�ed. A regression test system (shown in Figure
1) is o�en incorporated into a continuous integration development
and determines which test cases to include in a regression suite by
identifying suitable cases based on di�erent information sources
(i.e., fault history, execution time, test coverage, failing tests) ob-
tained a�er the execution of the system. In the current practice of
so�ware testing, test cases are entities composed of several discrete
parts (i.e., test case input values and expected results needed for
evaluation). �ese components are concretely realized in a script
that can be automatically executed and knows exactly what values
to expect. As a result, the existing process of so�ware testing is
build upon static and rather simplistic test cases, thus entailing the
use of a highly-complex and centralized test scheduling technique
for regression testing. To change this centralized process, we envi-
sion a new class of autonomous, intelligent and adaptive test cases
that we refer to as test agents. As a result, test agents could enable
testing of goals beyond their original scope and can decide what
interactions are needed with other test agents and adapt when their
test goal or the so�ware updates. �e change from the traditional
centralized approach to regression testing to the new distributed,
adaptive and intelligent approach is illustrated in Figure 1.

3 ADAPTIVE AUTONOMY
�e notion of adaptive autonomy refers to the ability of so�ware
agents to change their levels of autonomy based on their circum-
stances. Agent autonomy in itself can be described through two
dimensions, self-su�ciency, i.e. ability to ful�ll a task without
outside help, and self-directness, i.e. ability to decide upon one’s
own goals [13]. Castelfranchi [4] uses dependence theory to de�ne
autonomy as follows: An agent A that lacks means for perform-
ing a speci�c task T and depends on an agent B to acquire such
means, is said to be non-autonomous from B with respect to T.
It might happen that A is able to perform T by itself at a point
in time t1, but not at t2 due to circumstantial changes, e.g. A is
low on resource-consumption levels. Consequently, A (and B as
well) needs to continuously evaluate whether it needs assistance,
or whether it is willing to give assistance to other agents that might
ask. As a result, based on their circumstances, agents decide by
themselves when to adapt their autonomy. Alongside adaptive
autonomy, there are other similar notions such as adjustable au-
tonomy [11] [13], mixed-initiative interaction [11], collaborative
control [7] and sliding autonomy [3].

4 AGENTS IN SOFTWARE TESTING
So�ware agents have already been used to automate di�erent as-
pects of testing. One such approach is the adaptive test management
system (ATMS) [15], which aims at selecting an appropriate set
of test cases to be executed in every test cycle. �e ATMS uses
three types of agents: test unit, test case and test resource. Test unit
agents request additional test cases when the unit does not ful�ll
the desired test coverage using fuzzy logic. Since changes made
to a so�ware unit could in�uence other units, agents exchange
information with each other about such events. Agents calculate
the local priority of their respective test cases, and negotiate with
each other on global priority using an action selection scheme.
Researchers have also used a multi-agent approach for intra-class

Regression
Test System

centralized distributed

Test
Agent

Test
Case

Test
Case

Test
Case

Test
Agent

Test
Agent

selection, scheduling and
decision functions

A B C

A

B C

Figure 1: Centralized and distributed approaches to regres-
sion test automation.

testing of object-oriented so�ware. Dhavachelvan [5, 6] presented
three types of agents: distributor agent, testing technique agent,
and clones. Distributor agents take assignments and map them to
the available testing agents. Agents are able to clone themselves
to accommodate the resource needs required by speci�c testing
activities. In this approach, testing agents do not communicate
with each other, but only with their distributors. Other contribu-
tions have relied on the agent-based paradigm to speci�cally target
service-oriented systems [2]. �e Belief Desire Intention (BDI)
agent architecture is used by Rao et al. [19] to distinguish between
two types of agents: coordinators and runners. Coordinators create
testing plans and runners conduct the testing activities and send
their results back to a coordinator. Hong Zhu [24] is using the
agent-paradigm in a framework that targets both so�ware develop-
ment and management. Zhang et al. [23] extended the LoadRunner
testing platform for web services using IBM Aglet agents. LoadRun-
ner enables the simulation of users by executing tests on the remote
server hosting the service by using Aglets agents. A di�erent ap-
proach is presented in the work of Tang et al. [21]. �eir study
aims at automating the whole testing life cycle by using four types
of agents: requirement agent (i.e., a mapping between so�ware and
test requirements), construct agent (i.e., generation of test cases)
and an execution and report agent.

To summarize, what is missing from the state of the art is a wide-
ranging approach for test automation in the context of regression
testing, such that test cases carry out actions with some degree
of autonomy and adaptivity. Test agents will tackle this gap and
expand the scope of application of so�ware agents to regression
testing and test automation.

