
Safety-oriented Process Line Engineering via Seamless
Integration between EPF Composer and BVR Tool

Muhammad Atif Javed and Barbara Gallina
School of Innovation, Design and Engineering,

Mälardalen University, Västerås, Sweden
{muhammad.atif.javed,barbara.gallina}@mdh.se

ABSTRACT
The integration between process engineering and variability man-
agement is required for tailoring of safety-oriented processes with
variabilities to individual projects in a similar manner to the prod-
uct lines. Previous studies have not adequately established the
Safety-oriented Process Lines (SoPLs). This paper focuses on the
seamless integration between Eclipse Process Framework (EPF)
Composer and Base Variability Resolution (BVR) Tool. The former
supports the major parts of the OMG’s Software & Systems Process
Engineering Metamodel (SPEM) Version 2.0, while the latter is a
simplification and enhancement of the OMG’s revised submission
of Common Variability Language (CVL). The proposed integration
is implemented as Eclipse plugin. It provides support for importing
backend folders and files within the method library of EPF Com-
poser, resolving problems with the files for variability management
with the BVR Tool, and exporting back the resolved process models
to the EPF Composer. The applicability of the implemented plugin
is demonstrated by engineering an ECSS-E-ST-40C compliant SoPL
for the space projects and applications.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cess management; Software product lines;

KEYWORDS
Seamless Integration, Process Engineering, EPF Composer, Vari-
ability Management, BVR Tool and Process Line Implementation.

ACM Reference Format:
Muhammad Atif Javed and Barbara Gallina. 2018. Safety-oriented Process
Line Engineering via Seamless Integration between EPF Composer and BVR
Tool . In 22nd International Systems and Software Product Line Conference
- Volume B (SPLC ’18), September 10–14, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3236405.3236406

1 INTRODUCTION
The safety-oriented processes tend to be reused, modified and ex-
tended to individual projects in a similar manner to the product lines
[12]. However, to be able to establish the Safety-oriented Process

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLC ’18, September 10–14, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5945-0/18/09.
https://doi.org/10.1145/3236405.3236406

Lines (SoPLs), the seamless integration between process engineer-
ing and variability management is required. SoPL engineering deals
with the identification and systematization of commonalities and
variabilities to concurrently engineer a set of processes; the achieve-
ment of single processes is based on the selection and composition
of commonalities and variabilities [6].

The research in Oliveira Jr. et al. [3] incorporated the variability
mechanism in OMG’s Software & Systems Process Engineering
Metamodel (SPEM). This proposal, however, needs to be imple-
mented. Rouillé [13] suggested OMG’s Common Variability Lan-
guage (CVL), but the integration with a process engineering tool
was not considered. Aleixo et al. [1] specified the feature variabil-
ities annotations in the Extensible Metadata Interchange (XMI)
files produced by Eclipse Process Framework (EPF) Composer1.
Although the derivation of customized specifications are supported
with a product line tool, the manual annotations bring serious
difficulties. The implementation by Simmonds et al. [14] focused
on models and transformations in the megamodel for establishing
process lines. The megamodel includes models, their correspond-
ing metamodels, and text-to-model, model-to-model, model-to-text
transformations, as well as higher order transformations for which
the source code is written in Java language [2]. The megamodel-
based solution requires high effort for defining models, tailoring
transformations and their evolution for the software processes
modelled in EPF Composer. Furthermore, the graphical support for
variability modelling and management is not provided.

EPF Composer and Base Variability Resolution (BVR) Tool2 are
well-known process engineering and variability management solu-
tions, respectively. They are implemented as Eclipse plugins, which
are licensed under the Eclipse Public License (EPL) Version 1.0. Be-
sides that, the EPF Composer supports the major parts of the OMG’s
SPEM 2.0, while the BVR is built on the OMG’s revised submission
of CVL. In order to establish the SoPLs, the seamless integration
between EPF Composer and BVR Tool has been achieved. More
specifically, the implemented plugin provides support for import-
ing backend folders and XMI files within the method library of
EPF Composer, resolving problems with the opening and mapping
of XMI files for variability management with the BVR Tool, and
exporting back the configured process models to the EPF Composer.
The applicability of the implemented plugin is demonstrated for
the space projects and applications [4].

The rest of this paper is organized as follows: Section 2 provides
background information on EPF Composer and BVR Tool. Section
3 discusses the seamless integration between EPF Composer and
BVR Tool for establishing SoPLs. Section 4 concludes the paper and

1See https://www.eclipse.org/epf/
2See https://github.com/SINTEF-9012/bvr

https://doi.org/10.1145/3236405.3236406
https://doi.org/10.1145/3236405.3236406
https://www.eclipse.org/epf/
https://github.com/SINTEF-9012/bvr


SPLC ’18, September 10–14, 2018, Gothenburg, Sweden M. A. Javed and B. Gallina

sketches future research directions. The appendix demonstrates
usability of the implemented solution by engineering an ECSS-E-
ST-40C compliant SoPL.

2 BACKGROUND
2.1 EPF Composer
EPF Composer provides support for authoring, tailoring and de-
ploying (software) systems development processes. This means
that process structures containing all necessary process elements
(e.g., activities, tasks, roles, workproducts, etc.) can be specified.
EPF Composer is based on the Unified Method Architecture (UMA)
metamodel, which is an evolution of the OMG’s SPEM 1.1 [10]. The
major parts of UMA are incorporated in SPEM 2.0 [11]. UMA defines
library as a root container for method plugins and configurations.

Method plugins are divided into two primary categories: method
content and processes. The method content describes the required
steps and skills to achieve the specific development goals, which
comprise of content packages, standard categories and custom cat-
egories. The tasks, roles, work products and guidance are specified
in the method content packages, whereas the disciplines, domains,
work product kinds, role sets and tools are regarded as standard
categories. EPF Composer stores all method library content in a
repository of XMI files, which is an OMG’s specification for stor-
ing and interchanging metadata in Extensible Markup Language
(XML) format. The method content elements are organized into
semi-ordered sequences, which provide the means to create a pro-
cess lifecycle. The capability patterns are building blocks that hold
process knowledge for a key area of interest, but the complete
lifecycles are modelled as delivery processes.

Method configurations point out the working subset within the
library. Therefore, the corresponding method content and process
elements have to be selected. EPF Composer supports the gener-
ation of website based on the method configuration that can be
deployed to web servers for distributed collaboration between mul-
tiple teams. Two web application formats are supported: HTML
and Java EE. Note that the standard and custom categories appear
in the published website as navigation views.

2.2 BVR Language and BVR Tool
BVR [15] is a language built on top of CVL [7] for enabling vari-
ability modeling in the context of safety-critical systems engineer-
ing. The language is implemented as a series of Eclipse plugins,
which supports featuremodelling, resolution, realization and deriva-
tion of specific family members, as well as their testing and analy-
sis. Because the language defines variability orthogonally for any
Meta-Object Facility (MOF)-compliant model (representing the Base
model), communication with other tools is needed to map the ele-
ments of a target configuration and variability abstractions in BVR.
The generation of target configurations is performed with three
editors: VSpec, Resolution, and Realization.

The VSpec editor permits variability engineers to create VSpec
models, which are an evolution of the Feature-Oriented Domain
Analysis (FODA) [9], usually called Feature Models. More specifi-
cally, VSpec extends FODA by including additional concepts such as
variables, references and multiplicities. The mandatory features are
connected to the parent feature via solid lines, whereas the dashed

lines represent optionality. The constraint-based resolution is also
incorporated. This means that logical operators such as implication,
alternative, negation might be used.

The Resolution editor permits variability engineers to perform
the resolution and obtain resolved models. To perform the reso-
lution, engineers have to specify the desired inclusion/exclusion
choices for the specific configuration. The validation process is
executed to conform whether the resolution corresponds to the
VSpec model. It is possible to define multiple resolutions for the
processes with variabilities. Software Product Line Covering Array
(SPLCA) tool is also integrated in the BVR bundle [8]. It supports
the generation of covering arrays from large feature models.