5 DEFINING A TEST AGENT
Our overall vision for the use of test agents is to shi� the bulk of con-
tinuous test selection, prioritisation and scheduling from a centralized
regression test automation framework to a lower level of abstraction
where test agents can decide by themselves how and what to execute.

5.1 A Test Agent Model
A test agent model can be realized by considering the problem on
two levels of abstraction. �e high-level is concerned with modeling
the general internal operation of the test agent, whereas the low-
level (i.e., behavioral level) tackles the modeling of mechanisms that

Test Agents: Adaptive, Autonomous and Intelligent Test Cases Conference’17, July 2017, Washington, DC, USA

allow the test agent to adapt its autonomy, thus displaying adaptive
autonomous behavior. �e test agent is composed of the following
�ve states mirrored in Figure 2: Idle, Interact, Execute, Regenerate,
and Out of Order. �e test agent is not commi�ed to anything in
the Idle state and will execute its own task when needed. Once
the execution task has been generated, or the test agent has go�en
a task from another test agent, it will go to the Execute state and
decide if it needs assistance from another test agent before and
a�er its execution. A�er the execution is completed, the agent will
go back to the Idle state. When the test agent receives a request
from another agent, it will switch to the Interact state and will
decide whether to accept the request and give assistance or discard
it. When the test agent decides it cannot serve its initial purpose it
will switch to the Out of Order state. Other triggers for switching
to Out of Order could be devised if necessary. In addition, the agent
can switch to the Regenerate state and a test case redesign takes
place with the help of a test engineer. In the end, the test agent
can return to the Idle state. For example, let us assume a test agent
A has not been able to ful�ll its original goal (e.g., achieving 100%
branch coverage for a certain function) due to a code change. �e
agent will ask for assistance at runtime in the Execute state from
another test agent. Test agent C receives the request, but decides to
discard the request since its initial goal was to check the ful�llment
of a certain requirement and its last execution is not a�ecting the
logic that needs to be covered. Test agent B decides to accept the
request since this new goal serves its initial purpose and goes to
the Execute state and ful�lls it.

5.2 Test Agent Interactions
�e adaptive autonomous behavior is determined at those points
in which the test agent decides whether to ask or give help, and
is modeled through its willingness to interact. �is willingness is
composed of the disposition to give or to ask for help. Frasheri
et al. [9] considered the di�erent factors that could in�uence the
willingness of agents to interact, while Van der Vecht et al. [22]
examined the task urgency and agent dedication to the overall
organization as a molder of adaptive behavior. Further studies are
crucial for establishing a suitable adaptive autonomous behavior
based on the application of test agents in realistic testing contexts,
where agents cannot be expected to accurately interact.

In this paper, we propose to derive the adaptive behavior of test
agents by adapting the following four levels of interactions between
agents already identi�ed by Frasheri et al. [10] to distributed regres-
sion testing: (i) non-commi�al interactions in which a test agent
can broadcast information (e.g, its execution time, fault detection,
test coverage) to the other test agents and no response is expected,
(ii) one-to-one dialogue in which a test agent A asks another test
agent B for information (e.g., its fault history) and a response is ex-
pected, (iii) one-to-one delegation which is used when a test agent
A delegates a task, or a subtask (e.g., cover certain parts of the code)
to a test agent B and a response is expected together with some ex-
ecution evidence and information (e.g., the input parameters used
during execution), and (iv) one-to-many dialogue/delegation in
which two scenarios are considered: chain interactions and simul-
taneous interactions (in the former, a test agent A makes a request
to a test agent B, which in turn makes a request to C; and whereas

Entry

Regenerate

Execute Interact
Out

of Order

Idle

Figure 2: A high-level test agent model.

in the la�er, test agent A makes several requests, one to test agent
B, one to C). For example, the one-to-many interactions can be
used to achieve a trade-o� between multiple test agents and their
objectives with regard to some test criteria and cost (e.g., maximize
test coverage, minimize the execution time).

6 CHALLENGES
Reassessing the concept of a test case using a test agent represen-
tation is not an easy task to accomplish and therefore realizing
our vision for the use of test agents in regression testing requires
addressing the following challenges.

Design of Test Agents
When it comes to creating test cases there are at least two ways [1]:
criteria-based and human-based test design. �e criteria-based test
design is used for creating tests that satisfy some test requirement
or coverage criterion. �is process requires the creation of explicit
test requirements and models. On the other hand, human-based test
design is used for creating test cases based on the test engineer’s
domain-speci�c knowledge. When engineers create tests, they
sometimes a�empt to perform positive testing as well as stressing
the so�ware using unusual test cases. One challenge to this end
is to provide precise guidance to test engineers on how to create
a test agent in terms of its purpose, test case values, execution
environment, perception capabilities and interaction actions with
other test agents. �e design of test agents is complicated by the test
case heterogeneity given the large space of possible test scenarios
and interactions with the so�ware. Developing a programming
language for expressing test agents depends on the so�ware under
test, the nature of the test design techniques used and the types
of faults targeted by testing. A challenge is therefore to de�ne
interaction rules for test agents as well as a language to describe its
perception capabilities, interaction rules for actions, test purpose
and test agent hierarchy.

Test Automation
We refer to a test being automated if its execution, evaluation and
reporting is controlled by so�ware. As an example, when dealing
with test agents, test automation necessarily has to consider a
standardized design for test scripts, and should include support for
a test execution driver. �is driver should be used by each test agent

Conference’17, July 2017, Washington, DC, USA Eduard Paul Enoiu and Mirgita Frasheri

for executing the so�ware, evaluate the results of its execution and
report the results back to the test agent. A challenge is to establish
a test automation framework that supports (i) the ability to share
test data and interaction information among test agents, (ii) the
ability for test agents to easily organize and run, and (iii) statistical
assertions to evaluate the multi-dimensional information perceived
from logs and reports. Clearly, automated support for maintaining
test agents is crucial for the success of such an approach.

Regression Test Agent Selection
So�ware is subject to frequent modi�cations. Regression testing is
the process of continuously testing modi�ed so�ware. Its purpose
is to ensure that so�ware is functionally equivalent to the version
before the updates. For example, regression testing can reveal if
mistakes in requirements are implemented in the so�ware. �e
use of regression testing can result in a test suite that is too large
to manage and does not �nish to execute in a timely manner. For
test agents, regression testing is associated with the interaction
between agents and their evolution in time. Evolving a test agent is
challenging because of more complex dependencies. �e adaptive
autonomous behavior of test agents is modeled through its will-
ingness to interact with other test agents. �is interaction should
be based on local built-in preferences that are deciding what to do
next and initiate actions during runtime.

7 OVERALL OBJECTIVES AND CONCLUSION
�e goal of this work is to apply the adaptive autonomous agent
paradigm to the so�ware testing domain in order to reassess the
notion of a test case. A test agent is more intelligent than a test
case because it behaves as a dynamic entity that can decide by
itself or in a group of agents how and what the so�ware should
execute at runtime. �e vision proposed in this paper is expected
to lead to an operational de�nition of a test agent. Such agents
need to continuously reason and decide on their need for helping
or assisting other test agents in di�erent circumstances.

In other words, the vision is for test engineers to create test
agents that carry out a set of actions with some degree of auton-
omy by interacting with other agents and driven by the hard-coded
knowledge of a test engineer’s goals. In order to validate the pro-
posed vision, the following steps need to be taken: (i) select a
platform in which to develop the test agent automation system
(i.e., using several agent-based technologies are available such as
JADE, NetLogo, SeSAm [14]), (ii) analyze and simulate (e.g., using
ROS (Robot Operating System) [18]) how test agent interactions
are shaped by a test engineer’s preferences and de�ne how interac-
tions between di�erent agents are represented, and (iii) investigate
di�erent learning techniques that can help the test agent re�ne its
decision-making process and evolution in time.

An advanced capability that can be added to test agents is learn-
ing such that they retain useful information from their interactions
as training data and utilize various machine learning techniques to
adapt to new execution scenarios and improve their performance.

REFERENCES
[1] Paul Ammann and Je� O�u�. 2016. Introduction to so�ware testing. Cambridge

University Press.

[2] Xiaoying Bai, Bin Chen, Bo Ma, and Yunzhan Gong. 2011. Design of intelligent
agents for collaborative testing of service-based systems. In Proceedings of the
6th International Workshop on Automation of So�ware Test. ACM, 22–28.

[3] Jonathan Brookshire, Sanjiv Singh, and Reid Simmons. 2004. Preliminary results
in sliding autonomy for assembly by coordinated teams. In Proceedings of the
International Conference on Intelligent Robots and Systems, Vol. 1. IEEE, 706–711.

[4] Cristiano Castelfranchi. 2000. Founding agent’s ’autonomy’ on dependence
theory. In Proceedings of the 14th European Conference on Arti�cial Intelligence.
IOS Press, 353–357.