Realization is based on the placements and replacements within
the fragment substitutions. Fragment substitution removes ele-
ments within the placement and substitutes them with the elements
in replacement. Therefore, the links between VSpec features and
fragment substitutions need to be established. For making specifi-
cation intuitive and visual, the placements and replacements are
highlighted in red and blue colours, respectively. The substitutions
are executed based on variability definitions in the abstract and
realization layers in order to derive new processes. The realization
engine identifies and resolves the conflicts between fragments, and
reports unresolved failures. In summary, the BVR Tool provides
advanced support for managing families for the choices of the base
models for example process lines and product lines.

3 SEAMLESS INTEGRATION BETWEEN EPF
COMPOSER AND BVR TOOL

EPFComposer has attracted considerable attention from researchers
and practitioners worldwide. However, to be able to establish the
SoPLs, the integration with variability modelling and management
is required [1][3][14]. This might be done in two possible ways:
either the support for variability modelling and management is
incorporated and implemented, or otherwise the integration with
variability management solution needs to be achieved. In the con-
text of the AMASS3 project, it is decided to achieve the seamless
integration between EPF Composer and BVR Tool that provides
advanced support for establishing SoPLs.

As mentioned in Section 2.2, BVR defines variability orthogo-
nally for any MOF-compliant model, but the integration with EPF
Composer brings additional challenges. In this paper, the seamless
integration problems between EPF Composer and BVR Tool are
investigated and resolved. At first, we perform the migration of
EPF Composer from Eclipse Galileo to Eclipse Neon (Section 3.1).
After that, the support is implemented for importing the method
library of EPF Composer and resolving the problems with XMI files
for variability management with the BVR Tool (Section 3.2). For a
software process modelled in EPF Composer, the feature diagram
associated to the SoPL is modelled in the VSpec editor, the pro-
cess configurations are performed in the resolution editor, and the
placement and replacement fragments are defined in the realization
editor. Finally, the configured process models are exported back to
the EPF Composer (Section 3.3). The seamless integration is imple-
mented as Eclipse plugin. An overview of the seamless integration
between EPF Composer and BVR Tool is shown in Figure 1.

3See https://www.amass-ecsel.eu/

https://www.amass-ecsel.eu/


Variability Management in Process Lines SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

Authoring Browsing

Library Management

UMA

Publishing Research

Export/Import

EPF Composer

XML Export/

Import
MSP Export

Configurable Units

Variation Realization

BVR Tool

Process Line Implementation

Variability Realization for 

EPF Composer Models

Engineering of Variability 

and Resolution Models

Import from 

Library

Export to 

Library

EMF

RCP Runtime

GEF ICU4J

RCP Main

RichText

Common

JTidy

Variability Interfaces

Base Model

VSpecs Constraints

Resolutions

Variation Points Variation Abstraction

Figure 1: Overview of the seamless integration

3.1 Migration of EPF Composer from Eclipse
Galileo to Eclipse Neon

EPF Composer is the only available implementation of OMG’s
SPEM 2.0, but the migration of EPF Composer to newer versions
of technologies was never performed. Accordingly, we evolved the
EPF Composer4 from Eclipse Galileo 3.5.2 to Eclipse Neon 4.6.3 after
11 years. This is done for performing the integration with BVR Tool
in the AMASS platform. This contribution is acknowledged by the
IBM5, and therefore committer status is assigned for the project.
The migration is performed in four steps:

• Step 1: Required softwares are installed from the software
repository for the Eclipse Neon release and then deprecations
in the source code are analysed and fixed.

• Step 2: Problems with the persistence of method elements
(i.e., method configurations, method plugins, method content
descriptions and processes) are resolved. In particular, they
are stored in their own folders and XMI files.

• Step 3: Selection of currently used method configuration is
performed through a combo box for which the appearance
and height problems are resolved, the blank views are re-
moved from both authoring and browsing perspectives, and
the rich text editor problems are resolved for enabling users
to format and style text.

• Step 4: Incompatible bundles in feature plugins are deleted,
replacement bundles are added and other missing dependen-
cies for the bundles are resolved for the generation of appli-
cation. As per recommendation, the EPF Composer might be
launched as a standalone application, but also in the Eclipse
Integrated Development Environment (IDE).