[5] P Dhavachelvan and GV Uma. 2005. Multi-agent-based integrated framework
for intra-class testing of object-oriented so�ware. Applied So� Computing 5, 2
(2005), 205–222.

[6] P Dhavachelvan, GV Uma, and VSK Venkatachalapathy. 2006. A new approach
in development of distributed framework for automated so�ware testing using
agents. Knowledge-Based Systems 19, 4 (2006), 235–247.

[7] Terrence Fong, Charles �orpe, and Charles Baur. 2001. Collaborative control: A
robot-centric model for vehicle teleoperation. Vol. 1. Carnegie Mellon University,
�e Robotics Institute.

[8] Stan Franklin and Art Graesser. 1996. Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents. In International Workshop on Agent �eories,
Architectures, and Languages. Springer, 21–35.

[9] Mirgita Frasheri, Baran Çürüklü, and Mikael Ekström. 2017. Analysis of Perceived
Helpfulness in Adaptive Autonomous Agent Populations. LNCS Transactions on
Computational Collective Intelligence (2017).

[10] Mirgita Frasheri, Baran Çürüklü, and Mikael Ekström. 2017. Towards Collabora-
tive Adaptive Autonomous Agents.. In ICAART (1). 78–87.

[11] Benjamin Hardin and Michael Goodrich. 2009. On using mixed-initiative control:
A perspective for managing large-scale robotic teams. In Proceedings of the 4th
International Conference on Human Robot Interaction. ACM, 165–172.

[12] Nicholas R Jennings and Michael J Wooldridge. 1998. Applications of intelligent
agents. In Agent Technology. Springer.

[13] Ma�hew Johnson, Je�rey Bradshaw, Paul Feltovich, Catholijn Jonker, Birna
Van Riemsdijk, and Maarten Sierhuis. 2011. �e fundamental principle of coactive
design: Interdependence must shape autonomy. In Coordination, organizations,
institutions, and norms in agent systems VI. Springer, 172–191.

[14] Kalliopi Kravari and Nick Bassiliades. 2015. A survey of agent platforms. Journal
of Arti�cial Societies and Social Simulation 18, 1 (2015), 11.

[15] C Malz and N Jazdi. 2010. Agent-based test management for so�ware system test.
In International Conference on Automation �ality and Testing Robotics (AQTR),
Vol. 2. IEEE, 1–6.

[16] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming google-scale continuous testing. In Pro-
ceedings of the 39th International Conference on So�ware Engineering: So�ware
Engineering in Practice Track. IEEE Press, 233–242.

[17] Jörg P Müller and Klaus Fischer. 2014. Application impact of multi-agent systems
and technologies: A survey. In Agent-oriented So�ware Engineering. Springer,
27–53.

[18] Morgan �igley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source so�ware, Vol. 3. Kobe, Japan, 5.

[19] Anand Rao, Michael George�, et al. 1995. BDI Agents: From �eory to Practice..
In International Conference on Manufacturing Systems, Vol. 95. 312–319.

[20] Per Erik Strandberg, Wasif Afzal, �omas J Ostrand, Elaine J Weyuker, and
Daniel Sundmark. 2017. Automated System-Level Regression Test Prioritization
in a Nutshell. IEEE So�ware 34, 4 (2017), 30–37.

[21] Jingfan Tang. 2010. Towards Automation in So�ware Test Life Cycle Based
on Multi-Agent. In International Conference on Computational Intelligence and
So�ware Engineering (CiSE). IEEE, 1–4.

[22] Bob van der Vecht, Frank Dignum, and JJ Ch Meyer. 2009. Autonomy and coor-
dination: Controlling external in�uences on decision making. In International
Joint Conferences on Web Intelligence and Intelligent Agent Technologies, Vol. 2.
IEEE, 92–95.

[23] Jia Zhang and Di Xu. 2008. A Mobile Agent-Supported Web Services Testing
Platform. In International Conference on Embedded and Ubiquitous Computing,
Vol. 2. IEEE, 637–644.

[24] Hong Zhu. 2004. Cooperative agent approach to quality assurance and testing
Web so�ware. In Proceedings of the 28th Annual International Computer So�ware
and Applications Conference, Vol. 2. IEEE, 110–113.

	Abstract
	1 Introduction
	2 Regression Test Automation
	3 Adaptive Autonomy
	4 Agents in Software Testing
	5 Defining a Test Agent
	5.1 A Test Agent Model
	5.2 Test Agent Interactions

	6 Challenges
	7 Overall Objectives and Conclusion
	References