4See https://bugs.eclipse.org/bugs/show_bug.cgi?id=516608
5See https://www.ibm.com/

3.2 Importing the EPF Composer Library and
Resolving the Problems in XMI Files

EPF Composer is based on the UMA metamodel. It persists the
method library contents in their own folders and XMI files, in
particular, method plugins, processes, content descriptions and
configurations. In case of a new plugin, a plugin.xmi file is created
in the new plugin directory and the reference of plugin is added
to the library.xmi file. When a new capability pattern or delivery
process is created, the model.xmi and content.xmi files are created
in a new directory, and the reference of new process is added to
the plugin.xmi file. Similarly, moving a content element to another
plugin changes plugin.xmi in both plugins. The configuration file is
used to specify the working set. Therefore, it records the references
to included content packages and processes.

The XMI files produced by EPF Composer are neither directly
opened nor mapped at the realization editor. Therefore, the prob-
lems in XMI files have to be resolved for variability management
with the BVR Tool. It is decided to copy the method library before
resolving the problems in XMI files for two reasons. Firstly, the li-
brary might be keep running in EPF Composer. Secondly, reverting
back is just required for configured processes. The packages and re-
source factories are registered for the UMA metamodel. Otherwise,
the package and class not found exceptions would be raised. We
have identified that the hypertext references (hrefs) in XMI files
are based on the globally unique identifiers (GUIDs) for example
uma://_ErexoKA4EeaPp8nsuu2eew. This is the case with multiple
UMA metamodel elements, such as tasks, roles, work products, tool
mentors and method packages. As a result, the malformed URL
exceptions are produced. The platform specific paths or otherwise
Uniform Resource Identifiers (URIs) should be used instead. The
support for the identification and resolution of problems with hrefs
has been implemented.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=516608
https://www.ibm.com/


SPLC ’18, September 10–14, 2018, Gothenburg, Sweden M. A. Javed and B. Gallina

As specified in Section 2.2, to create the placement and replace-
ment fragments, the model elements are dragged and dropped to the
realization editor, and then create placement or create replacement
option is selected from the context menu. This, however, produces
the illegal operation exception for UMA compliant models. The
analysis reveals that multiple metamodel elements have associated
description implementations, such as deliverables and break down
elements. Their naming structure "parent name","parent GUID"
is not allowed. Accordingly, we performed temporary adaptations
for supporting placements and replacements in the realization edi-
tor. The problems are resolved for all XMI files; the method library,
configurations, plugins, processes and content descriptions might
be considered for variability management with the BVR Tool. The
visual support for highlighting objects placements in red while
replacements in blue colours, as well as retrieving selections are
supported for UMA compliant models.

3.3 Exporting the Generated Process Models to
EPF Composer Application

The generated process models are automatically exported back to
the EPF Composer. At the opening of generated process models,
the dialogue window pops up to inform that “the files have been
changed on the file system. Do you want to load the changes?”
Pressing the “Yes” button loads the derived process models in EPF
Composer. The support for saving the copy of previous models is
also incorporated. It might be noted that the changes for resolving
problems in XMI files and supporting the communication with
realization editor had been reverted back in exported models.

4 CONCLUSIONS AND FUTUREWORK
In this paper, the seamless integration between EPF Composer and
BVR Tool has been achieved. EPF Composer and BVR Tool are
open source and well-known process engineering and variability
management solutions based on OMG’s SPEM and CVL standards,
respectively. At first, we evolved the EPF Composer from Eclipse
Galileo 3.5.2 to Eclipse Neon 4.6.3 after 11 years. After that, the
seamless integration is implemented as Eclipse plugin, which pro-
vides advanced support for establishing SoPLs. More specifically,
the backend folders and files from the EPF Composer method library
are imported, the problems with the opening and mapping of XMI
files are resolved, and the processed models are exported back to the
EPF Composer. The implemented plugin is available under the Po-
larSys OpenCert6 project. The usability of the implemented plugin
is demonstrated in the appendix; ECSS-E-ST-40C compliant SoPL is
established for the space projects and applications. It has also been
videotaped7. As future work, we plan to extend the integration to
other tools (CHESS8 toolset for system variability and OpenCert for
assurance case variability) in order to implement ideas related to
Anti-Sisyphus [5], the method to support variability management
along three dimensions: process, product and assurance case.

6See https://www.polarsys.org/proposals/opencert
7See https://www.amass-ecsel.eu/content/training
8See https://www.polarsys.org/projects/polarsys.chess

ACKNOWLEDGMENTS
This work is supported by EU and VINNOVA via the ECSEL Joint
Undertaking under grant agreement No. 692474, AMASS project.
The authors would like to thank Ø. Haugen, A. Vasilevskiy, I. Ayala
and A. Carlsson for their relevant suggestions.

REFERENCES
[1] Fellipe Araújo Aleixo, Marília Aranha Freire, Wanderson Câmara dos Santos,

and Uirá Kulesza. 2010. Automating the Variability Management, Customization
and Deployment of Software Processes: A Model-Driven Approach. In Enterprise
Information Systems - 12th International Conference, ICEIS 2010, Funchal, Madeira,
Portugal, June 8-12, 2010, Revised Selected Papers. 372–387. https://doi.org/10.
1007/978-3-642-19802-1_26

[2] María Cecilia Bastarrica, Jocelyn Simmonds, and Luis Silvestre. 2014. Using
megamodeling to improve industrial adoption of complex MDE solutions. In 6th
International Workshop on Modeling in Software Engineering, MiSE 2014, Hyder-
abad, India, June 2-3, 2014. 31–36. https://doi.org/10.1145/2593770.2593773

[3] Edson Alves de Oliveira Junior, Maicon G. Pazin, Itana Maria de Souza Gimenes,
Uirá Kulesza, and Fellipe Araújo Aleixo. 2013. SMartySPEM: A SPEM-Based
Approach for Variability Management in Software Process Lines. In Product-
Focused Software Process Improvement - 14th International Conference, PROFES
2013, Paphos, Cyprus, June 12-14, 2013. Proceedings. 169–183. https://doi.org/10.
1007/978-3-642-39259-7_15

[4] Deliverable D1.1 (AMASS). 2017. Case studies description and business impact–
final version. http://www.amassecsel.eu/sites/amass.drupal.pulsartecnalia.
com/files/documents/D1.1_Case-studies-description-and-business-impact_
AMASS_Final.pdf. (2017). (Last accessed: July 3, 2018).

[5] Barbara Gallina. 2015. Towards Enabling Reuse in the Context of Safety-Critical
Product Lines. In 5th IEEE/ACM International Workshop on Product Line Ap-
proaches in Software Engineering, PLEASE 2015, Florence, Italy, May 19, 2015.
15–18. https://doi.org/10.1109/PLEASE.2015.12

[6] Barbara Gallina, Shaghayegh Kashiyarandi, Helmut Martin, and Robert Bram-
berger. 2014. Modeling a Safety- and Automotive-Oriented Process Line to Enable
Reuse and Flexible Process Derivation. In IEEE 38th Annual Computer Software
and Applications Conference, COMPSAC Workshops 2014, Vasteras, Sweden, July
21-25, 2014. 504–509. https://doi.org/10.1109/COMPSACW.2014.84

[7] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and
Andreas Svendsen. 2008. Adding Standardized Variability to Domain Specific
Languages. In Proceedings of the 12th International Conference on Software Product
Lines (SPLC ’08), Limerick, Ireland, September 8-12, 2008. https://doi.org/10.1109/
SPLC.2008.25

[8] Martin Fagereng Johansen, ØysteinHaugen, Franck Fleurey, AnneGrete Eldegard,
and Torbjørn Syversen. 2012. Generating Better Partial Covering Arrays by
Modeling Weights on Sub-product Lines. In Model Driven Engineering Languages
and Systems - 15th International Conference, MODELS 2012, Innsbruck, Austria,
September 30-October 5, 2012. Proceedings. 269–284. https://doi.org/10.1007/
978-3-642-33666-9_18

[9] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report. Carnegie-Mellon University Software Engineering Institute.

[10] Object Management Group (OMG). 2004. Software Process Engineering
Metamodel Specification (SPEM), Version 1.1. ftp://ftp.omg.org/pub/spem-rtf/
SPEM-CD-20040308.pdf. (2004). (Last accessed: July 3, 2018).

[11] Object Management Group (OMG). 2008. Software & Systems Process Engineer-
ing Metamodel Specification (SPEM), Version 2.0. http://www.omg.org/spec/
SPEM/2.0/. (2008). (Last accessed: July 3, 2018).

[12] H. Dieter Rombach. 2005. Integrated Software Process and Product Lines. In
Unifying the Software Process Spectrum, International Software Process Workshop,
SPW 2005, Beijing, China, May 25-27, 2005, Revised Selected Papers. 83–90. https:
//doi.org/10.1007/11608035_9

[13] Emmanuelle Rouillé, Benoît Combemale, Olivier Barais, David Touzet, and Jean-
Marc Jézéquel. 2012. Leveraging CVL to Manage Variability in Software Process
Lines. In 19th Asia-Pacific Software Engineering Conference, APSEC 2012, Hong
Kong, China, December 4-7, 2012. 148–157. https://doi.org/10.1109/APSEC.2012.82

[14] Jocelyn Simmonds, Daniel Perovich, María Cecilia Bastarrica, and Luis Silvestre.
2015. A megamodel for Software Process Line modeling and evolution. In 18th
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2, 2015. 406–
415. https://doi.org/10.1109/MODELS.2015.7338272

[15] Anatoly Vasilevskiy, Øystein Haugen, Franck Chauvel, Martin Fagereng Johansen,
and Daisuke Shimbara. July 20-24, 2015, Nashville, TN, USA. The BVR tool bundle
to support product line engineering. In Proceedings of the 19th International
Conference on Software Product Line (SPLC ’15). https://doi.org/10.1145/2791060.
2791094

https://www.polarsys.org/proposals/opencert
https://www.amass-ecsel.eu/content/training
https://www.polarsys.org/projects/polarsys.chess
https://doi.org/10.1007/978-3-642-19802-1_26
https://doi.org/10.1007/978-3-642-19802-1_26
https://doi.org/10.1145/2593770.2593773
https://doi.org/10.1007/978-3-642-39259-7_15
https://doi.org/10.1007/978-3-642-39259-7_15
http://www.amassecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
http://www.amassecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
http://www.amassecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://doi.org/10.1109/PLEASE.2015.12
https://doi.org/10.1109/COMPSACW.2014.84
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1007/978-3-642-33666-9_18
https://doi.org/10.1007/978-3-642-33666-9_18
ftp://ftp.omg.org/pub/spem-rtf/SPEM-CD-20040308.pdf
ftp://ftp.omg.org/pub/spem-rtf/SPEM-CD-20040308.pdf
http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/
https://doi.org/10.1007/11608035_9
https://doi.org/10.1007/11608035_9
https://doi.org/10.1109/APSEC.2012.82
https://doi.org/10.1109/MODELS.2015.7338272
https://doi.org/10.1145/2791060.2791094
https://doi.org/10.1145/2791060.2791094


Variability Management in Process Lines SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

APPENDIX

A TAILORING OF ECSS-E-ST-40C FOR SPACE
SOFTWARE ENGINEERING

ECSS-E-ST-40C targets software development. It is one of the series
of ECSS standards intended to be applied together for the man-
agement, engineering and product assurance in space projects and
applications. Similar to other standards, it represents the effect
“standards for making standards”, the idea being that this permits
suppliers to use their own standards, provided that they comply
with the requirements of ECSS-E-40 or some tailoring of it defined
by the customer. The tailoring rules are provided in a specific annex,
Annex R (normative). Specifically, the tailoring is conducted based
on the software criticality, which ranges from A to D.

Due to space reasons and similar technical details for engineering
an overall ECSS-E-ST-40C compliant process line, we have limited
the discussion to Section 5. More specifically, the software design
and implementation engineering process is constituted of design
of software items, coding and testing, and integration activities,
each of which contains various tasks, which in turn contains vari-
ous steps. The integration, for instance, is composed of two tasks:
Software integration test plan and Software integration test report.
According to Annex R, the former is applicable (Y) for levels A-B,
and is also applicable (Y) for level C except SUITP K.9 and K10; but
it is not applicable for level D. The latter is applicable (Y) for levels
A-C; but inapplicable (N) for level D. In this context, the ability to
manage process variability is becoming strategic: key to reduction
of unnecessary and repetitive process management activities and
thus key to potential time saving and cost reduction.

B IMPORTING FROM LIBRARY AND FIXING
THE PROBLEMS

We have implemented a dialogue wizard to support the mapping of
target configurations at the realization editor, as shown in Figure
2, the recent/default path choice is automatically filled in the path
text box otherwise the path containing a specific method library
might be browsed. The dialogue wizard performs two tasks: (i)
imports the contents of the method library in the target directory;
and (ii) resolves problems with the XMI files. The error free models
are made available in the project folder. All the model files can
be opened, for example, method configurations, method plugins,
method content descriptions and processes.

C PROCESS VARIABILITY MANAGEMENT
WITH THE BVR TOOL

The generation of target configurations for a software process mod-
elled in EPF Composer is performed with VSpec, Resolution, and
Realization editors, as illustrated in Figure 3. The tailoring rules
provided in Annex R of ECSS-E-ST-40C are modeled within the
VSpec editor. The resulting VSpec model shows the tree struc-
ture representing logical constraints to be considered during the
resolution. As mentioned in the background, the solid line indi-
cates that the particular feature applies to all criticality levels,
whereas the dashed line represents a variation point. The whole
tree cannot be visualized due to space limitations; therefore the

Figure 2: The achievement of error free models

minimize option (+) is used for hiding the features. The tasks as-
sociated with software integration test plan development,
and software units and software component integration
and testing are marked as optional. The multiplicity xor(1..1)
is assigned to the criticality; therefore exactly one out of A, B, C
and D must be selected for the software product. As the choices
are associated with multiple criticality levels, the constraints have
been applied; valid tailoring is guaranteed if the constraints are
properly specified. For instance, the constraint (A or B) implies
(not Software_integration_test_plan) indicates that the Soft-
ware_integration_test_plan must be excluded for processes with
criticality A or B. Likewise, the constraintC implies (Software_integr-
ation_test_plan and ((not SUITP_K9) and (not SUITP_K10))) enforces
inclusion of Software_integration_test_plan, but also exclusion of
SUITP K.9 and K10 for criticality C.

The resolution models are automatically generated from the
VSpec model, but the choices needed to be included or excluded for
individual processes. In this regard, multiple resolutions might be
defined for the process with variability. The implemented editor sup-
ports error checking and validation of resolutions. The derivation
process involves the substitutions in which elements of a place-
ment fragment are removed and elements of a replacement are
injected. To create the placements and replacements, the elements
from the models are dragged and dropped on the realization editor.
It is therefore possible to define the placements and replacements
between multiple models. The placements are visualized in red,
while the replacements in blue colours. The variation points have
the associated bindings, i.e., the mapping of boundary elements
between placements and replacements. As the requirements are
either included or exuded based on the criticality of the system,
the bindings specifies the replacements with NULL elements. Oth-
erwise the specific replacement elements needed to be selected
in the bindings tab. The variation points also refer to the VSpecs
to define what abstract notion of variability the variation point
actually realizes. The inclusion/exclusion of particular choices for
the configuration/resolution is therefore considered.

In order to derive the configuration, the execute option in partic-
ular resolution is selected. This generates the desired models that
are automatically exported back to the EPF Composer.



SPLC ’18, September 10–14, 2018, Gothenburg, Sweden M. A. Javed and B. Gallina

Figure 3: ECSS-E-ST-40C compliant SoPL


	Abstract
	1 Introduction
	2 Background
	2.1 EPF Composer
	2.2 BVR Language and BVR Tool

	3 Seamless Integration between EPF Composer and BVR Tool
	3.1 Migration of EPF Composer from Eclipse Galileo to Eclipse Neon
	3.2 Importing the EPF Composer Library and Resolving the Problems in XMI Files
	3.3 Exporting the Generated Process Models to EPF Composer Application

	4 Conclusions and Future Work
	Acknowledgments
	References
	A Tailoring of ECSS-E-ST-40C for Space Software Engineering
	B Importing from Library and Fixing the Problems
	C Process Variability Management with the BVR Tool

